101
|
Yang J, Huang S, Cheng S, Jin Y, Zhang N, Wang Y. Application of Ovarian Cancer Organoids in Precision Medicine: Key Challenges and Current Opportunities. Front Cell Dev Biol 2021; 9:701429. [PMID: 34409036 PMCID: PMC8366314 DOI: 10.3389/fcell.2021.701429] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023] Open
Abstract
Ovarian cancer (OC) is the leading cause of death among gynecologic malignances. Over the past decades, human-derived models have advanced from monolayer cell cultures to three-dimensional (3D) organoids that could faithfully recapitulate biological characteristics and tumor heterogeneity of primary tissues. As a complement of previous studies based on cell lines or xenografts, organoids provide a 3D platform for mutation–carcinogenesis modeling, high-throughput drug screening, genetic engineering, and biobanking, which might fulfill the gap between basic research and clinical practice. Stepwise, cutting-edge bioengineering techniques of organoid-on-a-chip and 3D bioprinting might converge current challenges and contribute to personalized therapy. We comprehensively reviewed the advantages, challenges, and translational potential of OC organoids. Undeniably, organoids represent an excellent near-physiological platform for OC, paving the way for precision medicine implementation. Future efforts will doubtlessly bring this innovative technique from bench to bedside.
Collapse
Affiliation(s)
- Jiani Yang
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Shan Huang
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shanshan Cheng
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Jin
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Zhang
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| |
Collapse
|
102
|
Bear AS, Blanchard T, Cesare J, Ford MJ, Richman LP, Xu C, Baroja ML, McCuaig S, Costeas C, Gabunia K, Scholler J, Posey AD, O'Hara MH, Smole A, Powell DJ, Garcia BA, Vonderheide RH, Linette GP, Carreno BM. Biochemical and functional characterization of mutant KRAS epitopes validates this oncoprotein for immunological targeting. Nat Commun 2021; 12:4365. [PMID: 34272369 PMCID: PMC8285372 DOI: 10.1038/s41467-021-24562-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Activating RAS missense mutations are among the most prevalent genomic alterations observed in human cancers and drive oncogenesis in the three most lethal tumor types. Emerging evidence suggests mutant KRAS (mKRAS) may be targeted immunologically, but mKRAS epitopes remain poorly defined. Here we employ a multi-omics approach to characterize HLA class I-restricted mKRAS epitopes. We provide proteomic evidence of mKRAS epitope processing and presentation by high prevalence HLA class I alleles. Select epitopes are immunogenic enabling mKRAS-specific TCRαβ isolation. TCR transfer to primary CD8+ T cells confers cytotoxicity against mKRAS tumor cell lines independent of histologic origin, and the kinetics of lytic activity correlates with mKRAS peptide-HLA class I complex abundance. Adoptive transfer of mKRAS-TCR engineered CD8+ T cells leads to tumor eradication in a xenograft model of metastatic lung cancer. This study validates mKRAS peptides as bona fide epitopes facilitating the development of immune therapies targeting this oncoprotein. KRAS is commonly mutated at codon 12 in several cancer types, offering a unique opportunity for the development of neoantigen-targeted immunotherapy. Here the authors present a pipeline for the prediction, identification and validation of HLA class-I restricted mutant KRAS G12 peptides, leading to the generation of mutant KRAS-specific T cell receptors for adoptive T cell immunotherapy.
Collapse
Affiliation(s)
- Adham S Bear
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tatiana Blanchard
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Cesare
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Lee P Richman
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Chong Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miren L Baroja
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah McCuaig
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christina Costeas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Khatuna Gabunia
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Avery D Posey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Mark H O'Hara
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Anze Smole
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Powell
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert H Vonderheide
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerald P Linette
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beatriz M Carreno
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
103
|
Chen P, Fang QX, Chen DB, Chen HS. Neoantigen vaccine: An emerging immunotherapy for hepatocellular carcinoma. World J Gastrointest Oncol 2021. [DOI: 10.4251/wjgo.v13.i7.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
104
|
Chen P, Fang QX, Chen DB, Chen HS. Neoantigen vaccine: An emerging immunotherapy for hepatocellular carcinoma. World J Gastrointest Oncol 2021; 13:673-683. [PMID: 34322196 PMCID: PMC8299936 DOI: 10.4251/wjgo.v13.i7.673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/06/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor-specific neoantigens, which are expressed on tumor cells, can induce an effective antitumor cytotoxic T-cell response and mediate tumor regression. Among tumor immunotherapies, neoantigen vaccines are in early human clinical trials and have demonstrated substantial efficiency. Compared with more neoantigens in melanoma, the paucity and inefficient identification of effective neoantigens in hepatocellular carcinoma (HCC) remain enormous challenges in effectively treating this malignancy. In this review, we highlight the current development of HCC neoantigens in its generation, screening, and identification. We also discuss the possibility that there are more effective neoantigens in hepatitis B virus (HBV)-related HCC than in non-HBV-related HCC. In addition, since HCC is an immunosuppressive tumor, strategies that reverse immunosuppression and enhance the immune response should be considered for the practical exploitation of HCC neoantigens. In summary, this review offers some strategies to solve existing problems in HCC neoantigen research and provide further insights for immunotherapy.
Collapse
Affiliation(s)
- Pu Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Peking University People’s Hospital, Beijing 100044, China
| | - Qiong-Xuan Fang
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Peking University People’s Hospital, Beijing 100044, China
| | - Dong-Bo Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Peking University People’s Hospital, Beijing 100044, China
| | - Hong-Song Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
105
|
de Sousa E, Lérias JR, Beltran A, Paraschoudi G, Condeço C, Kamiki J, António PA, Figueiredo N, Carvalho C, Castillo-Martin M, Wang Z, Ligeiro D, Rao M, Maeurer M. Targeting Neoepitopes to Treat Solid Malignancies: Immunosurgery. Front Immunol 2021; 12:592031. [PMID: 34335558 PMCID: PMC8320363 DOI: 10.3389/fimmu.2021.592031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/07/2021] [Indexed: 12/26/2022] Open
Abstract
Successful outcome of immune checkpoint blockade in patients with solid cancers is in part associated with a high tumor mutational burden (TMB) and the recognition of private neoantigens by T-cells. The quality and quantity of target recognition is determined by the repertoire of ‘neoepitope’-specific T-cell receptors (TCRs) in tumor-infiltrating lymphocytes (TIL), or peripheral T-cells. Interferon gamma (IFN-γ), produced by T-cells and other immune cells, is essential for controlling proliferation of transformed cells, induction of apoptosis and enhancing human leukocyte antigen (HLA) expression, thereby increasing immunogenicity of cancer cells. TCR αβ-dependent therapies should account for tumor heterogeneity and availability of the TCR repertoire capable of reacting to neoepitopes and functional HLA pathways. Immunogenic epitopes in the tumor-stroma may also be targeted to achieve tumor-containment by changing the immune-contexture in the tumor microenvironment (TME). Non protein-coding regions of the tumor-cell genome may also contain many aberrantly expressed, non-mutated tumor-associated antigens (TAAs) capable of eliciting productive anti-tumor immune responses. Whole-exome sequencing (WES) and/or RNA sequencing (RNA-Seq) of cancer tissue, combined with several layers of bioinformatic analysis is commonly used to predict possible neoepitopes present in clinical samples. At the ImmunoSurgery Unit of the Champalimaud Centre for the Unknown (CCU), a pipeline combining several tools is used for predicting private mutations from WES and RNA-Seq data followed by the construction of synthetic peptides tailored for immunological response assessment reflecting the patient’s tumor mutations, guided by MHC typing. Subsequent immunoassays allow the detection of differential IFN-γ production patterns associated with (intra-tumoral) spatiotemporal differences in TIL or peripheral T-cells versus TIL. These bioinformatics tools, in addition to histopathological assessment, immunological readouts from functional bioassays and deep T-cell ‘adaptome’ analyses, are expected to advance discovery and development of next-generation personalized precision medicine strategies to improve clinical outcomes in cancer in the context of i) anti-tumor vaccination strategies, ii) gauging mutation-reactive T-cell responses in biological therapies and iii) expansion of tumor-reactive T-cells for the cellular treatment of patients with cancer.
Collapse
Affiliation(s)
- Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Joana R Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Antonio Beltran
- Department of Pathology, Champalimaud Clinical Centre, Lisbon, Portugal
| | | | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Jéssica Kamiki
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Nuno Figueiredo
- Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | | | - Zhe Wang
- Jiangsu Industrial Technology Research Institute (JITRI), Applied Adaptome Immunology Institute, Nanjing, China
| | - Dário Ligeiro
- Lisbon Centre for Blood and Transplantation, Instituto Português do Sangue e Transplantação (IPST), Lisbon, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.,I Medical Clinic, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
106
|
Xia T, Du W, Chen X, Zhang Y. Organoid models of the tumor microenvironment and their applications. J Cell Mol Med 2021; 25:5829-5841. [PMID: 34033245 PMCID: PMC8256354 DOI: 10.1111/jcmm.16578] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
A small percentage of data obtained from animal/2D culture models can be translated to humans. Therefore, there is a need to using native tumour microenvironment mimicking models to improve preclinical screening and reduce this attrition rate. For this purpose, currently, the utilization of organoids is expanding. Tumour organoids can recapitulate tumour microenvironment that is including cancer cells and non-neoplastic host components. Indeed, tumour organoids, both phenotypically and genetically, resemble the tumour tissue that originated from it. The unique properties of the tumour microenvironment can significantly affect drug response and cancer progression. In this review, we will discuss about various organoid culture strategies for modelling the tumour immune microenvironment, their applications and advantages in cancer research such as testing cancer immunotherapeutics, developing novel approaches for personalized medicine, testing drug toxicity, drug screening, study cancer initiation and progression, and we will also review the limitations of organoid culture systems.
Collapse
Affiliation(s)
- Tao Xia
- Department of Gastrointestinal‐Pancreatic SurgeryZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Wen‐Lin Du
- Department of Gastrointestinal‐Pancreatic SurgeryZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Xiao‐Yi Chen
- Clinical Research InstituteZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - You‐Ni Zhang
- Department of Laboratory MedicineTiantai People's HospitalTaizhouChina
| |
Collapse
|
107
|
Sahillioglu AC, Toebes M, Apriamashvili G, Gomez R, Schumacher TN. CRASH-IT Switch Enables Reversible and Dose-Dependent Control of TCR and CAR T-cell Function. Cancer Immunol Res 2021; 9:999-1007. [PMID: 34193461 PMCID: PMC8974419 DOI: 10.1158/2326-6066.cir-21-0095] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/06/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023]
Abstract
Adoptive transfer of genetically modified or donor-derived T cells can efficiently eradicate human tumors but is also frequently associated with major toxicity. There are several switches that can be used to kill the infused cell pool in the case of major toxicity, but the irreversible nature of these suicide switches means that the therapeutic effect is lost when they are used. To address this issue, we engineered a small-molecule responsive genetic safety switch that in the absence of drug robustly blocked cytotoxicity and cytokine expression of primary human T cells. Upon administration of drug, T-cell functions were restored in a reversible and titratable manner. We showed that this T-cell switch was universal, as it could be combined with endogenous or transduced T-cell receptors (TCR), as well as chimeric antigen receptors. The modular nature of the Chemically Regulated - SH2-delivered Inhibitory Tail (CRASH-IT) switch concept, in which inhibitory domains are brought to activating immune receptors in a controlled manner, makes it a versatile platform to regulate the activity of cell products that signal through immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors.
Collapse
Affiliation(s)
| | | | | | | | - Ton N. Schumacher
- Corresponding Author: Ton N. Schumacher, Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands. Phone: 312-0512-2072, ext. 2099; E-mail:
| |
Collapse
|
108
|
Levin N, Paria BC, Vale NR, Yossef R, Lowery FJ, Parkhurst MR, Yu Z, Florentin M, Cafri G, Gartner JJ, Shindorf ML, Ngo LT, Ray S, Kim SP, Copeland AR, Robbins PF, Rosenberg SA. Identification and Validation of T-cell Receptors Targeting RAS Hotspot Mutations in Human Cancers for Use in Cell-based Immunotherapy. Clin Cancer Res 2021; 27:5084-5095. [PMID: 34168045 DOI: 10.1158/1078-0432.ccr-21-0849] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/24/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunotherapies mediate the regression of human tumors through recognition of tumor antigens by immune cells that trigger an immune response. Mutations in the RAS oncogenes occur in about 30% of all patients with cancer. These mutations play an important role in both tumor establishment and survival and are commonly found in hotspots. Discovering T-cell receptors (TCR) that recognize shared mutated RAS antigens presented on MHC class I and class II molecules are thus promising reagents for "off-the-shelf" adoptive cell therapies (ACT) following insertion of the TCRs into lymphocytes. EXPERIMENTAL DESIGN In this ongoing work, we screened for RAS antigen recognition in tumor-infiltrating lymphocytes (TIL) or by in vitro stimulation of peripheral blood lymphocytes (PBL). TCRs recognizing mutated RAS were identified from the reactive T cells. The TCRs were then reconstructed and virally transduced into PBLs and tested. RESULTS Here, we detect and report multiple novel TCR sequences that recognize nonsynonymous mutant RAS hotspot mutations with high avidity and specificity and identify the specific class-I and -II MHC restriction elements involved in the recognition of mutant RAS. CONCLUSIONS The TCR library directed against RAS hotspot mutations described here recognize RAS mutations found in about 45% of the Caucasian population and about 60% of the Asian population and represent promising reagents for "off-the-shelf" ACTs.
Collapse
Affiliation(s)
- Noam Levin
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Biman C Paria
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Nolan R Vale
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Rami Yossef
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Frank J Lowery
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | | | - Zhiya Yu
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Maria Florentin
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Gal Cafri
- Surgery Branch, National Cancer Institute, Bethesda, Maryland.,Sheba Medical Center, Ramat Gan, Israel
| | - Jared J Gartner
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | | | - Lien T Ngo
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Satyajit Ray
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Sanghyun P Kim
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Amy R Copeland
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Paul F Robbins
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | | |
Collapse
|
109
|
Chen I, Chen MY, Goedegebuure SP, Gillanders WE. Challenges targeting cancer neoantigens in 2021: a systematic literature review. Expert Rev Vaccines 2021; 20:827-837. [PMID: 34047245 DOI: 10.1080/14760584.2021.1935248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Cancer neoantigens represent important targets of cancer immunotherapy. The goal of cancer neoantigen vaccines is to induce neoantigen-specific immune responses and antitumor immunity while minimizing the potential for autoimmune toxicity. Advances in sequencing technologies, neoantigen prediction algorithms, and other technologies have dramatically improved the ability to identify and prioritize cancer neoantigens. Unfortunately, results from preclinical studies and early phase clinical trials highlight important challenges to the successful clinical translation of neoantigen cancer vaccines.Areas covered: In this review, we provide an overview of current strategies for the identification and prioritization of cancer neoantigens with a particular emphasis on the two most common strategies used for neoantigen identification: (1) direct identification of peptide ligands eluted from peptide-MHC complexes, and (2) next-generation sequencing combined with neoantigen prediction algorithms. We highlight the limitations of current neoantigen prediction pipelines, and discuss broader challenges associated with cancer neoantigen vaccines including tumor purity/heterogeneity and the immunosuppressive tumor microenvironment.Expert opinion: Despite current limitations, neoantigen prediction is likely to improve rapidly based on advances in sequencing, machine learning, and information sharing. The successful development of robust cancer neoantigen prediction strategies is likely to have a significant impact, with the potential to facilitate cancer neoantigen vaccine design.
Collapse
Affiliation(s)
- Ina Chen
- Department of Surgery, Washington University and Siteman Cancer Center in St. Louis, St Louis, Missouri, USA
| | - Michael Y Chen
- Department of Surgery, Washington University and Siteman Cancer Center in St. Louis, St Louis, Missouri, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University and Siteman Cancer Center in St. Louis, St Louis, Missouri, USA.,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University and Siteman Cancer Center in St. Louis, St Louis, Missouri, USA.,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
110
|
Li W, Amei A, Bui F, Norouzifar S, Lu L, Wang Z. Impact of Neoantigen Expression and T-Cell Activation on Breast Cancer Survival. Cancers (Basel) 2021; 13:cancers13122879. [PMID: 34207556 PMCID: PMC8228363 DOI: 10.3390/cancers13122879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Neoantigens are novel proteins presented on the cell surface and derived from the accumulation of somatic mutations in tumor cells. They can be recognized by the immune system and may play a crucial role in boosting immune responses against tumor cells. The impact of neoantigen expression and T-cell activation status on overall survival was investigated in a breast cancer cohort. We found that high neoantigen expression and T-cell activation status was correlated with improved patient survival in the study population. This result supports that neoantigens are promising to serve as immunogenic agents for immunotherapy in breast cancer. Abstract Neoantigens are derived from tumor-specific somatic mutations. Neoantigen-based synthesized peptides have been under clinical investigation to boost cancer immunotherapy efficacy. The promising results prompt us to further elucidate the effect of neoantigen expression on patient survival in breast cancer. We applied Kaplan–Meier survival and multivariable Cox regression models to evaluate the effect of neoantigen expression and its interaction with T-cell activation on overall survival in a cohort of 729 breast cancer patients. Pearson’s chi-squared tests were used to assess the relationships between neoantigen expression and clinical pathological variables. Spearman correlation analysis was conducted to identify correlations between neoantigen expression, mutation load, and DNA repair gene expression. ERCC1, XPA, and XPC were negatively associated with neoantigen expression, while BLM, BRCA2, MSH2, XRCC2, RAD51, CHEK1, and CHEK2 were positively associated with neoantigen expression. Based on the multivariable Cox proportional hazard model, patients with a high level of neoantigen expression and activated T-cell status showed improved overall survival. Similarly, in the T-cell exhaustion and progesterone receptor (PR) positive subgroups, patients with a high level of neoantigen expression showed prolonged survival. In contrast, there was no significant difference in the T-cell activation and PR negative subgroups. In conclusion, neoantigens may serve as immunogenic agents for immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Mathematical Sciences, University of Nevada, Las Vegas, NV 89154, USA;
| | - Amei Amei
- Department of Mathematical Sciences, University of Nevada, Las Vegas, NV 89154, USA;
- Correspondence: (A.A.); (Z.W.)
| | - Francis Bui
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA; (F.B.); (S.N.)
| | - Saba Norouzifar
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA; (F.B.); (S.N.)
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520, USA;
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
- Correspondence: (A.A.); (Z.W.)
| |
Collapse
|
111
|
Juanes-Velasco P, Landeira-Viñuela A, Acebes-Fernandez V, Hernández ÁP, Garcia-Vaquero ML, Arias-Hidalgo C, Bareke H, Montalvillo E, Gongora R, Fuentes M. Deciphering Human Leukocyte Antigen Susceptibility Maps From Immunopeptidomics Characterization in Oncology and Infections. Front Cell Infect Microbiol 2021; 11:642583. [PMID: 34123866 PMCID: PMC8195621 DOI: 10.3389/fcimb.2021.642583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic variability across the three major histocompatibility complex (MHC) class I genes (human leukocyte antigen [HLA] A, B, and C) may affect susceptibility to many diseases such as cancer, auto-immune or infectious diseases. Individual genetic variation may help to explain different immune responses to microorganisms across a population. HLA typing can be fast and inexpensive; however, deciphering peptides loaded on MHC-I and II which are presented to T cells, require the design and development of high-sensitivity methodological approaches and subsequently databases. Hence, these novel strategies and databases could help in the generation of vaccines using these potential immunogenic peptides and in identifying high-risk HLA types to be prioritized for vaccination programs. Herein, the recent developments and approaches, in this field, focusing on the identification of immunogenic peptides have been reviewed and the next steps to promote their translation into biomedical and clinical practice are discussed.
Collapse
Affiliation(s)
- Pablo Juanes-Velasco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Alicia Landeira-Viñuela
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Vanessa Acebes-Fernandez
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Ángela-Patricia Hernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Marina L. Garcia-Vaquero
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Carlota Arias-Hidalgo
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Halin Bareke
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Enrique Montalvillo
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Rafael Gongora
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| |
Collapse
|
112
|
Yu J, Wang Q, Zhang X, Guo Z, Cui X. Mechanisms of Neoantigen-Targeted Induction of Pyroptosis and Ferroptosis: From Basic Research to Clinical Applications. Front Oncol 2021; 11:685377. [PMID: 34123855 PMCID: PMC8191503 DOI: 10.3389/fonc.2021.685377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Neoantigens are tumor-specific antigens (TSAs) that are only expressed in tumor cells. They are ideal targets enabling T cells to recognize tumor cells and stimulate a potent antitumor immune response. Pyroptosis and ferroptosis are newly discovered types of programmed cell death (PCD) that are different from apoptosis, cell necrosis, and autophagy. Studies of ferroptosis and pyroptosis of cancer cells are increasing, and strategies to modify the tumor microenvironment (TME) through ferroptosis to inhibit the occurrence and development of cancer, improve prognosis, and increase the survival rate are popular research topics. In addition, adoptive T cell therapy (ACT), including chimeric antigen receptor T cell (CAR-T) technology and T cell receptor engineered T cell (TCR-T) technology, and checkpoint blocking tumor immunotherapies (such as anti-PD- 1 and anti-PD-L1 agents), tumor vaccines and other therapeutic technologies that rely on tumor neoantigens are rapidly being developed. In this article, the relationship between neoantigens and pyroptosis and ferroptosis as well as the clinical role of neoantigens is reviewed.
Collapse
Affiliation(s)
- Jie Yu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| | - Qing Wang
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| | - Xiaoyun Zhang
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| | - Zhiliang Guo
- The Department of Spine Surgery, The 80th Group Army Hospital of Chinese People's Liberation Army (PLA) of China, Weifang, China
| | - Xiaodong Cui
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| |
Collapse
|
113
|
Nakayama M, Hori A, Toyoura S, Yamaguchi SI. Shaping of T Cell Functions by Trogocytosis. Cells 2021; 10:cells10051155. [PMID: 34068819 PMCID: PMC8151334 DOI: 10.3390/cells10051155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Trogocytosis is an active process whereby plasma membrane proteins are transferred from one cell to the other cell in a cell-cell contact-dependent manner. Since the discovery of the intercellular transfer of major histocompatibility complex (MHC) molecules in the 1970s, trogocytosis of MHC molecules between various immune cells has been frequently observed. For instance, antigen-presenting cells (APCs) acquire MHC class I (MHCI) from allografts, tumors, and virally infected cells, and these APCs are subsequently able to prime CD8+ T cells without antigen processing via the preformed antigen-MHCI complexes, in a process called cross-dressing. T cells also acquire MHC molecules from APCs or other target cells via the immunological synapse formed at the cell-cell contact area, and this phenomenon impacts T cell activation. Compared with naïve and effector T cells, T regulatory cells have increased trogocytosis activity in order to remove MHC class II and costimulatory molecules from APCs, resulting in the induction of tolerance. Accumulating evidence suggests that trogocytosis shapes T cell functions in cancer, transplantation, and during microbial infections. In this review, we focus on T cell trogocytosis and the related inflammatory diseases.
Collapse
|
114
|
Dao T, Klatt MG, Korontsvit T, Mun SS, Guzman S, Mattar M, Zivanovic O, Kyi CK, Socci ND, O'Cearbhaill RE, Scheinberg DA. Impact of tumor heterogeneity and microenvironment in identifying neoantigens in a patient with ovarian cancer. Cancer Immunol Immunother 2021; 70:1189-1202. [PMID: 33123756 PMCID: PMC8053669 DOI: 10.1007/s00262-020-02764-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/15/2020] [Indexed: 01/05/2023]
Abstract
Identification of neoepitopes as tumor-specific targets remains challenging, especially for cancers with low mutational burden, such as ovarian cancer. To identify mutated human leukocyte antigen (HLA) ligands as potential targets for immunotherapy in ovarian cancer, we combined mass spectrometry analysis of the major histocompatibility complex (MHC) class I peptidomes of ovarian cancer cells with parallel sequencing of whole exome and RNA in a patient with high-grade serous ovarian cancer. Four of six predicted mutated epitopes capable of binding to HLA-A*02:01 induced peptide-specific T cell responses in blood from healthy donors. In contrast, all six peptides failed to induce autologous peptide-specific response by T cells in peripheral blood or tumor-infiltrating lymphocytes from ascites of the patient. Surprisingly, T cell responses against a low-affinity p53-mutant Y220C epitope were consistently detected in the patient with either unprimed or in vitro peptide-stimulated T cells even though the patient's primary tumor did not bear this mutation. Our results demonstrated that tumor heterogeneity and distinct immune microenvironments within a patient should be taken into consideration for identification of immunogenic neoantigens. T cell responses to a driver gene-derived p53 Y220C mutation in ovarian cancer warrant further study.
Collapse
Affiliation(s)
- Tao Dao
- Molecular Pharmacology Program, SKI, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin G Klatt
- Molecular Pharmacology Program, SKI, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tatyana Korontsvit
- Molecular Pharmacology Program, SKI, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sung Soo Mun
- Molecular Pharmacology Program, SKI, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean Guzman
- Molecular Pharmacology Program, SKI, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marissa Mattar
- Molecular Pharmacology Program, SKI, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Oliver Zivanovic
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Chrisann K Kyi
- Gynecological Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roisin E O'Cearbhaill
- Gynecological Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- National University of Ireland, Galway, Ireland.
| | - David A Scheinberg
- Molecular Pharmacology Program, SKI, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Gynecological Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- Experimental Therapeutics Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
115
|
Gupta RG, Li F, Roszik J, Lizée G. Exploiting Tumor Neoantigens to Target Cancer Evolution: Current Challenges and Promising Therapeutic Approaches. Cancer Discov 2021; 11:1024-1039. [PMID: 33722796 PMCID: PMC8102318 DOI: 10.1158/2159-8290.cd-20-1575] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
Immunotherapeutic manipulation of the antitumor immune response offers an attractive strategy to target genomic instability in cancer. A subset of tumor-specific somatic mutations can be translated into immunogenic and HLA-bound epitopes called neoantigens, which can induce the activation of helper and cytotoxic T lymphocytes. However, cancer immunoediting and immunosuppressive mechanisms often allow tumors to evade immune recognition. Recent evidence also suggests that the tumor neoantigen landscape extends beyond epitopes originating from nonsynonymous single-nucleotide variants in the coding exome. Here we review emerging approaches for identifying, prioritizing, and immunologically targeting personalized neoantigens using polyvalent cancer vaccines and T-cell receptor gene therapy. SIGNIFICANCE: Several major challenges currently impede the clinical efficacy of neoantigen-directed immunotherapy, such as the relative infrequency of immunogenic neoantigens, suboptimal potency and priming of de novo tumor-specific T cells, and tumor cell-intrinsic and -extrinsic mechanisms of immune evasion. A deeper understanding of these biological barriers could help facilitate the development of effective and durable immunotherapy for any type of cancer, including immunologically "cold" tumors that are otherwise therapeutically resistant.
Collapse
Affiliation(s)
- Ravi G Gupta
- Department of Hematology/Oncology, MD Anderson Cancer Center at Cooper, Camden, New Jersey.
| | - Fenge Li
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregory Lizée
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
116
|
Morotti M, Albukhari A, Alsaadi A, Artibani M, Brenton JD, Curbishley SM, Dong T, Dustin ML, Hu Z, McGranahan N, Miller ML, Santana-Gonzalez L, Seymour LW, Shi T, Van Loo P, Yau C, White H, Wietek N, Church DN, Wedge DC, Ahmed AA. Promises and challenges of adoptive T-cell therapies for solid tumours. Br J Cancer 2021; 124:1759-1776. [PMID: 33782566 PMCID: PMC8144577 DOI: 10.1038/s41416-021-01353-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a leading cause of death worldwide and, despite new targeted therapies and immunotherapies, many patients with advanced-stage- or high-risk cancers still die, owing to metastatic disease. Adoptive T-cell therapy, involving the autologous or allogeneic transplant of tumour-infiltrating lymphocytes or genetically modified T cells expressing novel T-cell receptors or chimeric antigen receptors, has shown promise in the treatment of cancer patients, leading to durable responses and, in some cases, cure. Technological advances in genomics, computational biology, immunology and cell manufacturing have brought the aspiration of individualised therapies for cancer patients closer to reality. This new era of cell-based individualised therapeutics challenges the traditional standards of therapeutic interventions and provides opportunities for a paradigm shift in our approach to cancer therapy. Invited speakers at a 2020 symposium discussed three areas-cancer genomics, cancer immunology and cell-therapy manufacturing-that are essential to the effective translation of T-cell therapies in the treatment of solid malignancies. Key advances have been made in understanding genetic intratumour heterogeneity, and strategies to accurately identify neoantigens, overcome T-cell exhaustion and circumvent tumour immunosuppression after cell-therapy infusion are being developed. Advances are being made in cell-manufacturing approaches that have the potential to establish cell-therapies as credible therapeutic options. T-cell therapies face many challenges but hold great promise for improving clinical outcomes for patients with solid tumours.
Collapse
Affiliation(s)
- Matteo Morotti
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ashwag Albukhari
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulkhaliq Alsaadi
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mara Artibani
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - James D Brenton
- Functional Genomics of Ovarian Cancer Laboratory, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Stuart M Curbishley
- Advanced Therapies Facility and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Tao Dong
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Martin L Miller
- Cancer System Biology Group, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Laura Santana-Gonzalez
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Leonard W Seymour
- Gene Therapy Group, Department of Oncology, University of Oxford, Oxford, UK
| | - Tingyan Shi
- Department of Gynecological Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Christopher Yau
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- The Alan Turing Institute, London, UK
| | - Helen White
- Patient Representative, Endometrial Cancer Genomics England Clinical Interpretation Partnership (GeCIP) Domain, London, UK
| | - Nina Wietek
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David N Church
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Oxford, UK.
| | - David C Wedge
- Oxford NIHR Biomedical Research Centre, Oxford, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
| | - Ahmed A Ahmed
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Oxford, UK.
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.
| |
Collapse
|
117
|
Pearlman AH, Hwang MS, Konig MF, Hsiue EHC, Douglass J, DiNapoli SR, Mog BJ, Bettegowda C, Pardoll DM, Gabelli SB, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S. Targeting public neoantigens for cancer immunotherapy. NATURE CANCER 2021; 2:487-497. [PMID: 34676374 PMCID: PMC8525885 DOI: 10.1038/s43018-021-00210-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Several current immunotherapy approaches target private neoantigens derived from mutations that are unique to individual patients' tumors. However, immunotherapeutic agents can also be developed against public neoantigens derived from recurrent mutations in cancer driver genes. The latter approaches target proteins that are indispensable for tumor growth, and each therapeutic agent can be applied to numerous patients. Here we review the opportunities and challenges involved in the identification of suitable public neoantigen targets and the development of therapeutic agents targeting them.
Collapse
Affiliation(s)
- Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Genentech, Inc., South San Francisco, CA, USA
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Sandra B Gabelli
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
118
|
Liu CJ, Schaettler M, Blaha DT, Bowman-Kirigin JA, Kobayashi DK, Livingstone AJ, Bender D, Miller CA, Kranz DM, Johanns TM, Dunn GP. Treatment of an aggressive orthotopic murine glioblastoma model with combination checkpoint blockade and a multivalent neoantigen vaccine. Neuro Oncol 2021; 22:1276-1288. [PMID: 32133512 DOI: 10.1093/neuonc/noaa050] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although clinical trials testing immunotherapies in glioblastoma (GBM) have yielded mixed results, new strategies targeting tumor-specific somatic coding mutations, termed "neoantigens," represent promising therapeutic approaches. We characterized the microenvironment and neoantigen landscape of the aggressive CT2A GBM model in order to develop a platform to test combination checkpoint blockade and neoantigen vaccination. METHODS Flow cytometric analysis was performed on intracranial CT2A and GL261 tumor-infiltrating lymphocytes (TILs). Whole-exome DNA and RNA sequencing of the CT2A murine GBM was employed to identify expressed, somatic mutations. Predicted neoantigens were identified using the pVAC-seq software suite, and top-ranking candidates were screened for reactivity by interferon-gamma enzyme linked immunospot assays. Survival analysis was performed comparing neoantigen vaccination, anti-programmed cell death ligand 1 (αPD-L1), or combination therapy. RESULTS Compared with the GL261 model, CT2A exhibited immunologic features consistent with human GBM including reduced αPD-L1 sensitivity and hypofunctional TILs. Of the 29 CT2A neoantigens screened, we identified neoantigen-specific CD8+ T-cell responses in the intracranial TIL and draining lymph nodes to two H2-Kb restricted (Epb4H471L and Pomgnt1R497L) and one H2-Db restricted neoantigen (Plin2G332R). Survival analysis showed that therapeutic neoantigen vaccination with Epb4H471L, Pomgnt1R497L, and Plin2G332R, in combination with αPD-L1 treatment was superior to αPD-L1 alone. CONCLUSIONS We identified endogenous neoantigen specific CD8+ T cells within an αPD-L1 resistant murine GBM and show that neoantigen vaccination significantly augments survival benefit in combination with αPD-L1 treatment. These observations provide important preclinical correlates for GBM immunotherapy trials and support further investigation into the effects of multimodal immunotherapeutic interventions on antiglioma immunity. KEY POINTS 1. Neoantigen vaccines combined with checkpoint blockade may be promising treatments.2. CT2A tumors exhibit features of human GBM microenvironments.3. Differential scanning fluorimetry assays may complement in silico neoantigen prediction tools.
Collapse
Affiliation(s)
- Connor J Liu
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri.,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Maximilian Schaettler
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri.,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Dylan T Blaha
- Department of Biochemistry, University of Illinois, Urbana, Illinois
| | - Jay A Bowman-Kirigin
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri.,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Dale K Kobayashi
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri.,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Alexandra J Livingstone
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Diane Bender
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, Missouri
| | - Christopher A Miller
- The McDonnell Genome Institute, Washington University in St Louis, St Louis, Missouri
| | - David M Kranz
- Department of Biochemistry, University of Illinois, Urbana, Illinois
| | - Tanner M Johanns
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, Missouri.,Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri.,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, Missouri
| | - Gavin P Dunn
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri.,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
119
|
Abstract
Glycoprotein B (gB) is an essential fusion protein for the Epstein-Barr virus (EBV) infection of both B cells and epithelial cells and is thus a promising target antigen for a prophylactic vaccine to prevent or reduce EBV-associated disease. T cell responses play key roles in the control of persistent EBV infection and in the efficacy of a vaccine. However, to date, T cell responses to gB have been characterized for only a limited number of human leukocyte antigen (HLA) alleles. Here, we screened gB T cell epitopes in 23 healthy EBV carriers and ten patients with nasopharyngeal cancer (NPC) using a peptide library spanning the entire gB sequence. We identified twelve novel epitopes in the context of seven new HLA restrictions that are common in Asian populations. Two epitopes, gB214-223 and gB840-849, restricted by HLA-B*58:01 and B*38:02, respectively, elicited specific CD8+ T cell responses to inhibit EBV-driven B cell transformation. Interestingly, gB-specific CD8+ T cells were more frequent in healthy viral carriers with EBV reactivation than in those without EBV reactivation, indicating that EBV reactivation in vivo stimulates both humoral (VCA-gp125-IgA) and cellular responses to gB. We further found that most gB epitopes are conserved among different EBV strains. Our study broadens the diversity and HLA restrictions of gB epitopes and suggests that gB is a common target of T cell responses in healthy viral carriers with EBV reactivation. In particular, the precisely mapped and conserved gB epitopes provide valuable information for prophylactic vaccine development.ImportanceT cells are crucial for the control of persistent EBV infection and the development of EBV-associated diseases. The EBV gB protein is essential for virus entry into B cells and epithelial cells and is thus a target antigen for vaccine development. Understanding T cell responses to gB is important for subunit vaccine design. Herein, we comprehensively characterized T cell responses to full-length gB. Our results expand the available gB epitopes and HLA restrictions, particularly those common in Asian populations. Furthermore, we showed that gB-specific CD8+ T cells inhibit B cell transformation ex vivo and that gB-specific CD8+ T cell responses in vivo may be associated with intermittent EBV reactivation in asymptomatic viral carriers. These gB epitopes are highly conserved among geographically separated EBV strains. Precisely mapped and conserved T cell epitopes may contribute to immune monitoring and to the development of a gB subunit vaccine.
Collapse
|
120
|
Prognostic analysis of tumor mutation burden and immune infiltration in hepatocellular carcinoma based on TCGA data. Aging (Albany NY) 2021; 13:11257-11280. [PMID: 33820866 PMCID: PMC8109113 DOI: 10.18632/aging.202811] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022]
Abstract
In order to explore the prognosis of tumor mutation burden (TMB) and the relationship with tumor infiltrating immune cells in hepatocellular carcinoma (HCC), we downloaded somatic mutation data and transcriptome profiles of 376 HCC patients from The Cancer Genome Atlas (TCGA) cohort. We divided the samples into high-TMB and low-TMB groups. A higher TMB level indicated improved overall survival (OS) and was associated with early pathological stages. One hundred and nine differentially expressed genes (DEGs) were identified in HCC. Moreover, based on four hub TMB-related signatures, we constructed a TMB Prognostic model (TMBPM) that possessed good predictive value with area under curve (AUC) of 0.701. HCC patients with higher TMBPM scores showed worse OS outcomes (p < 0.0001). Moreover, DCs subsets not only revealed higher infiltrating abundance in the high-TMB group, but also correlated with worse OS and hazard risk for high-TMB patients in HCC. Meanwhile, CD8+ T cells and B cells were associated with improved survival outcomes. In sum, high TMB indicates good prognosis for HCC and promotes HCC immune infiltration. Hence, DCs and the four hub TMB-related signatures can be used for predicting the prognosis in HCC as supplements to TMB.
Collapse
|
121
|
Zhu Z, Song H, Xu J. CDKN2A Deletion in Melanoma Excludes T Cell Infiltration by Repressing Chemokine Expression in a Cell Cycle-Dependent Manner. Front Oncol 2021; 11:641077. [PMID: 33842347 PMCID: PMC8027313 DOI: 10.3389/fonc.2021.641077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/01/2021] [Indexed: 12/28/2022] Open
Abstract
T-cell-mediated immune response is the prerequisite for T-cell-based immunotherapy. However, the limitation of T-cell infiltration in solid tumors restricted the therapeutic effect of T-cell-based immunotherapy. The present study screened the molecular and genetic features of The Cancer Genome Atlas (TCGA)-skin cutaneous melanoma (SKCM) cohort, revealing that T-cell infiltration negatively correlated with genome copy number alteration. The analysis of the TCGA-SKCM cohort indicated that the copy number of CDKN2A was significantly decreased in patients with low T-cell infiltration. The results were validated in the other two melanoma cohorts (DFCI, Science 2015, and TGEN, Genome Res 2017). Besides, the immunohistochemistry analysis of CDKN2A and CD8 expression in 5 melanoma in situ and 15 invasive melanoma patients also showed that CD8 expression was decreased in the patients with low CDKN2A expression and there was a positive correlation between CDKN2A and CD8 expression in these patients. Interestingly, the CDKN2A deletion group and the group with low expression of T-cell markers shared similar gene and pathway alteration as compared with the normal CDKN2A group and the group with high expression of T-cell markers, especially the chemokine pathway. Further mechanistic study indicated that CDKN2A enhanced T cell recruitment and chemokine expression possibly through modulating MAPK and NF-κB signaling pathways in a cell cycle–dependent manner. Finally, we also found that CDKN2A deletion negatively correlated with the expression of T-cell markers in many other cancer types. In conclusion, CDKN2A deletion could inhibit T cell infiltration by inhibiting chemokine expression in a cell cycle dependent manner.
Collapse
Affiliation(s)
- Zhen Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Hao Song
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
122
|
Gao F, Xie K, Xiang Q, Qin Y, Chen P, Wan H, Deng Y, Huang J, Wu H. The density of tumor-infiltrating lymphocytes and prognosis in resectable hepatocellular carcinoma: a two-phase study. Aging (Albany NY) 2021; 13:9665-9678. [PMID: 33744864 PMCID: PMC8064144 DOI: 10.18632/aging.202710] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/01/2021] [Indexed: 02/05/2023]
Abstract
AIM Previous studies have focused on the subpopulations of tumor-infiltrating lymphocytes (TILs) in tumors. This study focuses only on the concentration of TILs in the tumor irrespective of type and elucidates its prognostic value. METHODS We used 315 HCC patients as the discovery phase and another 343 HCC patients as the validation phase. By following the standardized guideline, density of TILs were categorized into low (TILs < 10%), intermediate (10% ≦ TILs < 50%), and high (TILs ≧ 50%) levels. Associations of TILs with prognostic, immune-related, and genetic variables were examined. RESULTS We observed a dose-response relation of TILs with overall survival (intermediate: HR, 0.58; 95% confidence interval (CI), 0.36-0.93; high: HR, 0.37; 95% CI, 0.15-0.93) and disease-free survival (intermediate: HR, 0.35; 95% CI, 0.22-0.58; high: HR, 0.23; 95% CI, 0.09-0.58). The prognostic value of TILs was validated in the TCGA set. Mutation burden or the number of neoantigens were not associated with TILs intensity. However, hepatitis B or C virus infection patients had higher TILs intensity in the para-tumor tissue. CONCLUSIONS The TILs intensity was associated with patients' survival. If confirmed, this would suggest that clinical routine assessment of TILs could provide prognostic information in HCC.
Collapse
Affiliation(s)
- Fengwei Gao
- Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University, Chengdu, China
| | - Kunlin Xie
- Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University, Chengdu, China
| | - Qiwen Xiang
- Operation Room of West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Yan Qin
- Operation Room of West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Panyu Chen
- Operation Room of West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Haifeng Wan
- Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Deng
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiwei Huang
- Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wu
- Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
123
|
Rational discovery of a cancer neoepitope harboring the KRAS G12D driver mutation. SCIENCE CHINA-LIFE SCIENCES 2021; 64:2144-2152. [PMID: 33740187 DOI: 10.1007/s11427-020-1888-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/14/2021] [Indexed: 10/21/2022]
Abstract
Cytotoxic T cells targeting cancer neoantigens harboring driver mutations can lead to durable tumor regression in an HLAI-dependent manner. However, it is difficult to extend the population of patients who are eligible for neoantigen-based immunotherapy, as immunogenic neoantigen-HLA pairs are rarely shared across different patients. Thus, a way to find other human leukocyte antigen (HLA) alleles that can also present a clinically effective neoantigen is needed. Recently, neoantigen-based immunotherapy targeting the KRAS G12D mutation in patients with HLA-C*08:02 has shown effectiveness. In a proof-of-concept study, we proposed a combinatorial strategy (the combination of phylogenetic and structural analyses) to find potential HLA alleles that could also present KRAS G12D neoantigen. Compared to in silico binding prediction, this strategy avoids the uneven accuracy across different HLA alleles. Our findings extend the population of patients who are potentially eligible for immunotherapy targeting the KRAS G12D mutation. Additionally, we provide an alternative way to predict neoantigen-HLA pairs, which maximizes the clinical usage of shared neoantigens.
Collapse
|
124
|
Nguyen HM, Saha D. The Current State of Oncolytic Herpes Simplex Virus for Glioblastoma Treatment. Oncolytic Virother 2021; 10:1-27. [PMID: 33659221 PMCID: PMC7917312 DOI: 10.2147/ov.s268426] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a lethal primary malignant brain tumor with no current effective treatments. The recent emergence of immuno-virotherapy and FDA approval of T-VEC have generated a great expectation towards oncolytic herpes simplex viruses (oHSVs) as a promising treatment option for GBM. Since the generation and testing of the first genetically engineered oHSV in glioma in the early 1990s, oHSV-based therapies have shown a long way of great progress in terms of anti-GBM efficacy and safety, both preclinically and clinically. Here, we revisit the literature to understand the recent advancement of oHSV in the treatment of GBM. In addition, we discuss current obstacles to oHSV-based therapies and possible strategies to overcome these pitfalls.
Collapse
Affiliation(s)
- Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, School of Pharmacy, Abilene, TX, 79601, USA
| | - Dipongkor Saha
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, School of Pharmacy, Abilene, TX, 79601, USA
| |
Collapse
|
125
|
Schmidt J, Smith AR, Magnin M, Racle J, Devlin JR, Bobisse S, Cesbron J, Bonnet V, Carmona SJ, Huber F, Ciriello G, Speiser DE, Bassani-Sternberg M, Coukos G, Baker BM, Harari A, Gfeller D. Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. CELL REPORTS MEDICINE 2021; 2:100194. [PMID: 33665637 PMCID: PMC7897774 DOI: 10.1016/j.xcrm.2021.100194] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/11/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
CD8+ T cell recognition of peptide epitopes plays a central role in immune responses against pathogens and tumors. However, the rules that govern which peptides are truly recognized by existing T cell receptors (TCRs) remain poorly understood, precluding accurate predictions of neo-epitopes for cancer immunotherapy. Here, we capitalize on recent (neo-)epitope data to train a predictor of immunogenic epitopes (PRIME), which captures molecular properties of both antigen presentation and TCR recognition. PRIME not only improves prioritization of neo-epitopes but also correlates with T cell potency and unravels biophysical determinants of TCR recognition that we experimentally validate. Analysis of cancer genomics data reveals that recurrent mutations tend to be less frequent in patients where they are predicted to be immunogenic, providing further evidence for immunoediting in human cancer. PRIME will facilitate identification of pathogen epitopes in infectious diseases and neo-epitopes in cancer immunotherapy.
Collapse
Affiliation(s)
- Julien Schmidt
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Angela R Smith
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Morgane Magnin
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julien Racle
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Jason R Devlin
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Sara Bobisse
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julien Cesbron
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Santiago J Carmona
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Florian Huber
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Giovanni Ciriello
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Brian M Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Alexandre Harari
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland.,Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
126
|
Bartok O, Pataskar A, Nagel R, Laos M, Goldfarb E, Hayoun D, Levy R, Körner PR, Kreuger IZM, Champagne J, Zaal EA, Bleijerveld OB, Huang X, Kenski J, Wargo J, Brandis A, Levin Y, Mizrahi O, Alon M, Lebon S, Yang W, Nielsen MM, Stern-Ginossar N, Altelaar M, Berkers CR, Geiger T, Peeper DS, Olweus J, Samuels Y, Agami R. Anti-tumour immunity induces aberrant peptide presentation in melanoma. Nature 2021; 590:332-337. [PMID: 33328638 DOI: 10.1038/s41586-020-03054-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/30/2020] [Indexed: 01/29/2023]
Abstract
Extensive tumour inflammation, which is reflected by high levels of infiltrating T cells and interferon-γ (IFNγ) signalling, improves the response of patients with melanoma to checkpoint immunotherapy1,2. Many tumours, however, escape by activating cellular pathways that lead to immunosuppression. One such mechanism is the production of tryptophan metabolites along the kynurenine pathway by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1), which is induced by IFNγ3-5. However, clinical trials using inhibition of IDO1 in combination with blockade of the PD1 pathway in patients with melanoma did not improve the efficacy of treatment compared to PD1 pathway blockade alone6,7, pointing to an incomplete understanding of the role of IDO1 and the consequent degradation of tryptophan in mRNA translation and cancer progression. Here we used ribosome profiling in melanoma cells to investigate the effects of prolonged IFNγ treatment on mRNA translation. Notably, we observed accumulations of ribosomes downstream of tryptophan codons, along with their expected stalling at the tryptophan codon. This suggested that ribosomes bypass tryptophan codons in the absence of tryptophan. A detailed examination of these tryptophan-associated accumulations of ribosomes-which we term 'W-bumps'-showed that they were characterized by ribosomal frameshifting events. Consistently, reporter assays combined with proteomic and immunopeptidomic analyses demonstrated the induction of ribosomal frameshifting, and the generation and presentation of aberrant trans-frame peptides at the cell surface after treatment with IFNγ. Priming of naive T cells from healthy donors with aberrant peptides induced peptide-specific T cells. Together, our results suggest that IDO1-mediated depletion of tryptophan, which is induced by IFNγ, has a role in the immune recognition of melanoma cells by contributing to diversification of the peptidome landscape.
Collapse
Affiliation(s)
- Osnat Bartok
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maarja Laos
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eden Goldfarb
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Hayoun
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Levy
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Pierre-Rene Körner
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Inger Z M Kreuger
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Esther A Zaal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Utrecht, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Onno B Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Xinyao Huang
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Juliana Kenski
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jennifer Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Orel Mizrahi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sacha Lebon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Morten M Nielsen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Utrecht, The Netherlands.,Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Utrecht, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands. .,Erasmus MC, Rotterdam University, Rotterdam, The Netherlands.
| |
Collapse
|
127
|
Xing Y, Liu J, Guo X, Liu H, Zeng W, Wang Y, Zhang C, Lu Y, He D, Ma S, He Y, Xing XH. Engineering organoid microfluidic system for biomedical and health engineering: A review. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
128
|
Jones HF, Molvi Z, Klatt MG, Dao T, Scheinberg DA. Empirical and Rational Design of T Cell Receptor-Based Immunotherapies. Front Immunol 2021; 11:585385. [PMID: 33569049 PMCID: PMC7868419 DOI: 10.3389/fimmu.2020.585385] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
The use of T cells reactive with intracellular tumor-associated or tumor-specific antigens has been a promising strategy for cancer immunotherapies in the past three decades, but the approach has been constrained by a limited understanding of the T cell receptor's (TCR) complex functions and specificities. Newer TCR and T cell-based approaches are in development, including engineered adoptive T cells with enhanced TCR affinities, TCR mimic antibodies, and T cell-redirecting bispecific agents. These new therapeutic modalities are exciting opportunities by which TCR recognition can be further exploited for therapeutic benefit. In this review we summarize the development of TCR-based therapeutic strategies and focus on balancing efficacy and potency versus specificity, and hence, possible toxicity, of these powerful therapeutic modalities.
Collapse
Affiliation(s)
- Heather F. Jones
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| | - Zaki Molvi
- Weill Cornell Medicine, New York, NY, United States
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Martin G. Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
129
|
Shinkawa T, Tokita S, Nakatsugawa M, Kikuchi Y, Kanaseki T, Torigoe T. Characterization of CD8 + T-cell responses to non-anchor-type HLA class I neoantigens with single amino-acid substitutions. Oncoimmunology 2021; 10:1870062. [PMID: 33537174 PMCID: PMC7833734 DOI: 10.1080/2162402x.2020.1870062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
CD8+ T cells are capable of recognizing mutation-derived neoantigens displayed by HLA class I molecules, thereby exhibiting the ability to distinguish between cancer and normal cells. However, accumulating evidence has shown that only a small fraction of nonsynonymous somatic mutations give rise to clinically relevant neoantigens. The properties of such neoantigens, which must be presented by HLA and immunogenic to induce a T-cell response, remain elusive. In this study, we explored the HLA class I ligandome of a human cancer cell line with microsatellite instability using a proteogenomic approach. The results demonstrated that neoantigens accounted for only 0.34% of the HLA class I ligandome, and most neoantigens were encoded by genes with abundant expression. Thereafter, T-cell responses were prioritized, and immunodominant neoantigens were defined using naive CD8+ T cells derived from healthy donors. AKF9, an immunogenic neoantigen with a mutation at a non-anchor position, formed a stable peptide-HLA complex. T-cell responses were analyzed against a panel of AKF9 variants with single amino-acid substitutions, in which mutations did not alter the high HLA-binding affinity and stability. The responses varied across individuals, demonstrating the impact of heterogeneous T-cell repertoires in this human cancer model. Moreover, responses were biased toward a variant group with large structural changes compared to the wild-type peptide. Thus, naive T-cell induction can be attributed to multiple determinants. Combining structural dissimilarity with gene-expression levels, HLA-binding affinity, and stability may further help prioritize the immunogenicity of non-anchor-type neoantigens.
Collapse
Affiliation(s)
- Tomoyo Shinkawa
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Serina Tokita
- Academic center, Sapporo Dohto Hospital, Sapporo, Japan.,Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Munehide Nakatsugawa
- Department of Pathology, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan.,Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Yasuhiro Kikuchi
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | | | | |
Collapse
|
130
|
Bai P, Li Y, Zhou Q, Xia J, Wei PC, Deng H, Wu M, Chan SK, Kappler JW, Zhou Y, Tran E, Marrack P, Yin L. Immune-based mutation classification enables neoantigen prioritization and immune feature discovery in cancer immunotherapy. Oncoimmunology 2021; 10:1868130. [PMID: 33537173 PMCID: PMC7833777 DOI: 10.1080/2162402x.2020.1868130] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic mutations lead to the production of mutated proteins from which peptides are presented to T cells as cancer neoantigens. Evidence suggests that T cells that target neoantigens are the main mediators of effective cancer immunotherapies. Although algorithms have been used to predict neoantigens, only a minority are immunogenic. The factors that influence neoantigen immunogenicity are not completely understood. Here, we classified human neoantigen/neopeptide data into three categories based on their TCR-pMHC binding events. We observed a conservative mutant orientation of the anchor residue from immunogenic neoantigens which we termed the “NP” rule. By integrating this rule with an existing prediction algorithm, we found improved performance in neoantigen prioritization. To better understand this rule, we solved several neoantigen/MHC structures. These structures showed that neoantigens that follow this rule not only increase peptide-MHC binding affinity but also create new TCR-binding features. These molecular insights highlight the value of immune-based classification in neoantigen studies and may enable the design of more effective cancer immunotherapies.
Collapse
Affiliation(s)
- Peng Bai
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yongzheng Li
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiuping Zhou
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiaqi Xia
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peng-Cheng Wei
- Department of Biomedical Research, National Jewish Health, Denver, USA
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers, Ministry of Education, the Institute for Advanced Studies, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Min Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sanny K Chan
- Department of Biomedical Research, National Jewish Health, Denver, USA.,Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, USA.,Division of Pediatric Allergy-Immunology, National Jewish Health, Denver, USA
| | - John W Kappler
- Department of Biomedical Research, National Jewish Health, Denver, USA.,Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, USA.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, USA.,Structural Biology and Biochemistry Program, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Yu Zhou
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Eric Tran
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, USA
| | - Philippa Marrack
- Department of Biomedical Research, National Jewish Health, Denver, USA.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, USA.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
131
|
Esprit A, de Mey W, Bahadur Shahi R, Thielemans K, Franceschini L, Breckpot K. Neo-Antigen mRNA Vaccines. Vaccines (Basel) 2020; 8:E776. [PMID: 33353155 PMCID: PMC7766040 DOI: 10.3390/vaccines8040776] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The interest in therapeutic cancer vaccines has caught enormous attention in recent years due to several breakthroughs in cancer research, among which the finding that successful checkpoint blockade treatments reinvigorate neo-antigen-specific T cells and that successful adoptive cell therapies are directed towards neo-antigens. Neo-antigens are cancer-specific antigens, which develop from somatic mutations in the cancer cell genome that can be highly immunogenic and are not subjected to central tolerance. As the majority of neo-antigens are unique to each patient's cancer, a vaccine technology that is flexible and potent is required to develop personalized neo-antigen vaccines. In vitro transcribed mRNA is such a technology platform and has been evaluated for delivery of neo-antigens to professional antigen-presenting cells both ex vivo and in vivo. In addition, strategies that support the activity of T cells in the tumor microenvironment have been developed. These represent a unique opportunity to ensure durable T cell activity upon vaccination. Here, we comprehensively review recent progress in mRNA-based neo-antigen vaccines, summarizing critical milestones that made it possible to bring the promise of therapeutic cancer vaccines within reach.
Collapse
Affiliation(s)
| | | | | | | | | | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel, B-1090 Brussels, Belgium; (A.E.); (W.d.M.); (R.B.S.); (K.T.); (L.F.)
| |
Collapse
|
132
|
Jappe EC, Garde C, Ramarathinam SH, Passantino E, Illing PT, Mifsud NA, Trolle T, Kringelum JV, Croft NP, Purcell AW. Thermostability profiling of MHC-bound peptides: a new dimension in immunopeptidomics and aid for immunotherapy design. Nat Commun 2020; 11:6305. [PMID: 33298915 PMCID: PMC7726561 DOI: 10.1038/s41467-020-20166-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
The features of peptide antigens that contribute to their immunogenicity are not well understood. Although the stability of peptide-MHC (pMHC) is known to be important, current assays assess this interaction only for peptides in isolation and not in the context of natural antigen processing and presentation. Here, we present a method that provides a comprehensive and unbiased measure of pMHC stability for thousands of individual ligands detected simultaneously by mass spectrometry (MS). The method allows rapid assessment of intra-allelic and inter-allelic differences in pMHC stability and reveals profiles of stability that are broader than previously appreciated. The additional dimensionality of the data facilitated the training of a model which improves the prediction of peptide immunogenicity, specifically of cancer neoepitopes. This assay can be applied to any cells bearing MHC or MHC-like molecules, offering insight into not only the endogenous immunopeptidome, but also that of neoepitopes and pathogen-derived sequences.
Collapse
Affiliation(s)
- Emma C Jappe
- Evaxion Biotech, Bredgade 34E, 1260, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | | | - Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ethan Passantino
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Patricia T Illing
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicole A Mifsud
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Thomas Trolle
- Evaxion Biotech, Bredgade 34E, 1260, Copenhagen, Denmark
| | | | - Nathan P Croft
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
133
|
Lazdun Y, Si H, Creasy T, Ranade K, Higgs BW, Streicher K, Durham NM. A New Pipeline to Predict and Confirm Tumor Neoantigens Predict Better Response to Immune Checkpoint Blockade. Mol Cancer Res 2020; 19:498-506. [PMID: 33257508 DOI: 10.1158/1541-7786.mcr-19-1118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/04/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
Abstract
Mutations that drive oncogenesis in cancer can generate neoantigens that may be recognized by the immune system. Identification of these neoantigens remains challenging due to the complexity of the MHC antigen and T-cell receptor interaction. Here, we describe the development of a systematic approach to efficiently identify and validate immunogenic neoantigens. Whole-exome sequencing of tissue from a patient with melanoma was used to identify nonsynonymous mutations, followed by MHC binding prediction and identification of tumor clonal architecture. The top 18 putative class I neoantigens were selected for immunogenicity testing via a novel in vitro pipeline in HLA-A201 healthy donor blood. Naïve CD8 T cells from donors were stimulated with allogeneic dendritic cells pulsed with peptide pools and then with individual peptides. The presence of antigen-specific T cells was determined via functional assays. We identified one putative neoantigen that expanded T cells specific to the mutant form of the peptide and validated this pipeline in a subset of patients with bladder tumors treated with durvalumab (n = 5). Within this cohort, the top predicted neoantigens from all patients were immunogenic in vitro. Finally, we looked at overall survival in the whole durvalumab-treated bladder cohort (N = 37) by stratifying patients by tertile measure of tumor mutation burden (TMB) or neoantigen load. Patients with higher neoantigen and TMB load tended to show better overall survival. IMPLICATIONS: This pipeline can enable accurate and rapid identification of personalized neoantigens that may help to identify patients who will survive longer on durvalumab.
Collapse
Affiliation(s)
- Yelena Lazdun
- Translational Functional Genomics, AstraZeneca, Gaithersburg, Maryland
| | - Han Si
- Translational Bioinformatics, AstraZeneca, Gaithersburg, Maryland
| | - Todd Creasy
- Translational Bioinformatics, AstraZeneca, Gaithersburg, Maryland
| | - Koustubh Ranade
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Brandon W Higgs
- Translational Bioinformatics, AstraZeneca, Gaithersburg, Maryland
| | - Katie Streicher
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Nicholas M Durham
- Translational Functional Genomics, AstraZeneca, Gaithersburg, Maryland.
| |
Collapse
|
134
|
In vitro induction of neoantigen-specific T cells in myelodysplastic syndrome, a disease with low mutational burden. Cytotherapy 2020; 23:320-328. [PMID: 33262074 DOI: 10.1016/j.jcyt.2020.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/22/2020] [Accepted: 10/10/2020] [Indexed: 12/30/2022]
Abstract
Therapies that utilize immune checkpoint inhibition work by leveraging mutation-derived neoantigens and have shown greater clinical efficacy in tumors with higher mutational burden. Whether tumors with a low mutational burden are susceptible to neoantigen-targeted therapy has not been fully addressed. To examine the feasibility of neoantigen-specific adoptive T-cell therapy, the authors studied the T-cell response against somatic variants in five patients with myelodysplastic syndrome (MDS), a malignancy with a very low tumor mutational burden. DNA and RNA from tumor (CD34+) and normal (CD3+) cells isolated from the patients' blood were sequenced to predict patient-specific MDS neopeptides. Neopeptides representing the somatic variants were used to induce and expand autologous T cells ex vivo, and these were systematically tested in killing assays to determine the proportion of neopeptides yielding neoantigen-specific T cells. The authors identified a total of 32 somatic variants (four to eight per patient) and found that 21 (66%) induced a peptide-specific T-cell response and 19 (59%) induced a T-cell response capable of killing autologous tumor cells. Of the 32 somatic variants, 11 (34%) induced a CD4+ response and 11 (34%) induced a CD8+ response that killed the tumor. These results indicate that in vitro induction of neoantigen-specific T cells is feasible for tumors with very low mutational burden and that this approach warrants investigation as a therapeutic option for such patients.
Collapse
|
135
|
Tang Y, Wang Y, Wang J, Li M, Peng L, Wei G, Zhang Y, Li J, Gao Z. TruNeo: an integrated pipeline improves personalized true tumor neoantigen identification. BMC Bioinformatics 2020; 21:532. [PMID: 33208106 PMCID: PMC7672179 DOI: 10.1186/s12859-020-03869-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Background Neoantigen-based personal vaccines and adoptive T cell immunotherapy have shown high efficacy as a cancer treatment in clinical trials. Algorithms for the accurate prediction of neoantigens have played a pivotal role in such studies. Some existing bioinformatics methods, such as MHCflurry and NetMHCpan, identify neoantigens mainly through the prediction of peptide-MHC binding affinity. However, the predictive accuracy of immunogenicity of these methods has been shown to be low. Thus, a ranking algorithm to select highly immunogenic neoantigens of patients is needed urgently in research and clinical practice. Results We develop TruNeo, an integrated computational pipeline to identify and select highly immunogenic neoantigens based on multiple biological processes. The performance of TruNeo and other algorithms were compared based on data from published literature as well as raw data from a lung cancer patient. Recall rate of immunogenic ones among the top 10-ranked neoantigens were compared based on the published combined data set. Recall rate of TruNeo was 52.63%, which was 2.5 times higher than that predicted by MHCflurry (21.05%), and 2 times higher than NetMHCpan 4 (26.32%). Furthermore, the positive rate of top 10-ranked neoantigens for the lung cancer patient were compared, showing a 50% positive rate identified by TruNeo, which was 2.5 times higher than that predicted by MHCflurry (20%). Conclusions TruNeo, which considers multiple biological processes rather than peptide-MHC binding affinity prediction only, provides prioritization of candidate neoantigens with high immunogenicity for neoantigen-targeting personalized immunotherapies.
Collapse
Affiliation(s)
- Yunxia Tang
- YuceBio, 2002#, ShenYan Road, Dabaihui Center, Yantian distict, Shenzhen, 518020, China.,Yutai Antigen Science, Building A28, Life Science Park, 140 Jinye Road, Dapeng New District, Shenzhen, 518000, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Yu Wang
- YuceBio, 2002#, ShenYan Road, Dabaihui Center, Yantian distict, Shenzhen, 518020, China.,Yutai Antigen Science, Building A28, Life Science Park, 140 Jinye Road, Dapeng New District, Shenzhen, 518000, China
| | - Jiaqian Wang
- Yutai Antigen Science, Building A28, Life Science Park, 140 Jinye Road, Dapeng New District, Shenzhen, 518000, China.,Cancer Research Institute of Yucebio, 2002#, ShenYan Road, Dabaihui Center, Yantian distict, Shenzhen, 518020, China
| | - Miao Li
- YuceBio, 2002#, ShenYan Road, Dabaihui Center, Yantian distict, Shenzhen, 518020, China
| | - Linmin Peng
- Yutai Antigen Science, Building A28, Life Science Park, 140 Jinye Road, Dapeng New District, Shenzhen, 518000, China
| | - Guochao Wei
- Yutai Antigen Science, Building A28, Life Science Park, 140 Jinye Road, Dapeng New District, Shenzhen, 518000, China
| | - Yixing Zhang
- Yutai Antigen Science, Building A28, Life Science Park, 140 Jinye Road, Dapeng New District, Shenzhen, 518000, China
| | - Jin Li
- Department of Pulmonary and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhibo Gao
- YuceBio, 2002#, ShenYan Road, Dabaihui Center, Yantian distict, Shenzhen, 518020, China. .,Yutai Antigen Science, Building A28, Life Science Park, 140 Jinye Road, Dapeng New District, Shenzhen, 518000, China. .,Cancer Research Institute of Yucebio, 2002#, ShenYan Road, Dabaihui Center, Yantian distict, Shenzhen, 518020, China.
| |
Collapse
|
136
|
Liu Y, Leslie PL, Zhang Y. Life and Death Decision-Making by p53 and Implications for Cancer Immunotherapy. Trends Cancer 2020; 7:226-239. [PMID: 33199193 DOI: 10.1016/j.trecan.2020.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022]
Abstract
The tumor-suppressor protein p53 is mutated in approximately half of all cancers, whereas the p53 signaling network is perturbed in almost all cancers. In response to different stress stimuli, p53 selectively activates genes to elicit a cell survival or cell death response. How p53 makes the decision between life and death remains a fascinating question and an exciting field of research. Understanding how this decision is made has major implications for improving cancer treatments, particularly in recently evolved immune checkpoint inhibition therapy. We highlight progress and challenges in understanding the mechanisms governing the p53 life and death decision-making process, and discuss how this decision is relevant to immune system regulation. Finally, we discuss how knowledge of the p53 pro-survival and pro-death decision node can be applied to optimize immune checkpoint inhibitor therapy for cancer treatment.
Collapse
Affiliation(s)
- Yong Liu
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Patrick L Leslie
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| |
Collapse
|
137
|
Zeneyedpour L, Sten-van `t Hoff J, Luider T. Using phosphoproteomics and next generation sequencing to discover novel therapeutic targets in patient antibodies. Expert Rev Proteomics 2020; 17:675-684. [DOI: 10.1080/14789450.2020.1845147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lona Zeneyedpour
- Department of Neurology, Erasmus MC, Laboratory of Neuro-Oncology/Clinical & Cancer Proteomics, Rotterdam, The Netherlands
| | - Jenny Sten-van `t Hoff
- Department of Neurology, Erasmus MC, Laboratory of Neuro-Oncology/Clinical & Cancer Proteomics, Rotterdam, The Netherlands
| | - Theo Luider
- Department of Neurology, Erasmus MC, Laboratory of Neuro-Oncology/Clinical & Cancer Proteomics, Rotterdam, The Netherlands
| |
Collapse
|
138
|
Capietto AH, Jhunjhunwala S, Pollock SB, Lupardus P, Wong J, Hänsch L, Cevallos J, Chestnut Y, Fernandez A, Lounsbury N, Nozawa T, Singh M, Fan Z, de la Cruz CC, Phung QT, Taraborrelli L, Haley B, Lill JR, Mellman I, Bourgon R, Delamarre L. Mutation position is an important determinant for predicting cancer neoantigens. J Exp Med 2020; 217:133605. [PMID: 31940002 PMCID: PMC7144530 DOI: 10.1084/jem.20190179] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 09/28/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
Tumor-specific mutations can generate neoantigens that drive CD8 T cell responses against cancer. Next-generation sequencing and computational methods have been successfully applied to identify mutations and predict neoantigens. However, only a small fraction of predicted neoantigens are immunogenic. Currently, predicted peptide binding affinity for MHC-I is often the major criterion for prioritizing neoantigens, although little progress has been made toward understanding the precise functional relationship between affinity and immunogenicity. We therefore systematically assessed the immunogenicity of peptides containing single amino acid mutations in mouse tumor models and divided them into two classes of immunogenic mutations. The first comprises mutations at a nonanchor residue, for which we find that the predicted absolute binding affinity is predictive of immunogenicity. The second involves mutations at an anchor residue; here, predicted relative affinity (compared with the WT counterpart) is a better predictor. Incorporating these features into an immunogenicity model significantly improves neoantigen ranking. Importantly, these properties of neoantigens are also predictive in human datasets, suggesting that they can be used to prioritize neoantigens for individualized neoantigen-specific immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | - Jim Wong
- Genentech, South San Francisco, CA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
D’Ippolito E, Wagner KI, Busch DH. Needle in a Haystack: The Naïve Repertoire as a Source of T Cell Receptors for Adoptive Therapy with Engineered T Cells. Int J Mol Sci 2020; 21:E8324. [PMID: 33171940 PMCID: PMC7664211 DOI: 10.3390/ijms21218324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
T cell engineering with antigen-specific T cell receptors (TCRs) has allowed the generation of increasingly specific, reliable, and versatile T cell products with near-physiological features. However, a broad applicability of TCR-based therapies in cancer is still limited by the restricted number of TCRs, often also of suboptimal potency, available for clinical use. In addition, targeting of tumor neoantigens with TCR-engineered T cell therapy moves the field towards a highly personalized treatment, as tumor neoantigens derive from somatic mutations and are extremely patient-specific. Therefore, relevant TCRs have to be de novo identified for each patient and within a narrow time window. The naïve repertoire of healthy donors would represent a reliable source due to its huge diverse TCR repertoire, which theoretically entails T cells for any antigen specificity, including tumor neoantigens. As a challenge, antigen-specific naïve T cells are of extremely low frequency and mostly of low functionality, making the identification of highly functional TCRs finding a "needle in a haystack." In this review, we present the technological advancements achieved in high-throughput mapping of patient-specific neoantigens and corresponding cognate TCRs and how these platforms can be used to interrogate the naïve repertoire for a fast and efficient identification of rare but therapeutically valuable TCRs for personalized adoptive T cell therapy.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Neoplasms/genetics
- Precision Medicine/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
Collapse
Affiliation(s)
- Elvira D’Ippolito
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (E.D.); (K.I.W.)
| | - Karolin I. Wagner
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (E.D.); (K.I.W.)
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (E.D.); (K.I.W.)
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
- Focus Group ‘‘Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München (TUM), 81675 Munich, Germany
| |
Collapse
|
140
|
Odales J, Guzman Valle J, Martínez-Cortés F, Manoutcharian K. Immunogenic properties of immunoglobulin superfamily members within complex biological networks. Cell Immunol 2020; 358:104235. [PMID: 33137645 PMCID: PMC7548077 DOI: 10.1016/j.cellimm.2020.104235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 12/01/2022]
Abstract
Antibody-based therapies induce CDR-specific T and B cell responses. Idiotype-anti-idiotype network alters immune system memory compartment. Antigenized antibodies are efficient vaccine immunogen.
Antibodies, T cell receptors and major histocompatibility complex molecules are members of the immunoglobulin superfamily and have pivotal roles in the immune system. The fine interrelation between them regulates several immune functions. Here, we describe lesser-known functions ascribed to these molecules in generating and maintaining immune response. Particularly, we outline the contribution of antibody- and T cell receptor-derived complementarity-determining region neoantigens, antigenized antibodies, as well as major histocompatibility complex class I molecules-derived epitopes to the induction of protective/therapeutic immune responses against pathogens and cancer. We discuss findings of our own and other studies describing protective mechanisms, based on immunogenic properties of immunoglobulin superfamily members, and evaluate the perspectives of application of this class of immunogens in molecular vaccines design.
Collapse
Affiliation(s)
- Josué Odales
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México, DF 04510, Mexico
| | - Jesus Guzman Valle
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México, DF 04510, Mexico
| | - Fernando Martínez-Cortés
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México, DF 04510, Mexico
| | - Karen Manoutcharian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México, DF 04510, Mexico.
| |
Collapse
|
141
|
Buonaguro L, Tagliamonte M. Selecting Target Antigens for Cancer Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8040615. [PMID: 33080888 PMCID: PMC7711972 DOI: 10.3390/vaccines8040615] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
One of the principal goals of cancer immunotherapy is the development of efficient therapeutic cancer vaccines that are able to elicit an effector as well as memory T cell response specific to tumor antigens. In recent years, the attention has been focused on the personalization of cancer vaccines. However, the efficacy of therapeutic cancer vaccines is still disappointing despite the large number of vaccine strategies targeting different tumors that have been evaluated in recent years. While the preclinical data have frequently shown encouraging results, clinical trials have not provided satisfactory data to date. The main reason for such failures is the complexity of identifying specific target tumor antigens that should be unique or overexpressed only by the tumor cells compared to normal cells. Most of the tumor antigens included in cancer vaccines are non-mutated overexpressed self-antigens, eliciting mainly T cells with low-affinity T cell receptors (TCR) unable to mediate an effective anti-tumor response. In this review, the target tumor antigens employed in recent years in the development of therapeutic cancer vaccine strategies are described, along with potential new classes of tumor antigens such as the human endogenous retroviral elements (HERVs), unconventional antigens, and/or heteroclitic peptides.
Collapse
|
142
|
Wells DK, van Buuren MM, Dang KK, Hubbard-Lucey VM, Sheehan KCF, Campbell KM, Lamb A, Ward JP, Sidney J, Blazquez AB, Rech AJ, Zaretsky JM, Comin-Anduix B, Ng AHC, Chour W, Yu TV, Rizvi H, Chen JM, Manning P, Steiner GM, Doan XC, Merghoub T, Guinney J, Kolom A, Selinsky C, Ribas A, Hellmann MD, Hacohen N, Sette A, Heath JR, Bhardwaj N, Ramsdell F, Schreiber RD, Schumacher TN, Kvistborg P, Defranoux NA. Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction. Cell 2020; 183:818-834.e13. [PMID: 33038342 DOI: 10.1016/j.cell.2020.09.015] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/08/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022]
Abstract
Many approaches to identify therapeutically relevant neoantigens couple tumor sequencing with bioinformatic algorithms and inferred rules of tumor epitope immunogenicity. However, there are no reference data to compare these approaches, and the parameters governing tumor epitope immunogenicity remain unclear. Here, we assembled a global consortium wherein each participant predicted immunogenic epitopes from shared tumor sequencing data. 608 epitopes were subsequently assessed for T cell binding in patient-matched samples. By integrating peptide features associated with presentation and recognition, we developed a model of tumor epitope immunogenicity that filtered out 98% of non-immunogenic peptides with a precision above 0.70. Pipelines prioritizing model features had superior performance, and pipeline alterations leveraging them improved prediction performance. These findings were validated in an independent cohort of 310 epitopes prioritized from tumor sequencing data and assessed for T cell binding. This data resource enables identification of parameters underlying effective anti-tumor immunity and is available to the research community.
Collapse
Affiliation(s)
- Daniel K Wells
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| | - Marit M van Buuren
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, the Netherlands; T Cell Immunology, Biopharmaceutical New Technologies (BioNTech) Corporation, BioNTech US, Cambridge, MA, USA
| | - Kristen K Dang
- Computational Oncology, Sage Bionetworks, Seattle, WA, USA
| | | | - Kathleen C F Sheehan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Katie M Campbell
- Division of Hematology and Oncology, Department of Medicine, Johnson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew Lamb
- Computational Oncology, Sage Bionetworks, Seattle, WA, USA
| | - Jeffrey P Ward
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Ana B Blazquez
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew J Rech
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jesse M Zaretsky
- Division of Hematology and Oncology, Department of Medicine, Johnson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Begonya Comin-Anduix
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Department of Surgery, David Geffen School of Medicine, Johnson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - William Chour
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Thomas V Yu
- Computational Oncology, Sage Bionetworks, Seattle, WA, USA
| | - Hira Rizvi
- Druckenmiller Center for Lung Cancer Research, MSKCC, New York, NY, USA
| | - Jia M Chen
- Division of Hematology and Oncology, Department of Medicine, Johnson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Patrice Manning
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Xengie C Doan
- Computational Oncology, Sage Bionetworks, Seattle, WA, USA
| | - Taha Merghoub
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Department of Medicine, MSKCC, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Justin Guinney
- Computational Oncology, Sage Bionetworks, Seattle, WA, USA; Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA
| | - Adam Kolom
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Anna-Maria Kellen Clinical Accelerator, Cancer Research Institute, New York, NY, USA
| | - Cheryl Selinsky
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Antoni Ribas
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Division of Hematology and Oncology, Department of Medicine, Johnson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew D Hellmann
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Druckenmiller Center for Lung Cancer Research, MSKCC, New York, NY, USA; Department of Medicine, MSKCC, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Alessandro Sette
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - James R Heath
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Institute for Systems Biology, Seattle, WA, USA
| | - Nina Bhardwaj
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fred Ramsdell
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Robert D Schreiber
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | |
Collapse
|
143
|
Biernacki MA, Foster KA, Woodward KB, Coon ME, Cummings C, Cunningham TM, Dossa RG, Brault M, Stokke J, Olsen TM, Gardner K, Estey E, Meshinchi S, Rongvaux A, Bleakley M. CBFB-MYH11 fusion neoantigen enables T cell recognition and killing of acute myeloid leukemia. J Clin Invest 2020; 130:5127-5141. [PMID: 32831296 PMCID: PMC7524498 DOI: 10.1172/jci137723] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Proteins created from recurrent fusion genes like CBFB-MYH11 are prevalent in acute myeloid leukemia (AML), often necessary for leukemogenesis, persistent throughout the disease course, and highly leukemia specific, making them attractive neoantigen targets for immunotherapy. A nonameric peptide derived from a prevalent CBFB-MYH11 fusion protein was found to be immunogenic in HLA-B*40:01+ donors. High-avidity CD8+ T cell clones isolated from healthy donors killed CBFB-MYH11+ HLA-B*40:01+ AML cell lines and primary human AML samples in vitro. CBFB-MYH11-specific T cells also controlled CBFB-MYH11+ HLA-B*40:01+ AML in vivo in a patient-derived murine xenograft model. High-avidity CBFB-MYH11 epitope-specific T cell receptors (TCRs) transduced into CD8+ T cells conferred antileukemic activity in vitro. Our data indicate that the CBFB-MYH11 fusion neoantigen is naturally presented on AML blasts and enables T cell recognition and killing of AML. We provide proof of principle for immunologically targeting AML-initiating fusions and demonstrate that targeting neoantigens has clinical relevance even in low-mutational frequency cancers like fusion-driven AML. This work also represents a first critical step toward the development of TCR T cell immunotherapy targeting fusion gene-driven AML.
Collapse
Affiliation(s)
- Melinda A. Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine
| | - Kimberly A. Foster
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kyle B. Woodward
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael E. Coon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Carrie Cummings
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Tanya M. Cunningham
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Robson G. Dossa
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michelle Brault
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jamie Stokke
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Pediatrics, and
| | - Tayla M. Olsen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Elihu Estey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Pediatrics, and
| | - Anthony Rongvaux
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Pediatrics, and
| |
Collapse
|
144
|
Zhou X, Qu M, Tebon P, Jiang X, Wang C, Xue Y, Zhu J, Zhang S, Oklu R, Sengupta S, Sun W, Khademhosseini A. Screening Cancer Immunotherapy: When Engineering Approaches Meet Artificial Intelligence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001447. [PMID: 33042756 PMCID: PMC7539186 DOI: 10.1002/advs.202001447] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/16/2020] [Indexed: 02/05/2023]
Abstract
Immunotherapy is a class of promising anticancer treatments that has recently gained attention due to surging numbers of FDA approvals and extensive preclinical studies demonstrating efficacy. Nevertheless, further clinical implementation has been limited by high variability in patient response to different immunotherapeutic agents. These treatments currently do not have reliable predictors of efficacy and may lead to side effects. The future development of additional immunotherapy options and the prediction of patient-specific response to treatment require advanced screening platforms associated with accurate and rapid data interpretation. Advanced engineering approaches ranging from sequencing and gene editing, to tumor organoids engineering, bioprinted tissues, and organs-on-a-chip systems facilitate the screening of cancer immunotherapies by recreating the intrinsic and extrinsic features of a tumor and its microenvironment. High-throughput platform development and progress in artificial intelligence can also improve the efficiency and accuracy of screening methods. Here, these engineering approaches in screening cancer immunotherapies are highlighted, and a discussion of the future perspectives and challenges associated with these emerging fields to further advance the clinical use of state-of-the-art cancer immunotherapies are provided.
Collapse
Affiliation(s)
- Xingwu Zhou
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- Department of Chemical and Biomolecular EngineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Moyuan Qu
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Peyton Tebon
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Xing Jiang
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- School of NursingNanjing University of Chinese MedicineNanjing210023China
| | - Canran Wang
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Yumeng Xue
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Jixiang Zhu
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- Department of Biomedical EngineeringSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Shiming Zhang
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Rahmi Oklu
- Minimally Invasive Therapeutics LaboratoryDivision of Vascular and Interventional RadiologyMayo ClinicPhoenixAZ85054USA
| | - Shiladitya Sengupta
- Harvard–Massachusetts Institute of Technology Division of Health Sciences and TechnologyHarvard Medical SchoolBostonMA02115USA
| | - Wujin Sun
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Ali Khademhosseini
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- Department of Chemical and Biomolecular EngineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California, Los AngelesLos AngelesCA90095USA
- Jonsson Comprehensive Cancer CenterUniversity of California, Los AngelesLos AngelesCA90095USA
- Department of RadiologyDavid Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCA90095USA
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| |
Collapse
|
145
|
Metastasis: A Bane of Breast Cancer Therapy. EUROPEAN MEDICAL JOURNAL 2020. [DOI: 10.33590/emj/20-00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The underlying mechanisms of metastasis in patients with breast cancer is still poorly understood. Approximately 6% of patients with breast cancer present with metastasis at the time of diagnosis. Metastatic breast cancer is difficult to treat and patients with breast cancer with distant metastasis have a significantly lower 5-year survival rate compared to patients with localised breast cancer (27% and 99%, respectively). During breast cancer progression, tumour cells first metastasise to nearby draining lymph nodes and then to distant organs, primarily bone, lungs, liver, and brain. In this brief review, the authors discuss breast cancer metastasis, the role of epithelial–mesenchymal transition and the contributions of the immune system to the metastatic process. The authors also briefly discuss whether there is any relationship between tumour size and metastatic potential, and recent advances in treatment for metastatic breast cancer. The studies highlighted suggest that immunotherapy may play a more significant role in future patient care for metastatic breast cancer.
Collapse
|
146
|
Gaissmaier L, Elshiaty M, Christopoulos P. Breaking Bottlenecks for the TCR Therapy of Cancer. Cells 2020; 9:E2095. [PMID: 32937956 PMCID: PMC7564186 DOI: 10.3390/cells9092095] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibitors have redefined the treatment of cancer, but their efficacy depends critically on the presence of sufficient tumor-specific lymphocytes, and cellular immunotherapies develop rapidly to fill this gap. The paucity of suitable extracellular and tumor-associated antigens in solid cancers necessitates the use of neoantigen-directed T-cell-receptor (TCR)-engineered cells, while prevention of tumor evasion requires combined targeting of multiple neoepitopes. These can be currently identified within 2 weeks by combining cutting-edge next-generation sequencing with bioinformatic pipelines and used to select tumor-reactive TCRs in a high-throughput manner for expeditious scalable non-viral gene editing of autologous or allogeneic lymphocytes. "Young" cells with a naive, memory stem or central memory phenotype can be additionally armored with "next-generation" features against exhaustion and the immunosuppressive tumor microenvironment, where they wander after reinfusion to attack heavily pretreated and hitherto hopeless neoplasms. Facilitated by major technological breakthroughs in critical manufacturing steps, based on a solid preclinical rationale, and backed by rapidly accumulating evidence, TCR therapies break one bottleneck after the other and hold the promise to become the next immuno-oncological revolution.
Collapse
Affiliation(s)
- Lena Gaissmaier
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (L.G.); (M.E.)
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Mariam Elshiaty
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (L.G.); (M.E.)
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (L.G.); (M.E.)
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| |
Collapse
|
147
|
Manfredi F, Cianciotti BC, Potenza A, Tassi E, Noviello M, Biondi A, Ciceri F, Bonini C, Ruggiero E. TCR Redirected T Cells for Cancer Treatment: Achievements, Hurdles, and Goals. Front Immunol 2020; 11:1689. [PMID: 33013822 PMCID: PMC7494743 DOI: 10.3389/fimmu.2020.01689] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Adoptive T cell therapy (ACT) is a rapidly evolving therapeutic approach designed to harness T cell specificity and function to fight diseases. Based on the evidence that T lymphocytes can mediate a potent anti-tumor response, initially ACT solely relied on the isolation, in vitro expansion, and infusion of tumor-infiltrating or circulating tumor-specific T cells. Although effective in a subset of cases, in the first ACT clinical trials several patients experienced disease progression, in some cases after temporary disease control. This evidence prompted researchers to improve ACT products by taking advantage of the continuously evolving gene engineering field and by improving manufacturing protocols, to enable the generation of effective and long-term persisting tumor-specific T cell products. Despite recent advances, several challenges, including prioritization of antigen targets, identification, and optimization of tumor-specific T cell receptors, in the development of tools enabling T cells to counteract the immunosuppressive tumor microenvironment, still need to be faced. This review aims at summarizing the major achievements, hurdles and possible solutions designed to improve the ACT efficacy and safety profile in the context of liquid and solid tumors.
Collapse
Affiliation(s)
- Francesco Manfredi
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Beatrice Claudia Cianciotti
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Fondazione Centro San Raffaele, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine and Surgery, University of Milano – Bicocca, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Noviello
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Biondi
- Clinica Pediatrica Università degli Studi di Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
148
|
Li Y, Su R, Chen J. Co-culture Systems of Drug-Treated Acute Myeloid Leukemia Cells and T Cells for In Vitro and In Vivo Study. STAR Protoc 2020; 1. [PMID: 32995754 PMCID: PMC7521668 DOI: 10.1016/j.xpro.2020.100097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A combination of immunotherapy and chemotherapy strategies could strengthen antitumor effects. This protocol elucidates a robust method via co-culturing drug pre-treated acute myeloid leukemia cells with CD3+ T cells, derived from leukoreduction system chambers, for in vitro and in vivo study. We optimized several aspects of the procedures, including timing of drug treatment, quantification of tumor cells, and approach of combination of CD3+ T cells with drug treatment in vivo. This enables the readouts of the interplay between drugs and T cells. For complete details on the use and execution of this protocol, please refer to Su et al. (2020). Generate CD3+ T cells from leukoreduction system chambers using magnetic separation Co-culture T cells with drug-pretreated fluorescently labeled tumor cells Determine T cell toxicity in the co-culture system via absolute counting beads Combine T cells and drug treatment in the xenograft mouse with luciferase-labeled AML cells
Collapse
Affiliation(s)
- Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.,Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,These authors contributed equally
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.,These authors contributed equally.,Technical Contact
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.,Lead Contact
| |
Collapse
|
149
|
Poran A, Harjanto D, Malloy M, Arieta CM, Rothenberg DA, Lenkala D, van Buuren MM, Addona TA, Rooney MS, Srinivasan L, Gaynor RB. Sequence-based prediction of SARS-CoV-2 vaccine targets using a mass spectrometry-based bioinformatics predictor identifies immunogenic T cell epitopes. Genome Med 2020; 12:70. [PMID: 32791978 PMCID: PMC7425796 DOI: 10.1186/s13073-020-00767-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The ongoing COVID-19 pandemic has created an urgency to identify novel vaccine targets for protective immunity against SARS-CoV-2. Early reports identify protective roles for both humoral and cell-mediated immunity for SARS-CoV-2. METHODS We leveraged our bioinformatics binding prediction tools for human leukocyte antigen (HLA)-I and HLA-II alleles that were developed using mass spectrometry-based profiling of individual HLA-I and HLA-II alleles to predict peptide binding to diverse allele sets. We applied these binding predictors to viral genomes from the Coronaviridae family and specifically focused on T cell epitopes from SARS-CoV-2 proteins. We assayed a subset of these epitopes in a T cell induction assay for their ability to elicit CD8+ T cell responses. RESULTS We first validated HLA-I and HLA-II predictions on Coronaviridae family epitopes deposited in the Virus Pathogen Database and Analysis Resource (ViPR) database. We then utilized our HLA-I and HLA-II predictors to identify 11,897 HLA-I and 8046 HLA-II candidate peptides which were highly ranked for binding across 13 open reading frames (ORFs) of SARS-CoV-2. These peptides are predicted to provide over 99% allele coverage for the US, European, and Asian populations. From our SARS-CoV-2-predicted peptide-HLA-I allele pairs, 374 pairs identically matched what was previously reported in the ViPR database, originating from other coronaviruses with identical sequences. Of these pairs, 333 (89%) had a positive HLA binding assay result, reinforcing the validity of our predictions. We then demonstrated that a subset of these highly predicted epitopes were immunogenic based on their recognition by specific CD8+ T cells in healthy human donor peripheral blood mononuclear cells (PBMCs). Finally, we characterized the expression of SARS-CoV-2 proteins in virally infected cells to prioritize those which could be potential targets for T cell immunity. CONCLUSIONS Using our bioinformatics platform, we identify multiple putative epitopes that are potential targets for CD4+ and CD8+ T cells, whose HLA binding properties cover nearly the entire population. We also confirm that our binding predictors can predict epitopes eliciting CD8+ T cell responses from multiple SARS-CoV-2 proteins. Protein expression and population HLA allele coverage, combined with the ability to identify T cell epitopes, should be considered in SARS-CoV-2 vaccine design strategies and immune monitoring.
Collapse
Affiliation(s)
- Asaf Poran
- BioNTech US, Inc., 40 Erie Street, Suite 110, Cambridge, MA, 02139, USA.
| | - Dewi Harjanto
- BioNTech US, Inc., 40 Erie Street, Suite 110, Cambridge, MA, 02139, USA.
| | - Matthew Malloy
- BioNTech US, Inc., 40 Erie Street, Suite 110, Cambridge, MA, 02139, USA
| | | | | | - Divya Lenkala
- BioNTech US, Inc., 40 Erie Street, Suite 110, Cambridge, MA, 02139, USA
| | | | - Terri A Addona
- BioNTech US, Inc., 40 Erie Street, Suite 110, Cambridge, MA, 02139, USA
| | - Michael S Rooney
- BioNTech US, Inc., 40 Erie Street, Suite 110, Cambridge, MA, 02139, USA
| | | | - Richard B Gaynor
- BioNTech US, Inc., 40 Erie Street, Suite 110, Cambridge, MA, 02139, USA
| |
Collapse
|
150
|
Li Q, Ding ZY. The Ways of Isolating Neoantigen-Specific T Cells. Front Oncol 2020; 10:1347. [PMID: 32850430 PMCID: PMC7431921 DOI: 10.3389/fonc.2020.01347] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/26/2020] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy has revolutionized the standard of care for a range of malignancies. Accumulating evidence suggests that the success of immunotherapy is likely attributable to neoantigen-specific T cells. Thus, adoptive cell therapy with these neoantigen-specific T cells is highly promising. This strategy has proven to successfully elicit tumor regression or even complete remission in metastatic cancer patients. However, a fundamental challenge is to effectively identify and isolate neoantigen-specific T cells or their T cell receptors (TCRs), from either tumor-infiltrating lymphocytes (TILs) or peripheral blood lymphocytes (PBLs), and many methods have been developed to this end. In this review, we focus on the current proposed strategies for identifying and isolating neoantigen-specific T cells.
Collapse
Affiliation(s)
- Qing Li
- Department of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen-Yu Ding
- Department of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|