101
|
Fernandez SG, Ferguson L, Ingolia NT. Ribosome rescue factor PELOTA modulates translation start site choice for C/EBPα protein isoforms. Life Sci Alliance 2024; 7:e202302501. [PMID: 38803235 PMCID: PMC11109482 DOI: 10.26508/lsa.202302501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Translation initiation at alternative start sites can dynamically control the synthesis of two or more functionally distinct protein isoforms from a single mRNA. Alternate isoforms of the developmental transcription factor CCAAT/enhancer-binding protein α (C/EBPα) produced from different start sites exert opposing effects during myeloid cell development. This choice between alternative start sites depends on sequence features of the CEBPA transcript, including a regulatory uORF, but the molecular basis is not fully understood. Here, we identify the factors that affect C/EBPα isoform choice using a sensitive and quantitative two-color fluorescent reporter coupled with CRISPRi screening. Our screen uncovered a role of the ribosome rescue factor PELOTA (PELO) in promoting the expression of the longer C/EBPα isoform by directly removing inhibitory unrecycled ribosomes and through indirect effects mediated by the mechanistic target of rapamycin kinase. Our work uncovers further links between ribosome recycling and translation reinitiation that regulate a key transcription factor, with implications for normal hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Samantha G Fernandez
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Lucas Ferguson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| |
Collapse
|
102
|
Dang TTV, Maufrais C, Colin J, Moyrand F, Mouyna I, Coppée JY, Onyishi CU, Lipecka J, Guerrera IC, May RC, Janbon G. Alternative TSS use is widespread in Cryptococcus fungi in response to environmental cues and regulated genome-wide by the transcription factor Tur1. PLoS Biol 2024; 22:e3002724. [PMID: 39052688 PMCID: PMC11302930 DOI: 10.1371/journal.pbio.3002724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/06/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Alternative transcription start site (TSS) usage regulation has been identified as a major means of gene expression regulation in metazoans. However, in fungi, its impact remains elusive as its study has thus far been restricted to model yeasts. Here, we first re-analyzed TSS-seq data to define genuine TSS clusters in 2 species of pathogenic Cryptococcus. We identified 2 types of TSS clusters associated with specific DNA sequence motifs. Our analysis also revealed that alternative TSS usage regulation in response to environmental cues is widespread in Cryptococcus, altering gene expression and protein targeting. Importantly, we performed a forward genetic screen to identify a unique transcription factor (TF) named Tur1, which regulates alternative TSS (altTSS) usage genome-wide when cells switch from exponential phase to stationary phase. ChiP-Seq and DamID-Seq analyses suggest that at some loci, the role of Tur1 might be direct. Tur1 has been previously shown to be essential for virulence in C. neoformans. We demonstrated here that a tur1Δ mutant strain is more sensitive to superoxide stress and phagocytosed more efficiently by macrophages than the wild-type (WT) strain.
Collapse
Affiliation(s)
- Thi Tuong Vi Dang
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Corinne Maufrais
- Université Paris Cité, Institut Pasteur, HUB Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, Paris, France
| | - Jessie Colin
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| | - Frédérique Moyrand
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Isabelle Mouyna
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Jean-Yves Coppée
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Chinaemerem U. Onyishi
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Joanna Lipecka
- Université Paris Cité, SFR Necker INSERM US24/CNRS UAR3633, Proteomics Platform, Paris, France
| | - Ida Chiara Guerrera
- Université Paris Cité, SFR Necker INSERM US24/CNRS UAR3633, Proteomics Platform, Paris, France
| | - Robin C. May
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Guilhem Janbon
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| |
Collapse
|
103
|
Zhang R, Zhang W, Wang C, Wen CK. Arabidopsis Fhit-like tumor suppressor resumes early terminated constitutive triple response1-10 mRNA translation. PLANT PHYSIOLOGY 2024; 195:2073-2093. [PMID: 38563472 DOI: 10.1093/plphys/kiae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
The Arabidopsis (Arabidopsis thaliana) constitutive triple response1-10 (ctr1-10) mutant produces a reduced level of CTR1 protein and exhibits a weak ctr1 mutant phenotype. Sequence analysis revealed highly active translation of the upstream open reading frame (uORF) at the extended 5'-UTR of the ctr1-10 mRNA, resulting from T-DNA insertion. Enhancer screening for ctr1-10 isolated the fragile histidine triad-1 (fhit-1) mutation. The fhit-1 ctr1-10 mutant phenotypically resembled strong ctr1 mutants and barely produced CTR1, and the fhit-1 mutation reduced the translation efficiency of ctr1-10 but not that of CTR1 mRNA. The human (Homo sapiens) Fhit that involves tumorigenesis and genome instability has the in vitro dinucleotide 5',5'″-P1, P3-triphosphate hydrolase activity, and expression of the human HsFHIT or the hydrolase-defective HsFHITH96N transgene reversed the fhit-1 ctr1-10 mutant phenotype and restored CTR1 levels. Genetic editing that in situ disrupts individual upstream ATG codons proximal to the ctr1-10 mORF elevated CTR1 levels in ctr1-10 plants independent of FHIT. EUKARYOTIC INITIATION FACTOR3G (eIF3G), which is involved in translation and reinitiation, interacted with FHIT, and both were associated with the polysome. We propose that FHIT resumes early terminated ctr1-10 mORF translation in the face of active and complex uORF translation. Our study unveils a niche that may lead to investigations on the molecular mechanism of Fhit-like proteins in translation reinitiation. The biological significance of FHIT-regulated translation is discussed.
Collapse
Affiliation(s)
- Ranran Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chenrunshu Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
104
|
Karasik A, Lorenzi HA, DePass AV, Guydosh NR. Endonucleolytic RNA cleavage drives changes in gene expression during the innate immune response. Cell Rep 2024; 43:114287. [PMID: 38823018 PMCID: PMC11251458 DOI: 10.1016/j.celrep.2024.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024] Open
Abstract
Viral infection triggers several double-stranded RNA (dsRNA) sensors that lead to changes in gene expression in the cell. One of these sensors activates an endonuclease, ribonuclease L (RNase L), that cleaves single-stranded RNA. However, how the resultant widespread RNA fragmentation affects gene expression is not fully understood. Here, we show that this fragmentation induces the ribotoxic stress response via ZAKα, potentially through stalled ribosomes and/or ribosome collisions. The p38 and JNK pathways that are activated as part of this response promote outcomes that inhibit the virus, such as programmed cell death. We also show that RNase L limits the translation of stress-responsive genes. Intriguingly, we found that the activity of the generic endonuclease, RNase A, recapitulates many of the same molecular phenotypes as activated RNase L, demonstrating how widespread RNA cleavage can evoke an antiviral program.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hernan A Lorenzi
- TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew V DePass
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
105
|
Castillo-Hair S, Fedak S, Wang B, Linder J, Havens K, Certo M, Seelig G. Optimizing 5'UTRs for mRNA-delivered gene editing using deep learning. Nat Commun 2024; 15:5284. [PMID: 38902240 PMCID: PMC11189900 DOI: 10.1038/s41467-024-49508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
mRNA therapeutics are revolutionizing the pharmaceutical industry, but methods to optimize the primary sequence for increased expression are still lacking. Here, we design 5'UTRs for efficient mRNA translation using deep learning. We perform polysome profiling of fully or partially randomized 5'UTR libraries in three cell types and find that UTR performance is highly correlated across cell types. We train models on our datasets and use them to guide the design of high-performing 5'UTRs using gradient descent and generative neural networks. We experimentally test designed 5'UTRs with mRNA encoding megaTALTM gene editing enzymes for two different gene targets and in two different cell lines. We find that the designed 5'UTRs support strong gene editing activity. Editing efficiency is correlated between cell types and gene targets, although the best performing UTR was specific to one cargo and cell type. Our results highlight the potential of model-based sequence design for mRNA therapeutics.
Collapse
Affiliation(s)
- Sebastian Castillo-Hair
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA
- eScience Institute, University of Washington, WA, Seattle, USA
| | | | - Ban Wang
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Johannes Linder
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
106
|
Wu X, Qian SB. eIF4E integrates into stress response. Mol Cell 2024; 84:2009-2010. [PMID: 38848688 DOI: 10.1016/j.molcel.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024]
Abstract
In this issue, Diamond et al.1 and Kim et al.2 report that depletion of eIF4E leads to translational upregulation of GCN4, a key player in the integrated stress response, in an eIF2α phosphorylation-independent manner, suggesting a new mode of translational adaptation.
Collapse
Affiliation(s)
- Xincheng Wu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
107
|
Li Y, Li C, Fu Y, Zhang Q, Ma J, Zhou J, Li J, Du G, Liu S. A CRISPR/Cas9-based visual toolkit enabling multiplex integration at specific genomic loci in Aspergillus niger. Synth Syst Biotechnol 2024; 9:209-216. [PMID: 38385153 PMCID: PMC10876486 DOI: 10.1016/j.synbio.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Aspergillus niger is a highly versatile fungal strain utilized in industrial production. The expression levels of recombinant genes in A. niger can be enhanced by increasing the copy number. Nevertheless, given the prolonged gene editing cycle of A. niger, a "one-step" strategy facilitating the simultaneous integration of recombinant genes into multiple genomic loci would provide a definitive advantage. In our previous study, a visual multigene editing system (VMS) was designed to knock out five genes, employing a tRNA-sgRNA array that includes the pigment gene albA and the target genes. Building upon this system, hybrid donor DNAs (dDNAs) were introduced to establish a clustered regularly interspaced short palindromic repeats (CRISPR)-based multiplex integration toolkit. Firstly, a CRISPR-Cas9 homology-directed repair (CRISPR-HDR) system was constructed in A. niger by co-transforming the CRISPR-Cas9 plasmid (with a highly efficient sgRNA) and the dDNA, resulting in precise integration of recombinant xylanase gene xynA into the target loci (the β-glucosidase gene bgl, the amylase gene amyA, and the acid amylase gene ammA). Subsequently, the length of homology arms in the dDNA was optimized to achieve 100% editing efficiency at each of the three gene loci. To achieve efficient multiplex integration in A. niger, the CRISPR plasmid pLM2 carrying a sgRNA-tRNA array was employed for concurrent double-strand breaks at multiple loci (bgl, amyA, ammA, and albA). Hybrid dDNAs were then employed for repair, including dDNA1-3 (containing xynA expression cassettes without selection markers) and dDNAalbA (for albA knockout). Among the obtained white colonies (RLM2'), 23.5% exhibited concurrent replacement of the bgl, amyA, and ammA genes with xynA (three copies). Notably, the xynA activity obtained by simultaneous insertion into three loci was 48.6% higher compared to that obtained by insertion into only the bgl locus. Furthermore, this multiple integration toolkit successfully enhanced the expression of endogenous pectinase pelA and Candida antarctica lipase CALB. Hence, the combined application of VMS and the CRISPR-HDR system enabled the simultaneous application of multiple selection markers, facilitating the rapid generation in the A. niger cell factories.
Collapse
Affiliation(s)
- Yangyang Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Cen Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, China
| | - Yishan Fu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Quan Zhang
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian, 116000, China
| | - Jianing Ma
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116000, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jianghua Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Guocheng Du
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Song Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
108
|
Zhu S, Yuan S, Niu R, Zhou Y, Wang Z, Xu G. RNAirport: a deep neural network-based database characterizing representative gene models in plants. J Genet Genomics 2024; 51:652-664. [PMID: 38518981 DOI: 10.1016/j.jgg.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
A 5'-leader, known initially as the 5'-untranslated region, contains multiple isoforms due to alternative splicing (aS) and alternative transcription start site (aTSS). Therefore, a representative 5'-leader is demanded to examine the embedded RNA regulatory elements in controlling translation efficiency. Here, we develop a ranking algorithm and a deep-learning model to annotate representative 5'-leaders for five plant species. We rank the intra-sample and inter-sample frequency of aS-mediated transcript isoforms using the Kruskal-Wallis test-based algorithm and identify the representative aS-5'-leader. To further assign a representative 5'-end, we train the deep-learning model 5'leaderP to learn aTSS-mediated 5'-end distribution patterns from cap-analysis gene expression data. The model accurately predicts the 5'-end, confirmed experimentally in Arabidopsis and rice. The representative 5'-leader-contained gene models and 5'leaderP can be accessed at RNAirport (http://www.rnairport.com/leader5P/). The Stage 1 annotation of 5'-leader records 5'-leader diversity and will pave the way to Ribo-Seq open-reading frame annotation, identical to the project recently initiated by human GENCODE.
Collapse
Affiliation(s)
- Sitao Zhu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Shu Yuan
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
109
|
Lu HJ, Koju N, Sheng R. Mammalian integrated stress responses in stressed organelles and their functions. Acta Pharmacol Sin 2024; 45:1095-1114. [PMID: 38267546 PMCID: PMC11130345 DOI: 10.1038/s41401-023-01225-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024]
Abstract
The integrated stress response (ISR) triggered in response to various cellular stress enables mammalian cells to effectively cope with diverse stressful conditions while maintaining their normal functions. Four kinases (PERK, PKR, GCN2, and HRI) of ISR regulate ISR signaling and intracellular protein translation via mediating the phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α) at Ser51. Early ISR creates an opportunity for cells to repair themselves and restore homeostasis. This effect, however, is reversed in the late stages of ISR. Currently, some studies have shown the non-negligible impact of ISR on diseases such as ischemic diseases, cognitive impairment, metabolic syndrome, cancer, vanishing white matter, etc. Hence, artificial regulation of ISR and its signaling with ISR modulators becomes a promising therapeutic strategy for relieving disease symptoms and improving clinical outcomes. Here, we provide an overview of the essential mechanisms of ISR and describe the ISR-related pathways in organelles including mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. Meanwhile, the regulatory effects of ISR modulators and their potential application in various diseases are also enumerated.
Collapse
Affiliation(s)
- Hao-Jun Lu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Nirmala Koju
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
110
|
Weiss B, Dikstein R. Unraveling the landscapes and regulation of scanning, leaky scanning, and 48S initiation complex conformations. Cell Rep 2024; 43:114126. [PMID: 38630588 DOI: 10.1016/j.celrep.2024.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 01/19/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Scanning and initiation are critical steps in translation. Here, we utilized translation complex profiling (TCP-seq) to investigate 48S organization and eIF4G1-eIF1 inhibition impact. We provide global views of scanning and leaky scanning, uncovering a central role of eIF4G1-eIF1 in their regulation. We confirm AUG context importance, with non-leaky genes featuring a Kozak context and cytosine at positions -1 and +5. Capturing 48S complexes associated with eIF1, eIF4G1, eIF3, and eIF2 through selective TCP-seq revealed that the eIF3-scanning ribosome is highly vulnerable to eIF4G1-eIF1 inhibition, and eIF1 tends to dissociate upon AUG recognition. Initiation-site footprint analysis revealed a class spanning -12 to +18/19 from the AUG, representing the entire 48S and enriched with eIF2, eIF1, and eIF4G1, indicative of early initiation. Another eIF3-dependent class extends up to +26 and exhibits reduced eIF2 and eIF4G1 association, suggesting a late/alternative initiation complex. Our analysis provides an overview of scanning, initiation, and evidence for conformational rearrangements in vivo.
Collapse
Affiliation(s)
- Benjamin Weiss
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
111
|
Tierney JAS, Świrski M, Tjeldnes H, Mudge JM, Kufel J, Whiffin N, Valen E, Baranov PV. Ribosome decision graphs for the representation of eukaryotic RNA translation complexity. Genome Res 2024; 34:530-538. [PMID: 38719470 PMCID: PMC11146595 DOI: 10.1101/gr.278810.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
The application of ribosome profiling has revealed an unexpected abundance of translation in addition to that responsible for the synthesis of previously annotated protein-coding regions. Multiple short sequences have been found to be translated within single RNA molecules, within both annotated protein-coding and noncoding regions. The biological significance of this translation is a matter of intensive investigation. However, current schematic or annotation-based representations of mRNA translation generally do not account for the apparent multitude of translated regions within the same molecules. They also do not take into account the stochasticity of the process that allows alternative translations of the same RNA molecules by different ribosomes. There is a need for formal representations of mRNA complexity that would enable the analysis of quantitative information on translation and more accurate models for predicting the phenotypic effects of genetic variants affecting translation. To address this, we developed a conceptually novel abstraction that we term ribosome decision graphs (RDGs). RDGs represent translation as multiple ribosome paths through untranslated and translated mRNA segments. We termed the latter "translons." Nondeterministic events, such as initiation, reinitiation, selenocysteine insertion, or ribosomal frameshifting, are then represented as branching points. This representation allows for an adequate representation of eukaryotic translation complexity and focuses on locations critical for translation regulation. We show how RDGs can be used for depicting translated regions and for analyzing genetic variation and quantitative genome-wide data on translation for characterization of regulatory modulators of translation.
Collapse
Affiliation(s)
- Jack A S Tierney
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 K8AF, Ireland
- SFI Centre for Research Training in Genomics Data Science, University College Cork, Cork T12 K8AF, Ireland
| | - Michał Świrski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Håkon Tjeldnes
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 K8AF, Ireland
- Computational Biology Unit, Department of Informatics, University of Bergen, NO-5020 Bergen, Norway
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, Cambridge, United Kingdom
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Nicola Whiffin
- The Big Data Institute and Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, NO-5020 Bergen, Norway
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 K8AF, Ireland;
| |
Collapse
|
112
|
Chen R, Xie Q, Xie L, Huang J, Hu L, Lu H, Shi P, He Q, Zhang Q, Gong C, Zhang S, Wang B, Yang G, Yang Q. Thioredoxin1 Binding Metastasis-Associated Lung Adenocarcinoma Transcript 1 Attenuates Inflammation and Apoptosis after Intracerebral Hemorrhage. Aging Dis 2024; 15:1384-1397. [PMID: 37196136 PMCID: PMC11081159 DOI: 10.14336/ad.2023.0507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/07/2023] [Indexed: 05/19/2023] Open
Abstract
Post-transcriptional regulation and RNA-binding proteins (RBPs) play vital roles in the occurrence of secondary injury after intracerebral hemorrhage (ICH). Therefore, we identified RBPs distinctively expressed after ICH by screening and determined thioredoxin1 (Txn1) as one of the most distinctive RBPs. We employed an ICH model and in vitro experiments to investigate the role of Txn1 in ICH. Firstly, we found that Txn1 was mainly expressed in microglia and neurons in the central nervous system, and its expression was significantly reduced in perihematomal tissue. Additionally, adeno-associated virus (AAV) carrying Txn1 was injected into the ICH rat model. Our results showed that overexpression of Txn1 reduced secondary injury and improved outcome in the ICH rat model. Moreover, to understand the therapeutic mechanism of Txn1 after ICH, we performed RNA immunoprecipitation combined with high-throughput sequencing. The results showed that Txn1 binds to inflammation- and apoptosis-related mRNAs and affects gene expression through RNA splicing and translation. Finally, RNA pull-down assays and in vitro experiments confirmed that Txn1 binds to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), leading to reduced inflammation and apoptosis. Our study suggests that Txn1 is a potential therapeutic target for alleviating ICH-induced brain injury.
Collapse
Affiliation(s)
- Ru Chen
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Qi Xie
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Lexing Xie
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Jiacheng Huang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Linlin Hu
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Hui Lu
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Peixia Shi
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Qian He
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Qin Zhang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Changxiong Gong
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Shuang Zhang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Bingqiao Wang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Guoqiang Yang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Qingwu Yang
- Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| |
Collapse
|
113
|
Shen G, Liu J, Yang H, Xie N, Yang Y. mRNA therapies: Pioneering a new era in rare genetic disease treatment. J Control Release 2024; 369:696-721. [PMID: 38580137 DOI: 10.1016/j.jconrel.2024.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Rare genetic diseases, often referred to as orphan diseases due to their low prevalence and limited treatment options, have long posed significant challenges to our medical system. In recent years, Messenger RNA (mRNA) therapy has emerged as a highly promising treatment approach for various diseases caused by genetic mutations. Chemically modified mRNA is introduced into cells using carriers like lipid-based nanoparticles (LNPs), producing functional proteins that compensate for genetic deficiencies. Given the advantages of precise dosing, biocompatibility, transient expression, and minimal risk of genomic integration, mRNA therapies can safely and effectively correct genetic defects in rare diseases and improve symptoms. Currently, dozens of mRNA drugs targeting rare diseases are undergoing clinical trials. This comprehensive review summarizes the progress of mRNA therapy in treating rare genetic diseases. It introduces the development, molecular design, and delivery systems of mRNA therapy, highlighting their research progress in rare genetic diseases based on protein replacement and gene editing. The review also summarizes research progress in various rare disease models and clinical trials. Additionally, it discusses the challenges and future prospects of mRNA therapy. Researchers are encouraged to join this field and collaborate to advance the clinical translation of mRNA therapy, bringing hope to patients with rare genetic diseases.
Collapse
Affiliation(s)
- Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
114
|
Tanaka M, Yokoyama T, Saito H, Nishimoto M, Tsuda K, Sotta N, Shigematsu H, Shirouzu M, Iwasaki S, Ito T, Fujiwara T. Boric acid intercepts 80S ribosome migration from AUG-stop by stabilizing eRF1. Nat Chem Biol 2024; 20:605-614. [PMID: 38267667 DOI: 10.1038/s41589-023-01513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 11/24/2023] [Indexed: 01/26/2024]
Abstract
In response to environmental changes, cells flexibly and rapidly alter gene expression through translational controls. In plants, the translation of NIP5;1, a boric acid diffusion facilitator, is downregulated in response to an excess amount of boric acid in the environment through upstream open reading frames (uORFs) that consist of only AUG and stop codons. However, the molecular details of how this minimum uORF controls translation of the downstream main ORF in a boric acid-dependent manner have remained unclear. Here, by combining ribosome profiling, translation complex profile sequencing, structural analysis with cryo-electron microscopy and biochemical assays, we show that the 80S ribosome assembled at AUG-stop migrates into the subsequent RNA segment, followed by downstream translation initiation, and that boric acid impedes this process by the stable confinement of eukaryotic release factor 1 on the 80S ribosome on AUG-stop. Our results provide molecular insight into translation regulation by a minimum and environment-responsive uORF.
Collapse
Affiliation(s)
- Mayuki Tanaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeshi Yokoyama
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hironori Saito
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Madoka Nishimoto
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Kengo Tsuda
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Naoyuki Sotta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideki Shigematsu
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Sayo, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Shintaro Iwasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
- RIKEN Cluster for Pioneering Research, Wako, Japan.
| | - Takuhiro Ito
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan.
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
115
|
Wieder N, D'Souza EN, Martin-Geary AC, Lassen FH, Talbot-Martin J, Fernandes M, Chothani SP, Rackham OJL, Schafer S, Aspden JL, MacArthur DG, Davies RW, Whiffin N. Differences in 5'untranslated regions highlight the importance of translational regulation of dosage sensitive genes. Genome Biol 2024; 25:111. [PMID: 38685090 PMCID: PMC11057154 DOI: 10.1186/s13059-024-03248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Untranslated regions (UTRs) are important mediators of post-transcriptional regulation. The length of UTRs and the composition of regulatory elements within them are known to vary substantially across genes, but little is known about the reasons for this variation in humans. Here, we set out to determine whether this variation, specifically in 5'UTRs, correlates with gene dosage sensitivity. RESULTS We investigate 5'UTR length, the number of alternative transcription start sites, the potential for alternative splicing, the number and type of upstream open reading frames (uORFs) and the propensity of 5'UTRs to form secondary structures. We explore how these elements vary by gene tolerance to loss-of-function (LoF; using the LOEUF metric), and in genes where changes in dosage are known to cause disease. We show that LOEUF correlates with 5'UTR length and complexity. Genes that are most intolerant to LoF have longer 5'UTRs, greater TSS diversity, and more upstream regulatory elements than their LoF tolerant counterparts. We show that these differences are evident in disease gene-sets, but not in recessive developmental disorder genes where LoF of a single allele is tolerated. CONCLUSIONS Our results confirm the importance of post-transcriptional regulation through 5'UTRs in tight regulation of mRNA and protein levels, particularly for genes where changes in dosage are deleterious and lead to disease. Finally, to support gene-based investigation we release a web-based browser tool, VuTR, that supports exploration of the composition of individual 5'UTRs and the impact of genetic variation within them.
Collapse
Affiliation(s)
- Nechama Wieder
- Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Elston N D'Souza
- Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alexandra C Martin-Geary
- Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Frederik H Lassen
- Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Maria Fernandes
- Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sonia P Chothani
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore, 169857, Singapore
| | - Owen J L Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore, 169857, Singapore
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Sebastian Schafer
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore, 169857, Singapore
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
- LeedsOmics, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Robert W Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Statistics, University of Oxford, Oxford, UK
| | - Nicola Whiffin
- Big Data Institute, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
116
|
Yan Y, Shetty M, Harding HP, George G, Zyryanova A, Labbé K, Mafi A, Hao Q, Sidrauski C, Ron D. Substrate recruitment via eIF2γ enhances catalytic efficiency of a holophosphatase that terminates the integrated stress response. Proc Natl Acad Sci U S A 2024; 121:e2320013121. [PMID: 38547060 PMCID: PMC10998612 DOI: 10.1073/pnas.2320013121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/16/2024] [Indexed: 04/02/2024] Open
Abstract
Dephosphorylation of pSer51 of the α subunit of translation initiation factor 2 (eIF2αP) terminates signaling in the integrated stress response (ISR). A trimeric mammalian holophosphatase comprised of a protein phosphatase 1 (PP1) catalytic subunit, the conserved C-terminally located ~70 amino acid core of a substrate-specific regulatory subunit (PPP1R15A/GADD34 or PPP1R15B/CReP) and G-actin (an essential cofactor) efficiently dephosphorylate eIF2αP in vitro. Unlike their viral or invertebrate counterparts, with whom they share the conserved 70 residue core, the mammalian PPP1R15s are large proteins of more than 600 residues. Genetic and cellular observations point to a functional role for regions outside the conserved core of mammalian PPP1R15A in dephosphorylating its natural substrate, the eIF2 trimer. We have combined deep learning technology, all-atom molecular dynamics simulations, X-ray crystallography, and biochemistry to uncover binding of the γ subunit of eIF2 to a short helical peptide repeated four times in the functionally important N terminus of human PPP1R15A that extends past its conserved core. Binding entails insertion of Phe and Trp residues that project from one face of an α-helix formed by the conserved repeats of PPP1R15A into a hydrophobic groove exposed on the surface of eIF2γ in the eIF2 trimer. Replacing these conserved Phe and Trp residues with Ala compromises PPP1R15A function in cells and in vitro. These findings suggest mechanisms by which contacts between a distant subunit of eIF2 and elements of PPP1R15A distant to the holophosphatase active site contribute to dephosphorylation of eIF2αP by the core PPP1R15 holophosphatase and to efficient termination of the ISR in mammals.
Collapse
Affiliation(s)
- Yahui Yan
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Maithili Shetty
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Heather P. Harding
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Ginto George
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Alisa Zyryanova
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | | | | | - Qi Hao
- Calico Life Sciences, South San Francisco, CA94080
| | | | - David Ron
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| |
Collapse
|
117
|
Ryoo HD. The integrated stress response in metabolic adaptation. J Biol Chem 2024; 300:107151. [PMID: 38462161 PMCID: PMC10998230 DOI: 10.1016/j.jbc.2024.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024] Open
Abstract
The integrated stress response (ISR) refers to signaling pathways initiated by stress-activated eIF2α kinases. Distinct eIF2α kinases respond to different stress signals, including amino acid deprivation and mitochondrial stress. Such stress-induced eIF2α phosphorylation attenuates general mRNA translation and, at the same time, stimulates the preferential translation of specific downstream factors to orchestrate an adaptive gene expression program. In recent years, there have been significant new advances in our understanding of ISR during metabolic stress adaptation. Here, I discuss those advances, reviewing among others the ISR activation mechanisms in response to amino acid deprivation and mitochondrial stress. In addition, I review how ISR regulates the amino acid metabolic pathways and how changes in the ISR impact the physiology and pathology of various disease models.
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
118
|
Chu Y, Yu D, Li Y, Huang K, Shen Y, Cong L, Zhang J, Wang M. A 5' UTR Language Model for Decoding Untranslated Regions of mRNA and Function Predictions. NAT MACH INTELL 2024; 6:449-460. [PMID: 38855263 PMCID: PMC11155392 DOI: 10.1038/s42256-024-00823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/07/2024] [Indexed: 06/11/2024]
Abstract
The 5' UTR, a regulatory region at the beginning of an mRNA molecule, plays a crucial role in regulating the translation process and impacts the protein expression level. Language models have showcased their effectiveness in decoding the functions of protein and genome sequences. Here, we introduced a language model for 5' UTR, which we refer to as the UTR-LM. The UTR-LM is pre-trained on endogenous 5' UTRs from multiple species and is further augmented with supervised information including secondary structure and minimum free energy. We fine-tuned the UTR-LM in a variety of downstream tasks. The model outperformed the best known benchmark by up to 5% for predicting the Mean Ribosome Loading, and by up to 8% for predicting the Translation Efficiency and the mRNA Expression Level. The model also applies to identifying unannotated Internal Ribosome Entry Sites within the untranslated region and improves the AUPR from 0.37 to 0.52 compared to the best baseline. Further, we designed a library of 211 novel 5' UTRs with high predicted values of translation efficiency and evaluated them via a wet-lab assay. Experiment results confirmed that our top designs achieved a 32.5% increase in protein production level relative to well-established 5' UTR optimized for therapeutics.
Collapse
Affiliation(s)
- Yanyi Chu
- Center for Statistics and Machine Learning and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dan Yu
- RVAC Medicines, Waltham, MA 02451, USA
| | - Yupeng Li
- RVAC Medicines, Waltham, MA 02451, USA
| | - Kaixuan Huang
- Center for Statistics and Machine Learning and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Yue Shen
- RVAC Medicines, Waltham, MA 02451, USA
| | - Le Cong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Mengdi Wang
- Center for Statistics and Machine Learning and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
119
|
Tang X, Huo M, Chen Y, Huang H, Qin S, Luo J, Qin Z, Jiang X, Liu Y, Duan X, Wang R, Chen L, Li H, Fan N, He Z, He X, Shen B, Li SC, Song X. A novel deep generative model for mRNA vaccine development: Designing 5' UTRs with N1-methyl-pseudouridine modification. Acta Pharm Sin B 2024; 14:1814-1826. [PMID: 38572113 PMCID: PMC10985129 DOI: 10.1016/j.apsb.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 04/05/2024] Open
Abstract
Efficient translation mediated by the 5' untranslated region (5' UTR) is essential for the robust efficacy of mRNA vaccines. However, the N1-methyl-pseudouridine (m1Ψ) modification of mRNA can impact the translation efficiency of the 5' UTR. We discovered that the optimal 5' UTR for m1Ψ-modified mRNA (m1Ψ-5' UTR) differs significantly from its unmodified counterpart, highlighting the need for a specialized tool for designing m1Ψ-5' UTRs rather than directly utilizing high-expression endogenous gene 5' UTRs. In response, we developed a novel machine learning-based tool, Smart5UTR, which employs a deep generative model to identify superior m1Ψ-5' UTRs in silico. The tailored loss function and network architecture enable Smart5UTR to overcome limitations inherent in existing models. As a result, Smart5UTR can successfully design superior 5' UTRs, greatly benefiting mRNA vaccine development. Notably, Smart5UTR-designed superior 5' UTRs significantly enhanced antibody titers induced by COVID-19 mRNA vaccines against the Delta and Omicron variants of SARS-CoV-2, surpassing the performance of vaccines using high-expression endogenous gene 5' UTRs.
Collapse
Affiliation(s)
- Xiaoshan Tang
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Miaozhe Huo
- Department of Computer Science, City University of Hong Kong, Hong Kong 99907, China
| | - Yuting Chen
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Hai Huang
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Shugang Qin
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jiaqi Luo
- Department of Computer Science, City University of Hong Kong, Hong Kong 99907, China
| | - Zeyi Qin
- Department of Biology, Brandeis University, Boston, MA 02453, USA
| | - Xin Jiang
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yongmei Liu
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Xing Duan
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Ruohan Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong 99907, China
| | - Lingxi Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong 99907, China
| | - Hao Li
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Na Fan
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Zhongshan He
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Xi He
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Bairong Shen
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong 99907, China
| | - Xiangrong Song
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
120
|
Lawrence RE, Shoemaker SR, Deal A, Sangwan S, Anand AA, Wang L, Marqusee S, Walter P. A helical fulcrum in eIF2B coordinates allosteric regulation of stress signaling. Nat Chem Biol 2024; 20:422-431. [PMID: 37945896 PMCID: PMC10972756 DOI: 10.1038/s41589-023-01453-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/17/2023] [Indexed: 11/12/2023]
Abstract
The integrated stress response (ISR) enables cells to survive a variety of acute stresses, but chronic activation of the ISR underlies age-related diseases. ISR signaling downregulates translation and activates expression of stress-responsive factors that promote return to homeostasis and is initiated by inhibition of the decameric guanine nucleotide exchange factor eIF2B. Conformational and assembly transitions regulate eIF2B activity, but the allosteric mechanisms controlling these dynamic transitions and mediating the therapeutic effects of the small-molecule ISR inhibitor ISRIB are unknown. Using hydrogen-deuterium exchange-mass spectrometry and cryo-electron microscopy, we identified a central α-helix whose orientation allosterically coordinates eIF2B conformation and assembly. Biochemical and cellular signaling assays show that this 'switch-helix' controls eIF2B activity and signaling. In sum, the switch-helix acts as a fulcrum of eIF2B conformational regulation and is a highly conserved actuator of ISR signal transduction. This work uncovers a conserved allosteric mechanism and unlocks new therapeutic possibilities for ISR-linked diseases.
Collapse
Affiliation(s)
- Rosalie E Lawrence
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Sophie R Shoemaker
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Aniliese Deal
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Altos Laboratories, Bay Area Institute of Science, Redwood City, CA, USA
| | - Smriti Sangwan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Aditya A Anand
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Genentech, Inc., South San Francisco, CA, USA
| | - Lan Wang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
- The Hong Kong University of Science and Technology, Hong Kong, Hong Kong.
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
- Altos Laboratories, Bay Area Institute of Science, Redwood City, CA, USA.
| |
Collapse
|
121
|
Rusev S, Thon P, Rahmel T, Ziehe D, Marko B, Nowak H, Ellger B, Limper U, Schwier E, Henzler D, Ehrentraut SF, Bergmann L, Unterberg M, Adamzik M, Koos B, Rump K. The Association between the rs3747406 Polymorphism in the Glucocorticoid-Induced Leucine Zipper Gene and Sepsis Survivals Depends on the SOFA Score. Int J Mol Sci 2024; 25:3871. [PMID: 38612684 PMCID: PMC11011808 DOI: 10.3390/ijms25073871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The variability in mortality in sepsis could be a consequence of genetic variability. The glucocorticoid system and the intermediate TSC22D3 gene product-glucocorticoid-induced leucine zipper-are clinically relevant in sepsis, which is why this study aimed to clarify whether TSC22D3 gene polymorphisms contribute to the variance in sepsis mortality. Blood samples for DNA extraction were obtained from 455 patients with a sepsis diagnosis according to the Sepsis-III criteria and from 73 control subjects. A SNP TaqMan assay was used to detect single-nucleotide polymorphisms (SNPs) in the TSC22D3 gene. Statistical and graphical analyses were performed using the SPSS Statistics and GraphPad Prism software. C-allele carriers of rs3747406 have a 2.07-fold higher mortality rate when the sequential organ failure assessment (SOFA) score is higher than eight. In a multivariate COX regression model, the SNP rs3747406 with a SOFA score ≥ 8 was found to be an independent risk factor for 30-day survival in sepsis. The HR was calculated to be 2.12, with a p-value of 0.011. The wild-type allele was present in four out of six SNPs in our cohort. The promoter of TSC22D3 was found to be highly conserved. However, we discovered that the C-allele of rs3747406 poses a risk for sepsis mortality for SOFA Scores higher than 6.
Collapse
Affiliation(s)
- Stefan Rusev
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | - Patrick Thon
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | - Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | - Dominik Ziehe
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | - Britta Marko
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
- Center for Artificial Intelligence, Medical Informatics and Data Science, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Björn Ellger
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Klinikum Westfalen, 44309 Dortmund, Germany;
| | - Ulrich Limper
- Department of Anesthesiology and Operative Intensive Care Medicine, Cologne Merheim Medical School, University of Witten/Herdecke, 51109 Cologne, Germany;
| | - Elke Schwier
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.)
| | - Dietrich Henzler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.)
| | - Stefan Felix Ehrentraut
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, 53127 Bonn, Germany;
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | - Matthias Unterberg
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | - Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (S.R.); (P.T.); (T.R.); (D.Z.); (B.M.); (H.N.); (L.B.); (M.U.); (M.A.); (B.K.)
| | | |
Collapse
|
122
|
Grmai L, Michaca M, Lackner E, Nampoothiri V P N, Vasudevan D. Integrated stress response signaling acts as a metabolic sensor in fat tissues to regulate oocyte maturation and ovulation. Cell Rep 2024; 43:113863. [PMID: 38457339 PMCID: PMC11077669 DOI: 10.1016/j.celrep.2024.113863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/10/2024] Open
Abstract
Reproduction is an energy-intensive process requiring systemic coordination. However, the inter-organ signaling mechanisms that relay nutrient status to modulate reproductive output are poorly understood. Here, we use Drosophila melanogaster as a model to establish the integrated stress response (ISR) transcription factor, Atf4, as a fat tissue metabolic sensor that instructs oogenesis. We demonstrate that Atf4 regulates lipase activity to mediate yolk lipoprotein synthesis in the fat body. Depletion of Atf4 in the fat body also blunts oogenesis recovery after amino acid deprivation and re-feeding, suggestive of a nutrient-sensing role for Atf4. We also discovered that Atf4 promotes secretion of a fat-body-derived neuropeptide, CNMamide, which modulates neural circuits that promote egg-laying behavior (ovulation). Thus, we posit that ISR signaling in fat tissue acts as a "metabolic sensor" that instructs female reproduction-directly by impacting yolk lipoprotein production and follicle maturation and systemically by regulating ovulation.
Collapse
Affiliation(s)
- Lydia Grmai
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Manuel Michaca
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emily Lackner
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Deepika Vasudevan
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
123
|
Khan D, Fox PL. Host-like RNA Elements Regulate Virus Translation. Viruses 2024; 16:468. [PMID: 38543832 PMCID: PMC10976276 DOI: 10.3390/v16030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Viruses are obligate, intracellular parasites that co-opt host cell machineries for propagation. Critical among these machineries are those that translate RNA into protein and their mechanisms of control. Most regulatory mechanisms effectuate their activity by targeting sequence or structural features at the RNA termini, i.e., at the 5' or 3' ends, including the untranslated regions (UTRs). Translation of most eukaryotic mRNAs is initiated by 5' cap-dependent scanning. In contrast, many viruses initiate translation at internal RNA regions at internal ribosome entry sites (IRESs). Eukaryotic mRNAs often contain upstream open reading frames (uORFs) that permit condition-dependent control of downstream major ORFs. To offset genome compression and increase coding capacity, some viruses take advantage of out-of-frame overlapping uORFs (oORFs). Lacking the essential machinery of protein synthesis, for example, ribosomes and other translation factors, all viruses utilize the host apparatus to generate virus protein. In addition, some viruses exhibit RNA elements that bind host regulatory factors that are not essential components of the translation machinery. SARS-CoV-2 is a paradigm example of a virus taking advantage of multiple features of eukaryotic host translation control: the virus mimics the established human GAIT regulatory element and co-opts four host aminoacyl tRNA synthetases to form a stimulatory binding complex. Utilizing discontinuous transcription, the elements are present and identical in all SARS-CoV-2 subgenomic RNAs (and the genomic RNA). Thus, the virus exhibits a post-transcriptional regulon that improves upon analogous eukaryotic regulons, in which a family of functionally related mRNA targets contain elements that are structurally similar but lacking sequence identity. This "thrifty" virus strategy can be exploited against the virus since targeting the element can suppress the expression of all subgenomic RNAs as well as the genomic RNA. Other 3' end viral elements include 3'-cap-independent translation elements (3'-CITEs) and 3'-tRNA-like structures. Elucidation of virus translation control elements, their binding proteins, and their mechanisms can lead to novel therapeutic approaches to reduce virus replication and pathogenicity.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
124
|
Lewis CJT, Xie L, Bhandarkar S, Jin D, Abdallah KS, Draycott AS, Chen Y, Thoreen CC, Gilbert WV. Quantitative profiling of human translation initiation reveals regulatory elements that potently affect endogenous and therapeutically modified mRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582532. [PMID: 38463950 PMCID: PMC10925289 DOI: 10.1101/2024.02.28.582532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
mRNA therapeutics offer a potentially universal strategy for the efficient development and delivery of therapeutic proteins. Current mRNA vaccines include chemically modified nucleotides to reduce cellular immunogenicity. Here, we develop an efficient, high-throughput method to measure human translation initiation on therapeutically modified as well as endogenous RNAs. Using systems-level biochemistry, we quantify ribosome recruitment to tens of thousands of human 5' untranslated regions and identify sequences that mediate 250-fold effects. We observe widespread effects of coding sequences on translation initiation and identify small regulatory elements of 3-6 nucleotides that are sufficient to potently affect translational output. Incorporation of N1-methylpseudouridine (m1Ψ) selectively enhances translation by specific 5' UTRs that we demonstrate surpass those of current mRNA vaccines. Our approach is broadly applicable to dissect mechanisms of human translation initiation and engineer more potent therapeutic mRNAs. Highlights Measurement of >30,000 human 5' UTRs reveals a 250-fold range of translation outputSystematic mutagenesis demonstrates the causality of short (3-6nt) regulatory elementsN1-methylpseudouridine alters translation initiation in a sequence-specific mannerOptimal modified 5' UTRs outperform those in the current class of mRNA vaccines.
Collapse
|
125
|
Brito Querido J, Díaz-López I, Ramakrishnan V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat Rev Mol Cell Biol 2024; 25:168-186. [PMID: 38052923 DOI: 10.1038/s41580-023-00624-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 12/07/2023]
Abstract
The regulation of gene expression is fundamental for life. Whereas the role of transcriptional regulation of gene expression has been studied for several decades, it has been clear over the past two decades that post-transcriptional regulation of gene expression, of which translation regulation is a major part, can be equally important. Translation can be divided into four main stages: initiation, elongation, termination and ribosome recycling. Translation is controlled mainly during its initiation, a process which culminates in a ribosome positioned with an initiator tRNA over the start codon and, thus, ready to begin elongation of the protein chain. mRNA translation has emerged as a powerful tool for the development of innovative therapies, yet the detailed mechanisms underlying the complex process of initiation remain unclear. Recent studies in yeast and mammals have started to shed light on some previously unclear aspects of this process. In this Review, we discuss the current state of knowledge on eukaryotic translation initiation and its regulation in health and disease. Specifically, we focus on recent advances in understanding the processes involved in assembling the 43S pre-initiation complex and its recruitment by the cap-binding complex eukaryotic translation initiation factor 4F (eIF4F) at the 5' end of mRNA. In addition, we discuss recent insights into ribosome scanning along the 5' untranslated region of mRNA and selection of the start codon, which culminates in joining of the 60S large subunit and formation of the 80S initiation complex.
Collapse
Affiliation(s)
- Jailson Brito Querido
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Irene Díaz-López
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
126
|
Hu R, Chen X, Su Q, Wang Z, Wang X, Gong M, Xu M, Le R, Gao Y, Dai P, Zhang ZN, Shao L, Li W. ISR inhibition reverses pancreatic β-cell failure in Wolfram syndrome models. Cell Death Differ 2024; 31:322-334. [PMID: 38321214 PMCID: PMC10923889 DOI: 10.1038/s41418-024-01258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Pancreatic β-cell failure by WFS1 deficiency is manifested in individuals with wolfram syndrome (WS). The lack of a suitable human model in WS has impeded progress in the development of new treatments. Here, human pluripotent stem cell derived pancreatic islets (SC-islets) harboring WFS1 deficiency and mouse model of β cell specific Wfs1 knockout were applied to model β-cell failure in WS. We charted a high-resolution roadmap with single-cell RNA-seq (scRNA-seq) to investigate pathogenesis for WS β-cell failure, revealing two distinct cellular fates along pseudotime trajectory: maturation and stress branches. WFS1 deficiency disrupted β-cell fate trajectory toward maturation and directed it towards stress trajectory, ultimately leading to β-cell failure. Notably, further investigation of the stress trajectory identified activated integrated stress response (ISR) as a crucial mechanism underlying WS β-cell failure, characterized by aberrant eIF2 signaling in WFS1-deficient SC-islets, along with elevated expression of genes in regulating stress granule formation. Significantly, we demonstrated that ISRIB, an ISR inhibitor, efficiently reversed β-cell failure in WFS1-deficient SC-islets. We further validated therapeutic efficacy in vivo with β-cell specific Wfs1 knockout mice. Altogether, our study provides novel insights into WS pathogenesis and offers a strategy targeting ISR to treat WS diabetes.
Collapse
Affiliation(s)
- Rui Hu
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiangyi Chen
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiang Su
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhaoyue Wang
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xushu Wang
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Mengting Gong
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Minglu Xu
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Rongrong Le
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yawei Gao
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Peng Dai
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhen-Ning Zhang
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Li Shao
- Department of VIP Clinic, Shanghai East Hospital, Tongji University School of Medicine, No. 1800 Yuntai Road, Pudong District, Shanghai, 200123, China.
| | - Weida Li
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Reg-Verse Therapeutics (Shanghai) Co. Ltd., Shanghai, 200120, China.
| |
Collapse
|
127
|
Song L, Pan Q, Zhou G, Liu S, Zhu B, Lin P, Hu X, Zha J, Long Y, Luo B, Chen J, Tang Y, Tang J, Xiang X, Xie X, Deng X, Chen G. SHMT2 Mediates Small-Molecule-Induced Alleviation of Alzheimer Pathology Via the 5'UTR-dependent ADAM10 Translation Initiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305260. [PMID: 38183387 PMCID: PMC10953581 DOI: 10.1002/advs.202305260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/27/2023] [Indexed: 01/08/2024]
Abstract
It is long been suggested that one-carbon metabolism (OCM) is associated with Alzheimer's disease (AD), whereas the potential mechanisms remain poorly understood. Taking advantage of chemical biology, that mitochondrial serine hydroxymethyltransferase (SHMT2) directly regulated the translation of ADAM metallopeptidase domain 10 (ADAM10), a therapeutic target for AD is reported. That the small-molecule kenpaullone (KEN) promoted ADAM10 translation via the 5' untranslated region (5'UTR) and improved cognitive functions in APP/PS1 mice is found. SHMT2, which is identified as a target gene of KEN and the 5'UTR-interacting RNA binding protein (RBP), mediated KEN-induced ADAM10 translation in vitro and in vivo. SHMT2 controls AD signaling pathways through binding to a large number of RNAs and enhances the 5'UTR activity of ADAM10 by direct interaction with GAGGG motif, whereas this motif affected ribosomal scanning of eukaryotic initiation factor 2 (eIF2) in the 5'UTR. Together, KEN exhibits therapeutic potential for AD by linking OCM with RNA processing, in which the metabolic enzyme SHMT2 "moonlighted" as RBP by binding to GAGGG motif and promoting the 5'UTR-dependent ADAM10 translation initiation.
Collapse
Affiliation(s)
- Li Song
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Qiu‐Ling Pan
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Gui‐Feng Zhou
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Sheng‐Wei Liu
- Department of PharmacyYongchuan Hospital of Chongqing Medical UniversityChongqing402160China
| | - Bing‐Lin Zhu
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Pei‐Jia Lin
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiao‐Tong Hu
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Health ManagementDaping HospitalArmy Medical universityChongqing400042China
| | - Jing‐Si Zha
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Internal MedicineThe Southwest University HospitalChongqing400715China
| | - Yan Long
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Geriatric MedicineDaping HospitalArmy Medical universityChongqing400042China
| | - Biao Luo
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Jian Chen
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ying Tang
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyWest China HospitalSichuan UniversityChengdu610041China
| | - Jing Tang
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiao‐Jiao Xiang
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Nuclear MedicineThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Xiao‐Yong Xie
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiao‐Juan Deng
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Guo‐Jun Chen
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| |
Collapse
|
128
|
Wang J, Li Y, Li M, Zhang W, Lu Y, Hua K, Ling X, Chen T, Guo D, Yang Y, Zheng Z, Liu Q, Zhang B. Translatome and Transcriptome Analyses Reveal the Mechanism that Underlies the Enhancement of Salt Stress by the Small Peptide Ospep5 in Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4277-4291. [PMID: 38288993 DOI: 10.1021/acs.jafc.3c08528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Salt stress significantly impedes plant growth and the crop yield. This study utilized de novo transcriptome assembly and ribosome profiling to explore mRNA translation's role in rice salt tolerance. We identified unrecognized translated open reading frames (ORFs), including 42 upstream transcripts and 86 unannotated transcripts. A noteworthy discovery was the role of a small ORF, Ospep5, in conferring salt tolerance. Overexpression of Ospep5 in plants increased salt tolerance, while its absence led to heightened sensitivity. This hypothesis was corroborated by the findings that exogenous application of the synthetic small peptide Ospep5 bolstered salt tolerance in both rice and Arabidopsis. We found that the mechanism underpinning the Ospep5-mediated salt tolerance involves the maintenance of intracellular Na+/K+ homeostasis, facilitated by upregulation of high-affinity potassium transporters (HKT) and Na+/H+ exchangers (SOS1). Furthermore, a comprehensive multiomics approach, particularly ribosome profiling, is instrumental in uncovering unannotated ORFs and elucidating their functions in plant stress responses.
Collapse
Affiliation(s)
- Jinyan Wang
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Yang Li
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mingyue Li
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wenting Zhang
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yaping Lu
- Experimental center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Hua
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Xitie Ling
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tianzi Chen
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Dongshu Guo
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Yuwen Yang
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Zhongbing Zheng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Qing Liu
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| |
Collapse
|
129
|
Chorostecki U, Saus E, Gabaldón T. Probing RNA structural landscapes across Candida yeast genomes. Front Microbiol 2024; 15:1362067. [PMID: 38468856 PMCID: PMC10926079 DOI: 10.3389/fmicb.2024.1362067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Understanding the intricate roles of RNA molecules in virulence and host-pathogen interactions can provide valuable insights into combatting infections and improving human health. Although much progress has been achieved in understanding transcriptional regulation during host-pathogen interactions in diverse species, more is needed to know about the structure of pathogen RNAs. This is particularly true for fungal pathogens, including pathogenic yeasts of the Candida genus, which are the leading cause of hospital-acquired fungal infections. Our work addresses the gap between RNA structure and their biology by employing genome-wide structure probing to comprehensively explore the structural landscape of mRNAs and long non-coding RNAs (lncRNAs) in the four major Candida pathogens. Specifically focusing on mRNA, we observe a robust correlation between sequence conservation and structural characteristics in orthologous transcripts, significantly when sequence identity exceeds 50%, highlighting structural feature conservation among closely related species. We investigate the impact of single nucleotide polymorphisms (SNPs) on mRNA secondary structure. SNPs within 5' untranslated regions (UTRs) tend to occur in less structured positions, suggesting structural constraints influencing transcript regulation. Furthermore, we compare the structural properties of coding regions and UTRs, noting that coding regions are generally more structured than UTRs, consistent with similar trends in other species. Additionally, we provide the first experimental characterization of lncRNA structures in Candida species. Most lncRNAs form independent subdomains, similar to human lncRNAs. Notably, we identify hairpin-like structures in lncRNAs, a feature known to be functionally significant. Comparing hairpin prevalence between lncRNAs and protein-coding genes, we find enrichment in lncRNAs across Candida species, humans, and Arabidopsis thaliana, suggesting a conserved role for these structures. In summary, our study offers valuable insights into the interplay between RNA sequence, structure, and function in Candida pathogens, with implications for gene expression regulation and potential therapeutic strategies against Candida infections.
Collapse
Affiliation(s)
- Uciel Chorostecki
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Saus
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
130
|
Valdivia-Francia F, Sendoel A. No country for old methods: New tools for studying microproteins. iScience 2024; 27:108972. [PMID: 38333695 PMCID: PMC10850755 DOI: 10.1016/j.isci.2024.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Microproteins encoded by small open reading frames (sORFs) have emerged as a fascinating frontier in genomics. Traditionally overlooked due to their small size, recent technological advancements such as ribosome profiling, mass spectrometry-based strategies and advanced computational approaches have led to the annotation of more than 7000 sORFs in the human genome. Despite the vast progress, only a tiny portion of these microproteins have been characterized and an important challenge in the field lies in identifying functionally relevant microproteins and understanding their role in different cellular contexts. In this review, we explore the recent advancements in sORF research, focusing on the new methodologies and computational approaches that have facilitated their identification and functional characterization. Leveraging these new tools hold great promise for dissecting the diverse cellular roles of microproteins and will ultimately pave the way for understanding their role in the pathogenesis of diseases and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Fabiola Valdivia-Francia
- University of Zurich, Institute for Regenerative Medicine (IREM), Wagistrasse 12, 8952 Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich/ ETH Zurich, Schlieren-Zurich, Switzerland
| | - Ataman Sendoel
- University of Zurich, Institute for Regenerative Medicine (IREM), Wagistrasse 12, 8952 Schlieren-Zurich, Switzerland
| |
Collapse
|
131
|
Bhatter N, Dmitriev SE, Ivanov P. Cell death or survival: Insights into the role of mRNA translational control. Semin Cell Dev Biol 2024; 154:138-154. [PMID: 37357122 PMCID: PMC10695129 DOI: 10.1016/j.semcdb.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Cellular stress is an intrinsic part of cell physiology that underlines cell survival or death. The ability of mammalian cells to regulate global protein synthesis (aka translational control) represents a critical, yet underappreciated, layer of regulation during the stress response. Various cellular stress response pathways monitor conditions of cell growth and subsequently reshape the cellular translatome to optimize translational outputs. On the molecular level, such translational reprogramming involves an intricate network of interactions between translation machinery, RNA-binding proteins, mRNAs, and non-protein coding RNAs. In this review, we will discuss molecular mechanisms, signaling pathways, and targets of translational control that contribute to cellular adaptation to stress and to cell survival or death.
Collapse
Affiliation(s)
- Nupur Bhatter
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Harvard Initiative for RNA Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
132
|
Dickmander B, Hale A, Sanders W, Lenarcic E, Ziehr B, Moorman NJ. Specific RNA structures in the 5' untranslated region of the human cytomegalovirus major immediate early transcript are critical for efficient virus replication. mBio 2024; 15:e0262123. [PMID: 38165154 PMCID: PMC10865803 DOI: 10.1128/mbio.02621-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Human cytomegalovirus (HCMV) requires the robust expression of two immediate early proteins, IE1 and IE2, immediately upon infection to suppress the antiviral response and promote viral gene expression. While transcriptional control of IE1 and IE2 has been extensively studied, the role of post-transcriptional regulation of IE1 and IE2 expression is relatively unexplored. We previously found that the shared major immediate early 5' untranslated region (MIE 5' UTR) of the mature IE1 and IE2 transcripts plays a critical role in facilitating the translation of the IE1 and IE2 mRNAs. As RNA secondary structure in 5' UTRs can regulate mRNA translation efficiency, we used selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) to identify RNA structures in the shared MIE 5' UTR. We found that the MIE 5' UTR contains three stable stem loop structures. Using a series of recombinant viruses to investigate the role of each stem loop in IE1 and IE2 protein synthesis, we found that the stem loop closest to the 5' end of the MIE 5' UTR (SL1) is both necessary and sufficient for efficient IE1 and IE2 mRNA translation and HCMV replication. The positive effect of SL1 on mRNA translation and virus replication was dependent on its location within the 5' UTR. Surprisingly, a synthetic stem loop with the same free energy as SL1 in its native location also supported wild type levels of IE1 and IE2 mRNA translation and virus replication, suggesting that the presence of RNA structure at a specific location in the 5' UTR, rather than the primary sequence of the RNA, is critical for efficient IE1 and IE2 protein synthesis. These data reveal a novel post-transcriptional regulatory mechanism controlling IE1 and IE2 expression and reinforce the critical role of RNA structure in regulating HCMV protein synthesis and replication.IMPORTANCEThese results reveal a new aspect of immediate early gene regulation controlled by non-coding RNA structures in viral mRNAs. Previous studies have largely focused on understanding viral gene expression at the level of transcriptional control. Our results show that a complete understanding of the control of viral gene expression must include an understanding of viral mRNA translation, which is driven in part by RNA structure(s) in the 5' UTR of viral mRNAs. Our results illustrate the importance of these additional layers of regulation by defining specific 5' UTR RNA structures regulating immediate early gene expression in the context of infection and identify important features of RNA structure that govern viral mRNA translation efficiency. These results may therefore broadly impact current thinking on how viral gene expression is regulated for human cytomegalovirus and other DNA viruses.
Collapse
Affiliation(s)
- Bekah Dickmander
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew Hale
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wes Sanders
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erik Lenarcic
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ben Ziehr
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
133
|
Singha Roy A, Majumder S, Saha P. Stable RNA G-Quadruplex in the 5'-UTR of Human cIAP1 mRNA Promotes Translation in an IRES-Independent Manner. Biochemistry 2024. [PMID: 38334276 DOI: 10.1021/acs.biochem.3c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
RNA G-quadruplex (rG4) structures can influence the fate and functions of mRNAs, especially the translation process. The presence of rG4 structures in 5'-untranslated regions (5'-UTRs) of mRNAs generally represses translation. However, rG4 structures can also promote internal ribosome entry site (IRES)-mediated translation as one of its determinants. Here, we report the identification of an evolutionary conserved rG4-forming sequence motif at the extreme 5'-end of the unusually long 5'-UTR (1.7 kb) in the transcript of human cIAP1 gene encoding the cellular inhibitor of apoptosis protein-1 that promotes cell survival by suppressing apoptosis and is overexpressed in various cancer cells. Expectedly, NMR study, CD spectroscopy, and UV melting assay confirm the formation of a potassium ion-dependent intramolecular and parallel rG4 structure at the sequence stretch. Moreover, the G4-RNA-specific precipitation using biotin-linked biomimetic BioCyTASQ validates the formation of the rG4 structure in the cIAP1 5'-UTR in cells. Interestingly, disruption of the rG4 structure in the cIAP1 5'-UTR results in a dramatic reduction in translation of the downstream luciferase reporter in cells, suggesting a translation-promoting effect of the rG4 structure, contrary to many earlier reports. Furthermore, enhancement of translation by the cIAP1 rG4 structure occurs in an IRES-independent manner.
Collapse
Affiliation(s)
- Aditya Singha Roy
- Crystallography and Molecular Biology Division, Biophysical Sciences Group, Saha Institute of Nuclear Physics, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Subhabrata Majumder
- Homi Bhabha National Institute, Mumbai 400094, India
- Biophysics and Structural Biology Division, Biophysical Sciences Group, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Partha Saha
- Crystallography and Molecular Biology Division, Biophysical Sciences Group, Saha Institute of Nuclear Physics, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
134
|
Dong H. Application of genome editing techniques to regulate gene expression in crops. BMC PLANT BIOLOGY 2024; 24:100. [PMID: 38331711 PMCID: PMC10854132 DOI: 10.1186/s12870-024-04786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Enhanced agricultural production is urgently required to meet the food demands of the increasing global population. Abundant genetic diversity is expected to accelerate crop development. In particular, the development of the CRISPR/Cas genome editing technology has greatly enhanced our ability to improve crop's genetic diversity through direct artificial gene modification. However, recent studies have shown that most crop improvement efforts using CRISPR/Cas techniques have mainly focused on the coding regions, and there is a relatively lack of studies on the regulatory regions of gene expression. RESULTS This review briefly summarizes the development of CRISPR/Cas system in the beginning. Subsequently, the importance of gene regulatory regions in plants is discussed. The review focuses on recent developments and applications of mutations in regulatory regions via CRISPR/Cas techniques in crop breeding. CONCLUSION Finally, an outline of perspectives for future crop breeding using genome editing technologies is provided. This review provides new research insights for crop improvement using genome editing techniques.
Collapse
Affiliation(s)
- Huirong Dong
- College of Agronomy and Biotechnology, Yunnan Agriculture University, Kunming, 650201, Yunnan, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572024, China.
| |
Collapse
|
135
|
Suiwal S, Wartenberg P, Boehm U, Schmitz F, Schwarz K. A Novel Cre Recombinase Mouse Strain for Cell-Specific Deletion of Floxed Genes in Ribbon Synapse-Forming Retinal Neurons. Int J Mol Sci 2024; 25:1916. [PMID: 38339191 PMCID: PMC10856425 DOI: 10.3390/ijms25031916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
We generated a novel Cre mouse strain for cell-specific deletion of floxed genes in ribbon synapse-forming retinal neurons. Previous studies have shown that the RIBEYE promotor targets the expression of recombinant proteins such as fluorescently tagged RIBEYE to photoreceptors and retinal bipolar cells and generates fluorescent synaptic ribbons in situ in these neurons. Here, we used the same promotor to generate a novel transgenic mouse strain in which the RIBEYE promotor controls the expression of a Cre-ER(T2) recombinase (RIBEYE-Cre). To visualize Cre expression, the RIBEYE-Cre animals were crossed with ROSA26 tau-GFP (R26-τGFP) reporter mice. In the resulting RIBEYE-Cre/R26 τGFP animals, Cre-mediated removal of a transcriptional STOP cassette results in the expression of green fluorescent tau protein (tau-GFP) that binds to cellular microtubules. We detected robust tau-GFP expression in retinal bipolar cells. Surprisingly, we did not find fluorescent tau-GFP expression in mouse photoreceptors. The lack of tau-GFP reporter protein in these cells could be based on the previously reported absence of tau protein in mouse photoreceptors which could lead to the degradation of the recombinant tau protein. Consistent with this, we detected Cre and tau-GFP mRNA in mouse photoreceptor slices by RT-PCR. The transgenic RIBEYE-Cre mouse strain provides a new tool to study the deletion of floxed genes in ribbon synapse-forming neurons of the retina and will also allow for analyzing gene deletions that are lethal if globally deleted in neurons.
Collapse
Affiliation(s)
- Shweta Suiwal
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, 66421 Homburg, Germany;
| | - Philipp Wartenberg
- Institute of Clinical and Experimental Pharmacology, Center for Molecular Signaling (PZMS) and Center for Gender-Specific Biology and Medicine (CGBM), Medical School, Saarland University, 66421 Homburg, Germany; (P.W.); (U.B.)
| | - Ulrich Boehm
- Institute of Clinical and Experimental Pharmacology, Center for Molecular Signaling (PZMS) and Center for Gender-Specific Biology and Medicine (CGBM), Medical School, Saarland University, 66421 Homburg, Germany; (P.W.); (U.B.)
| | - Frank Schmitz
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, 66421 Homburg, Germany;
| | - Karin Schwarz
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, 66421 Homburg, Germany;
| |
Collapse
|
136
|
Wu K, Bu F, Wu Y, Zhang G, Wang X, He S, Liu MF, Chen R, Yuan H. Exploring noncoding variants in genetic diseases: from detection to functional insights. J Genet Genomics 2024; 51:111-132. [PMID: 38181897 DOI: 10.1016/j.jgg.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Previous studies on genetic diseases predominantly focused on protein-coding variations, overlooking the vast noncoding regions in the human genome. The development of high-throughput sequencing technologies and functional genomics tools has enabled the systematic identification of functional noncoding variants. These variants can impact gene expression, regulation, and chromatin conformation, thereby contributing to disease pathogenesis. Understanding the mechanisms that underlie the impact of noncoding variants on genetic diseases is indispensable for the development of precisely targeted therapies and the implementation of personalized medicine strategies. The intricacies of noncoding regions introduce a multitude of challenges and research opportunities. In this review, we introduce a spectrum of noncoding variants involved in genetic diseases, along with research strategies and advanced technologies for their precise identification and in-depth understanding of the complexity of the noncoding genome. We will delve into the research challenges and propose potential solutions for unraveling the genetic basis of rare and complex diseases.
Collapse
Affiliation(s)
- Ke Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Fengxiao Bu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Gen Zhang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mo-Fang Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China; State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
137
|
Carbonell-Roig J, Aaltonen A, Cartocci V, McGuirt A, Mosharov E, Kehr J, Lieberman OJ, Sulzer D, Borgkvist A, Santini E. Dysregulated acetylcholine-mediated dopamine neurotransmission in the eIF4E Tg mouse model of autism spectrum disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577831. [PMID: 38352367 PMCID: PMC10862723 DOI: 10.1101/2024.01.29.577831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2024]
Abstract
Autism Spectrum Disorders (ASD) consist of diverse neurodevelopmental conditions where core behavioral symptoms are critical for diagnosis. Altered dopamine neurotransmission in the striatum has been suggested to contribute to the behavioral features of ASD. Here, we examine dopamine neurotransmission in a mouse model of ASD characterized by elevated expression of the eukaryotic initiation factor 4E (eIF4E), a key regulator of cap-dependent translation, using a comprehensive approach that encompasses genetics, behavior, synaptic physiology, and imaging. The results indicate that increased eIF4E expression leads to behavioral inflexibility and impaired striatal dopamine release. The loss of normal dopamine neurotransmission is due to a defective nicotinic receptor signaling that regulates calcium dynamics in dopaminergic axons. These findings reveal an intricate interplay between eIF4E, DA neurotransmission, and behavioral flexibility, provide a mechanistic understanding of ASD symptoms and offer a foundation for targeted therapeutic interventions.
Collapse
|
138
|
Zhang T, Xue Y, Su S, Altouma V, Ho K, Martindale JL, Lee SK, Shen W, Park A, Zhang Y, De S, Gorospe M, Wang W. RNA-binding protein Nocte regulates Drosophila development by promoting translation reinitiation on mRNAs with long upstream open reading frames. Nucleic Acids Res 2024; 52:885-905. [PMID: 38000373 PMCID: PMC10810208 DOI: 10.1093/nar/gkad1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
RNA-binding proteins (RBPs) with intrinsically disordered regions (IDRs) are linked to multiple human disorders, but their mechanisms of action remain unclear. Here, we report that one such protein, Nocte, is essential for Drosophila eye development by regulating a critical gene expression cascade at translational level. Knockout of nocte in flies leads to lethality, and its eye-specific depletion impairs eye size and morphology. Nocte preferentially enhances translation of mRNAs with long upstream open reading frames (uORFs). One of the key Nocte targets, glass mRNA, encodes a transcription factor critical for differentiation of photoreceptor neurons and accessory cells, and re-expression of Glass largely rescued the eye defects caused by Nocte depletion. Mechanistically, Nocte counteracts long uORF-mediated translational suppression by promoting translation reinitiation downstream of the uORF. Nocte interacts with translation factors eIF3 and Rack1 through its BAT2 domain, and a Nocte mutant lacking this domain fails to promote translation of glass mRNA. Notably, de novo mutations of human orthologs of Nocte have been detected in schizophrenia patients. Our data suggest that Nocte family of proteins can promote translation reinitiation to overcome long uORFs-mediated translational suppression, and disruption of this function can lead to developmental defects and neurological disorders.
Collapse
Affiliation(s)
- Tianyi Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yutong Xue
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Valerie Altouma
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Katherine Ho
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Seung-Kyu Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weiping Shen
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Aaron Park
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
139
|
Amiri M, Kiniry SJ, Possemato AP, Mahmood N, Basiri T, Dufour CR, Tabatabaei N, Deng Q, Bellucci MA, Harwalkar K, Stokes MP, Giguère V, Kaufman RJ, Yamanaka Y, Baranov PV, Tahmasebi S, Sonenberg N. Impact of eIF2α phosphorylation on the translational landscape of mouse embryonic stem cells. Cell Rep 2024; 43:113615. [PMID: 38159280 PMCID: PMC10962698 DOI: 10.1016/j.celrep.2023.113615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
The integrated stress response (ISR) is critical for cell survival under stress. In response to diverse environmental cues, eIF2α becomes phosphorylated, engendering a dramatic change in mRNA translation. The activation of ISR plays a pivotal role in the early embryogenesis, but the eIF2-dependent translational landscape in pluripotent embryonic stem cells (ESCs) is largely unexplored. We employ a multi-omics approach consisting of ribosome profiling, proteomics, and metabolomics in wild-type (eIF2α+/+) and phosphorylation-deficient mutant eIF2α (eIF2αA/A) mouse ESCs (mESCs) to investigate phosphorylated (p)-eIF2α-dependent translational control of naive pluripotency. We show a transient increase in p-eIF2α in the naive epiblast layer of E4.5 embryos. Absence of eIF2α phosphorylation engenders an exit from naive pluripotency following 2i (two chemical inhibitors of MEK1/2 and GSK3α/β) withdrawal. p-eIF2α controls translation of mRNAs encoding proteins that govern pluripotency, chromatin organization, and glutathione synthesis. Thus, p-eIF2α acts as a key regulator of the naive pluripotency gene regulatory network.
Collapse
Affiliation(s)
- Mehdi Amiri
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland
| | | | - Niaz Mahmood
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Tayebeh Basiri
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Catherine R Dufour
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Negar Tabatabaei
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Qiyun Deng
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Michael A Bellucci
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Keerthana Harwalkar
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Matthew P Stokes
- Cell Signaling Technology, Inc., 3 Trask Lane, Danvers, MA 01923, USA
| | - Vincent Giguère
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Randal J Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yojiro Yamanaka
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
140
|
Vieira IA, Viola GD, Pezzi EH, Kowalski TW, Fernandes BV, Andreis TF, Bom N, Sonnenstrahl G, Rocha YMDA, Corrêa BDS, Donatti LM, Sant’Anna GDS, Corleta HVE, Brum IS, Rosset C, Vianna FSL, Macedo GS, Palmero EI, Ashton-Prolla P. Exploring the frequency of a TP53 polyadenylation signal variant in tumor DNA from patients diagnosed with lung adenocarcinomas, sarcomas and uterine leiomyomas. Genet Mol Biol 2024; 46:e20230133. [PMID: 38252059 PMCID: PMC10802224 DOI: 10.1590/1678-4685-gmb-2023-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/16/2023] [Indexed: 01/23/2024] Open
Abstract
The TP53 3'UTR variant rs78378222 A>C has been detected in different tumor types as a somatic alteration that reduces p53 expression through modification of polyadenylation and miRNA regulation. Its prevalence is not yet known in all tumors. Herein, we examine tumor tissue prevalence of rs7837822 in Brazilian cohorts of patients from south and southeast regions diagnosed with lung adenocarcinoma (LUAD, n=586), sarcoma (SARC, n=188) and uterine leiomyoma (ULM, n=41). The minor allele (C) was identified in heterozygosity in 6/586 LUAD tumors (prevalence = 1.02 %) and none of the SARC and ULM samples. Additionally, next generation sequencing analysis revealed that all variant-positive tumors (n=4) with sample availability had additional pathogenic or likely pathogenic somatic variants in the TP53 coding regions. Among them, 3/4 (75 %) had the same pathogenic or likely pathogenic sequence variant (allele frequency <0.05 in tumor DNA) namely c.751A>C (p.Ile251Leu). Our results indicate a low somatic prevalence of rs78378222 in LUAD, ULM and SARC tumors from Brazilian patients, which suggests that no further analysis of this variant in the specific studied regions of Brazil is warranted. However, these findings should not exclude tumor molecular testing of this TP53 3'UTR functional variant for different populations.
Collapse
Affiliation(s)
- Igor Araujo Vieira
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade do Vale do Rio dos Sinos (UNISINOS), Escola de Saúde, São Leopoldo, RS, Brazil
| | - Guilherme Danielski Viola
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Eduarda Heidrich Pezzi
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Thayne Woycinck Kowalski
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de Genética Médica e Populacional, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Genética Médica, Sistema Nacional de Informações sobre Agentes Teratogênicos (SIAT), Porto Alegre, RS, Brazil
- Complexo de Ensino Superior de Cachoeirinha (CESUCA), Cachoeirinha, RS, Brazil
| | - Bruna Vieira Fernandes
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Tiago Finger Andreis
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Natascha Bom
- Universidade do Vale do Rio dos Sinos (UNISINOS), Curso de Graduação em Biomedicina, São Leopoldo, RS, Brazil
| | - Giulianna Sonnenstrahl
- Universidade do Vale do Rio dos Sinos (UNISINOS), Curso de Graduação em Biomedicina, São Leopoldo, RS, Brazil
| | - Yasminne Marinho de Araújo Rocha
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Bruno da Silveira Corrêa
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Luiza Mezzomo Donatti
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Fisiologia, Laboratório de Biologia Molecular Endócrino e Tumoral, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Porto Alegre, RS, Brazil
| | - Gabriela dos Santos Sant’Anna
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Fisiologia, Laboratório de Biologia Molecular Endócrino e Tumoral, Porto Alegre, RS, Brazil
| | - Helena von Eye Corleta
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Fisiologia, Laboratório de Biologia Molecular Endócrino e Tumoral, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Ginecologia e Obstetrícia, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Ginecologia e Obstetrícia, Porto Alegre, RS, Brazil
| | - Ilma Simoni Brum
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Fisiologia, Laboratório de Biologia Molecular Endócrino e Tumoral, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Porto Alegre, RS, Brazil
| | - Clévia Rosset
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Ciências Médicas: Medicina (PPGCM), Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Unidade de Pesquisa Laboratorial (UPL), Porto Alegre, RS, Brazil
| | - Fernanda Sales Luiz Vianna
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de Genética Médica e Populacional, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Genética Médica, Sistema Nacional de Informações sobre Agentes Teratogênicos (SIAT), Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Ciências Médicas: Medicina (PPGCM), Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Imunobiologia e Imunogenética, Porto Alegre, RS, Brazil
| | - Gabriel S. Macedo
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Programa de Medicina Personalizada, Porto Alegre, RS, Brazil
| | - Edenir Inez Palmero
- Instituto Nacional de Câncer (INCA), Departamento de Genética, Rio de Janeiro, RJ, Brazil
- Hospital de Câncer de Barretos, Centro de Pesquisa em Oncologia Molecular, Barretos, SP, Brazil
| | - Patricia Ashton-Prolla
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Ciências Médicas: Medicina (PPGCM), Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Programa de Medicina Personalizada, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre, RS, Brazil
| |
Collapse
|
141
|
Delaidelli A, Oliveira de Santis J, Sorensen PH. Actions speak louder than ORFs: A non-canonical microprotein promotes medulloblastoma oncogenesis. Mol Cell 2024; 84:188-190. [PMID: 38242097 DOI: 10.1016/j.molcel.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024]
Abstract
In this issue of Molecular Cell, Hofman et al.1 identify the translation of a non-canonical upstream open reading frame of the ASNSD1 gene into a microprotein that supports medulloblastoma growth.
Collapse
Affiliation(s)
- Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver British Columbia V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver British Columbia V6T 1Z4, Canada.
| | - Jessica Oliveira de Santis
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver British Columbia V5Z 1L3, Canada; Department of Genetics, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver British Columbia V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver British Columbia V6T 1Z4, Canada.
| |
Collapse
|
142
|
Zeng J, Song K, Wang J, Wen H, Zhou J, Ni T, Lu H, Yu Y. Characterization and optimization of 5´ untranslated region containing poly-adenine tracts in Kluyveromyces marxianus using machine-learning model. Microb Cell Fact 2024; 23:7. [PMID: 38172836 PMCID: PMC10763412 DOI: 10.1186/s12934-023-02271-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The 5´ untranslated region (5´ UTR) plays a key role in regulating translation efficiency and mRNA stability, making it a favored target in genetic engineering and synthetic biology. A common feature found in the 5´ UTR is the poly-adenine (poly(A)) tract. However, the effect of 5´ UTR poly(A) on protein production remains controversial. Machine-learning models are powerful tools for explaining the complex contributions of features, but models incorporating features of 5´ UTR poly(A) are currently lacking. Thus, our goal is to construct such a model, using natural 5´ UTRs from Kluyveromyces marxianus, a promising cell factory for producing heterologous proteins. RESULTS We constructed a mini-library consisting of 207 5´ UTRs harboring poly(A) and 34 5´ UTRs without poly(A) from K. marxianus. The effects of each 5´ UTR on the production of a GFP reporter were evaluated individually in vivo, and the resulting protein abundance spanned an approximately 450-fold range throughout. The data were used to train a multi-layer perceptron neural network (MLP-NN) model that incorporated the length and position of poly(A) as features. The model exhibited good performance in predicting protein abundance (average R2 = 0.7290). The model suggests that the length of poly(A) is negatively correlated with protein production, whereas poly(A) located between 10 and 30 nt upstream of the start codon (AUG) exhibits a weak positive effect on protein abundance. Using the model as guidance, the deletion or reduction of poly(A) upstream of 30 nt preceding AUG tended to improve the production of GFP and a feruloyl esterase. Deletions of poly(A) showed inconsistent effects on mRNA levels, suggesting that poly(A) represses protein production either with or without reducing mRNA levels. CONCLUSION The effects of poly(A) on protein production depend on its length and position. Integrating poly(A) features into machine-learning models improves simulation accuracy. Deleting or reducing poly(A) upstream of 30 nt preceding AUG tends to enhance protein production. This optimization strategy can be applied to enhance the yield of K. marxianus and other microbial cell factories.
Collapse
Affiliation(s)
- Junyuan Zeng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Kunfeng Song
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Jingqi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Haimei Wen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China.
| |
Collapse
|
143
|
Wu SN, Xiao T, Chen H, Li XH. Decoding the genome of SARS-CoV-2: a pathway to drug development through translation inhibition. RNA Biol 2024; 21:1-18. [PMID: 39630134 PMCID: PMC11632750 DOI: 10.1080/15476286.2024.2433830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19) pandemic and is continuously spreading globally. The continuous emergence of new SARS-CoV-2 variants keeps posing threats, highlighting the need for fast-acting, mutation-resistant broad-spectrum therapeutics. Protein translation is vital for SARS-CoV-2 replication, producing early non-structural proteins for RNA replication and transcription, and late structural proteins for virion assembly. Targeted blocking of viral protein translation is thus a potential approach to developing effective anti-SARS-CoV-2 drugs. SARS-CoV-2, as an obligate parasite, utilizes the host's translation machinery. Translation-blocking strategies that target the SARS-CoV-2 mRNA, especially those that target its conserved elements are generally preferred. In this review, we discuss the current understanding of SARS-CoV-2 translation, highlighting the important conserved motifs and structures involved in its regulation. We also discuss the current strategies for blocking SARS-CoV-2 translation through viral RNA degradation or RNA element dysfunction.
Collapse
Affiliation(s)
- Shan-Na Wu
- Department of Pharmaceutics, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ting Xiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hui Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiao-Hong Li
- Department of Pharmaceutics, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
144
|
Zhang SX, Wang JJ, Starr CR, Lee EJ, Park KS, Zhylkibayev A, Medina A, Lin JH, Gorbatyuk M. The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease. Prog Retin Eye Res 2024; 98:101231. [PMID: 38092262 PMCID: PMC11056313 DOI: 10.1016/j.preteyeres.2023.101231] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The endoplasmic reticulum (ER) is the largest intracellular organelle carrying out a broad range of important cellular functions including protein biosynthesis, folding, and trafficking, lipid and sterol biosynthesis, carbohydrate metabolism, and calcium storage and gated release. In addition, the ER makes close contact with multiple intracellular organelles such as mitochondria and the plasma membrane to actively regulate the biogenesis, remodeling, and function of these organelles. Therefore, maintaining a homeostatic and functional ER is critical for the survival and function of cells. This vital process is implemented through well-orchestrated signaling pathways of the unfolded protein response (UPR). The UPR is activated when misfolded or unfolded proteins accumulate in the ER, a condition known as ER stress, and functions to restore ER homeostasis thus promoting cell survival. However, prolonged activation or dysregulation of the UPR can lead to cell death and other detrimental events such as inflammation and oxidative stress; these processes are implicated in the pathogenesis of many human diseases including retinal disorders. In this review manuscript, we discuss the unique features of the ER and ER stress signaling in the retina and retinal neurons and describe recent advances in the research to uncover the role of ER stress signaling in neurodegenerative retinal diseases including age-related macular degeneration, inherited retinal degeneration, achromatopsia and cone diseases, and diabetic retinopathy. In some chapters, we highlight the complex interactions between the ER and other intracellular organelles focusing on mitochondria and illustrate how ER stress signaling regulates common cellular stress pathways such as autophagy. We also touch upon the integrated stress response in retinal degeneration and diabetic retinopathy. Finally, we provide an update on the current development of pharmacological agents targeting the UPR response and discuss some unresolved questions and knowledge gaps to be addressed by future research.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Josh J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eun-Jin Lee
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Karen Sophia Park
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andy Medina
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jonathan H Lin
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
145
|
van der Knaap MS, Bugiani M, Abbink TEM. Vanishing white matter. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:77-94. [PMID: 39322396 DOI: 10.1016/b978-0-323-99209-1.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
"Vanishing white matter" (VWM) is a leukodystrophy caused by autosomal recessive pathogenic variants in the genes encoding the subunits of eukaryotic initiation factor 2B (eIF2B). Disease onset and disease course are extremely variable. Onset varies from the antenatal period until senescence. The age of onset is predictive of disease severity. VWM is characterized by chronic neurologic deterioration and, additionally, episodes of rapid and major neurologic decline, provoked by stresses such as febrile infections and minor head trauma. The disease is dominated by degeneration of the white matter of the central nervous system due to dysfunction of oligodendrocytes and in particular astrocytes. Organs other than the brain are rarely affected, with the exception of the ovaries. The reason for the selective vulnerability of the white matter of the central nervous system and, less consistently, the ovaries is poorly understood. eIF2B is a central regulatory factor in the integrated stress response (ISR). Genetic variants decrease eIF2B activity and thereby cause constitutive activation of the ISR downstream of eIF2B. Strikingly, the ISR is specifically activated in astrocytes. Modulation of eIF2B activity and ISR activation in VWM mouse models impacts disease severity, revealing eIF2B-regulated pathways as potential druggable targets.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Marianna Bugiani
- Department of Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Truus E M Abbink
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
146
|
Barrington CL, Galindo G, Koch AL, Horton ER, Morrison EJ, Tisa S, Stasevich TJ, Rissland OS. Synonymous codon usage regulates translation initiation. Cell Rep 2023; 42:113413. [PMID: 38096059 PMCID: PMC10790568 DOI: 10.1016/j.celrep.2023.113413] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/30/2023] [Accepted: 10/25/2023] [Indexed: 12/30/2023] Open
Abstract
Nonoptimal synonymous codons repress gene expression, but the underlying mechanisms are poorly understood. We and others have previously shown that nonoptimal codons slow translation elongation speeds and thereby trigger messenger RNA (mRNA) degradation. Nevertheless, transcript levels are often insufficient to explain protein levels, suggesting additional mechanisms by which codon usage regulates gene expression. Using reporters in human and Drosophila cells, we find that transcript levels account for less than half of the variation in protein abundance due to codon usage. This discrepancy is explained by translational differences whereby nonoptimal codons repress translation initiation. Nonoptimal transcripts are also less bound by the translation initiation factors eIF4E and eIF4G1, providing a mechanistic explanation for their reduced initiation rates. Importantly, translational repression can occur without mRNA decay and deadenylation, and it does not depend on the known nonoptimality sensor, CNOT3. Our results reveal a potent mechanism of regulation by codon usage where nonoptimal codons repress further rounds of translation.
Collapse
Affiliation(s)
- Chloe L Barrington
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Gabriel Galindo
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Amanda L Koch
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Emma R Horton
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Evan J Morrison
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Samantha Tisa
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Timothy J Stasevich
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Olivia S Rissland
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
147
|
Inagaki M. Cell Reprogramming and Differentiation Utilizing Messenger RNA for Regenerative Medicine. J Dev Biol 2023; 12:1. [PMID: 38535481 PMCID: PMC10971469 DOI: 10.3390/jdb12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 06/16/2024] Open
Abstract
The COVID-19 pandemic generated interest in the medicinal applications of messenger RNA (mRNA). It is expected that mRNA will be applied, not only to vaccines, but also to regenerative medicine. The purity of mRNA is important for its medicinal applications. However, the current mRNA synthesis techniques exhibit problems, including the contamination of undesired 5'-uncapped mRNA and double-stranded RNA. Recently, our group developed a completely capped mRNA synthesis technology that contributes to the progress of mRNA research. The introduction of chemically modified nucleosides, such as N1-methylpseudouridine and 5-methylcytidine, has been reported by Karikó and Weissman, opening a path for the practical application of mRNA for vaccines and regenerative medicine. Yamanaka reported the production of induced pluripotent stem cells (iPSCs) by introducing four types of genes using a retrovirus vector. iPSCs are widely used for research on regenerative medicine and the preparation of disease models to screen new drug candidates. Among the Yamanaka factors, Klf4 and c-Myc are oncogenes, and there is a risk of tumor development if these are integrated into genomic DNA. Therefore, regenerative medicine using mRNA, which poses no risk of genome insertion, has attracted attention. In this review, the author summarizes techniques for synthesizing mRNA and its application in regenerative medicine.
Collapse
Affiliation(s)
- Masahito Inagaki
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
148
|
Soueid DM, Garner AL. Adaptation of RiPCA for the Live-Cell Detection of mRNA-Protein Interactions. Biochemistry 2023; 62:3323-3336. [PMID: 37963240 PMCID: PMC11466511 DOI: 10.1021/acs.biochem.3c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
RNA-binding proteins (RBPs) act as essential regulators of cell fate decisions, through their ability to bind and regulate the activity of cellular RNAs. For protein-coding mRNAs, RBPs control the localization, stability, degradation, and ultimately translation of mRNAs to impact gene expression. Disruption of the vast network of mRNA-protein interactions has been implicated in many human diseases, and accordingly, targeting these interactions has surfaced as a new frontier in RNA-targeted drug discovery. To catalyze this new field, methods are needed to enable the detection and subsequent screening of mRNA-RBP interactions, particularly in live cells. Using our laboratory's RNA-interaction with Protein-mediated Complementation Assay (RiPCA) technology, herein we describe its application to mRNA-protein interactions and present a guide for the development of future RiPCA assays for structurally diverse classes of mRNA-protein interactions.
Collapse
Affiliation(s)
- Dalia M. Soueid
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda L. Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
149
|
Wang Q, Mao Y. Principles, challenges, and advances in ribosome profiling: from bulk to low-input and single-cell analysis. ADVANCED BIOTECHNOLOGY 2023; 1:6. [PMID: 39883220 PMCID: PMC11727582 DOI: 10.1007/s44307-023-00006-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/31/2025]
Abstract
Ribosome profiling has revolutionized our understanding of gene expression regulation by providing a snapshot of global translation in vivo. This powerful technique enables the investigation of the dynamics of translation initiation, elongation, and termination, and has provided insights into the regulation of protein synthesis under various conditions. Despite its widespread adoption, challenges persist in obtaining high-quality ribosome profiling data. In this review, we discuss the fundamental principles of ribosome profiling and related methodologies, including selective ribosome profiling and translation complex profiling. We also delve into quality control to assess the reliability of ribosome profiling datasets, and the efforts to improve data quality by modifying the standard procedures. Additionally, we highlight recent advancements in ribosome profiling that enable the transition from bulk to low-input and single-cell applications. Single-cell ribosome profiling has emerged as a crucial tool for exploring translation heterogeneity within specific cell populations. However, the challenges of capturing mRNAs efficiently and the sparse nature of footprint reads in single-cell ribosome profiling present ongoing obstacles. The need to refine ribosome profiling techniques remains, especially when used at the single-cell level.
Collapse
Affiliation(s)
- Qiuyi Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanhui Mao
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
150
|
Meyer L, Courtin B, Gomard M, Namane A, Permal E, Badis G, Jacquier A, Fromont-Racine M. eIF2A represses cell wall biogenesis gene expression in Saccharomyces cerevisiae. PLoS One 2023; 18:e0293228. [PMID: 38011112 PMCID: PMC10681259 DOI: 10.1371/journal.pone.0293228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/07/2023] [Indexed: 11/29/2023] Open
Abstract
Translation initiation is a complex and highly regulated process that represents an important mechanism, controlling gene expression. eIF2A was proposed as an alternative initiation factor, however, its role and biological targets remain to be discovered. To further gain insight into the function of eIF2A in Saccharomyces cerevisiae, we identified mRNAs associated with the eIF2A complex and showed that 24% of the most enriched mRNAs encode proteins related to cell wall biogenesis and maintenance. In agreement with this result, we showed that an eIF2A deletion sensitized cells to cell wall damage induced by calcofluor white. eIF2A overexpression led to a growth defect, correlated with decreased synthesis of several cell wall proteins. In contrast, no changes were observed in the transcriptome, suggesting that eIF2A controls the expression of cell wall-related proteins at a translational level. The biochemical characterization of the eIF2A complex revealed that it strongly interacts with the RNA binding protein, Ssd1, which is a negative translational regulator, controlling the expression of cell wall-related genes. Interestingly, eIF2A and Ssd1 bind several common mRNA targets and we found that the binding of eIF2A to some targets was mediated by Ssd1. Surprisingly, we further showed that eIF2A is physically and functionally associated with the exonuclease Xrn1 and other mRNA degradation factors, suggesting an additional level of regulation. Altogether, our results highlight new aspects of this complex and redundant fine-tuned regulation of proteins expression related to the cell wall, a structure required to maintain cell shape and rigidity, providing protection against harmful environmental stress.
Collapse
Affiliation(s)
- Laura Meyer
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Baptiste Courtin
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Maïté Gomard
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Abdelkader Namane
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Emmanuelle Permal
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Gwenael Badis
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Alain Jacquier
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Micheline Fromont-Racine
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| |
Collapse
|