101
|
Ahrenfeldt J, Christensen DS, Østergaard AB, Kisistók J, Sokač M, Birkbak NJ. The ratio of adaptive to innate immune cells differs between genders and associates with improved prognosis and response to immunotherapy. PLoS One 2023; 18:e0281375. [PMID: 36745657 PMCID: PMC9901741 DOI: 10.1371/journal.pone.0281375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has revolutionised cancer treatment. However, not all cancer patients benefit, and current stratification strategies based primarily on PD1 status and mutation burden are far from perfect. We hypothesised that high activation of an innate response relative to the adaptive response may prevent proper tumour neoantigen identification and decrease the specific anticancer response, both in the presence and absence of immunotherapy. To investigate this, we obtained transcriptomic data from three large publicly available cancer datasets, the Cancer Genome Atlas (TCGA), the Hartwig Medical Foundation (HMF), and a recently published cohort of metastatic bladder cancer patients treated with immunotherapy. To analyse immune infiltration into bulk tumours, we developed an RNAseq-based model based on previously published definitions to estimate the overall level of infiltrating innate and adaptive immune cells from bulk tumour RNAseq data. From these, the adaptive-to-innate immune ratio (A/I ratio) was defined. A meta-analysis of 32 cancer types from TCGA overall showed improved overall survival in patients with an A/I ratio above median (Hazard ratio (HR) females 0.73, HR males 0.86, P < 0.05). Of particular interest, we found that the association was different for males and females for eight cancer types, demonstrating a gender bias in the relative balance of the infiltration of innate and adaptive immune cells. For patients with metastatic disease, we found that responders to immunotherapy had a significantly higher A/I ratio than non-responders in HMF (P = 0.036) and a significantly higher ratio in complete responders in a separate metastatic bladder cancer dataset (P = 0.022). Overall, the adaptive-to-innate immune ratio seems to define separate states of immune activation, likely linked to fundamental immunological reactions to cancer. This ratio was associated with improved prognosis and improved response to immunotherapy, demonstrating potential relevance to patient stratification. Furthermore, by demonstrating a significant difference between males and females that associates with response, we highlight an important gender bias which likely has direct clinical relevance.
Collapse
Affiliation(s)
- Johanne Ahrenfeldt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- * E-mail: (JA); (NJB)
| | - Ditte S. Christensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Judit Kisistók
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Mateo Sokač
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Nicolai J. Birkbak
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- * E-mail: (JA); (NJB)
| |
Collapse
|
102
|
Chen YH, Chen YC, Lue KH, Chu SC, Chang BS, Wang LY, Li MH, Lin CB. Glucose metabolic heterogeneity correlates with pathological features and improves survival stratification of resectable lung adenocarcinoma. Ann Nucl Med 2023; 37:139-150. [PMID: 36436112 DOI: 10.1007/s12149-022-01811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 11/20/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We investigated whether glycolytic heterogeneity correlated with histopathology, and further stratified the survival outcomes pertaining to resectable lung adenocarcinoma. METHODS We retrospectively analyzed the 18F-fluorodeoxyglucose positron emission tomography-derived entropy and histopathology from 128 patients who had undergone curative surgery for lung adenocarcinoma. Disease-free survival (DFS) and overall survival (OS) were analyzed using univariate and multivariate Cox regression models. Independent predictors were used to construct survival prediction models. RESULTS Entropy significantly correlated with histopathology, including tumor grades, lympho-vascular invasion, and visceral pleural invasion. Furthermore, entropy was an independent predictor of unfavorable DFS (p = 0.031) and OS (p = 0.004), while pathological nodal metastasis independently predicted DFS (p = 0.009). Our entropy-based models outperformed the traditional staging system (c-index = 0.694 versus 0.636, p = 0.010 for DFS; c-index = 0.704 versus 0.630, p = 0.233 for OS). The models provided further survival stratification in subgroups comprising different tumor grades (DFS: HR = 2.065, 1.315, and 1.408 for grade 1-3, p = 0.004, 0.001, and 0.039, respectively; OS: HR = 25.557, 6.484, and 2.570, for grade 1-3, p = 0.006, < 0.001, and = 0.224, respectively). CONCLUSION The glycolytic heterogeneity portrayed by entropy is associated with aggressive histopathological characteristics. The proposed entropy-based models may provide more sophisticated survival stratification in addition to histopathology and may enable personalized treatment strategies for resectable lung cancer.
Collapse
Affiliation(s)
- Yu-Hung Chen
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Yen-Chang Chen
- School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Anatomical Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kun-Han Lue
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology, Hualien, Taiwan.
| | - Sung-Chao Chu
- School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan. .,Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
| | - Bee-Song Chang
- Department of Cardiothoracic Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ling-Yi Wang
- Epidemiology and Biostatistics Consulting Center, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Graduate Institute of Clinical Pharmacy, Tzu Chi University, Hualien, 97002, Taiwan
| | - Ming-Hsun Li
- Department of Anatomical Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Bin Lin
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97002, Taiwan
| |
Collapse
|
103
|
Engel J, Eckel R, Halfter K, Schubert-Fritschle G, Hölzel D. Breast cancer: emerging principles of metastasis, adjuvant and neoadjuvant treatment from cancer registry data. J Cancer Res Clin Oncol 2023; 149:721-735. [PMID: 36538148 PMCID: PMC9931789 DOI: 10.1007/s00432-022-04369-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/17/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Growing primary breast cancers (PT) can initiate local recurrences (LR), regional lymph nodes (pLN) and distant metastases (MET). Components of these progressions are initiation, frequency, growth duration, and survival. These characteristics describe principles which proposed molecular concepts and hypotheses must align with. METHODS In a population-based retrospective modeling approach using data from the Munich Cancer Registry key steps and factors associated with metastasis were identified and quantified. Analysis of 66.800 patient datasets over four time periods since 1978, reliable evidence is obtained even in small subgroups. Together with results of clinical trials on prevention and adjuvant treatment (AT) principles for the MET process and AT are derived. RESULTS The median growth periods for PT/MET/LR/pLN comes to 12.5/8.8/5/3.5 years, respectively. Even if 30% of METs only appear after 10 years, a pre-diagnosis MET initiation principle not a delayed one should be true. The growth times of PTs and METs vary by a factor of 10 or more but their ratio is robust at about 1.4. Principles of AT are 50% PT eradication, the selective and partial eradication of bone and lung METs. This cannot be improved by extending the duration of the previously known ATs. CONCLUSION A paradigm of ten principles for the MET process and ATs is derived from real world data and clinical trials indicates that there is no rationale for the long-term application of endocrine ATs, risk of PTs by hormone replacement therapies, or cascading initiation of METs. The principles show limits and opportunities for innovation also through alternative interpretations of well-known studies. The outlined MET process should be generalizable to all solid tumors.
Collapse
Affiliation(s)
- Jutta Engel
- Munich Cancer Registry (MCR), Ludwig-Maximilians-University (LMU), 81377, Munich, Germany
| | - Renate Eckel
- Munich Cancer Registry (MCR), Ludwig-Maximilians-University (LMU), 81377, Munich, Germany
| | - Kathrin Halfter
- Munich Cancer Registry (MCR), Ludwig-Maximilians-University (LMU), 81377, Munich, Germany
| | | | - Dieter Hölzel
- Munich Cancer Registry (MCR), Ludwig-Maximilians-University (LMU), 81377, Munich, Germany.
| |
Collapse
|
104
|
Chang C, Tang X, Woodley DT, Chen M, Li W. The Distinct Assignments for Hsp90α and Hsp90β: More Than Skin Deep. Cells 2023; 12:277. [PMID: 36672211 PMCID: PMC9857327 DOI: 10.3390/cells12020277] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
For decades, the undisputable definition of the cytosolic Hsp90α and hsp90β proteins being evolutionarily conserved, ATP-driven chaperones has ruled basic research and clinical trials. The results of recent studies, however, have fundamentally challenged this paradigm, not to mention the spectacular failures of the paradigm-based clinical trials in cancer and beyond. We now know that Hsp90α and Hsp90β are both ubiquitously expressed in all cell types but assigned for distinct and irreplaceable functions. Hsp90β is essential during mouse development and Hsp90α only maintains male reproductivity in adult mice. Neither Hsp90β nor Hsp90α could substitute each other under these biological processes. Hsp90β alone maintains cell survival in culture and Hsp90α cannot substitute it. Hsp90α also has extracellular functions under stress and Hsp90β does not. The dramatic difference in the steady-state expression of Hsp90 in different mouse organs is due to the variable expressions of Hsp90α. The lowest expression of Hsp90 is less than 2% and the highest expression of Hsp90 is 9% among non-transformed cell lines. The two linker regions only take up less than 5% of the Hsp90 proteins, but harbor 21% of the total amino acid substitutions, i.e., 40% in comparison to the 86% overall amino acid homology. A full understanding of the distinctions between Hsp90α and Hsp90β could lead to new, safe and effective therapeutics targeting Hsp90 in human disorders such as cancer. This is the first comprehensive review of a comparison between the two cytosolic Hsp90 isoforms.
Collapse
Affiliation(s)
| | | | | | | | - Wei Li
- Department of Dermatology and the Norris Comprehensive Cancer Centre, University of Southern California Keck Medical Center, Los Angeles, CA 90033, USA
| |
Collapse
|
105
|
Umeki Y, Ogawa N, Uegaki Y, Saga K, Kaneda Y, Nimura K. DNA barcoding and gene expression recording reveal the presence of cancer cells with unique properties during tumor progression. Cell Mol Life Sci 2023; 80:17. [PMID: 36564568 PMCID: PMC9789022 DOI: 10.1007/s00018-022-04640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/02/2022] [Accepted: 11/19/2022] [Indexed: 12/25/2022]
Abstract
Tumors comprise diverse cancer cell populations with specific capabilities for adaptation to the tumor microenvironment, resistance to anticancer treatments, and metastatic dissemination. However, whether these populations are pre-existing in cancer cells or stochastically appear during tumor growth remains unclear. Here, we show the heterogeneous behaviors of cancer cells regarding response to anticancer drug treatments, formation of lung metastases, and expression of transcription factors related to cancer stem-like cells using a DNA barcoding and gene expression recording system. B16F10 cells maintained clonal diversity after treatment with HVJ-E, a UV-irradiated Sendai virus, and the anticancer drug dacarbazine. PBS treatment of the primary tumor and intravenous injection of B16F10 cells resulted in metastases formed from clones of multiple cell lineages. Conversely, BL6 and 4T1 cells developed spontaneous lung metastases by a small number of clones. Notably, an identical clone of 4T1 cells developed lung metastases in different mice, suggesting the existence of cells with high metastatic potential. Cas9-based transcription recording analysis in a human prostate cancer cell line revealed that specific cells express POU5F1 in response to an anticancer drug and sphere formation. Our findings provide insights into the diversity of cancer cells during tumor progression.
Collapse
Affiliation(s)
- Yuka Umeki
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Noriaki Ogawa
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Yuko Uegaki
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Kotaro Saga
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Keisuke Nimura
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
106
|
Castellanos G, Valbuena DS, Pérez E, Villegas VE, Rondón-Lagos M. Chromosomal Instability as Enabling Feature and Central Hallmark of Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:189-211. [PMID: 36923397 PMCID: PMC10010144 DOI: 10.2147/bctt.s383759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 03/11/2023]
Abstract
Chromosomal instability (CIN) has become a topic of great interest in recent years, not only for its implications in cancer diagnosis and prognosis but also for its role as an enabling feature and central hallmark of cancer. CIN describes cell-to-cell variation in the number or structure of chromosomes in a tumor population. Although extensive research in recent decades has identified some associations between CIN with response to therapy, specific associations with other hallmarks of cancer have not been fully evidenced. Such associations place CIN as an enabling feature of the other hallmarks of cancer and highlight the importance of deepening its knowledge to improve the outcome in cancer. In addition, studies conducted to date have shown paradoxical findings about the implications of CIN for therapeutic response, with some studies showing associations between high CIN and better therapeutic response, and others showing the opposite: associations between high CIN and therapeutic resistance. This evidences the complex relationships between CIN with the prognosis and response to treatment in cancer. Considering the above, this review focuses on recent studies on the role of CIN in cancer, the cellular mechanisms leading to CIN, its relationship with other hallmarks of cancer, and the emerging therapeutic approaches that are being developed to target such instability, with a primary focus on breast cancer. Further understanding of the complexity of CIN and its association with other hallmarks of cancer could provide a better understanding of the cellular and molecular mechanisms involved in prognosis and response to treatment in cancer and potentially lead to new drug targets.
Collapse
Affiliation(s)
- Giovanny Castellanos
- Maestría en Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.,School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Duván Sebastián Valbuena
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Erika Pérez
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Victoria E Villegas
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
107
|
Li L, Yuan Q, Chu YM, Jiang HY, Zhao JH, Su Q, Huo DQ, Zhang XF. Advances in holliday junction recognition protein (HJURP): Structure, molecular functions, and roles in cancer. Front Cell Dev Biol 2023; 11:1106638. [PMID: 37025176 PMCID: PMC10070699 DOI: 10.3389/fcell.2023.1106638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Oncogenes are increasingly recognized as important factors in the development and progression of cancer. Holliday Junction Recognition Protein (HJURP) is a highly specialized mitogenic protein that is a chaperone protein of histone H3. The HJURP gene is located on chromosome 2q37.1 and is involved in nucleosome composition in the mitotic region, forming a three-dimensional crystal structure with Centromere Protein A (CENP-A) and the histone 4 complex. HJURP is involved in the recruitment and assembly of centromere and kinetochore and plays a key role in stabilizing the chromosome structure of tumor cells, and its dysfunction may contribute to tumorigenesis. In the available studies HJURP is upregulated in a variety of cancer tissues and cancer cell lines and is involved in tumor proliferation, invasion, metastasis and immune response. In an in vivo model, overexpression of HJURP in most cancer cell lines promotes cell proliferation and invasiveness, reduces susceptibility to apoptosis, and promotes tumor growth. In addition, upregulation of HJURP was associated with poorer prognosis in a variety of cancers. These properties suggest that HJURP may be a possible target for the treatment of certain cancers. Various studies targeting HJURP as a prognostic and therapeutic target for cancer are gradually attracting interest and attention. This paper reviews the functional and molecular mechanisms of HJURP in a variety of tumor types with the aim of providing new targets for future cancer therapy.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Qiang Yuan
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yue-Ming Chu
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Hang-Yu Jiang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Ju-Hua Zhao
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Qiang Su
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, China
| | - Dan-Qun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
- *Correspondence: Dan-Qun Huo, ; Xiao-Fen Zhang,
| | - Xiao-Fen Zhang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- *Correspondence: Dan-Qun Huo, ; Xiao-Fen Zhang,
| |
Collapse
|
108
|
Wang J, Zhang B, Gong S, Liu Y, Yi L, Long Y. Cancer susceptibility 18 positively regulates NUAK Family Kinase 1 expression to promote migration and invasion via sponging of miR-5586-5p in cervical cancer cells. Int J Immunopathol Pharmacol 2023; 37:3946320231223310. [PMID: 38131232 DOI: 10.1177/03946320231223310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION Cervical squamous cell carcinoma (CESC) is the most common gynecological malignancy worldwide. Although the cancer susceptibility 18 (CASC18) gene was involved in the regulation of cancer biology, its specific role in CESC is not well characterized. METHODS CASC18-related axis was predicted by bioinformatic analyses, and the competing endogenous RNA (ceRNA) interaction was further validated using quantitative real-time PCR, western blotting, RNA pulldown, and luciferase reporter assays. Transwell and wound healing assays were performed to verify the effect of CASC18 on SiHa and HeLa cell motility. RESULTS We found that CASC18 was upregulated in CESC tissues. Moreover, interference with CASC18 attenuated NUAK1-mediated epithelial-mesenchymal transition (EMT) and thus suppressed cancer cell motility. Furthermore, the effects of CASC18 knockdown on CESC cells were partly rescued by transfection with the miR-5586-5p inhibitor. Additionally, our findings indicated that CASC18 acts as a ceRNA to enhance NUAK1 expression by sponging miR-5586-5p. CONCLUSION Our study showed a novel CASC18/miR-5586-5p/NUAK1 ceRNA axis that could regulate cell invasion and migration by modulating EMT in CESC. These findings suggest that CASC18 may potentially serve as a novel therapeutic target in CESC treatment.
Collapse
Affiliation(s)
- Jingrong Wang
- Translational Medicine Centre, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Bocheng Zhang
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Sha Gong
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying Liu
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Liang Yi
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying Long
- Translational Medicine Centre, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
109
|
CT radiomic predictors of local relapse after SBRT for lung oligometastases from colorectal cancer: a single institute pilot study. Strahlenther Onkol 2022; 199:477-484. [PMID: 36580087 DOI: 10.1007/s00066-022-02034-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/20/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To assess the potential of radiomic features (RFs) extracted from simulation computed tomography (CT) images in discriminating local progression (LP) after stereotactic body radiotherapy (SBRT) in the management of lung oligometastases (LOM) from colorectal cancer (CRC). MATERIALS AND METHODS Thirty-eight patients with 70 LOM treated with SBRT were analyzed. The largest LOM was considered as most representative for each patient and was manually delineated by two blinded radiation oncologists. In all, 141 RFs were extracted from both contours according to IBSI (International Biomarker Standardization Initiative) recommendations. Based on the agreement between the two observers, 134/141 RFs were found to be robust against delineation (intraclass correlation coefficient [ICC] > 0.80); independent RFs were then assessed by Spearman correlation coefficients. The association between RFs and LP was assessed with Mann-Whitney test and univariate logistic regression (ULR): the discriminative power of the most informative RF was quantified by receiver-operating characteristics (ROC) analysis through area under curve (AUC). RESULTS In all, 15/38 patients presented LP. Median time to progression was 14.6 months (range 2.4-66 months); 5/141 RFs were significantly associated to LP at ULR analysis (p < 0.05); among them, 4 RFs were selected as robust and independent: Statistical_Variance (AUC = 0.75, p = 0.002), Statistical_Range (AUC = 0.72, p = 0.013), Grey Level Size Zone Matrix (GLSZM) _zoneSizeNonUniformity (AUC = 0.70, p = 0.022), Grey Level Dependence Zone Matrix (GLDZM) _zoneDistanceEntropy (AUC = 0.70, p = 0.026). Importantly, the RF with the best performance (Statisical_Variance) is simply representative of density heterogeneity within LOM. CONCLUSION Four RFs extracted from planning CT were significantly associated with LP of LOM from CRC treated with SBRT. Results encourage further research on a larger population aiming to define a usable radiomic score combining the most predictive RFs and, possibly, additional clinical features.
Collapse
|
110
|
Kiritani S, Ono Y, Takamatsu M, Oba A, Sato T, Ito H, Inoue Y, Takahashi Y. Diabetogenic liver metastasis from pancreatic cancer: a case report. Surg Case Rep 2022; 8:224. [PMID: 36576596 PMCID: PMC9797629 DOI: 10.1186/s40792-022-01582-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Although new-onset diabetes has been described in up to 20% of patients with newly diagnosed pancreatic cancer, reports regarding new-onset diabetes associated with newly developed liver metastasis from pancreatic cancer are limited. CASE PRESENTATION A 60-year-old man was diagnosed with pancreatic tail cancer without impaired glycemic control. A curative-intent distal pancreatectomy with adjuvant S-1 chemotherapy was performed. Two years after surgery, a high HbA1c concentration and solitary liver metastasis were identified on follow-up examination. Two major chemotherapy regimens, gemcitabine/nab-paclitaxel and modified FOLFIRINOX, were sequentially administered to the patient; however, his carbohydrate 19-9 concentration continued to increase. Because the patient's glycemic control rapidly worsened in synchrony with the tumor growth, insulin therapy was initiated. Although the liver metastasis was refractory to chemotherapy, curative-intent left hepatectomy was performed because only one tumor remained. His impaired glycemic control improved immediately after surgery, and insulin therapy was terminated. When writing this report (2 years after hepatectomy), the patient was alive and recurrence-free. CONCLUSIONS New-onset diabetes appeared with the progression of metachronous liver metastasis from pancreatic cancer, without recurrence at any other site. The patient's diabetic state was improved by resection of the liver tumor, and liver metastasis itself was proven to have caused the glucometabolic disorder by increasing insulin resistance.
Collapse
Affiliation(s)
- Sho Kiritani
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital of the Japanese Foundation for Clinical Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Yoshihiro Ono
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital of the Japanese Foundation for Clinical Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan.
| | - Manabu Takamatsu
- Department of Pathology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Atsushi Oba
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital of the Japanese Foundation for Clinical Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Takafumi Sato
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital of the Japanese Foundation for Clinical Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Hiromichi Ito
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital of the Japanese Foundation for Clinical Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Yosuke Inoue
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital of the Japanese Foundation for Clinical Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Yu Takahashi
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital of the Japanese Foundation for Clinical Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| |
Collapse
|
111
|
Wild SA, Cannell IG, Nicholls A, Kania K, Bressan D, Hannon GJ, Sawicka K. Clonal transcriptomics identifies mechanisms of chemoresistance and empowers rational design of combination therapies. eLife 2022; 11:e80981. [PMID: 36525288 PMCID: PMC9757829 DOI: 10.7554/elife.80981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Tumour heterogeneity is thought to be a major barrier to successful cancer treatment due to the presence of drug resistant clonal lineages. However, identifying the characteristics of such lineages that underpin resistance to therapy has remained challenging. Here, we utilise clonal transcriptomics with WILD-seq; Wholistic Interrogation of Lineage Dynamics by sequencing, in mouse models of triple-negative breast cancer (TNBC) to understand response and resistance to therapy, including BET bromodomain inhibition and taxane-based chemotherapy. These analyses revealed oxidative stress protection by NRF2 as a major mechanism of taxane resistance and led to the discovery that our tumour models are collaterally sensitive to asparagine deprivation therapy using the clinical stage drug L-asparaginase after frontline treatment with docetaxel. In summary, clonal transcriptomics with WILD-seq identifies mechanisms of resistance to chemotherapy that are also operative in patients and pin points asparagine bioavailability as a druggable vulnerability of taxane-resistant lineages.
Collapse
Affiliation(s)
- Sophia A Wild
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson WayCambridgeUnited Kingdom
| | - Ian G Cannell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson WayCambridgeUnited Kingdom
| | - Ashley Nicholls
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson WayCambridgeUnited Kingdom
| | - Katarzyna Kania
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson WayCambridgeUnited Kingdom
| | - Dario Bressan
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson WayCambridgeUnited Kingdom
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson WayCambridgeUnited Kingdom
| | - Kirsty Sawicka
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson WayCambridgeUnited Kingdom
| |
Collapse
|
112
|
Madan E, Palma AM, Vudatha V, Trevino JG, Natarajan KN, Winn RA, Won KJ, Graham TA, Drapkin R, McDonald SAC, Fisher PB, Gogna R. Cell Competition in Carcinogenesis. Cancer Res 2022; 82:4487-4496. [PMID: 36214625 PMCID: PMC9976200 DOI: 10.1158/0008-5472.can-22-2217] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/04/2022] [Accepted: 09/29/2022] [Indexed: 01/30/2023]
Abstract
The majority of human cancers evolve over time through the stepwise accumulation of somatic mutations followed by clonal selection akin to Darwinian evolution. However, the in-depth mechanisms that govern clonal dynamics and selection remain elusive, particularly during the earliest stages of tissue transformation. Cell competition (CC), often referred to as 'survival of the fittest' at the cellular level, results in the elimination of less fit cells by their more fit neighbors supporting optimal organism health and function. Alternatively, CC may allow an uncontrolled expansion of super-fit cancer cells to outcompete their less fit neighbors thereby fueling tumorigenesis. Recent research discussed herein highlights the various non-cell-autonomous principles, including interclonal competition and cancer microenvironment competition supporting the ability of a tumor to progress from the initial stages to tissue colonization. In addition, we extend current insights from CC-mediated clonal interactions and selection in normal tissues to better comprehend those factors that contribute to cancer development.
Collapse
Affiliation(s)
- Esha Madan
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Jose G. Trevino
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | | | - Robert A. Winn
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Kyoung Jae Won
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Trevor A. Graham
- Evolution and Cancer Laboratory, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, U.K
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stuart AC. McDonald
- Clonal Dynamics in Epithelia Laboratory, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square. London, EC1M 6BQ UK
| | - Paul B. Fisher
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Rajan Gogna
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| |
Collapse
|
113
|
Thomas P, Srivastava S, Udayashankara AH, Damodaran S, Yadav L, Mathew B, Suresh SB, Mandal AK, Srikantia N. RhoC in association with TET2/WDR5 regulates cancer stem cells by epigenetically modifying the expression of pluripotency genes. Cell Mol Life Sci 2022; 80:1. [PMID: 36469134 PMCID: PMC11073244 DOI: 10.1007/s00018-022-04645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Emerging evidence illustrates that RhoC has divergent roles in cervical cancer progression where it controls epithelial to mesenchymal transition (EMT), migration, angiogenesis, invasion, tumor growth, and radiation response. Cancer stem cells (CSCs) are the primary cause of recurrence and metastasis and exhibit all of the above phenotypes. It, therefore, becomes imperative to understand if RhoC regulates CSCs in cervical cancer. In this study, cell lines and clinical specimen-based findings demonstrate that RhoC regulates tumor phenotypes such as clonogenicity and anoikis resistance. Accordingly, inhibition of RhoC abrogated these phenotypes. RNA-seq analysis revealed that RhoC over-expression resulted in up-regulation of 27% of the transcriptome. Further, the Infinium MethylationEPIC array showed that RhoC over-expressing cells had a demethylated genome. Studies divulged that RhoC via TET2 signaling regulated the demethylation of the genome. Further investigations comprising ChIP-seq, reporter assays, and mass spectrometry revealed that RhoC associates with WDR5 in the nucleus and regulates the expression of pluripotency genes such as Nanog. Interestingly, clinical specimen-based investigations revealed the existence of a subset of tumor cells marked by RhoC+/Nanog+ expression. Finally, combinatorial inhibition (in vitro) of RhoC and its partners (WDR5 and TET2) resulted in increased sensitization of clinical specimen-derived cells to radiation. These findings collectively reveal a novel role for nuclear RhoC in the epigenetic regulation of Nanog and identify RhoC as a regulator of CSCs. The study nominates RhoC and associated signaling pathways as therapeutic targets.
Collapse
Affiliation(s)
- Pavana Thomas
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
- School of Integrative Health Sciences, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Sweta Srivastava
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Medical College Hospital, Bangalore, 560034, India.
| | - Avinash H Udayashankara
- Department of Radiation Oncology, St John's Medical College Hospital, Bangalore, 560034, India
| | - Samyuktha Damodaran
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
| | - Lokendra Yadav
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Medical College Hospital, Bangalore, 560034, India
| | - Boby Mathew
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
| | - Srinag Bangalore Suresh
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
| | - Amit Kumar Mandal
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
| | - Nirmala Srikantia
- Department of Radiation Oncology, St John's Medical College Hospital, Bangalore, 560034, India
| |
Collapse
|
114
|
Tsai CJ. Moving Away From Counting the Numbers: Leveraging a Sensible Clinical Trial Design for Oligometastatic Disease and Beyond. Int J Radiat Oncol Biol Phys 2022; 114:846-848. [DOI: 10.1016/j.ijrobp.2022.09.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
|
115
|
Logotheti S, Pavlopoulou A, Marquardt S, Takan I, Georgakilas AG, Stiewe T. p73 isoforms meet evolution of metastasis. Cancer Metastasis Rev 2022; 41:853-869. [PMID: 35948758 DOI: 10.1007/s10555-022-10057-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/30/2022] [Indexed: 01/25/2023]
Abstract
Cancer largely adheres to Darwinian selection. Evolutionary forces are prominent during metastasis, the final and incurable disease stage, where cells acquire combinations of advantageous phenotypic features and interact with a dynamically changing microenvironment, in order to overcome the metastatic bottlenecks, while therapy exerts additional selective pressures. As a strategy to increase their fitness, tumors often co-opt developmental and tissue-homeostasis programs. Herein, 25 years after its discovery, we review TP73, a sibling of the cardinal tumor-suppressor TP53, through the lens of cancer evolution. The TP73 gene regulates a wide range of processes in embryonic development, tissue homeostasis and cancer via an overwhelming number of functionally divergent isoforms. We suggest that TP73 neither merely mimics TP53 via its p53-like tumor-suppressive functions, nor has black-or-white-type effects, as inferred by the antagonism between several of its isoforms in processes like apoptosis and DNA damage response. Rather, under dynamic conditions of selective pressure, the various p73 isoforms which are often co-expressed within the same cancer cells may work towards a common goal by simultaneously activating isoform-specific transcriptional and non-transcriptional programs. Combinatorial co-option of these programs offers selective advantages that overall increase the likelihood for successfully surpassing the barriers of the metastatic cascade. The p73 functional pleiotropy-based capabilities might be present in subclonal populations and expressed dynamically under changing microenvironmental conditions, thereby supporting clonal expansion and propelling evolution of metastasis. Deciphering the critical p73 isoform patterns along the spatiotemporal axes of tumor evolution could identify strategies to target TP73 for prevention and therapy of cancer metastasis.
Collapse
Affiliation(s)
- Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780, Zografou, Greece.
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340, Balcova, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Balcova, Izmir, Turkey
| | - Stephan Marquardt
- Institute of Translational Medicine for Health Care Systems, Medical School Berlin, Hochschule Für Gesundheit Und Medizin, 14197, Berlin, Germany
| | - Işıl Takan
- Izmir Biomedicine and Genome Center (IBG), 35340, Balcova, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340, Balcova, Izmir, Turkey
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780, Zografou, Greece
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University, Marburg, Germany.,Institute of Lung Health, Giessen, Germany.,German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| |
Collapse
|
116
|
Long noncoding RNA CLAN promotes lymphangiogenesis in the colorectal carcinoma. Virchows Arch 2022; 481:847-852. [PMID: 36301367 DOI: 10.1007/s00428-022-03439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022]
Abstract
Metastasis is the main cause of colorectal cancer (CRC)-related death and lymph node plays a vital role in this process. Long noncoding RNAs (lncRNAs) are emerging as an important factor of biological progress in cancers. However, lncRNAs related to CRC metastasis was rarely reported.CLAN expression data of tumor tissues and normal tissues were obtained from GEPIA database and 23 paired tumor and normal samples of patients. CLAN expression of 85 patients was carried out with RNA extracted from FFPE samples and quantified with qRT-PCR. Patients' clinical features were collected from department of Pathology of the Affiliated Hospital of Southwest Medical University. Immunohistochemistry staining was used to detect the metastasis-related proteins.CLAN was highly expressed in tumor tissues. And the expression level was not correlated with age, gender, differentiation, and location of CRC patients. Also, CLAN expression did not correlated with budding, LVI, and TILs. However, CLAN expression was strongly associated with lymph node metastasis and higher TNM stage. CLAN changed the lymphatic vessel density by promoting lymphangiogenesis but CLAN did not affect the blood vessel density.CLAN was a unique lncRNA that promoted lymphangiogenesis to accelerate CRC metastasis. CLAN might play a unique role in tumor early dissemination through lymphatic vessel.
Collapse
|
117
|
Gao C, Cheng K, Li Y, Gong R, Zhao X, Nie G, Ren H. Injectable Immunotherapeutic Hydrogel Containing RNA-Loaded Lipid Nanoparticles Reshapes Tumor Microenvironment for Pancreatic Cancer Therapy. NANO LETTERS 2022; 22:8801-8809. [PMID: 36251255 DOI: 10.1021/acs.nanolett.2c01994] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pancreatic cancer immunotherapy is becoming a promising strategy for improving the survival rate of postsurgical patients. However, the low response rate to immunotherapy suggests a low number of antigen-specific T cells and a high number of immunosuppressive tumor-associated macrophages in the pancreatic tumor microenvironment. Herein, we developed an in situ injectable thermosensitive chitosan hydrogel loaded with lipid-immune regulatory factor 5 (IRF5) mRNA/C-C chemokine ligand 5 (CCL5) siRNA (LPR) nanoparticle complexes (LPR@CHG) that reprogram the antitumoral immune niche. The LPR@CHG hydrogel upregulates IRF5 and downregulates CCL5 secretion, which contribute to a significant increase in M1 phenotype macrophages. Tumor growth is controlled by effective M1 phenotype macrophage that initiate T cell-mediated immune responses. Overall, the LPR@CHG hydrogel is expected to be a meaningful immunotherapy platform that can reshape the immunosuppressive tumor microenvironment and improve the efficacy of current pancreatic immunotherapies while minimizing systemic toxicity.
Collapse
Affiliation(s)
- Chao Gao
- Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruining Gong
- Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Ren
- Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
118
|
Mikaelian I, Gadet R, Deygas M, Bertolino P, Hennino A, Gillet G, Rimokh R, Berremila SA, Péoc’h M, Gonzalo P. EGFR-dependent aerotaxis is a common trait of breast tumour cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:324. [PMID: 36380366 PMCID: PMC9667613 DOI: 10.1186/s13046-022-02514-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Aerotaxis, the chemotactism to oxygen, is well documented in prokaryotes. We previously reported for the first time that non-tumorigenic breast epithelial cells also display unequivocal directional migration towards oxygen. This process is independent of the hypoxia-inducible factor (HIF)/prolyl hydroxylase domain (PHD) pathway but controlled by the redox regulation of epidermal growth factor receptor (EGFR), with a reactive oxygen species (ROS) gradient overlapping the oxygen gradient at low oxygen concentration. Since hypoxia is an acknowledged hallmark of cancers, we addressed the putative contribution of aerotaxis to cancer metastasis by studying the directed migration of cancer cells from an hypoxic environment towards nearby oxygen sources, modelling the in vivo migration of cancer cells towards blood capillaries. METHODS We subjected to the aerotactic test described in our previous papers cells isolated from fresh breast tumours analysed by the Pathology Department of the Saint-Etienne University Hospital (France) over a year. The main selection criterion, aside from patient consent, was the size of the tumour, which had to be large enough to perform the aerotactic tests without compromising routine diagnostic tests. Finally, we compared the aerotactic properties of these primary cells with those of commonly available breast cancer cell lines. RESULTS We show that cells freshly isolated from sixteen human breast tumour biopsies, representative of various histological characteristics and grades, are endowed with strong aerotactic properties similar to normal mammary epithelial cell lines. Strikingly, aerotaxis of these primary cancerous cells is also strongly dependent on both EGFR activation and ROS. In addition, we demonstrate that aerotaxis can trigger directional invasion of tumour cells within the extracellular matrix contrary to normal mammary epithelial cells. This contrasts with results obtained with breast cancer cell lines, in which aerotactic properties were either retained or impaired, and in some cases, even lost during the establishment of these cell lines. CONCLUSIONS Altogether, our results support that aerotaxis may play an important role in breast tumour metastasis. In view of these findings, we discuss the prospects for combating metastatic spread. TRIAL REGISTRATION IRBN1462021/CHUSTE.
Collapse
Affiliation(s)
- Ivan Mikaelian
- grid.418116.b0000 0001 0200 3174Centre de Recherche en Cancérologie de Lyon - Université Claude Bernard Lyon 1, UMR CNRS 5286, INSERM 1052, Centre Léon Bérard, 69373 Lyon, France
| | - Rudy Gadet
- grid.418116.b0000 0001 0200 3174Centre de Recherche en Cancérologie de Lyon - Université Claude Bernard Lyon 1, UMR CNRS 5286, INSERM 1052, Centre Léon Bérard, 69373 Lyon, France
| | - Mathieu Deygas
- grid.4444.00000 0001 2112 9282Institut Curie, Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 144, Paris, France ,grid.440907.e0000 0004 1784 3645Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | - Philippe Bertolino
- grid.418116.b0000 0001 0200 3174Centre de Recherche en Cancérologie de Lyon - Université Claude Bernard Lyon 1, UMR CNRS 5286, INSERM 1052, Centre Léon Bérard, 69373 Lyon, France
| | - Anca Hennino
- grid.418116.b0000 0001 0200 3174Centre de Recherche en Cancérologie de Lyon - Université Claude Bernard Lyon 1, UMR CNRS 5286, INSERM 1052, Centre Léon Bérard, 69373 Lyon, France
| | - Germain Gillet
- grid.418116.b0000 0001 0200 3174Centre de Recherche en Cancérologie de Lyon - Université Claude Bernard Lyon 1, UMR CNRS 5286, INSERM 1052, Centre Léon Bérard, 69373 Lyon, France
| | - Ruth Rimokh
- grid.418116.b0000 0001 0200 3174Centre de Recherche en Cancérologie de Lyon - Université Claude Bernard Lyon 1, UMR CNRS 5286, INSERM 1052, Centre Léon Bérard, 69373 Lyon, France
| | - Sid-Ali Berremila
- grid.412954.f0000 0004 1765 1491Pathology department, UFR Medecine Saint-Etienne, CHU of Saint-Etienne, Saint-Etienne, France
| | - Michel Péoc’h
- grid.412954.f0000 0004 1765 1491Pathology department, UFR Medecine Saint-Etienne, CHU of Saint-Etienne, Saint-Etienne, France
| | - Philippe Gonzalo
- grid.418116.b0000 0001 0200 3174Centre de Recherche en Cancérologie de Lyon - Université Claude Bernard Lyon 1, UMR CNRS 5286, INSERM 1052, Centre Léon Bérard, 69373 Lyon, France ,grid.412954.f0000 0004 1765 1491Biochemistry and Pharmacology department, UFR Medecine Saint-Etienne, CHU of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
119
|
Zhao W, Zhou W, Rong L, Sun M, Lin X, Wang L, Wang S, Wang Y, Hui Z. Epidermal growth factor receptor mutations and brain metastases in non-small cell lung cancer. Front Oncol 2022; 12:912505. [PMID: 36457515 PMCID: PMC9707620 DOI: 10.3389/fonc.2022.912505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/20/2022] [Indexed: 10/07/2023] Open
Abstract
Studies have revealed that non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations has a high incidence of brain metastases (BMs). However, the association between EGFR mutations and BMs remains unknown. This review summarizes detailed information about the incidence of BMs, clinical and imaging characteristics of BMs, brain surveillance strategies, influence of treatments on BMs, prognosis after BMs, and differences in EGFR mutations between paired primary tumors and BMs in EGFR-mutated NSCLC. The prognostic results demonstrate that patients with mutated EGFR have a higher incidence of BMs, EGFR tyrosine kinase inhibitors (EGFR-TKIs) (afatinib and osimertinib) delay the development of BMs, and patients with mutated EGFR with synchronous or early BMs have better overall survival after BMs than those with wild-type EGFR. The EGFR mutation status of BM sites is not always in accordance with the primary tumors, which indicates that there is heterogeneity in EGFR gene status between paired primary tumors and BMs. However, the EGFR gene status of the primary site can largely represent that of BM sites. Among patients developing synchronous BMs, patients with mutated EGFR are less likely to have central nervous system (CNS) symptoms than patients with wild-type EGFR. However, the possibility of neuro-symptoms is high in patients with metachronous BMs. Patients with mutated EGFR tend to have multiple BMs as compared to patients with wild-type EGFR. Regarding very early-stage NSCLC patients without neuro-symptoms, regular neuroimaging follow-up is not recommended. Among advanced NSCLC patients with EGFR mutation, liberal brain imaging follow-up in the first several years showed more advantages in terms of cost.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Wei Zhou
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Li Rong
- Department of Gastroenterology, Bishan Hospital of Chongqing medical university/Bishan Hospital of Chongqing, Chongqing, China
| | - Mao Sun
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Xing Lin
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Lulu Wang
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Shiqiang Wang
- Department of Neurosurgery, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Ying Wang
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
| | - Zhouguang Hui
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
120
|
Niu Y, Yang W, Qian H, Sun Y. Intracellular and extracellular factors of colorectal cancer liver metastasis: a pivotal perplex to be fully elucidated. Cancer Cell Int 2022; 22:341. [DOI: 10.1186/s12935-022-02766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractMetastasis is the leading cause of death in colorectal cancer (CRC) patients, and the liver is the most common site of metastasis. Tumor cell metastasis can be thought of as an invasion-metastasis cascade and metastatic organotropism is thought to be a process that relies on the intrinsic properties of tumor cells and their interactions with molecules and cells in the microenvironment. Many studies have provided new insights into the molecular mechanism and contributing factors involved in CRC liver metastasis for a better understanding of the organ-specific metastasis process. The purpose of this review is to summarize the theories that explain CRC liver metastasis at multiple molecular dimensions (including genetic and non-genetic factors), as well as the main factors that cause CRC liver metastasis. Many findings suggest that metastasis may occur earlier than expected and with specific organ-anchoring property. The emergence of potential metastatic clones, the timing of dissemination, and the distinct routes of metastasis have been explained by genomic studies. The main force of CRC liver metastasis is also thought to be epigenetic alterations and dynamic phenotypic traits. Furthermore, we review key extrinsic factors that influence CRC cell metastasis and liver tropisms, such as pre-niches, tumor stromal cells, adhesion molecules, and immune/inflammatory responses in the tumor microenvironment. In addition, biomarkers associated with early diagnosis, prognosis, and recurrence of liver metastasis from CRC are summarized to enlighten potential clinical practice, including some markers that can be used as therapeutic targets to provide new perspectives for the treatment strategies of CRC liver metastasis.
Collapse
|
121
|
Yue W. Thermal ablation for papillary thyroid microcarcinoma: Some clarity amid controversies. J Interv Med 2022; 5:171-172. [PMID: 36532304 PMCID: PMC9751214 DOI: 10.1016/j.jimed.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/03/2022] [Accepted: 07/23/2022] [Indexed: 12/07/2022] Open
Abstract
The increasing incidence of papillary thyroid microcarcinoma (PTMC) has become a global challenge. Because of its indolent nature, active surveillance (AS) has been proposed as a treatment option in selected PTMC patients to prevent surgery-related complications. However, only a few patients with PTMC receive the AS approach because of the serious psychological burden following the "cancer" diagnosis and the uncertainty of the timing for metastatic dissemination. Ultrasound (US)-guided thermal ablation can bridge the gap in the treatment options of PTMC patients who wish for a minimally invasive management approach. However, it has acquired only marginal attention from the thyroid guideline societies because of concerns regarding incomplete elimination. The recently published guidelines from the European Thyroid Association-Cardiovascular and Interventional Radiological Society of Europe and the American Head Neck Society Endocrine Section -initiated global consensus provide the most definitive evidence and essential foundational experience to address the long-term controversy over US-guided thermal ablation for low-risk PTMC patient management and facilitate the responsible global dissemination of minimally invasive strategies.
Collapse
Affiliation(s)
- Wenwen Yue
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, School of Medicine, Tongji University, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072, PR China
| |
Collapse
|
122
|
Thakur C, Qiu Y, Zhang Q, Carruthers NJ, Yu M, Bi Z, Fu Y, Wadgaonkar P, Almutairy B, Seno A, Stemmer PM, Chen F. Deletion of mdig enhances H3K36me3 and metastatic potential of the triple negative breast cancer cells. iScience 2022; 25:105057. [PMID: 36124233 PMCID: PMC9482110 DOI: 10.1016/j.isci.2022.105057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
In this report, we provide evidence showing diminished expression of the mineral dust-induced gene (mdig), a previously identified oncogenic gene, in human triple negative breast cancer (TNBC). Using a mouse model of orthotopic xenograft of the TNBC MDA-MB-231 cells, we demonstrate that mdig promotes the growth of primary tumors but inhibits metastasis of these cells in vivo. Knockout of mdig resulted in an enhancement of H3K36me3 in the genome and upregulation of some X chromosome-linked genes for cell motility, invasion, and metastasis. Silencing MAGED2, one of the most upregulated and H3K36me3-enriched genes resulted from mdig depletion, can partially reverse the invasive migration of the mdig knockout cells. The anti-metastatic and inhibitory role of mdig on H3K36me3 was cross-validated in another cell line, A549 lung cancer cells. Together, our data suggest that mdig is antagonist against H3K36me3 that enforces expression of genes, such as MAGED2, for cell invasion and metastasis. Loss of mdig expression in TNBC and metastatic breast cancer Knockout of mdig enforces metastasis of the TNBC cells Mdig antagonizes H3K36me3 that promotes expression of X-linked metastatic genes Silencing MAGED2 reduces invasive migration of the mdig knockout cells
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Yiran Qiu
- Stony Brook Cancer Center and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Nicholas J Carruthers
- Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Miaomiao Yu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.,Cancer Hospital of China Medical University, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province, China
| | - Zhuoyue Bi
- Stony Brook Cancer Center and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Yao Fu
- Stony Brook Cancer Center and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Bandar Almutairy
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.,College of Pharmacy, Al-Dawadmi Campus, Shaqra University, P.O. Box 11961, Riyadh, Saudi Arabia
| | - Akimasa Seno
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.,Faculty of Engineering, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Paul M Stemmer
- Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Fei Chen
- Stony Brook Cancer Center and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA.,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| |
Collapse
|
123
|
Sankaran VG, Weissman JS, Zon LI. Cellular barcoding to decipher clonal dynamics in disease. Science 2022; 378:eabm5874. [PMID: 36227997 PMCID: PMC10111813 DOI: 10.1126/science.abm5874] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cellular barcodes are distinct DNA sequences that enable one to track specific cells across time or space. Recent advances in our ability to detect natural or synthetic cellular barcodes, paired with single-cell readouts of cell state, have markedly increased our knowledge of clonal dynamics and genealogies of the cells that compose a variety of tissues and organs. These advances hold promise to redefine our view of human disease. Here, we provide an overview of cellular barcoding approaches, discuss applications to gain new insights into disease mechanisms, and provide an outlook on future applications. We discuss unanticipated insights gained through barcoding in studies of cancer and blood cell production and describe how barcoding can be applied to a growing array of medical fields, particularly with the increasing recognition of clonal contributions in human diseases.
Collapse
Affiliation(s)
- Vijay G Sankaran
- Division of Hematology and Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Leonard I Zon
- Division of Hematology and Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
124
|
Huang D, Wu T, Lan S, Liu C, Guo Z, Zhang W. In situ photothermal nano-vaccine based on tumor cell membrane-coated black phosphorus-Au for photo-immunotherapy of metastatic breast tumors. Biomaterials 2022; 289:121808. [PMID: 36137415 DOI: 10.1016/j.biomaterials.2022.121808] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
Cancer vaccines which can activate antitumor immune response have great potential for metastatic tumors treatment. However, clinical translation of cancer vaccines remained challenging due to weak tumor antigen immunogenicity, inefficient in vivo delivery, and immunosuppressive tumor microenvironment. Nanomaterials-based photothermal treatment (PTT) triggers immunogenic cell death while providing in situ tumor-associated antigens for subsequent anti-tumor immunity. Here, an in situ photothermal nano-vaccine (designated as BCNCCM) based on cancer cell membrane (CCM) was explored by co-encapsulating immune adjuvant CpG oligodeoxynucleotide (ODN) loaded black phosphorus-Au (BP-Au) nanosheets together with an indoleamine 2,3-dioxygenase (IDO) inhibitor (NLG919) by CCM, for the elimination of primary and metastatic breast tumors. The nano-vaccine could be delivered to tumor site selectively by CCM targeting and exhibit vaccine-like functions through the combined effect of in situ generated tumor-associate agents after PTT and immune adjuvant CpG, resulting in trigger of tumor-specific immunity. Furthermore, tumor inhibition was enhanced owing to the reversed immunosuppressive microenvironment mediated by IDO inhibitors. The nano-vaccine not only had good therapeutic effect on primary and metastatic tumors, but also could prevent tumor recurrence by producing systemic immune memory. Therefore, the photothermal nano-vaccine which coordinate in situ vaccine-like function and immune modulation may be a promising stragegy for photo-immunotherapy of metastatic tumors.
Collapse
Affiliation(s)
- Deqiu Huang
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine. Guangzhou. Guangdong. PR China
| | - Tong Wu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine. Guangzhou. Guangdong. PR China
| | - Siyuan Lan
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine. Guangzhou. Guangdong. PR China
| | - Chengkuan Liu
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine. Guangzhou. Guangdong. PR China
| | - Zhouyi Guo
- MOE Key Laboratory of Laser Life Science & SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China.
| | - Wen Zhang
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), School of Basic Medical Sciences, Guangzhou University of Chinese Medicine. Guangzhou. Guangdong. PR China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine. Guangzhou. Guangdong. PR China.
| |
Collapse
|
125
|
Zhu Z, Zhang C, Qian J, Feng N, Zhu W, Wang Y, Gong Y, Li X, Lin J, Zhou L. Construction and validation of a ferroptosis-related long noncoding RNA signature in clear cell renal cell carcinoma. Cancer Cell Int 2022; 22:283. [PMID: 36104748 PMCID: PMC9476564 DOI: 10.1186/s12935-022-02700-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/04/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Clear cell renal cell carcinoma (ccRCC) is characterized by the accumulation of lipid-reactive oxygen species. Ferroptosis, due to the lipid peroxidation, has been reported to be strongly correlated with tumorigenesis and progression. However, the functions of the ferroptosis process in ccRCC remain unclear.
Methods
After sample cleaning, data integration, and batch effect removal, we used the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases to screen out the expression and prognostic value of ferroptosis-related lncRNAs and then performed the molecular subtyping using the K-means method. Then, the functional pathway enrichment and immune microenvironment infiltration between the different clusters were carried out. The results showed a significant difference in immune cell infiltration between the two clusters and the associated marker responded to individualized differences in treatment. Then, least absolute shrinkage and selection operator (LASSO) Cox regression was used to establish a prognostic signature based on 5 lncRNAs. This signature could accurately predicted patient prognosis and served as an independent clinical risk factor. We then combined significant clinical parameters in multivariate Cox regression and the prognostic signature to construct a clinical predictive nomogram, which provides appropriate guidance for predicting the overall survival of ccRCC patients.
Results
The prognostic differentially expressed ferroptosis-related LncRNAs (DEFRlncRNAs) were found, and 5 lncRNAs were finally used to establish the prognostic signature in the TCGA cohort, with subsequently validation in the internal and external cohorts. Moreover, we conducted the molecular subtyping and divided the patients in the TCGA cohort into two clusters showing differences in Hallmark pathways, immune infiltration, immune target expression, and drug therapies. Differences between clusters contributed to individualizing treatment. Furthermore, a nomogram was established to better predict the clinical outcomes of the ccRCC patients.
Conclusions
Our study conducted molecular subtyping and established a novel predictive signature based on the ferroptosis-related lncRNAs, which contributed to the prognostic prediction and individualizing treatment of ccRCC patients.
Collapse
|
126
|
Chen M, Lin H, Zhang J, Pang X, Fan X, Luo S, Liu Z, Hu H, Lai S, Hou Y, Kang L, Huang L. Presence and clinical significance of acellular mucin pools in resected rectal cancer with pathological complete response after preoperative chemoradiotherapy. Histopathology 2022; 81:569-576. [DOI: 10.1111/his.14795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/25/2022] [Accepted: 08/06/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Mian Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
- Guangdong Institute of Gastroenterology 510655 Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
| | - Hongcheng Lin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
- Guangdong Institute of Gastroenterology 510655 Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
| | - Jianwei Zhang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
| | - Xiaolin Pang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
| | - Xinjuan Fan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
| | - Shuangling Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
- Guangdong Institute of Gastroenterology 510655 Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
| | - Zhanzhen Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
- Guangdong Institute of Gastroenterology 510655 Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
| | - Huanxin Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
- Guangdong Institute of Gastroenterology 510655 Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
| | - Sicong Lai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
- Guangdong Institute of Gastroenterology 510655 Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
| | - Yujie Hou
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
- Guangdong Institute of Gastroenterology 510655 Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
| | - Liang Kang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
- Guangdong Institute of Gastroenterology 510655 Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
| | - Liang Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
- Guangdong Institute of Gastroenterology 510655 Guangzhou Guangdong China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‐sen University 510655 Guangzhou Guangdong China
| |
Collapse
|
127
|
Chroni A, Miura S, Hamilton L, Vu T, Gaffney SG, Aly V, Karim S, Sanderford M, Townsend JP, Kumar S. Clone Phylogenetics Reveals Metastatic Tumor Migrations, Maps, and Models. Cancers (Basel) 2022; 14:cancers14174326. [PMID: 36077861 PMCID: PMC9454754 DOI: 10.3390/cancers14174326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Metastasis is the spread of cancer cells across organs and is a major cause of cancer mortality. Analysis of tumor sequencing data provides a means toward the reconstruction of routes of metastatic cell migrations. Our reconstructions demonstrated that many metastases were likely seeded from pre-existing metastasis of primary tumors. Additionally, multiple clone exchanges between tumor sites were common. In conclusion, the pattern of cancer cell migrations is often complex and is highly variable among patients. Abstract Dispersal routes of metastatic cells are not medically detected or even visible. A molecular evolutionary analysis of tumor variation provides a way to retrospectively infer metastatic migration histories and answer questions such as whether the majority of metastases are seeded from clones within primary tumors or seeded from clones within pre-existing metastases, as well as whether the evolution of metastases is generally consistent with any proposed models. We seek answers to these fundamental questions through a systematic patient-centric retrospective analysis that maps the dynamic evolutionary history of tumor cell migrations in many cancers. We analyzed tumor genetic heterogeneity in 51 cancer patients and found that most metastatic migration histories were best described by a hybrid of models of metastatic tumor evolution. Synthesizing across metastatic migration histories, we found new tumor seedings arising from clones of pre-existing metastases as often as they arose from clones from primary tumors. There were also many clone exchanges between the source and recipient tumors. Therefore, a molecular phylogenetic analysis of tumor variation provides a retrospective glimpse into general patterns of metastatic migration histories in cancer patients.
Collapse
Affiliation(s)
- Antonia Chroni
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Sayaka Miura
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Lauren Hamilton
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Tracy Vu
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | | | - Vivian Aly
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Sajjad Karim
- Center for Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Maxwell Sanderford
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale University, New Haven, CT 06510, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06525, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
- Center for Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Correspondence:
| |
Collapse
|
128
|
Xia F, Ma Y, Chen K, Duong B, Ahmed S, Atwal R, Philpott D, Ketela T, Pantea J, Lin S, Angers S, Kelley SO. Genome-wide in vivo screen of circulating tumor cells identifies SLIT2 as a regulator of metastasis. SCIENCE ADVANCES 2022; 8:eabo7792. [PMID: 36054348 PMCID: PMC10848953 DOI: 10.1126/sciadv.abo7792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Circulating tumor cells (CTCs) break free from primary tumors and travel through the circulation system to seed metastatic tumors, which are the major cause of death from cancer. The identification of the major genetic factors that enhance production and persistence of CTCs in the bloodstream at a whole genome level would enable more comprehensive molecular mechanisms of metastasis to be elucidated and the identification of novel therapeutic targets, but this remains a challenging task due to the heterogeneity and extreme rarity of CTCs. Here, we describe an in vivo genome-wide CRISPR knockout screen using CTCs directly isolated from a mouse xenograft. This screen elucidated SLIT2-a gene encoding a secreted protein acting as a cellular migration cue-as the most significantly represented gene knockout in the CTC population. SLIT2 knockout cells are highly metastatic with hypermigratory and mesenchymal phenotype, resulting in enhanced cancer progression in xenograft models.
Collapse
Affiliation(s)
- Fan Xia
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Yuan Ma
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P.R. China
| | - Kangfu Chen
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Bill Duong
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Randy Atwal
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - David Philpott
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Troy Ketela
- Princess Margret Genomics Centre, University Health Network, Toronto, Ontario, Canada
| | - Jennifer Pantea
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Sichun Lin
- Donnelly Centre for Cellular & Biomolecular Research, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Donnelly Centre for Cellular & Biomolecular Research, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, ON, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
129
|
Pallikonda HA, Turajlic S. Predicting cancer evolution for patient benefit: Renal cell carcinoma paradigm. Biochim Biophys Acta Rev Cancer 2022; 1877:188759. [PMID: 35835341 DOI: 10.1016/j.bbcan.2022.188759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Evolutionary features of cancer have important clinical implications, but their evaluation in the clinic is currently limited. Here, we review current approaches to reconstruct tumour subclonal structure and discuss tumour sampling method and experimental design influence. We describe clear-cell renal cell carcinoma (ccRCC) as an exemplar for understanding and predicting cancer evolutionary dynamics. Finally, we discuss how understanding cancer evolution can benefit patients.
Collapse
Affiliation(s)
| | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom; Skin and Renal Units, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Melanoma and Kidney Cancer Team, Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
130
|
Gao T, Chen F, Li M. Sequencing of cerebrospinal fluid in non-small-cell lung cancer patients with leptomeningeal metastasis: A systematic review. Cancer Med 2022; 12:2248-2261. [PMID: 36000927 PMCID: PMC9939157 DOI: 10.1002/cam4.5163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/14/2022] [Accepted: 08/12/2022] [Indexed: 11/07/2022] Open
Abstract
Leptomeningeal metastasis (LM) refers to the dissemination of malignant cells in the subarachnoid space, pia, and arachnoid mater and is a severe condition associated with metastatic solid tumors. The most common solid tumor that develops into LM is lung cancer and the incidence increased in patients with advanced non-small-cell lung cancer (NSCLC) with targetable mutations. However, tissue biopsy of LM is inaccessible, leading to the paucity of genomic profiles of LM to guide targeted treatments and explore biological mechanisms. In recent years, liquid biopsy is considered a minimally invasive and dynamic method to trace the genomic alterations of cancer cells and some studies started to perform sequencing of cerebrospinal fluid (CSF) in patients with LM to reveal the targeted mutations and genomic profiles. In this review, we focused on studies performed sequencing of CSF in NSCLC patients with LM and summarized the sequencing results and their commonality. As the only way to reveal the genomic landscapes of LM, our review provided evidence that sequencing of CSF is a promising management method in LM patients to dynamically guide target therapy and monitor intracranial tumor response. Furthermore, it reveals a unique genomic profile of LM including driver genes, drug-resistant mutations, and a number of copy number variations. Sequencing of CSF in LM patients seems to provide more comprehensive genomic information than we expected and the biological significance behind the genomic alternations needs further study.
Collapse
Affiliation(s)
- Tianqi Gao
- Department of OncologyThe Second Hospital of Dalian Medical UniversityDalianChina
| | - Fengxi Chen
- Department of OncologyThe Second Hospital of Dalian Medical UniversityDalianChina
| | - Man Li
- Department of OncologyThe Second Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
131
|
Bogdanova NV, Radmanesh H, Ramachandran D, Knoechelmann AC, Christiansen H, Derlin T, von Klot CAJ, Merten R, Henkenberens C. The Prognostic Value of Liquid Biopsies for Benefit of Salvage Radiotherapy in Relapsed Oligometastatic Prostate Cancer. Cancers (Basel) 2022; 14:cancers14174095. [PMID: 36077632 PMCID: PMC9454496 DOI: 10.3390/cancers14174095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Around 30% of patients with oligometastatic prostate cancer relapse will benefit from local PET/CT-guided ablative radiotherapy (RT) with improved progression-free and ADT (Androgene Deprivation Therapy)-free survivals. Therefore, there is an urgent need for predictive testing for therapeutic benefits prior to initiation. Various tests have already been established on tumor specimens for the prediction of prostate cancer’s behavior or therapy outcome. However, in imaging-proven relapse tumor tissue from the local recurrence or metastases is often not available. Hence, there is a need for a liquid biopsy-based testing. We aimed to assess the prognostic value of CTCs- associated mRNA and blood-derived RNA for the benefit of PSMA PET-guided salvage RT in oligometastatic prostate cancer relapses. Significant correlations were found between the relative transcript levels of several investigated genes and clinicopathological parameters. Furthermore, distinct “transcriptional signatures” were found in patients with temporary and long-term benefits from RT. Abstract To assess the prognostic value of “liquid biopsies” for the benefit of salvage RT in oligometastatic prostate cancer relapse, we enrolled 44 patients in the study between the years 2016 and 2020. All the patients were diagnosed as having an oligometastatic prostate cancer relapse on prostate-specific membrane antigen (PSMA)-targeted PET-CT and underwent irradiation at the Department of Radiotherapy at the Hannover Medical School. Tumor cells and total RNA, enriched from the liquid biopsies of patients, were processed for the subsequent quantification analysis of relative transcript levels in real-time PCR. In total, 54 gene transcripts known or suggested to be associated with prostate cancer or treatment outcome were prioritized for analysis. We found significant correlations between the relative transcript levels of several investigated genes and the Gleason score, PSA (prostate-specific antigen) value, or UICC stage (tumor node metastasis -TNM classification of malignant tumors from Union for International Cancer Control). Furthermore, a significant association of MTCO2, FOXM1, SREBF1, HOXB7, FDXR, and MTRNR transcript profiles was found with a temporary and/or long-term benefit from RT. Further studies on larger patients cohorts are necessary to prove our preliminary findings for establishing liquid biopsy tests as a predictive examination method prior to salvage RT.
Collapse
Affiliation(s)
- Natalia V. Bogdanova
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Hoda Radmanesh
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Dhanya Ramachandran
- Gynecology Research Unit, Clinics of Obstetrics and Gynaecology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Hans Christiansen
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany
| | | | - Roland Merten
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-(0)-511-532-3590
| | | |
Collapse
|
132
|
Yao Q, Zhang X, Chen D. The emerging potentials of lncRNA DRAIC in human cancers. Front Oncol 2022; 12:867670. [PMID: 35992823 PMCID: PMC9386314 DOI: 10.3389/fonc.2022.867670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNA (lncRNA) is a subtype of noncoding RNA that has more than 200 nucleotides. Numerous studies have confirmed that lncRNA is relevant during multiple biological processes through the regulation of various genes, thus affecting disease progression. The lncRNA DRAIC, a newly discovered lncRNA, has been found to be abnormally expressed in a variety of diseases, particularly cancer. Indeed, the dysregulation of DRAIC expression is closely related to clinicopathological features. It was also reported that DRAIC is key to biological functions such as cell proliferation, autophagy, migration, and invasion. Furthermore, DRAIC is of great clinical significance in human disease. In this review, we discuss the expression signature, clinical characteristics, biological functions, relevant mechanisms, and potential clinical applications of DRAIC in several human diseases.
Collapse
Affiliation(s)
- Qinfan Yao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Xiuyuan Zhang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Dajin Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
- *Correspondence: Dajin Chen,
| |
Collapse
|
133
|
Engineering micro oxygen factories to slow tumour progression via hyperoxic microenvironments. Nat Commun 2022; 13:4495. [PMID: 35918337 PMCID: PMC9345862 DOI: 10.1038/s41467-022-32066-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
While hypoxia promotes carcinogenesis, tumour aggressiveness, metastasis, and resistance to oncological treatments, the impacts of hyperoxia on tumours are rarely explored because providing a long-lasting oxygen supply in vivo is a major challenge. Herein, we construct micro oxygen factories, namely, photosynthesis microcapsules (PMCs), by encapsulation of acquired cyanobacteria and upconversion nanoparticles in alginate microcapsules. This system enables a long-lasting oxygen supply through the conversion of external radiation into red-wavelength emissions for photosynthesis in cyanobacteria. PMC treatment suppresses the NF-kB pathway, HIF-1α production and cancer cell proliferation. Hyperoxic microenvironment created by an in vivo PMC implant inhibits hepatocarcinoma growth and metastasis and has synergistic effects together with anti-PD-1 in breast cancer. The engineering oxygen factories offer potential for tumour biology studies in hyperoxic microenvironments and inspire the exploration of oncological treatments.
Collapse
|
134
|
Guo N, Chen Y, Jing Z, Liu S, Su J, Li R, Duan X, Chen Z, Chen P, Yin R, Li S, Tang J. Molecular Features in Lymphatic Metastases Reflect the Metastasis Mechanism of Lymph Nodes With Non-Small-Cell Lung Cancers. Front Bioeng Biotechnol 2022; 10:909388. [PMID: 35923575 PMCID: PMC9341247 DOI: 10.3389/fbioe.2022.909388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Lymphatic metastasis influences clinical treatment and prognosis of patients with non-small-cell lung cancer (NSCLC). There is an urgency to understand the molecular features and mechanisms of lymph node metastasis. We analyzed the molecular features on pairs of the primary tumor and lymphatic metastasis tissue samples from 15 NSCLC patients using targeted next-generation sequencing. The potential metastasis-related genes were screened from our cohort based on cancer cell fraction. After filtering with gene functions, candidate metastasis-related events were validated in the MSK cohort with Fisher's exact test. The molecular signature and tumor mutational burden were similar in paired samples, and the average mutational concordance was 42.0% ± 28.9%. Its metastatic mechanism is potentially a linear progression based on the metastatic seeding theory. Furthermore, mutated ataxia telangiectasia mutated and Rad3-related (ATR) and tet methylcytosine dioxygenase 2 (TET2) genes were significantly enriched in lymphatic metastases (p ≤ 0.05). Alterations in these two genes could be considered metastasis-related driving events. Mutated ATR and TET2 might play an active role in the metastasis of lymph nodes with NSCLC. More case enrollment and long-term follow-up will further verify the clinical significance of these two genes.
Collapse
Affiliation(s)
- Nannan Guo
- Department of Thoracic Surgery, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yuanyuan Chen
- Department of Ultrasound, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Zhongying Jing
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Siyao Liu
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Junyan Su
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Ruilin Li
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Duan
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Zhigong Chen
- Department of Thoracic Surgery, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Ping Chen
- Department of Thoracic Surgery, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Rongjiang Yin
- Department of Thoracic Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shaojun Li
- Department of Thoracic Surgery, Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Jian Tang
- Department of Thoracic Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| |
Collapse
|
135
|
Zhai D, Huang J, Hu Y, Wan C, Sun Y, Meng J, Zi H, Lu L, He Q, Hu Y, Jin H, Yang K. Irradiated Tumor Cell-Derived Microparticles Prevent Lung Metastasis by Remodeling the Pulmonary Immune Microenvironment. Int J Radiat Oncol Biol Phys 2022; 114:502-515. [PMID: 35840114 DOI: 10.1016/j.ijrobp.2022.06.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022]
Abstract
PURPOSE The majority of cancer-related deaths are attributed to metastasis rather than localized primary tumor progression. However, the factors that regulate the pre-metastatic niche (PMN) and metastasis have not yet been clearly elucidated. We investigated the antimetastatic effects of irradiated tumor cell-derived microparticles (RT-MPs) and highlighted the role of innate immune cells in PMN formation. METHODS AND MATERIALS Mice were treated three times with isolated RT-MPs, followed by tumor cell injection via the tail vein. H&E staining was performed to assess the number of tumor nodules in the lungs, and in vivo luciferase-based noninvasive bioluminescence imaging was conducted to detected tumor burden. The mechanisms of RT-MPs mediated PMN formation was evaluated using flow cytometry, transwell assay, and RT-PCR. RESULTS RT-MPs inhibited tumor cell colonization in the lungs. Neutrophils phagocytosed RT-MPs and secreted CCL3 and CCL4, which induced monocytes chemotaxis and maturation into macrophages. RT-MPs promoted the transition of neutrophils and macrophages into antitumor phenotypes, hence inhibiting cancer cell colonization and proliferation. CONCLUSIONS RT-MPs inhibited PMN formation and lung metastasis in a neutrophil- and macrophage-dependent but T cell-independent manner.
Collapse
Affiliation(s)
- Danyi Zhai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huaduan Zi
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lisen Lu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianyuan He
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
136
|
Ma Y, Di Y, Li Q, Zhan Q, He X, Liu S, Zou H, Corpe C, Chen L, Wang J. LncRNAs as epigenetic regulators of epithelial to mesenchymal transition in pancreatic cancer. Discov Oncol 2022; 13:61. [PMID: 35819532 PMCID: PMC9276894 DOI: 10.1007/s12672-022-00522-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/01/2022] [Indexed: 11/04/2022] Open
Abstract
Pancreatic cancer is the leading cause of cancer-related mortality because of tumor metastasis. Activation of the epithelial-to-mesenchymal transition (EMT) pathway has been confirmed to be an important driver of pancreatic cancer progression from initiation to metastasis. Long noncoding RNAs (lncRNAs) have been reported to exert essential physiological functions in pancreatic cancer progression by regulating the EMT program. In this review, we have summarized the role of EMT-related lncRNAs in human pancreatic cancer and the potential molecular mechanisms by which lncRNAs can be vital epigenetic regulators of epithelial to mesenchymal transition. Specifically, EMT-activating transcription factors (EMT-TFs) regulate EMT via TGF-β/Smad, Wnt/β-catenin, and JAK/STAT pathways. In addition, the interaction between lncRNAs and HIF-1α and m6A RNA methylation also have an impact on tumor metastasis and EMT in pancreatic cancer. This review will provide insights into lncRNAs as promising biomarkers for tumor metastasis and potential therapeutic strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Yan Ma
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Yang Di
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiuyue Li
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Qilin Zhan
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Xiaomeng He
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Shanshan Liu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Heng Zou
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Christopher Corpe
- King's College London, Nutritional Science Department, 150 Stamford Street, Waterloo, London, SE19NH, UK
| | - Litian Chen
- Department of Hepatobiliary Surgery, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Kongjiang Road 1665, Shanghai, China.
| | - Jin Wang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
137
|
Yun H, Im HJ, Choe C, Roh S. Effect of LOXL2 on metastasis through remodeling of the cell surface matrix in non-small cell lung cancer cells. Gene 2022; 830:146504. [PMID: 35483499 DOI: 10.1016/j.gene.2022.146504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022]
Abstract
Lung cancer is the prominent cause of cancer-associated death primarily because of distant metastatic disease. The metastatic potential of non-small cell lung cancer (NSCLC) is associated with tumor cell aggregation. However, the systemic mechanotransduction mechanism by which tumor cells dynamically aggregate and disseminate is poorly understood, especially in NSCLC. In this study, we examine whether the cell surface matrix plays an important role in metastasis. We used poly-2-hydroxyethyl methacrylate-based 3D spheroid formation methods to mimic in vivo metastatic lesions. Supra-structural analysis of human NSCLC A549 cells stained with ruthenium red for transmission electron microscopy (TEM) showed that glycocalyx surrounding the cell surface in 2D culture decreases in 3D culture. Comprehensive gene expression analysis revealed that the genes associated with cell adhesion were distinctly enriched in A549 cell spheroids. Of these, downregulation of the tumor metastatic microenvironment facilitator LOXL2, a copper-dependent enzyme catalyzing posttranslational oxidative deamination of peptidyl lysine, was of special interest. Knockdown of LOXL2 thickened the cell surface matrix in 2D culture and impaired compact aggregate formation in 3D culture. Moreover, A549 cell spheroids with endogenous overexpression of LOXL2 increased their dissemination on basement extracellular matrix Matrigel. Overall, these data imply that cell detachment-downregulated LOXL2 contributes to cell surface matrix remodeling, leading to collective dissemination of free-floating aggregates.
Collapse
Affiliation(s)
- Heesu Yun
- Cellular Reprogramming and Embryo Biotechnology Lab, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Hee-Jeong Im
- Department of Biomedical Engineering, University of Illinois, Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, IL, USA
| | - Chungyoul Choe
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea.
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Lab, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea.
| |
Collapse
|
138
|
Extracellular Heat Shock Protein-90 (eHsp90): Everything You Need to Know. Biomolecules 2022; 12:biom12070911. [PMID: 35883467 PMCID: PMC9313274 DOI: 10.3390/biom12070911] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
Abstract
“Extracellular” Heat Shock Protein-90 (Hsp90) was initially reported in the 1970s but was not formally recognized until 2008 at the 4th International Conference on The Hsp90 Chaperone Machine (Monastery Seeon, Germany). Studies presented under the topic of “extracellular Hsp90 (eHsp90)” at the conference provided direct evidence for eHsp90’s involvement in cancer invasion and skin wound healing. Over the past 15 years, studies have focused on the secretion, action, biological function, therapeutic targeting, preclinical evaluations, and clinical utility of eHsp90 using wound healing, tissue fibrosis, and tumour models both in vitro and in vivo. eHsp90 has emerged as a critical stress-responding molecule targeting each of the pathophysiological conditions. Despite the studies, our current understanding of several fundamental questions remains little beyond speculation. Does eHsp90 indeed originate from purposeful live cell secretion or rather from accidental dead cell leakage? Why did evolution create an intracellular chaperone that also functions as a secreted factor with reported extracellular duties that might be (easily) fulfilled by conventional secreted molecules? Is eHsp90 a safer and more optimal drug target than intracellular Hsp90 chaperone? In this review, we summarize how much we have learned about eHsp90, provide our conceptual views of the findings, and make recommendations on the future studies of eHsp90 for clinical relevance.
Collapse
|
139
|
Association of PTPRT Mutations with Cancer Metastasis in Multiple Cancer Types. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9386477. [PMID: 35789644 PMCID: PMC9250438 DOI: 10.1155/2022/9386477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022]
Abstract
Metastasis is one of the characteristics of advanced cancer and the primary cause of cancer-related deaths from cancer, but the mechanism underlying metastasis is unclear, and there is a lack of metastasis markers. PTPRT is a protein-coding gene involved in both signal transduction and cellular adhesion. It is also known as a tumor suppressor gene that inhibits cell malignant proliferation by inhibiting the STAT3 pathway. Recent studies have reported that PTPRT is involved in the early metastatic seeding of colorectal cancer; however, the correlation between PTPRT and metastasis in other types of cancer has not been revealed. A combined analysis using a dataset from the genomics evidence neoplasia information exchange (GENIE) and cBioPortal revealed that PTPRT mutation is associated with poor prognosis in pan-cancer and non-small-cell lung cancer. The mutations of PTPRT or “gene modules” containing PTPRT are significantly enriched in patients with metastatic cancer in multiple cancers, suggesting that the PTPRT mutations serve as potential biomarkers of cancer metastasis.
Collapse
|
140
|
Hu J, Wang M, Yang Y, Xing Y, Li S. LncRNA DLEU2 silencing impedes the migration, invasion and EMT in gastric cancer cell by suppressing PI3K/AKT signaling pathway. Immunopharmacol Immunotoxicol 2022; 44:719-731. [PMID: 35736813 DOI: 10.1080/08923973.2022.2078727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Context: The high expression of long non-coding RNA deleted in lymphocytic leukaemia 2 (lncRNA DLEU2) has been confirmed in gastric cancer (GC).Objective: However, the detailed mechanism concerning its involvement in GC remained unclear, which we aimed to explore in this study.Materials and methods: LncRNA DLEU2 expression in GC was estimated by bioinformatic analysis, and the relationship between the expression of DLEU2 and the clinicopathological characteristics of patients with GC was performed. qRT-PCR was employed to detect the expression of lncRNA DLEU2 and confirm the transfection efficiency following the knockdown or overexpression of DLEU2. Functional assays, including CCK-8, flow cytometry, scratching test and Transwell assays, were used to determine the role of DLEU2 in tumor phenotypes. The effects of DLEU2 on the PI3K/Akt pathway were detected by western blot. For elucidating the functions of DLEU2/PI3K/Akt axis in GC, we inhibited the PI3K/Akt pathway in rescue experiments, and evaluated the expression levels of epithelial-mesenchymal transition (EMT)-related proteins by western blot.Results: The expression of DLEU2 was aberrantly up-regulated in GC tissues and cells, which was correlated with the degree of tumor differentiation, cancer antigen 19-9 (CA19-9) and Lauren histologic classification of patients with GC. Silencing of DLEU2 induced apoptosis, attenuated viability, migration and invasion as well as inhibited the PI3K/Akt signaling pathway in GC cells. Mechanistically, the DLEU2/PI3K/Akt axis promoted the progression of GC and the EMT by down-regulating the expression of E-Cadherin and up-regulating those of N-Cadherin and Vimentin.Discussion and conclusions: LncRNA DLEU2 promoted the migration, invasion and EMT in GC by activating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Jun Hu
- Oncology Department, Gaochun People's Hospital, Nanjing City, China
| | - Mingyun Wang
- Oncology Department, Gaochun People's Hospital, Nanjing City, China
| | - Yang Yang
- Oncology Department, Nanjing Drum Tower Hospital (Gaochun Branch), Nanjing City, China
| | - Yajun Xing
- Oncology Department, Gaochun People's Hospital, Nanjing City, China
| | - Shuanggen Li
- Oncology Department, Gaochun People's Hospital, Nanjing City, China
| |
Collapse
|
141
|
Christensen DS, Ahrenfeldt J, Sokač M, Kisistók J, Thomsen MK, Maretty L, McGranahan N, Birkbak NJ. Treatment represents a key driver of metastatic cancer evolution. Cancer Res 2022; 82:2918-2927. [PMID: 35731928 DOI: 10.1158/0008-5472.can-22-0562] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Metastasis is the main cause of cancer death, yet the evolutionary processes behind it remain largely unknown. Here, through analysis of large panel-based genomic datasets from the AACR GENIE project, including 40,979 primary and metastatic tumors across 25 distinct cancer types, we explore how the evolutionary pressure of cancer metastasis shapes the selection of genomic drivers of cancer. The most commonly affected genes were TP53, MYC, and CDKN2A, with no specific pattern associated with metastatic disease. This suggests that, on a driver mutation level, the selective pressure operating in primary and metastatic tumors is similar. The most highly enriched individual driver mutations in metastatic tumors were mutations known to drive resistance to hormone therapies in breast and prostate cancer (ESR1 and AR), anti-EGFR therapy in non-small cell lung cancer (EGFR T790M), and imatinib in gastrointestinal cancer (KIT V654A). Specific mutational signatures were also associated with treatment in three cancer types, supporting clonal selection following anti-cancer therapy. Overall, this implies that initial acquisition of driver mutations is predominantly shaped by the tissue of origin, where specific mutations define the developing primary tumor and drive growth, immune escape, and tolerance to chromosomal instability. However, acquisition of driver mutations that contribute to metastatic disease is less specific, with the main genomic drivers of metastatic cancer evolution associating with resistance to therapy.
Collapse
Affiliation(s)
- Ditte S Christensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Johanne Ahrenfeldt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mateo Sokač
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Judit Kisistók
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Lasse Maretty
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, London, United Kingdom
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, United Kingdom
| | - Nicolai J Birkbak
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| |
Collapse
|
142
|
Endo Y, Suzuki K, Kimura Y, Tamaki S, Aizawa H, Abe I, Watanabe F, Kato T, Saito M, Futsuhara K, Noda H, Konishi F, Rikiyama T. Genome‑wide DNA hypomethylation drives a more invasive pancreatic cancer phenotype and has predictive occult distant metastasis and prognosis potential. Int J Oncol 2022; 60:61. [PMID: 35419613 PMCID: PMC9015190 DOI: 10.3892/ijo.2022.5351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/22/2022] [Indexed: 11/06/2022] Open
Abstract
Genome‑wide DNA hypomethylation is the most common molecular feature in human cancers associated with chromosomal instability (CIN), which is involved in the mechanisms that regulate pancreatic cancer (PC) metastasis. It was investigated whether genome‑wide DNA hypomethylation affects the phenotype in PC via CIN in vitro, and its significance on the biological behavior of PC was verified. The relative demethylation level (RDL) of long interspersed nucleotide element‑1 (LINE‑1) in human PC cell lines was used to characterize DNA hypomethylation using methylation‑specific quantitative (q)PCR. CIN was estimated by changes in chromosomal copy number using comparative genomic hybridization analysis. Abnormal segregation of chromosomes was assessed by immunocytochemistry, and the DNA damage response was evaluated using the number of anti‑γH2AX positive cells. Invasion ability was assessed using a Matrigel invasion assay. Clinical specimens from 49 patients with PC who underwent curative surgery were evaluated for a correlation of DNA hypomethylation with clinical outcome. Successful induction of genome‑wide DNA hypomethylation in PC cells led to copy number changes in specific chromosomal regions. The number of cells with abnormal segregation of chromosomes significantly increased with the number of anti‑γH2AX positive cells. The invasive potential of these cells also significantly increased. The occurrence of occult distant metastasis in the clinical specimens and receiver operating characteristic analysis clearly identified those who were and were not likely to have occult distant metastasis, with high LINE‑1 RDL significantly correlated with the presence of occult distant metastasis (P=0.035) and poor prognosis (P=0.048). The significance of genome‑wide DNA hypomethylation on the biological behavior of PC, which promotes a more invasive phenotype via CIN in vitro and predicts the susceptibility to occult distant metastasis and poor prognosis in patients with PC was revealed.
Collapse
Affiliation(s)
- Yuhei Endo
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Koichi Suzuki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Yasuaki Kimura
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Sawako Tamaki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Hidetoshi Aizawa
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Iku Abe
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Fumiaki Watanabe
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Takaharu Kato
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Masaaki Saito
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Kazushige Futsuhara
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Hiroshi Noda
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | | | - Toshiki Rikiyama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| |
Collapse
|
143
|
Yang D, Jones MG, Naranjo S, Rideout WM, Min KHJ, Ho R, Wu W, Replogle JM, Page JL, Quinn JJ, Horns F, Qiu X, Chen MZ, Freed-Pastor WA, McGinnis CS, Patterson DM, Gartner ZJ, Chow ED, Bivona TG, Chan MM, Yosef N, Jacks T, Weissman JS. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 2022; 185:1905-1923.e25. [PMID: 35523183 DOI: 10.1016/j.cell.2022.04.015] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 12/19/2022]
Abstract
Tumor evolution is driven by the progressive acquisition of genetic and epigenetic alterations that enable uncontrolled growth and expansion to neighboring and distal tissues. The study of phylogenetic relationships between cancer cells provides key insights into these processes. Here, we introduced an evolving lineage-tracing system with a single-cell RNA-seq readout into a mouse model of Kras;Trp53(KP)-driven lung adenocarcinoma and tracked tumor evolution from single-transformed cells to metastatic tumors at unprecedented resolution. We found that the loss of the initial, stable alveolar-type2-like state was accompanied by a transient increase in plasticity. This was followed by the adoption of distinct transcriptional programs that enable rapid expansion and, ultimately, clonal sweep of stable subclones capable of metastasizing. Finally, tumors develop through stereotypical evolutionary trajectories, and perturbing additional tumor suppressors accelerates progression by creating novel trajectories. Our study elucidates the hierarchical nature of tumor evolution and, more broadly, enables in-depth studies of tumor progression.
Collapse
Affiliation(s)
- Dian Yang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Matthew G Jones
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Biological and Medical Informatics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Integrative Program in Quantitative Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Santiago Naranjo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - William M Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Kyung Hoi Joseph Min
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Raymond Ho
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph M Replogle
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer L Page
- Cell and Genome Engineering Core, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey J Quinn
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Felix Horns
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xiaojie Qiu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Michael Z Chen
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Medical Scientist Training Program, Harvard Medical School, Boston, MA 02115, USA
| | - William A Freed-Pastor
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Christopher S McGinnis
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David M Patterson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg BioHub Investigator, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Cellular Construction, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eric D Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Advanced Technology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michelle M Chan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg BioHub Investigator, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA 94720, USA; Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA, USA.
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
144
|
Guan X, Sun L, Shen Y, Jin F, Bo X, Zhu C, Han X, Li X, Chen Y, Xu H, Yue W. Nanoparticle-enhanced radiotherapy synergizes with PD-L1 blockade to limit post-surgical cancer recurrence and metastasis. Nat Commun 2022; 13:2834. [PMID: 35595770 PMCID: PMC9123179 DOI: 10.1038/s41467-022-30543-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/05/2022] [Indexed: 01/22/2023] Open
Abstract
Cancer recurrence after surgical resection (SR) is a considerable challenge, and the biological effect of SR on the tumor microenvironment (TME) that is pivotal in determining postsurgical treatment efficacy remains poorly understood. Here, with an experimental model, we demonstrate that the genomic landscape shaped by SR creates an immunosuppressive milieu characterized by hypoxia and high-influx of myeloid cells, fostering cancer progression and hindering PD-L1 blockade therapy. To address this issue, we engineer a radio-immunostimulant nanomedicine (IPI549@HMP) capable of targeting myeloid cells, and catalyzing endogenous H2O2 into O2 to achieve hypoxia-relieved radiotherapy (RT). The enhanced RT-mediated immunogenic effect results in postsurgical TME reprogramming and increased susceptibility to anti-PD-L1 therapy, which can suppress/eradicate locally residual and distant tumors, and elicits strong immune memory effects to resist tumor rechallenge. Our radioimmunotherapy points to a simple and effective therapeutic intervention against postsurgical cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Xin Guan
- Department of Medical Ultrasound and Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment; National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P. R. China
| | - Liping Sun
- Department of Medical Ultrasound and Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment; National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P. R. China
| | - Yuting Shen
- Department of Medical Ultrasound and Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment; National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P. R. China
| | - Fengshan Jin
- Department of Medical Ultrasound and Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment; National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P. R. China
| | - Xiaowan Bo
- Department of Medical Ultrasound and Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment; National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P. R. China
| | - Chunyan Zhu
- Department of Medical Ultrasound and Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment; National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P. R. China
| | - Xiaoxia Han
- Department of Medical Ultrasound and Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment; National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P. R. China
| | - Xiaolong Li
- Department of Medical Ultrasound and Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, 200072, P.R. China
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment; National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Huixiong Xu
- Department of Medical Ultrasound and Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China.
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, 200072, P.R. China.
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment; National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P. R. China.
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.
| | - Wenwen Yue
- Department of Medical Ultrasound and Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China.
- Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai, 200072, P.R. China.
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment; National Clinical Research Center for Interventional Medicine, Shanghai, 200072, P. R. China.
| |
Collapse
|
145
|
Pich O, Bailey C, Watkins TBK, Zaccaria S, Jamal-Hanjani M, Swanton C. The translational challenges of precision oncology. Cancer Cell 2022; 40:458-478. [PMID: 35487215 DOI: 10.1016/j.ccell.2022.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
Abstract
The translational challenges in the field of precision oncology are in part related to the biological complexity and diversity of this disease. Technological advances in genomics have facilitated large sequencing efforts and discoveries that have further supported this notion. In this review, we reflect on the impact of these discoveries on our understanding of several concepts: cancer initiation, cancer prevention, early detection, adjuvant therapy and minimal residual disease monitoring, cancer drug resistance, and cancer evolution in metastasis. We discuss key areas of focus for improving cancer outcomes, from biological insights to clinical application, and suggest where the development of these technologies will lead us. Finally, we discuss practical challenges to the wider adoption of molecular profiling in the clinic and the need for robust translational infrastructure.
Collapse
Affiliation(s)
- Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK; Department of Medical Oncology, University College London Hospitals, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
146
|
Rogiers A, Lobon I, Spain L, Turajlic S. The Genetic Evolution of Metastasis. Cancer Res 2022; 82:1849-1857. [PMID: 35476646 DOI: 10.1158/0008-5472.can-21-3863] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
Cancer is an evolutionary process that is characterized by the emergence of multiple genetically distinct populations or clones within the primary tumor. Intratumor heterogeneity provides a substrate for the selection of adaptive clones, such as those that lead to metastasis. Comparative molecular studies of primary tumors and metastases have identified distinct genomic features associated with the development of metastases. In this review, we discuss how these insights could inform clinical decision-making and uncover rational antimetastasis treatment strategies.
Collapse
Affiliation(s)
- Aljosja Rogiers
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom.,Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Irene Lobon
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Lavinia Spain
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom.,Medical Oncology Department, Peter MacCallum Cancer Centre, Melbourne, Australia.,Medical Oncology Department, Eastern Health, Melbourne Australia.,Eastern Health Clinical School, Monash University, Box Hill, Australia
| | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom.,Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, United Kingdom.,Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
147
|
Zhang W, Han W, Yu B, Zhao X, Lu G, Wu W, Zhang Y. Clinical features and prognosis according to genomic mutations in primary and metastatic lesions of non‐small‐cell lung cancer. Thorac Cancer 2022; 13:1642-1650. [PMID: 35466584 PMCID: PMC9161321 DOI: 10.1111/1759-7714.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
Non‐small‐cell lung cancer (NSCLC) is an important cause of cancer‐related death worldwide. The distant metastasis heterogeneity of gene tumor mutations in tumors of NSCLC patients brings critical challenges for treatment. We sequenced the primary tumors and metastatic tissues of 48 NSCLC patients through 363 tumor‐related gene panels to examine gene mutations in primary tumors and metastatic tissues, and screen candidate carcinogenic and metastatic‐related driver mutations. The patient group included 21 patients in the metastatic group and 27 patients in the non‐metastatic group. The patient's median age was 62 years and 54% (26/48) of patients were women. Approximately 75% (36/48) of patients were non‐smokers. The mutation spectrum results showed that epidermal growth factor receptor (EGFR) gene mutation was the most frequent mutation (68.75%), followed by TP53 mutation (45.83%); 19del accounted for the largest proportion of EGFR mutations. Copy number variation (CNV) mutation spectrum results showed that EGFR amplification was more common in the metastatic group than the non‐metastatic group. The mutant‐allele tumor heterogeneity value of the metastatic group was higher than that of the non‐metastatic group (p = 0.013). The progression‐free survival of the metastatic group was significantly shorter than that in the non‐metastatic group (p = 0.041). Single nucleotide variant difference analysis showed that the frequency of TP53 mutations was higher in the metastasis group. The number of subclonal mutations in the primary and metastatic lesions in the metastasis group was significantly different; the number of subclonal sites in metastatic lesions was higher than that in primary lesions. Our results suggested that the gene mutations of NSCLC in primary and metastatic lesions and identified specific mutations related to metastasis of NSCLC. Our research will help to clarify key differences between gene mutations between primary and metastatic NSCLC. These findings will help to provide new theoretical support for the future targeted therapy of metastatic NSCLC.
Collapse
Affiliation(s)
- Wei Zhang
- Thoracic Surgery Department, Xuanwu Hospital Capital Medical University Beijing China
| | | | - Bo Yu
- Berry Oncology Corporation Fuzhou China
| | - Xin Zhao
- Thoracic Surgery Department, Xuanwu Hospital Capital Medical University Beijing China
| | - Gaojun Lu
- Thoracic Surgery Department, Xuanwu Hospital Capital Medical University Beijing China
| | - Wendy Wu
- Berry Oncology Corporation Fuzhou China
| | - Yi Zhang
- Thoracic Surgery Department, Xuanwu Hospital Capital Medical University Beijing China
| |
Collapse
|
148
|
Jia Q, Wang A, Yuan Y, Zhu B, Long H. Heterogeneity of the tumor immune microenvironment and its clinical relevance. Exp Hematol Oncol 2022; 11:24. [PMID: 35461288 PMCID: PMC9034473 DOI: 10.1186/s40164-022-00277-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/10/2022] [Indexed: 02/08/2023] Open
Abstract
During the course of tumorigenesis and subsequent metastasis, malignant cells gradually diversify and become more heterogeneous. Consequently, the tumor mass might be infiltrated by diverse immune-related components, including the cytokine/chemokine environment, cytotoxic activity, or immunosuppressive elements. This immunological heterogeneity is universally presented spatially or varies temporally along with tumor evolution or therapeutic intervention across almost all solid tumors. The heterogeneity of anti-tumor immunity shows a profound association with the progression of disease and responsiveness to treatment, particularly in the realm of immunotherapy. Therefore, an accurate understanding of tumor immunological heterogeneity is essential for the development of effective therapies. Facilitated by multi-regional and -omics sequencing, single cell sequencing, and longitudinal liquid biopsy approaches, recent studies have demonstrated the potential to investigate the complexity of immunological heterogeneity of the tumors and its clinical relevance in immunotherapy. Here, we aimed to review the mechanism underlying the heterogeneity of the immune microenvironment. We also explored how clinical assessments of tumor heterogeneity might facilitate the development of more effective personalized therapies.
Collapse
Affiliation(s)
- Qingzhu Jia
- Institute of Cancer, Xinqiao Hospital, Army Military Medical University, Xinqiao Main Street, Chongqing, 400037, China.,Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Aoyun Wang
- Institute of Cancer, Xinqiao Hospital, Army Military Medical University, Xinqiao Main Street, Chongqing, 400037, China.,Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yixiao Yuan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Army Military Medical University, Xinqiao Main Street, Chongqing, 400037, China. .,Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Army Military Medical University, Xinqiao Main Street, Chongqing, 400037, China. .,Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
149
|
Huang M, Dong W, Xie R, Wu J, Su Q, Li W, Yao K, Chen Y, Zhou Q, Zhang Q, Li W, Cheng L, Peng S, Chen S, Huang J, Chen X, Lin T. HSF1 facilitates the multistep process of lymphatic metastasis in bladder cancer via a novel PRMT5-WDR5-dependent transcriptional program. Cancer Commun (Lond) 2022; 42:447-470. [PMID: 35434944 PMCID: PMC9118058 DOI: 10.1002/cac2.12284] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 01/09/2023] Open
Abstract
Background Lymphatic metastasis has been associated with poor prognosis in bladder cancer patients with limited therapeutic options. Emerging evidence shows that heat shock factor 1 (HSF1) drives diversified transcriptome to promote tumor growth and serves as a promising therapeutic target. However, the roles of HSF1 in lymphatic metastasis remain largely unknown. Herein, we aimed to illustrate the clinical roles and mechanisms of HSF1 in the lymphatic metastasis of bladder cancer and explore its therapeutic potential. Methods We screened the most relevant gene to lymphatic metastasis among overexpressed heat shock factors (HSFs) and heat shock proteins (HSPs), and analyzed its clinical relevance in three cohorts. Functional in vitro and in vivo assays were performed in HSF1‐silenced and ‐regained models. We also used Co‐immunoprecipitation to identify the binding proteins of HSF1 and chromatin immunoprecipitation and dual‐luciferase reporter assays to investigate the transcriptional program directed by HSF1. The pharmacological inhibitor of HSF1, KRIBB11, was evaluated in popliteal lymph node metastasis models and patient‐derived xenograft models of bladder cancer. Results HSF1 expression was positively associated with lymphatic metastasis status, tumor stage, advanced grade, and poor prognosis of bladder cancer. Importantly, HSF1 enhanced the epithelial‐mesenchymal transition (EMT) of cancer cells in primary tumor to initiate metastasis, proliferation of cancer cells in lymph nodes, and macrophages infiltration to facilitate multistep lymphatic metastasis. Mechanistically, HSF1 interacted with protein arginine methyltransferase 5 (PRMT5) and jointly induced the monomethylation of histone H3 at arginine 2 (H3R2me1) and symmetric dimethylation of histone H3 at arginine 2 (H3R2me2s). This recruited the WD repeat domain 5 (WDR5)/mixed‐lineage leukemia (MLL) complex to increase the trimethylation of histone H3 at lysine 4 (H3K4me3); resulting in upregulation of lymphoid enhancer‐binding factor 1 (LEF1), matrix metallopeptidase 9 (MMP9), C‐C motif chemokine ligand 20 (CCL20), and E2F transcription factor 2 (E2F2). Application of KRIBB11 significantly inhibited the lymphatic metastasis of bladder cancer with no significant toxicity. Conclusion Our findings reveal a novel transcriptional program directed by the HSF1‐PRMT5‐WDR5 axis during the multistep process of lymphatic metastasis in bladder cancer. Targeting HSF1 could be a multipotent and promising therapeutic strategy for bladder cancer patients with lymphatic metastasis.
Collapse
Affiliation(s)
- Ming Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Wen Dong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, 510120, P. R. China
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Jilin Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Qiao Su
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Wuguo Li
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Kai Yao
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yuelong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Qiang Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Wenwen Li
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Liang Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Siting Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, 510120, P. R. China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, 510120, P. R. China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, 510120, P. R. China
| |
Collapse
|
150
|
AlGhamdi H, Dhont J, Krayem M, De Bruyn P, Engels B, Van Gestel D, Van den Begin R. The Road to Dissemination: The Concept of Oligometastases and the Barriers for Widespread Disease. Cancers (Basel) 2022; 14:2046. [PMID: 35454951 PMCID: PMC9033015 DOI: 10.3390/cancers14082046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022] Open
Abstract
Over the last years, the oligometastatic disease state has gained more and more interest, and randomized trials are now suggesting an added value of stereotactic radiotherapy on all macroscopic disease in oligometastatic patients; but what barriers could impede widespread disease in some patients? In this review, we first discuss the concept of oligometastatic disease and some examples of clinical evidence. We then explore the route to dissemination: the hurdles a tumoral clone has to overtake before it can produce efficient and widespread dissemination. The spectrum theory argues that the range of metastatic patterns encountered in the clinic is the consequence of gradually obtained metastatic abilities of the tumor cells. Tumor clones can obtain these capabilities by Darwinian evolution, hence early in their genetic progression tumors might produce only a limited number of metastases. We illustrate selective dissemination by discussing organ tropism, the preference of different cancer (sub)types to metastasize to certain organs. Finally we discuss biomarkers that may help to distinguish the oligometastatic state.
Collapse
Affiliation(s)
- Hamza AlGhamdi
- Radiotherapy Department, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium; (H.A.); (P.D.B.); (D.V.G.)
- Oncology Center, King Faisal Medical City, Abha 62523, Saudi Arabia
| | - Jennifer Dhont
- Medical Physics Department, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Mohammad Krayem
- Laboratory of Clinical and Experimental Oncology (LOCE), Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Pauline De Bruyn
- Radiotherapy Department, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium; (H.A.); (P.D.B.); (D.V.G.)
| | - Benedikt Engels
- Radiotherapy Department, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Dirk Van Gestel
- Radiotherapy Department, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium; (H.A.); (P.D.B.); (D.V.G.)
| | - Robbe Van den Begin
- Radiotherapy Department, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium; (H.A.); (P.D.B.); (D.V.G.)
| |
Collapse
|