101
|
Chen N, Wang H, Abdelmageed H, Veerappan V, Tadege M, Allen RD. HSI2/VAL1 and HSL1/VAL2 function redundantly to repress DOG1 expression in Arabidopsis seeds and seedlings. THE NEW PHYTOLOGIST 2020; 227:840-856. [PMID: 32201955 PMCID: PMC7383879 DOI: 10.1111/nph.16559] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
DELAY OF GERMINATION1 (DOG1) is a primary regulator of seed dormancy. Accumulation of DOG1 in seeds leads to deep dormancy and delayed germination in Arabidopsis. B3 domain-containing transcriptional repressors HSI2/VAL1 and HSL1/VAL2 silence seed dormancy and enable the subsequent germination and seedling growth. However, the roles of HSI2 and HSL1 in regulation of DOG1 expression and seed dormancy remain elusive. Seed dormancy was analysed by measurement of maximum germination percentage of freshly harvested Arabidopsis seeds. In vivo protein-protein interaction analysis, ChIP-qPCR and EMSA were performed and suggested that HSI2 and HSL1 can form dimers to directly regulate DOG1. HSI2 and HSL1 dimers interact with RY elements at DOG1 promoter. Both B3 and PHD-like domains are required for enrichment of HSI2 and HSL1 at the DOG1 promoter. HSI2 and HSL1 recruit components of polycomb-group proteins, including CURLY LEAF (CLF) and LIKE HETERCHROMATIN PROTEIN 1 (LHP1), for consequent deposition of H3K27me3 marks, leading to repression of DOG1 expression. Our findings suggest that HSI2- and HSL1-dependent histone methylation plays critical roles in regulation of seed dormancy during seed germination and early seedling growth.
Collapse
Affiliation(s)
- Naichong Chen
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwater74078OKUSA
| | - Hui Wang
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
| | - Haggag Abdelmageed
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Agricultural BotanyFaculty of AgricultureCairo UniversityGiza12613Egypt
| | | | - Million Tadege
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Randy D. Allen
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwater74078OKUSA
| |
Collapse
|
102
|
Xi Y, Park SR, Kim DH, Kim ED, Sung S. Transcriptome and epigenome analyses of vernalization in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1490-1502. [PMID: 32412129 PMCID: PMC7434698 DOI: 10.1111/tpj.14817] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 05/05/2023]
Abstract
Vernalization accelerates flowering after prolonged winter cold. Transcriptional and epigenetic changes are known to be involved in the regulation of the vernalization response. Despite intensive applications of next-generation sequencing in diverse aspects of plant research, genome-wide transcriptome and epigenome profiling during the vernalization response has not been conducted. In this work, to our knowledge, we present the first comprehensive analyses of transcriptomic and epigenomic dynamics during the vernalization process in Arabidopsis thaliana. Six major clusters of genes exhibiting distinctive features were identified. Temporary changes in histone H3K4me3 levels were observed that likely coordinate photosynthesis and prevent oxidative damage during cold exposure. In addition, vernalization induced a stable accumulation of H3K27me3 over genes encoding many development-related transcription factors, which resulted in either inhibition of transcription or a bivalent status of the genes. Lastly, FLC-like and VIN3-like genes were identified that appear to be novel components of the vernalization pathway.
Collapse
|
103
|
First Come, First Served: Sui Generis Features of the First Intron. PLANTS 2020; 9:plants9070911. [PMID: 32707681 PMCID: PMC7411622 DOI: 10.3390/plants9070911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Most of the transcribed genes in eukaryotic cells are interrupted by intervening sequences called introns that are co-transcriptionally removed from nascent messenger RNA through the process of splicing. In Arabidopsis, 79% of genes contain introns and more than 60% of intron-containing genes undergo alternative splicing (AS), which ostensibly is considered to increase protein diversity as one of the intrinsic mechanisms for fitness to the varying environment or the internal developmental program. In addition, recent findings have prevailed in terms of overlooked intron functions. Here, we review recent progress in the underlying mechanisms of intron function, in particular by focusing on unique features of the first intron that is located in close proximity to the transcription start site. The distinct deposition of epigenetic marks and nucleosome density on the first intronic DNA sequence, the impact of the first intron on determining the transcription start site and elongation of its own expression (called intron-mediated enhancement, IME), translation control in 5′-UTR, and the new mechanism of the trans-acting function of the first intron in regulating gene expression at the post-transcriptional level are summarized.
Collapse
|
104
|
Bloomer RH, Hutchison CE, Bäurle I, Walker J, Fang X, Perera P, Velanis CN, Gümüs S, Spanos C, Rappsilber J, Feng X, Goodrich J, Dean C. The Arabidopsis epigenetic regulator ICU11 as an accessory protein of Polycomb Repressive Complex 2. Proc Natl Acad Sci U S A 2020; 117:16660-16666. [PMID: 32601198 PMCID: PMC7368280 DOI: 10.1073/pnas.1920621117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Molecular mechanisms enabling the switching and maintenance of epigenetic states are not fully understood. Distinct histone modifications are often associated with ON/OFF epigenetic states, but how these states are stably maintained through DNA replication, yet in certain situations switch from one to another remains unclear. Here, we address this problem through identification of Arabidopsis INCURVATA11 (ICU11) as a Polycomb Repressive Complex 2 accessory protein. ICU11 robustly immunoprecipitated in vivo with PRC2 core components and the accessory proteins, EMBRYONIC FLOWER 1 (EMF1), LIKE HETEROCHROMATIN PROTEIN1 (LHP1), and TELOMERE_REPEAT_BINDING FACTORS (TRBs). ICU11 encodes a 2-oxoglutarate-dependent dioxygenase, an activity associated with histone demethylation in other organisms, and mutant plants show defects in multiple aspects of the Arabidopsis epigenome. To investigate its primary molecular function we identified the Arabidopsis FLOWERING LOCUS C (FLC) as a direct target and found icu11 disrupted the cold-induced, Polycomb-mediated silencing underlying vernalization. icu11 prevented reduction in H3K36me3 levels normally seen during the early cold phase, supporting a role for ICU11 in H3K36me3 demethylation. This was coincident with an attenuation of H3K27me3 at the internal nucleation site in FLC, and reduction in H3K27me3 levels across the body of the gene after plants were returned to the warm. Thus, ICU11 is required for the cold-induced epigenetic switching between the mutually exclusive chromatin states at FLC, from the active H3K36me3 state to the silenced H3K27me3 state. These data support the importance of physical coupling of histone modification activities to promote epigenetic switching between opposing chromatin states.
Collapse
Affiliation(s)
- Rebecca H Bloomer
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, NR47UH Norwich, United Kingdom
| | - Claire E Hutchison
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, NR47UH Norwich, United Kingdom
| | - Isabel Bäurle
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, NR47UH Norwich, United Kingdom
| | - James Walker
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, NR47UH Norwich, United Kingdom
| | - Xiaofeng Fang
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, NR47UH Norwich, United Kingdom
| | - Pumi Perera
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, EH9 3BF Edinburgh, United Kingdom
| | - Christos N Velanis
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, EH9 3BF Edinburgh, United Kingdom
| | - Serin Gümüs
- Faculty of Biotechnology, Hochschule Mannheim, 68163 Mannheim, Germany
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, EH9 3BF Edinburgh, United Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, EH9 3BF Edinburgh, United Kingdom
- Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, NR47UH Norwich, United Kingdom
| | - Justin Goodrich
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, EH9 3BF Edinburgh, United Kingdom
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, NR47UH Norwich, United Kingdom;
| |
Collapse
|
105
|
Jarad M, Antoniou-Kourounioti R, Hepworth J, Qüesta JI. Unique and contrasting effects of light and temperature cues on plant transcriptional programs. Transcription 2020; 11:134-159. [PMID: 33016207 PMCID: PMC7714439 DOI: 10.1080/21541264.2020.1820299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Plants have adapted to tolerate and survive constantly changing environmental conditions by reprogramming gene expression in response to stress or to drive developmental transitions. Among the many signals that plants perceive, light and temperature are of particular interest due to their intensely fluctuating nature which is combined with a long-term seasonal trend. Whereas specific receptors are key in the light-sensing mechanism, the identity of plant thermosensors for high and low temperatures remains far from fully addressed. This review aims at discussing common as well as divergent characteristics of gene expression regulation in plants, controlled by light and temperature. Light and temperature signaling control the abundance of specific transcription factors, as well as the dynamics of co-transcriptional processes such as RNA polymerase elongation rate and alternative splicing patterns. Additionally, sensing both types of cues modulates gene expression by altering the chromatin landscape and through the induction of long non-coding RNAs (lncRNAs). However, while light sensing is channeled through dedicated receptors, temperature can broadly affect chemical reactions inside plant cells. Thus, direct thermal modifications of the transcriptional machinery add another level of complexity to plant transcriptional regulation. Besides the rapid transcriptome changes that follow perception of environmental signals, plant developmental transitions and acquisition of stress tolerance depend on long-term maintenance of transcriptional states (active or silenced genes). Thus, the rapid transcriptional response to the signal (Phase I) can be distinguished from the long-term memory of the acquired transcriptional state (Phase II - remembering the signal). In this review we discuss recent advances in light and temperature signal perception, integration and memory in Arabidopsis thaliana, focusing on transcriptional regulation and highlighting the contrasting and unique features of each type of cue in the process.
Collapse
Affiliation(s)
- Mai Jarad
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | | | - Jo Hepworth
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Julia I. Qüesta
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| |
Collapse
|
106
|
Identification of a PRC2 Accessory Subunit Required for Subtelomeric H3K27 Methylation in Neurospora crassa. Mol Cell Biol 2020; 40:MCB.00003-20. [PMID: 32179551 DOI: 10.1128/mcb.00003-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) catalyzes methylation of histone H3 at lysine 27 (H3K27) in genomic regions of most eukaryotes and is critical for maintenance of the associated transcriptional repression. However, the mechanisms that shape the distribution of H3K27 methylation, such as recruitment of PRC2 to chromatin and/or stimulation of PRC2 activity, are unclear. Here, using a forward genetic approach in the model organism Neurospora crassa, we identified two alleles of a gene, NCU04278, encoding an unknown PRC2 accessory subunit (PAS). Loss of PAS resulted in losses of H3K27 methylation concentrated near the chromosome ends and derepression of a subset of associated subtelomeric genes. Immunoprecipitation followed by mass spectrometry confirmed reciprocal interactions between PAS and known PRC2 subunits, and sequence similarity searches demonstrated that PAS is not unique to N. crassa PAS homologs likely influence the distribution of H3K27 methylation and underlying gene repression in a variety of fungal lineages.
Collapse
|
107
|
Kuhn A, Ramans Harborough S, McLaughlin HM, Natarajan B, Verstraeten I, Friml J, Kepinski S, Østergaard L. Direct ETTIN-auxin interaction controls chromatin states in gynoecium development. eLife 2020; 9:51787. [PMID: 32267233 PMCID: PMC7164952 DOI: 10.7554/elife.51787] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/05/2020] [Indexed: 12/11/2022] Open
Abstract
Hormonal signalling in animals often involves direct transcription factor-hormone interactions that modulate gene expression. In contrast, plant hormone signalling is most commonly based on de-repression via the degradation of transcriptional repressors. Recently, we uncovered a non-canonical signalling mechanism for the plant hormone auxin whereby auxin directly affects the activity of the atypical auxin response factor (ARF), ETTIN towards target genes without the requirement for protein degradation. Here we show that ETTIN directly binds auxin, leading to dissociation from co-repressor proteins of the TOPLESS/TOPLESS-RELATED family followed by histone acetylation and induction of gene expression. This mechanism is reminiscent of animal hormone signalling as it affects the activity towards regulation of target genes and provides the first example of a DNA-bound hormone receptor in plants. Whilst auxin affects canonical ARFs indirectly by facilitating degradation of Aux/IAA repressors, direct ETTIN-auxin interactions allow switching between repressive and de-repressive chromatin states in an instantly-reversible manner.
Collapse
Affiliation(s)
- André Kuhn
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sigurd Ramans Harborough
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Heather M McLaughlin
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Bhavani Natarajan
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Jiří Friml
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Stefan Kepinski
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
108
|
Ding Y, Shi Y, Yang S. Molecular Regulation of Plant Responses to Environmental Temperatures. MOLECULAR PLANT 2020; 13:544-564. [PMID: 32068158 DOI: 10.1016/j.molp.2020.02.004] [Citation(s) in RCA: 365] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 05/19/2023]
Abstract
Temperature is a key factor governing the growth and development, distribution, and seasonal behavior of plants. The entire plant life cycle is affected by environmental temperatures. Plants grow rapidly and exhibit specific changes in morphology under mild average temperature conditions, a response termed thermomorphogenesis. When exposed to chilling or moist chilling low temperatures, flowering or seed germination is accelerated in some plant species; these processes are known as vernalization and cold stratification, respectively. Interestingly, once many temperate plants are exposed to chilling temperatures for some time, they can acquire the ability to resist freezing stress, a process termed cold acclimation. In the face of global climate change, heat stress has emerged as a frequent challenge, which adversely affects plant growth and development. In this review, we summarize and discuss recent progress in dissecting the molecular mechanisms regulating plant thermomorphogenesis, vernalization, and responses to extreme temperatures. We also discuss the remaining issues that are crucial for understanding the interactions between plants and temperature.
Collapse
Affiliation(s)
- Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
109
|
Espinas NA, Tu LN, Furci L, Shimajiri Y, Harukawa Y, Miura S, Takuno S, Saze H. Transcriptional regulation of genes bearing intronic heterochromatin in the rice genome. PLoS Genet 2020; 16:e1008637. [PMID: 32187179 PMCID: PMC7145194 DOI: 10.1371/journal.pgen.1008637] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 04/09/2020] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
Intronic regions of eukaryotic genomes accumulate many Transposable Elements (TEs). Intronic TEs often trigger the formation of transcriptionally repressive heterochromatin, even within transcription-permissive chromatin environments. Although TE-bearing introns are widely observed in eukaryotic genomes, their epigenetic states, impacts on gene regulation and function, and their contributions to genetic diversity and evolution, remain poorly understood. In this study, we investigated the genome-wide distribution of intronic TEs and their epigenetic states in the Oryza sativa genome, where TEs comprise 35% of the genome. We found that over 10% of rice genes contain intronic heterochromatin, most of which are associated with TEs and repetitive sequences. These heterochromatic introns are longer and highly enriched in promoter-proximal positions. On the other hand, introns also accumulate hypomethylated short TEs. Genes with heterochromatic introns are implicated in various biological functions. Transcription of genes bearing intronic heterochromatin is regulated by an epigenetic mechanism involving the conserved factor OsIBM2, mutation of which results in severe developmental and reproductive defects. Furthermore, we found that heterochromatic introns evolve rapidly compared to non-heterochromatic introns. Our study demonstrates that heterochromatin is a common epigenetic feature associated with actively transcribed genes in the rice genome.
Collapse
Affiliation(s)
- Nino A. Espinas
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama city, Kanagawa, Japan
| | - Le Ngoc Tu
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Leonardo Furci
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Yasuka Shimajiri
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- EditForce, Fukuoka, Japan
| | - Yoshiko Harukawa
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Saori Miura
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Shohei Takuno
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|
110
|
Wang L, Chen H, Li J, Shu H, Zhang X, Wang Y, Tyler BM, Dong S. Effector gene silencing mediated by histone methylation underpins host adaptation in an oomycete plant pathogen. Nucleic Acids Res 2020; 48:1790-1799. [PMID: 31819959 PMCID: PMC7039004 DOI: 10.1093/nar/gkz1160] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
The relentless adaptability of pathogen populations is a major obstacle to effective disease control measures. Increasing evidence suggests that gene transcriptional polymorphisms are a strategy deployed by pathogens to evade host immunity. However, the underlying mechanisms of transcriptional plasticity remain largely elusive. Here we found that the soybean root rot pathogen Phytophthora sojae evades the soybean Resistance gene Rps1b through transcriptional polymorphisms in the effector gene Avr1b that occur in the absence of any sequence variation. Elevated levels of histone H3 Lysine27 tri-methylation (H3K27me3) were observed at the Avr1b locus in a naturally occurring Avr1b-silenced strain but not in an Avr1b-expressing strain, suggesting a correlation between this epigenetic modification and silencing of Avr1b. To genetically test this hypothesis, we edited the gene, PsSu(z)12, encoding a core subunit of the H3K27me3 methyltransferase complex by using CRISPR/Cas9, and obtained three deletion mutants. H3K27me3 depletion within the Avr1b genomic region correlated with impaired Avr1b gene silencing in these mutants. Importantly, these mutants lost the ability to evade immune recognition by soybeans carrying Rps1b. These data support a model in which pathogen effector transcriptional polymorphisms are associated with changes in chromatin epigenetic marks, highlighting epigenetic variation as a mechanism of pathogen adaptive plasticity.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Plant Pathology, Nanjing Agriculture University, Nanjing 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agriculture University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - JiangJiang Li
- Department of Plant Pathology, Nanjing Agriculture University, Nanjing 210095, China
| | - Haidong Shu
- Department of Plant Pathology, Nanjing Agriculture University, Nanjing 210095, China
| | - Xiangxue Zhang
- Department of Plant Pathology, Nanjing Agriculture University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agriculture University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agriculture University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
111
|
Zhu D, Mao F, Tian Y, Lin X, Gu L, Gu H, Qu LJ, Wu Y, Wu Z. The Features and Regulation of Co-transcriptional Splicing in Arabidopsis. MOLECULAR PLANT 2020; 13:278-294. [PMID: 31760161 DOI: 10.1016/j.molp.2019.11.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/29/2019] [Accepted: 11/15/2019] [Indexed: 05/20/2023]
Abstract
Precursor mRNA (pre-mRNA) splicing is essential for gene expression in most eukaryotic organisms. Previous studies from mammals, Drosophila, and yeast show that the majority of splicing events occurs co-transcriptionally. In plants, however, the features of co-transcriptional splicing (CTS) and its regulation still remain largely unknown. Here, we used chromatin-bound RNA sequencing to study CTS in Arabidopsis thaliana. We found that CTS is widespread in Arabidopsis seedlings, with a large proportion of alternative splicing events determined co-transcriptionally. CTS efficiency correlated with gene expression level, the chromatin landscape and, most surprisingly, the number of introns and exons of individual genes, but is independent of gene length. In combination with enhanced crosslinking and immunoprecipitation sequencing analysis, we further showed that the hnRNP-like proteins RZ-1B and RZ-1C promote efficient CTS globally through direct binding, frequently to exonic sequences. Notably, this general effect of RZ-1B/1C on splicing promotion is mainly observed at the chromatin level, not at the mRNA level. RZ-1C promotes CTS of multiple-exon genes in association with its binding to regions both proximal and distal to the regulated introns. We propose that RZ-1C promotes efficient CTS of genes with multiple exons through cooperative interactions with many exons, introns, and splicing factors. Our work thus reveals important features of CTS in plants and provides methodologies for the investigation of CTS and RNA-binding proteins in plants.
Collapse
Affiliation(s)
- Danling Zhu
- SUSTech-PKU Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fei Mao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Yuanchun Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Xiaoya Lin
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongya Gu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China.
| | - Zhe Wu
- SUSTech-PKU Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
112
|
Roles of Brassinosteroids in Plant Reproduction. Int J Mol Sci 2020; 21:ijms21030872. [PMID: 32013254 PMCID: PMC7037687 DOI: 10.3390/ijms21030872] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/06/2023] Open
Abstract
Brassinosteroids (BRs) are a group of steroid hormones, essentially important for plant development and growth. BR signaling functions to promote cell expansion and cell division, and plays a role in etiolation and reproduction. As the phytohormone originally identified in the pollen grains of Brassica napus, BR promotes the elongation of stigma. Recent studies have revealed that BR is also critical for floral transition, inflorescence stem architecture formation and other aspects of plant reproductive processes. In this review, we focus on the current understanding of BRs in plant reproduction, the spatial and temporal control of BR signaling, and the downstream molecular mechanisms in both the model plant Arabidopsis and crops. The crosstalk of BR with environmental factors and other hormones in reproduction will also be discussed.
Collapse
|
113
|
Abstract
Seed development is a complex process and consists of two phases: embryo morphogenesis and seed maturation. LEAFY COTYLEDON (LEC) transcription factors, first discovered in
Arabidopsis thaliana several decades ago, are master regulators of seed development. Here, we first summarize molecular genetic mechanisms underlying the control of embryogenesis and seed maturation by
LECs and then provide a brief review of recent findings in the role of
LECs in embryonic resetting of the parental ‘memory of winter cold’ in Arabidopsis. In addition, we discuss various chromatin-based mechanisms underlying developmental silencing of
LEC genes throughout the post-embryonic development to terminate the embryonic developmental program.
Collapse
Affiliation(s)
- De Niu
- National Key Laboratory of Plant Molecular Genetics & Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, China
| | - Yuehui He
- National Key Laboratory of Plant Molecular Genetics & Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, China
| |
Collapse
|
114
|
He Y, Chen T, Zeng X. Genetic and Epigenetic Understanding of the Seasonal Timing of Flowering. PLANT COMMUNICATIONS 2020; 1:100008. [PMID: 33404547 PMCID: PMC7747966 DOI: 10.1016/j.xplc.2019.100008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The developmental transition to flowering in many plants is timed by changing seasons, which enables plants to flower at a season that is favorable for seed production. Many plants grown at high latitudes perceive the seasonal cues of changing day length and/or winter cold (prolonged cold exposure), to regulate the expression of flowering-regulatory genes through the photoperiod pathway and/or vernalization pathway, and thus align flowering with a particular season. Recent studies in the model flowering plant Arabidopsis thaliana have revealed that diverse transcription factors engage various chromatin modifiers to regulate several key flowering-regulatory genes including FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT) in response to seasonal signals. Here, we summarize the current understanding of molecular and chromatin-regulatory or epigenetic mechanisms underlying the vernalization response and photoperiodic control of flowering in Arabidopsis. Moreover, the conservation and divergence of regulatory mechanisms for seasonal flowering in crops and other plants are briefly discussed.
Collapse
|
115
|
Akter A, Itabashi E, Kakizaki T, Okazaki K, Dennis ES, Fujimoto R. Genome Triplication Leads to Transcriptional Divergence of FLOWERING LOCUS C Genes During Vernalization in the Genus Brassica. FRONTIERS IN PLANT SCIENCE 2020; 11:619417. [PMID: 33633752 PMCID: PMC7900002 DOI: 10.3389/fpls.2020.619417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/29/2020] [Indexed: 05/17/2023]
Abstract
The genus Brassica includes oil crops, vegetables, condiments, fodder crops, and ornamental plants. Brassica species underwent a whole genome triplication event after speciation between ancestral species of Brassica and closely related genera including Arabidopsis thaliana. Diploid species such as Brassica rapa and Brassica oleracea have three copies of genes orthologous to each A. thaliana gene, although deletion in one or two of the three homologs has occurred in some genes. The floral transition is one of the crucial events in a plant's life history, and time of flowering is an important agricultural trait. There is a variation in flowering time within species of the genus Brassica, and this variation is largely dependent on a difference in vernalization requirements. In Brassica, like in A. thaliana, the key gene of vernalization is FLOWERING LOCUS C (FLC). In Brassica species, the vernalization response including the repression of FLC expression by cold treatment and the enrichment of the repressive histone modification tri-methylated histone H3 lysine 27 (H3K27me3) at the FLC locus is similar to A. thaliana. B. rapa and B. oleracea each have four paralogs of FLC, and the allotetraploid species, Brassica napus, has nine paralogs. The increased number of paralogs makes the role of FLC in vernalization more complicated; in a single plant, paralogs vary in the expression level of FLC before and after vernalization. There is also variation in FLC expression levels between accessions. In this review, we focus on the regulatory circuits of the vernalization response of FLC expression in the genus Brassica.
Collapse
Affiliation(s)
- Ayasha Akter
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Department of Horticulture, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Etsuko Itabashi
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsu, Japan
| | - Tomohiro Kakizaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsu, Japan
| | - Keiichi Okazaki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Elizabeth S. Dennis
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, Broadway, NSW, Australia
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- *Correspondence: Ryo Fujimoto,
| |
Collapse
|
116
|
Luo X, He Y. Experiencing winter for spring flowering: A molecular epigenetic perspective on vernalization. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:104-117. [PMID: 31829495 DOI: 10.1111/jipb.12896] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/10/2019] [Indexed: 05/17/2023]
Abstract
Many over-wintering plants, through vernalization, overcome a block to flowering and thus acquire competence to flower in the following spring after experiencing prolonged cold exposure or winter cold. The vernalization pathways in different angiosperm lineages appear to have convergently evolved to adapt to temperate climates. Molecular and epigenetic mechanisms for vernalization regulation have been well studied in the crucifer model plant Arabidopsis thaliana. Here, we review recent progresses on the vernalization pathway in Arabidopsis. In addition, we summarize current molecular and genetic understandings of vernalization regulation in temperate grasses including wheat and Brachypodium, two monocots from Pooideae, followed by a brief discussion on divergence of the vernalization pathways between Brassicaceae and Pooideae.
Collapse
Affiliation(s)
- Xiao Luo
- National Key Laboratory of Plant Molecular Genetics & Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yuehui He
- National Key Laboratory of Plant Molecular Genetics & Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
117
|
O'Neill CM, Lu X, Calderwood A, Tudor EH, Robinson P, Wells R, Morris R, Penfield S. Vernalization and Floral Transition in Autumn Drive Winter Annual Life History in Oilseed Rape. Curr Biol 2019; 29:4300-4306.e2. [PMID: 31813609 PMCID: PMC6926474 DOI: 10.1016/j.cub.2019.10.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 10/27/2022]
Abstract
Plants with winter annual life history germinate in summer or autumn and require a period of prolonged winter cold to initiate flowering, known as vernalization. In the Brassicaceae, the requirement for vernalization is conferred by high expression of orthologs of the FLOWERING LOCUS C (FLC) gene, the expression of which is known to be silenced by prolonged exposure to winter-like temperatures [1]. Based on a wealth of vernalization experiments, typically carried out in the range of 5°C-10°C, we would expect field environments during winter to induce flowering in crops with winter annual life history. Here, we show that, in the case of winter oilseed rape, expression of multiple FLC orthologs declines not during winter but predominantly during October when the average air temperature is 10°C-15°C. We further demonstrate that plants proceed through the floral transition in early November and overwinter as inflorescence meristems, which complete floral development in spring. To validate the importance of pre-winter temperatures in flowering time control, we artificially simulated climate warming in field trial plots in October. We found that increasing the temperature by 5°C in October results in raised FLC expression and delays the floral transition by 3 weeks but only has a mild effect on flowering date the following spring. Our work shows that winter annuals overwinter as a floral bud in a manner that resembles perennials and highlights the importance of studying signaling events in the field for understanding how plants transition to flowering under real environmental conditions.
Collapse
Affiliation(s)
- Carmel M O'Neill
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiang Lu
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Alexander Calderwood
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Eleri H Tudor
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Philip Robinson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Rachel Wells
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard Morris
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
118
|
Lin CT, Xu T, Xing SL, Zhao L, Sun RZ, Liu Y, Moore JP, Deng X. Weighted Gene Co-expression Network Analysis (WGCNA) Reveals the Hub Role of Protein Ubiquitination in the Acquisition of Desiccation Tolerance in Boea hygrometrica. PLANT & CELL PHYSIOLOGY 2019; 60:2707-2719. [PMID: 31410481 DOI: 10.1093/pcp/pcz160] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 08/06/2019] [Indexed: 05/28/2023]
Abstract
Boea hygrometrica can survive extreme drought conditions and has been used as a model to study desiccation tolerance. A genome-wide transcriptome analysis of B. hygrometrica showed that the plant can survive rapid air-drying after experiencing a slow soil-drying acclimation phase. In addition, a weighted gene co-expression network analysis was used to study the transcriptomic datasets. A network comprising 22 modules was constructed, and seven modules were found to be significantly related to desiccation response using an enrichment analysis. Protein ubiquitination was observed to be a common process linked to hub genes in all the seven modules. Ubiquitin-modified proteins with diversified functions were identified using immunoprecipitation coupled with mass spectrometry. The lowest level of ubiquitination was noted at the full soil drying priming stage, which coincided the accumulation of dehydration-responsive gene BhLEA2. The highly conserved RY motif (CATGCA) was identified from the promoters of ubiquitin-related genes that were downregulated in the desiccated samples. An in silico gene expression analysis showed that the negative regulation of ubiquitin-related genes is potentially mediated via a B3 domain-containing transcription repressor VAL1. This study suggests that priming may involve the transcriptional regulation of several major processes, and the transcriptional regulation of genes in protein ubiquitination may play a hub role to deliver acclimation signals to posttranslational level in the acquisition of desiccation tolerance in B. hygrometrica.
Collapse
Affiliation(s)
- Chih-Ta Lin
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Tao Xu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Shi-Lai Xing
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Li Zhao
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Run-Ze Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Yang Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - John Paul Moore
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Matieland 7602, South Africa
| | - Xin Deng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
119
|
Zhao T, Zhan Z, Jiang D. Histone modifications and their regulatory roles in plant development and environmental memory. J Genet Genomics 2019; 46:467-476. [PMID: 31813758 DOI: 10.1016/j.jgg.2019.09.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 11/24/2022]
Abstract
Plants grow in dynamic environments where they receive diverse environmental signals. Swift and precise control of gene expression is essential for plants to align their development and metabolism with fluctuating surroundings. Modifications on histones serve as "histone code" to specify chromatin and gene activities. Different modifications execute distinct functions on the chromatin, promoting either active transcription or gene silencing. Histone writers, erasers, and readers mediate the regulation of histone modifications by catalyzing, removing, and recognizing modifications, respectively. Growing evidence indicates the important function of histone modifications in plant development and environmental responses. Histone modifications also serve as environmental memory for plants to adapt to environmental changes. Here we review recent progress on the regulation of histone modifications in plants, the impact of histone modifications on environment-controlled developmental transitions including germination and flowering, and the role of histone modifications in environmental memory.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenping Zhan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
120
|
Li Y, Yang J, Shang X, Lv W, Xia C, Wang C, Feng J, Cao Y, He H, Li L, Ma L. SKIP regulates environmental fitness and floral transition by forming two distinct complexes in Arabidopsis. THE NEW PHYTOLOGIST 2019; 224:321-335. [PMID: 31209881 DOI: 10.1111/nph.15990] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/07/2019] [Indexed: 05/08/2023]
Abstract
Ski-interacting protein (SKIP) is a bifunctional regulator of gene expression that works as a splicing factor as part of the spliceosome and as a transcriptional activator by interacting with EARLY FLOWERING 7 (ELF7). MOS4-Associated Complex 3A (MAC3A) and MAC3B interact physically and genetically with SKIP, mediate the alternative splicing of c. 50% of the expressed genes in the Arabidopsis genome, and are required for the splicing of a similar set of genes to that of SKIP. SKIP interacts physically and genetically with splicing factors and Polymerase-Associated Factor 1 complex (Paf1c) components. However, these splicing factors do not interact either physically or genetically with Paf1c components. The SKIP-spliceosome complex mediates circadian clock function and abiotic stress responses by controlling the alternative splicing of pre-mRNAs encoded by clock- and stress tolerance-related genes. The SKIP-Paf1c complex regulates the floral transition by activating FLOWERING LOCUS C (FLC) transcription. Our data reveal that SKIP regulates floral transition and environmental fitness via its incorporation into two distinct complexes that regulate gene expression transcriptionally and post-transcriptionally, respectively. It will be interesting to discover in future studies whether SKIP is required for integration of environmental fitness and growth by control of the incorporation of SKIP into spliceosome or Paf1c in plants.
Collapse
Affiliation(s)
- Yan Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jing Yang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Xudong Shang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Wenzhu Lv
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Congcong Xia
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Chen Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jinlin Feng
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Ying Cao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Hang He
- College of Life Sciences, Peking University, Beijing, 100048, China
| | - Legong Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| |
Collapse
|
121
|
Two Auxin Response Elements Fine-Tune PINOID Expression During Gynoecium Development in Arabidopsis thaliana. Biomolecules 2019; 9:biom9100526. [PMID: 31557840 PMCID: PMC6843594 DOI: 10.3390/biom9100526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
The plant hormone auxin controls almost all aspects of plant development through the gene regulatory properties of auxin response factors (ARFs) which bind so-called auxin responsive elements (AuxREs) in regulatory regions of their target genes. It has been proposed that ARFs interact and cooperate with other transcription factors (TFs) to bind to complex DNA-binding sites harboring cis-elements for several TFs. Complex DNA-binding sites have not been studied systematically for ARF target genes. ETTIN (ETT; ARF3) is a key regulator of gynoecium development. Cooperatively with its interacting partner INDEHISCENT (IND), ETT regulates PINOID (PID), a gene involved in the regulation gynoecium apical development (style development). Here, we mutated two ETT-bound AuxREs within the PID promoter and observed increased style length in gynoecia of plants carrying mutated promoter variants. Furthermore, mutating the AuxREs led to ectopic repression of PID in one developmental context while leading to ectopically upregulated PID expression in another stage. Our data also show that IND associates with the PID promoter in an auxin-sensitive manner. In summary, we demonstrate that targeted mutations of cis-regulatory elements can be used to dissect the importance of single cis-regulatory elements within complex regulatory regions supporting the importance of the ETT-IND interaction for PID regulation. At the same time, our work also highlights the challenges of such studies, as gene regulation is highly robust, and mutations within gene regulatory regions may only display subtle phenotypes.
Collapse
|
122
|
Storing memories: the distinct phases of Polycomb-mediated silencing of Arabidopsis FLC. Biochem Soc Trans 2019; 47:1187-1196. [DOI: 10.1042/bst20190255] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022]
Abstract
Abstract
Polycomb-mediated epigenetic silencing is central to correct growth and development in higher eukaryotes. The evolutionarily conserved Polycomb repressive complex 2 (PRC2) transcriptionally silences target genes through a mechanism requiring the histone modification H3K27me3. However, we still do not fully understand what defines Polycomb targets, how their expression state is switched from epigenetically ON to OFF and how silencing is subsequently maintained through many cell divisions. An excellent system in which to dissect the sequence of events underlying an epigenetic switch is the Arabidopsis FLC locus. Exposure to cold temperatures progressively induces a PRC2-dependent switch in an increasing proportion of cells, through a mechanism that is driven by the local chromatin environment. Temporally distinct phases of this silencing mechanism have been identified. First, the locus is transcriptionally silenced in a process involving cold-induced antisense transcripts; second, nucleation at the first exon/intron boundary of a Polycomb complex containing cold-induced accessory proteins induces a metastable epigenetically silenced state; third, a Polycomb complex with a distinct composition spreads across the locus in a process requiring DNA replication to deliver long-term epigenetic silencing. Detailed understanding from this system is likely to provide mechanistic insights important for epigenetic silencing in eukaryotes generally.
Collapse
|
123
|
Huang Y, Jiang L, Liu BY, Tan CF, Chen DH, Shen WH, Ruan Y. Evolution and conservation of polycomb repressive complex 1 core components and putative associated factors in the green lineage. BMC Genomics 2019; 20:533. [PMID: 31253095 PMCID: PMC6599366 DOI: 10.1186/s12864-019-5905-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
Background Polycomb group (PcG) proteins play important roles in animal and plant development and stress response. Polycomb repressive complex 1 (PRC1) and PRC2 are the key epigenetic regulators of gene expression, and are involved in almost all developmental stages. PRC1 catalyzes H2A monoubiquitination resulting in transcriptional silencing or activation. The PRC1 components in the green lineage were identified and evolution and conservation was analyzed by bioinformatics techniques. RING Finger Protein 1 (RING1), B lymphoma Mo-MLV insertion region 1 homolog (BMI1), Like Heterochromatin Protein 1 (LHP1) and Embryonic Flower 1 (EMF1) are the PRC1 core components and Vernalization 1 (VRN1), VP1/ABI3-Like 1/2/3 (VAL1/2/3), Alfin-like 1–7 (AL1–7), Inhibitor of growth 1/2 (ING1/2), and Early Bolting in Short Days (EBS) / Short Life (SHL) are the associated factors. Results Each PRC1 subunit possesses special domain organizations, such as RING and the ring finger and WD40-associated ubiquitin-like (RAWUL) domains for RING1 and BMI1, chromatin organization modifier (CHROMO) and chromo shadow (ChSh) domains for LHP1, one or two B3 DNA binding domain(s) for VRN1, B3 and zf-CW domains for VAL1/2/3, Alfin and Plant HomeoDomain (PHD) domains for AL1–7, ING and PHD domains for ING1/2, Bromoadjacent homology (BAT) and PHD domains for EBS/SHL. Six new motifs are uncovered in EMF1. The PRC1 core components RING1 and BMI1, and the associated factors VAL1/2/3, AL1–7, ING1/2, and EBS/SHL exist from alga to higher plants, whereas LHP1 only occurs in higher plants. EMF1 and VRN1 are present only in eudicots. PRC1 components undergo duplication in the plant evolution. Most of plants carry the homologous core component LHP1, the associated factor EMF1, and several homologs in RING1, BMI1, VRN1, AL1–7, ING1/2/3, and EBS/SHL. Cabbage, cotton, poplar, orange and maize often exhibit more gene copies than other species. Domain organization analysis shows that duplicated gene functions may be of diverse. Conclusions The PRC1 core components RING1 and BMI1, and the associated factors VAL1/2/3, AL1–7, ING1/2, and EBS/SHL originate from algae. The core component LHP1 is from moss and the associated factors EMF1 and VRN1 are from dicotyledon. PRC1 components are of functional redundancy and diversity in evolution. Electronic supplementary material The online version of this article (10.1186/s12864-019-5905-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Huang
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Ling Jiang
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Bo-Yu Liu
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Cheng-Fang Tan
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China.,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Dong-Hong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, 311300, China
| | - Wen-Hui Shen
- International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China.,Institut de Biologie Mole'culaire des Plantes du CNRS, Universite' de Strasbourg, 12 rue du Ge'ne'ralZimmer, 67084, Strasbourg Cedex, France
| | - Ying Ruan
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha, 410128, China. .,International Associated Laboratory of CNRS-FU-HAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, 410128, China. .,Key Laboratory of Plant Genetics and Molecular Biology of Education Department of Hunan Province, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
124
|
Chai L, Chen Z, Bian R, Zhai H, Cheng X, Peng H, Yao Y, Hu Z, Xin M, Guo W, Sun Q, Zhao A, Ni Z. Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1815-1831. [PMID: 30915484 PMCID: PMC6531420 DOI: 10.1007/s00122-019-03318-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/14/2018] [Indexed: 05/10/2023]
Abstract
KEY MESSAGE Two QTL with pleiotropic effects on plant height and spike length linked in coupling phase on chromosome 2DS were dissected, and diagnostic marker for each QTL was developed. Plant height (PHT) is a crucial trait related to plant architecture and yield potential, and dissection of its underlying genetic basis would help to improve the efficiency of designed breeding in wheat. Here, two quantitative trait loci (QTL) linked in coupling phase on the short arm of chromosome 2D with pleiotropic effects on PHT and spike length, QPht/Sl.cau-2D.1 and QPht/Sl.cau-2D.2, were separated and characterized. QPht/Sl.cau-2D.1 is a novel QTL located between SNP makers BS00022234_51 and BobWhite_rep_c63957_1472. QPht/Sl.cau-2D.2 is mapped between two SSR markers, SSR-2062 and Xgwm484, which are located on the same genomic interval as Rht8. Moreover, the diagnostic marker tightly linked with each QTL was developed for the haplotype analysis using diverse panels of wheat accessions. The frequency of the height-reduced allele of QPht/Sl.cau-2D.1 is much lower than that of QPht/Sl.cau-2D.2, suggesting that this novel QTL may be an attractive target for genetic improvement. Consistent with a previous study of Rht8, a significant difference in cell length was observed between the NILs of QPht/Sl.cau-2D.2. By contrast, there was no difference in cell length between NILs of QPht/Sl.cau-2D.1, indicating that the underlying molecular mechanism for these two QTL may be different. Collectively, these data provide a new example of QTL dissection, and the developed diagnostic markers will be useful in marker-assisted pyramiding of QPht/Sl.cau-2D.1 and/or QPht/Sl.cau-2D.2 with the other genes in wheat breeding.
Collapse
Affiliation(s)
- Lingling Chai
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhaoyan Chen
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Ruolin Bian
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Huijie Zhai
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuejiao Cheng
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Aiju Zhao
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture/Forestry Sciences, Hebei Crop Genetic Breeding Laboratory, Shijiazhuang, 050035, China.
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China.
- National Plant Gene Research Centre, Beijing, 100193, China.
| |
Collapse
|
125
|
Hong J, Lee H, Lee J, Kim H, Ryu H. ABSCISIC ACID-INSENSITIVE 3 is involved in brassinosteroid-mediated regulation of flowering in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:207-214. [PMID: 30908972 DOI: 10.1016/j.plaphy.2019.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 05/22/2023]
Abstract
ABSCISIC ACID-INSENSITIVE 3 (ABI3) is one of the essential transcription factors of ABSCISIC ACID (ABA) signaling, functioning in seed germination, early seedling development, and abiotic stress tolerance. A recent study showed that epigenetic repression of ABI3 by brassinosteroid (BR)-activated BRI1 EMS SUPPRESSOR1 (BES1)-TOPLESS (TPL)HISTONE DEACETYLASE 19 (HDA19) repressor complex is a critical event for promoting seed germination and early seedling development. However, other physiological roles of the repression of ABI3 and ABA responses by BES1-mediated BR signaling pathways remain elusive. Here, we show that BES1-mediated suppression of ABI3 promotes floral transition and ABI3 acts as a negative regulator for flowering. Ectopic expression of ABI3 specifically compromised the early flowering phenotype of bes1-D and induced severe late-flowering phenotypes in wild-type Arabidopsis and Solanum lycopersicum plants. Both spatiotemporal expression patterns and global transcriptome analysis of ABI3-overexpressing plants supported the biological roles of ABI3 in the negative regulation of floral transition and reproduction. Finally, we confirmed that the loss of function of ABI3 induced early-flowering phenotypes in both long- and short-day conditions. In conclusion, our data suggest that BES1-mediated regulation of ABI3 is important in the reproductive phase transition of plants.
Collapse
Affiliation(s)
- Jeongeui Hong
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Horim Lee
- Department of Biotechnology, Duksung Women's University, Seoul, 01369, Republic of Korea.
| | - Jinsu Lee
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Hyemin Kim
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
126
|
Tao Z, Hu H, Luo X, Jia B, Du J, He Y. Embryonic resetting of the parental vernalized state by two B3 domain transcription factors in Arabidopsis. NATURE PLANTS 2019; 5:424-435. [PMID: 30962525 DOI: 10.1038/s41477-019-0402-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/06/2019] [Indexed: 05/02/2023]
Abstract
Some overwintering plants acquire competence to flower, after experiencing prolonged cold in winter, through a process termed vernalization. In the crucifer plant Arabidopsis thaliana, prolonged cold induces chromatin-mediated silencing of the potent floral repressor FLOWERING LOCUS C (FLC) by Polycomb proteins. This vernalized state is epigenetically maintained or 'memorized' in warm rendering plants competent to flower in spring, but is reset in the next generation. Here, we show that in early embryogenesis, two homologous B3 domain transcription factors LEAFY COTYLEDON 2 (LEC2) and FUSCA3 (FUS3) compete against two repressive B3-containing epigenome readers and Polycomb partners known as VAL1 and VAL2 for the cis-regulatory cold memory element (CME) of FLC to disrupt Polycomb silencing. Consistently, crystal structures of B3-CME complexes show that B3FUS3, B3LEC2 and B3VAL1 employ a nearly identical binding interface for CME. We further found that LEC2 and FUS3 recruit the scaffold protein FRIGIDA in association with active chromatin modifiers to establish an active chromatin state at FLC, which results in resetting of the silenced FLC to active and erasing the epigenetic parental memory of winter cold in early embryos. Following embryo development, LEC2 and FUS3 are developmentally silenced throughout post-embryonic stages, enabling VALs to bind to the CME again at seedling stages at which plants experience winter cold. Our findings illustrate how overwintering crucifer annuals or biennials in temperate climates employ a subfamily of B3 domain proteins to switch on, off and on again the expression of a key flowering gene in the embryo-to-plant-to-embryo cycle, and thus to synchronize growth and development with seasonal temperature changes in their life cycles.
Collapse
Affiliation(s)
- Zeng Tao
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hongmiao Hu
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Luo
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Bei Jia
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jiamu Du
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China.
| | - Yuehui He
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, China.
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
127
|
Abstract
Epigenetic gene regulation ensures the mitotically or meiotically stable heritability (or both) of gene expression or protein activity states and maintains repetitive element repression and cellular identities. The repressive Polycomb-group (PcG) proteins consist of several large complexes that control cellular memory by acting on chromatin and are antagonized by the Trithorax-group proteins. Especially, Polycomb repressive complex 2 (PRC2) is highly conserved in plants and animals but its function in unicellular eukaryotes and during land plant evolution is less understood. Additional PcG complexes and associated proteins are only partially conserved and have evolved in a lineage-specific manner. In this review, I will focus on recent advances in the understanding of PcG function in the green lineage and its contribution to land plant evolution.
Collapse
Affiliation(s)
- Daniel Schubert
- Department of Biology, Epigenetics of Plants, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
128
|
Xia F, Sun T, Yang S, Wang X, Chao J, Li X, Hu J, Cui M, Liu G, Wang D, Sun Y. Insight into the B3Transcription Factor Superfamily and Expression Profiling of B3 Genes in Axillary Buds after Topping in Tobacco( Nicotiana tabacum L.). Genes (Basel) 2019; 10:E164. [PMID: 30791672 PMCID: PMC6409620 DOI: 10.3390/genes10020164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Members of the plant-specific B3 transcription factor superfamily play important roles in various growth and developmental processes in plants. Even though there are many valuable studies on B3 genes in other species, little is known about the B3 superfamily in tobacco. We identified 114 B3 proteins from tobacco using comparative genome analysis. These proteins were classified into four subfamilies based on their phylogenetic relationships, and include the ARF, RAV, LAV, and REM subfamilies. The chromosomal locations, gene structures, conserved protein motifs, and sub-cellular localizations of the tobacco B3 proteins were analyzed. The patterns of exon-intron numbers and arrangement and the protein structures of the tobacco B3 proteins were in general agreement with their phylogenetic relationships. The expression patterns of 114 B3 genes revealed that many B3 genes show tissue-specific expression. The expression levels of B3 genes in axillary buds after topping showed that the REM genes are mainly up-regulated in response to topping, while the ARF genes are down-regulated after topping.
Collapse
Affiliation(s)
- Fei Xia
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Tingting Sun
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China.
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Xiao Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Jiangtao Chao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Junhua Hu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Mengmeng Cui
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Dawei Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| |
Collapse
|
129
|
Chen SL, Rooney TJ, Hu AR, Beard HS, Garrett WM, Mangalath LM, Powers JJ, Cooper B, Zhang XN. Quantitative Proteomics Reveals a Role for SERINE/ARGININE-Rich 45 in Regulating RNA Metabolism and Modulating Transcriptional Suppression via the ASAP Complex in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:1116. [PMID: 31608083 PMCID: PMC6761909 DOI: 10.3389/fpls.2019.01116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/14/2019] [Indexed: 05/12/2023]
Abstract
Pre-mRNA alternative splicing is a conserved mechanism for eukaryotic cells to leverage existing genetic resources to create a diverse pool of protein products. It is regulated in coordination with other events in RNA metabolism such as transcription, polyadenylation, RNA transport, and nonsense-mediated decay via protein networks. SERINE/ARGININE-RICH 45 (SR45) is thought to be a neutral splicing regulator. It is orthologous to a component of the apoptosis and splicing-associated protein (ASAP) complex functioning to regulate RNA metabolism at multiple levels. Within this context, we try to understand why the sr45-1 mutant Arabidopsis has malformed flowers, delayed flowering time, and increased disease resistance. Prior studies revealed increased expression for some disease resistance genes and the flowering suppressor Flowering Locus C (FLC) in sr45-1 mutants and a physical association between SR45 and reproductive process-related RNAs. Here, we used Tandem Mass Tag-based quantitative mass spectrometry to compare the protein abundance from inflorescence between Arabidopsis wild-type (Col-0) and sr45-1 mutant plants. A total of 7,206 proteins were quantified, of which 227 proteins exhibited significantly different accumulation. Only a small percentage of these proteins overlapped with the dataset of RNAs with altered expression. The proteomics results revealed that the sr45-1 mutant had increased amounts of enzymes for glucosinolate biosynthesis which are important for disease resistance. Furthermore, the mutant inflorescence had a drastically reduced amount of the Sin3-associated protein 18 (SAP18), a second ASAP complex component, despite no significant reduction in SAP18 RNA. The third ASAP component protein, ACINUS, also had lower abundance without significant RNA changes in the sr45-1 mutant. To test the effect of SR45 on SAP18, a SAP18-GFP fusion protein was overproduced in transgenic Arabidopsis Col-0 and sr45-1 plants. SAP18-GFP has less accumulation in the nucleus, the site of activity for the ASAP complex, without SR45. Furthermore, transgenic sr45-1 mutants overproducing SAP18-GFP expressed even more FLC and had a more severe flowering delay than non-transgenic sr45-1 mutants. These results suggest that SR45 is required to maintain the wild-type level of SAP18 protein accumulation in the nucleus and that FLC-regulated flowering time is regulated by the correct expression and localization of the ASAP complex.
Collapse
Affiliation(s)
- Samuel L. Chen
- Bioinformatics Program, St. Bonaventure University, St. Bonaventure, NY, United States
| | - Timothy J. Rooney
- Biochemistry Program, St. Bonaventure University, St. Bonaventure, NY, United States
| | - Anna R. Hu
- Biochemistry Program, St. Bonaventure University, St. Bonaventure, NY, United States
| | - Hunter S. Beard
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, United States
| | - Wesley M. Garrett
- Animal Biosciences & Biotechnology Laboratory, USDA-ARS, Beltsville, MD, United States
| | - Leann M. Mangalath
- Department of Biology, St. Bonaventure University, St. Bonaventure, NY, United States
| | - Jordan J. Powers
- Biochemistry Program, St. Bonaventure University, St. Bonaventure, NY, United States
| | - Bret Cooper
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, United States
| | - Xiao-Ning Zhang
- Biochemistry Program, St. Bonaventure University, St. Bonaventure, NY, United States
- Department of Biology, St. Bonaventure University, St. Bonaventure, NY, United States
- *Correspondence: Xiao-Ning Zhang,
| |
Collapse
|
130
|
Cao Y, Ma L. To Splice or to Transcribe: SKIP-Mediated Environmental Fitness and Development in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1222. [PMID: 31632433 PMCID: PMC6785753 DOI: 10.3389/fpls.2019.01222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/04/2019] [Indexed: 05/04/2023]
Abstract
Gene expression in eukaryotes is controlled at multiple levels, including transcriptional and post-transcriptional levels. The transcriptional regulation of gene expression is complex and includes the regulation of the initiation and elongation phases of transcription. Meanwhile, the post-transcriptional regulation of gene expression includes precursor messenger RNA (pre-mRNA) splicing, 5' capping, and 3' polyadenylation. Among these events, pre-mRNA splicing, conducted by the spliceosome, plays a key role in the regulation of gene expression, and the efficiency and precision of pre-mRNA splicing are critical for gene function. Ski-interacting protein (SKIP) is an evolutionarily conserved protein from yeast to humans. In plants, SKIP is a bifunctional regulator that works as a splicing factor as part of the spliceosome and as a transcriptional regulator via interactions with the transcriptional regulatory complex. Here, we review how the functions of SKIP as a splicing factor and a transcriptional regulator affect environmental fitness and development in plants.
Collapse
|
131
|
Antoniou-Kourounioti RL, Hepworth J, Heckmann A, Duncan S, Qüesta J, Rosa S, Säll T, Holm S, Dean C, Howard M. Temperature Sensing Is Distributed throughout the Regulatory Network that Controls FLC Epigenetic Silencing in Vernalization. Cell Syst 2018; 7:643-655.e9. [PMID: 30503646 PMCID: PMC6310686 DOI: 10.1016/j.cels.2018.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/15/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
Abstract
Many organisms need to respond to complex, noisy environmental signals for developmental decision making. Here, we dissect how Arabidopsis plants integrate widely fluctuating field temperatures over month-long timescales to progressively upregulate VERNALIZATION INSENSITIVE3 (VIN3) and silence FLOWERING LOCUS C (FLC), aligning flowering with spring. We develop a mathematical model for vernalization that operates on multiple timescales-long term (month), short term (day), and current (hour)-and is constrained by experimental data. Our analysis demonstrates that temperature sensing is not localized to specific nodes within the FLC network. Instead, temperature sensing is broadly distributed, with each thermosensory process responding to specific features of the plants' history of exposure to warm and cold. The model accurately predicts FLC silencing in new field data, allowing us to forecast FLC expression in changing climates. We suggest that distributed thermosensing may be a general property of thermoresponsive regulatory networks in complex natural environments.
Collapse
Affiliation(s)
| | - Jo Hepworth
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Amélie Heckmann
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Susan Duncan
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Julia Qüesta
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stefanie Rosa
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Torbjörn Säll
- Department of Biology, Lund University, Lund 223 62, Sweden
| | - Svante Holm
- Department of Natural Sciences, Mid Sweden University, Sundsvall 851 70, Sweden
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
132
|
Chai L, Chen Z, Bian R, Zhai H, Cheng X, Peng H, Yao Y, Hu Z, Xin M, Guo W, Sun Q, Zhao A, Ni Z. Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2621-2637. [PMID: 30267114 DOI: 10.1007/s00122-018-3177-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Two QTL with pleiotropic effects on plant height and spike length linked in coupling phase on chromosome 2DS were dissected, and diagnostic marker for each QTL was developed. Plant height (PHT) is a crucial trait related to plant architecture and yield potential, and dissection of its underlying genetic basis would help to improve the efficiency of designed breeding in wheat. Here, two quantitative trait loci (QTL) linked in coupling phase on the short arm of chromosome 2D with pleiotropic effects on PHT and spike length, QPht/Sl.cau-2D.1 and QPht/Sl.cau-2D.2, were separated and characterized. QPht/Sl.cau-2D.1 is a novel QTL located between SNP makers BS00022234_51 and BobWhite_rep_c63957_1472. QPht/Sl.cau-2D.2 is mapped between two SSR markers, SSR-2062 and Xgwm484, which are located on the same genomic interval as Rht8. Moreover, the diagnostic marker tightly linked with each QTL was developed for the haplotype analysis using diverse panels of wheat accessions. The frequency of the height-reduced allele of QPht/Sl.cau-2D.1 is much lower than that of QPht/Sl.cau-2D.2, suggesting that this novel QTL may be an attractive target for genetic improvement. Consistent with a previous study of Rht8, a significant difference in cell length was observed between the NILs of QPht/Sl.cau-2D.2. By contrast, there was no difference in cell length between NILs of QPht/Sl.cau-2D.1, indicating that the underlying molecular mechanism for these two QTL may be different. Collectively, these data provide a new example of QTL dissection, and the developed diagnostic markers will be useful in marker-assisted pyramiding of QPht/Sl.cau-2D.1 and/or QPht/Sl.cau-2D.2 with the other genes in wheat breeding.
Collapse
Affiliation(s)
- Lingling Chai
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhaoyan Chen
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Ruolin Bian
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Huijie Zhai
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuejiao Cheng
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Aiju Zhao
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture/Forestry Sciences, Hebei Crop Genetic Breeding Laboratory, Shijiazhuang, 050035, China.
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality, China Agricultural University, Beijing, 100193, China.
- National Plant Gene Research Centre, Beijing, 100193, China.
| |
Collapse
|
133
|
Xu S, Chong K. Remembering winter through vernalisation. NATURE PLANTS 2018; 4:997-1009. [PMID: 30478363 DOI: 10.1038/s41477-018-0301-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 10/12/2018] [Indexed: 05/10/2023]
Abstract
Vernalisation is the programmed physiological process in which prolonged cold-exposure provides competency to flower in plants; widely found in winter and biennial species, such as Arabidopsis, fruit trees, vegetables and wheat. This phenomenon is regulated by diverse genetic networks, and memory of vernalisation in a life cycle mainly depends on epigenetic mechanisms. However, less is known about how to count winter-dosage for flowering in plants. Here, we compare the vernalisation genetic framework between the dicots Arabidopsis, temperate grasses, wheat, barley and Brachypodium. We discuss vernalisation mechanisms involving crosstalk between phosphorylation and O-GlcNAcylation modification of key proteins, and epigenetic modifications of the key gene VRN1 in wheat. We also highlight the potential evolutionary origins of vernalisation in various species. Current progress toward understanding the regulation of vernalisation requirements provides insight that will inform the design of molecular breeding strategies for winter crops.
Collapse
Affiliation(s)
- Shujuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
134
|
Bäurle I. Can’t remember to forget you: Chromatin-based priming of somatic stress responses. Semin Cell Dev Biol 2018; 83:133-139. [DOI: 10.1016/j.semcdb.2017.09.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 11/29/2022]
|
135
|
Deng X, Qiu Q, He K, Cao X. The seekers: how epigenetic modifying enzymes find their hidden genomic targets in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:75-81. [PMID: 29864678 DOI: 10.1016/j.pbi.2018.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/03/2018] [Accepted: 05/12/2018] [Indexed: 05/23/2023]
Abstract
Epigenetic regulation plays fundamental roles in modulating chromatin-based processes and shaping the epigenome in multicellular eukaryotes, including plants. How epigenetic factors recognize their target loci hiding in the vast genomic DNA sequence remains a long-standing mystery. During the past several years, a growing body of work has revealed the complex, dynamic, and diverse chromatin-targeting mechanisms of these epigenetic factors. In this review, we focus on recent advances in understanding the recruitment of epigenetic factors to specific genomic regions, based on data from Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Qiu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaixuan He
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
136
|
Sasnauskas G, Manakova E, Lapėnas K, Kauneckaitė K, Siksnys V. DNA recognition by Arabidopsis transcription factors ABI3 and NGA1. FEBS J 2018; 285:4041-4059. [PMID: 30183137 DOI: 10.1111/febs.14649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/24/2018] [Accepted: 08/31/2018] [Indexed: 01/31/2023]
Abstract
B3 transcription factors constitute a large plant-specific protein superfamily, which plays a central role in plant life. Family members are characterized by the presence of B3 DNA-binding domains (DBDs). To date, only a few B3 DBDs were structurally characterized; therefore, the DNA recognition mechanism of other family members remains to be elucidated. Here, we analyze DNA recognition mechanism of two structurally uncharacterized B3 transcription factors, ABI3 and NGA1. Guided by the structure of the DNA-bound B3 domain of Arabidopsis transcriptional repressor VAL1, we have performed mutational analysis of the ABI3 B3 domain. We demonstrate that both VAL1-B3 and ABI3-B3 recognize the Sph/RY DNA sequence 5'-TGCATG-3' via a conserved set of base-specific contacts. We have also solved a 1.8 Å apo-structure of NGA1-B3, DBD of Arabidopsis transcription factor NGA1. We show that NGA1-B3, like the structurally related RAV1-B3 domain, is specific for the 5'-CACCTG-3' DNA sequence, albeit tolerates single base pair substitutions at the 5'-terminal half of the recognition site. Employing distance-dependent fluorophore quenching, we show that NGA1-B3 binds the asymmetric recognition site in a defined orientation, with the 'N-arm' and 'C-arm' structural elements interacting with the 5'- and 3'-terminal nucleotides of the 5'-CACCTG-3' sequence, respectively. Mutational analysis guided by the model of DNA-bound NGA1-B3 helped us identify NGA1-B3 residues involved in base-specific and DNA backbone contacts, providing new insights into the mechanism of DNA recognition by plant B3 domains of RAV and REM families. DATABASES: RCSB Protein Data Bank, accession number 5OS9.
Collapse
Affiliation(s)
| | - Elena Manakova
- Institute of Biotechnology, Vilnius University, Lithuania
| | | | | | | |
Collapse
|
137
|
Li Z, Ou Y, Zhang Z, Li J, He Y. Brassinosteroid Signaling Recruits Histone 3 Lysine-27 Demethylation Activity to FLOWERING LOCUS C Chromatin to Inhibit the Floral Transition in Arabidopsis. MOLECULAR PLANT 2018; 11:1135-1146. [PMID: 29969683 DOI: 10.1016/j.molp.2018.06.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 05/21/2018] [Accepted: 06/22/2018] [Indexed: 05/22/2023]
Abstract
The steroid hormone brassinosteroid (BR) plays a broad role in plant growth and development. As the retarded growth in BR-insensitive and BR-deficient mutants causes a strong delay in days to flowering, BR signaling has been thought to promote the floral transition in Arabidopsis. In this study, using a developmental measure of flowering time, we show that BR signaling inhibits the floral transition and promotes vegetative growth in the Arabidopsis accessions Columbia and Enkheim-2. We found that BR signaling promotes the expression of the potent floral repressor FLOWERING LOCUS C (FLC) and three FLC homologs to inhibit flowering. In the presence of BR, the transcription factor BRASSINAZOLE-RESISTANT1 (BZR1), together with BES1-INTERACTING MYC-like proteins (BIMs), specifically binds a BR- responsive element in the first intron of FLC and further recruits a histone 3 lysine 27 (H3K27) demethylase to downregulate levels of the repressive H3K27 trimethylation mark and thus antagonize Polycomb silencing at FLC, leading to its activation. Taken together, our findings demonstrate that BR signaling inhibits the floral transition in Arabidopsis by a novel molecular mechanism in which BR signals are transduced into FLC activation and consequent floral repression.
Collapse
Affiliation(s)
- Zicong Li
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Yang Ou
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhicheng Zhang
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianming Li
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yuehui He
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China.
| |
Collapse
|
138
|
Lepiniec L, Devic M, Roscoe TJ, Bouyer D, Zhou DX, Boulard C, Baud S, Dubreucq B. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. PLANT REPRODUCTION 2018; 31:291-307. [PMID: 29797091 DOI: 10.1007/s00497-018-0337-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/10/2018] [Indexed: 05/20/2023]
Abstract
The LAFL (i.e. LEC1, ABI3, FUS3, and LEC2) master transcriptional regulators interact to form different complexes that induce embryo development and maturation, and inhibit seed germination and vegetative growth in Arabidopsis. Orthologous genes involved in similar regulatory processes have been described in various angiosperms including important crop species. Consistent with a prominent role of the LAFL regulators in triggering and maintaining embryonic cell fate, their expression appears finely tuned in different tissues during seed development and tightly repressed in vegetative tissues by a surprisingly high number of genetic and epigenetic factors. Partial functional redundancies and intricate feedback regulations of the LAFL have hampered the elucidation of the underpinning molecular mechanisms. Nevertheless, genetic, genomic, cellular, molecular, and biochemical analyses implemented during the last years have greatly improved our knowledge of the LALF network. Here we summarize and discuss recent progress, together with current issues required to gain a comprehensive insight into the network, including the emerging function of LEC1 and possibly LEC2 as pioneer transcription factors.
Collapse
Affiliation(s)
- L Lepiniec
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France.
| | - M Devic
- Régulations Epigénétiques et Développement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD centre de Montpellier, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie (Paris 06) & Centre National pour la Recherche Scientifique CNRS UMR 7621, 66650, Banyuls-sur-Mer, France
| | - T J Roscoe
- Régulations Epigénétiques et Développement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD centre de Montpellier, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie (Paris 06) & Centre National pour la Recherche Scientifique CNRS UMR 7621, 66650, Banyuls-sur-Mer, France
| | - D Bouyer
- Institut de Biologie de l'ENS, CNRS UMR8197, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris Cedex 05, France
| | - D-X Zhou
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Sud 11, Université Paris-Saclay, 91405, Orsay, France
| | - C Boulard
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - S Baud
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - B Dubreucq
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| |
Collapse
|
139
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 19:ijms19092506. [PMID: 30149541 PMCID: PMC6165531 DOI: 10.3390/ijms19092506] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
140
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 57:2367-2379. [PMID: 30149541 DOI: 10.1093/pcp/pcw157] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2018] [Accepted: 09/05/2016] [Indexed: 05/25/2023] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
141
|
Epigenetic Environmental Memories in Plants: Establishment, Maintenance, and Reprogramming. Trends Genet 2018; 34:856-866. [PMID: 30144941 DOI: 10.1016/j.tig.2018.07.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/15/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022]
Abstract
Plants are immobile and must respond to or endure fluctuating surroundings and diverse environmental challenges. Environmental inputs often induce chromatin modifications at various responsive genes and consequent changes in their expression. Environment-induced chromatin marks at certain loci are transmittable through cell divisions after relief from the original external signals, leading to acquired 'memorization' of environmental experiences in plants, namely epigenetic environmental memories, which enable plants to adapt to environmental changes or to perform better when events recur. Here, we review recent progress in epigenetic or chromatin-mediated environmental memories in plants, including defense priming, stress memories, and 'epigenetic memory of winter cold' or vernalization. Various advances in epigenetic mechanisms underlying plant-environment interactions highlight that plant environmental epigenetics is emerging as an important area in plant biology.
Collapse
|
142
|
Chen M, Penfield S. Feedback regulation of COOLAIR expression controls seed dormancy and flowering time. Science 2018; 360:1014-1017. [PMID: 29853684 DOI: 10.1126/science.aar7361] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/13/2018] [Indexed: 12/30/2022]
Abstract
Plants integrate seasonal signals, including temperature and day length, to optimize the timing of developmental transitions. Seasonal sensing requires the activity of two proteins, FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT), that control certain developmental transitions in plants. During reproductive development, the mother plant uses FLC and FT to modulate progeny seed dormancy in response to temperature. We found that for regulation of seed dormancy, FLC and FT function in opposite configuration to how those same genes control time to flowering. For seed dormancy, FT regulates seed dormancy through FLC gene expression and regulates chromatin state by activating antisense FLC transcription. Thus, in Arabidopsis the same genes controlled in opposite format regulate flowering time and seed dormancy in response to the temperature changes that characterize seasons.
Collapse
Affiliation(s)
- Min Chen
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
143
|
Li Z, Fu X, Wang Y, Liu R, He Y. Polycomb-mediated gene silencing by the BAH–EMF1 complex in plants. Nat Genet 2018; 50:1254-1261. [DOI: 10.1038/s41588-018-0190-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/16/2018] [Indexed: 12/14/2022]
|
144
|
Anderson JV, Horvath DP, Doğramaci M, Dorn KM, Chao WS, Watkin EE, Hernandez AG, Marks MD, Gesch R. Expression of FLOWERING LOCUS C and a frameshift mutation of this gene on chromosome 20 differentiate a summer and winter annual biotype of Camelina sativa. PLANT DIRECT 2018; 2:e00060. [PMID: 31245730 PMCID: PMC6508819 DOI: 10.1002/pld3.60] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/04/2018] [Accepted: 04/30/2018] [Indexed: 06/09/2023]
Abstract
The nature of the vegetative to reproductive transition in the shoot apical meristem of Camelina sativa summer annual cultivar CO46 and winter annual cultivar Joelle was confirmed by treating seedlings with or without 8 weeks of vernalization. True to their life cycle classification, Joelle required a vernalization treatment to induce bolting and flowering, whereas CO46 did not. In this study, whole genome sequence, RNAseq, and resequencing of PCR-amplified transcripts for a key floral repressor were used to better understand factors involved in the flowering habit of summer and winter biotypes at the molecular level. Analysis of transcriptome data indicated that abundance for one of the three genes encoding the floral repressor FLOWERING LOCUS C (FLC; Csa20 g015400) was 16-fold greater in Joelle compared to CO46 prior to vernalization. Abundance of this transcript decreased only slightly in CO46 postvernalization, compared to a substantial decrease in Joelle. The results observed in the winter annual biotype Joelle are consistent with repression of FLC by vernalization. Further characterization of FLC at both the genome and transcriptome levels identified a one base deletion in the 5th exon coding for a keratin-binding domain in chromosome 20 of CO46 and Joelle. The one base deletion detected in chromosome 20 FLC is predicted to result in a frameshift that would produce a nonfunctional protein. Analysis of whole genome sequence indicated that the one base deletion in chromosome 20 FLC occurred at a greater ratio in the summer biotype CO46 (2:1) compared to the winter biotype Joelle (1:4); similar trends were also observed for RNAseq and cDNA transcripts mapping to chromosome 20 FLC of CO46 and Joelle.
Collapse
Affiliation(s)
- James V. Anderson
- Sunflower and Plant Biology Research UnitUSDA‐ARS, Red River Valley Agricultural Research CenterFargoNorth Dakota
| | - David P. Horvath
- Sunflower and Plant Biology Research UnitUSDA‐ARS, Red River Valley Agricultural Research CenterFargoNorth Dakota
| | - Münevver Doğramaci
- Sunflower and Plant Biology Research UnitUSDA‐ARS, Red River Valley Agricultural Research CenterFargoNorth Dakota
- Sanford School of MedicineInternal Medicine DepartmentUniversity of South DakotaSioux FallsSouth Dakota
| | - Kevin M. Dorn
- Department of Plant PathologyKansas State UniversityManhattanKansas
| | - Wun S. Chao
- Sunflower and Plant Biology Research UnitUSDA‐ARS, Red River Valley Agricultural Research CenterFargoNorth Dakota
| | - Erin E. Watkin
- Sunflower and Plant Biology Research UnitUSDA‐ARS, Red River Valley Agricultural Research CenterFargoNorth Dakota
| | - Alvaro G. Hernandez
- Department of Crop Sciences2608 Institute for Genomic Biology, and Roy J. Carver Biotechnology CenterUniversity of IllinoisUrbanaIllinois
| | - M. David Marks
- Department of Plant BiologyUniversity of MinnesotaSt. PaulMinnesota
| | - Russ Gesch
- USDA‐ARS, North Central Soil Conservation Research LaboratoryMorrisMinnesota
| |
Collapse
|
145
|
Jiang P, Wang S, Zheng H, Li H, Zhang F, Su Y, Xu Z, Lin H, Qian Q, Ding Y. SIP1 participates in regulation of flowering time in rice by recruiting OsTrx1 to Ehd1. THE NEW PHYTOLOGIST 2018; 219:422-435. [PMID: 29611871 PMCID: PMC6001661 DOI: 10.1111/nph.15122] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/20/2018] [Indexed: 05/12/2023]
Abstract
Flowering time (heading date) in rice (Oryza sativa) is an important agronomic trait that determines yield. The levels of histone H3 lysine 4 trimethylation (H3K4me3) modulated by TRITHORAX-like proteins regulate gene transcription, flowering time and environmental stress responses. However, plant TRITHORAX-like proteins have no known DNA-binding domain, and therefore the mechanism that gives sequence specificity to these proteins remains unclear. Here, we show that the rice TRITHORAX-like protein OsTrx1 is recruited to its target, Early heading date 1 (Ehd1), by the C2H2 zinc finger protein SDG723/OsTrx1/OsSET33 Interaction Protein 1 (SIP1). SIP1 binds to the promoter of Ehd1 and interacts with OsTrx1. Mutations in SIP1 led to a late heading date under long-day and short-day conditions. Defects in OsTrx1 or SIP1 led to reduced H3K4me3 levels at Ehd1, thus reducing Ehd1 expression. Together, our results show that the transcription factor SIP1 interacts with OxTrx1, allowing OsTrx1 to specifically target Ehd1, altering H3K4me3 levels, increasing Ehd1 expression and thereby promoting flowering.
Collapse
Affiliation(s)
- Pengfei Jiang
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Shiliang Wang
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
- School of Life SciencesAnhui Agricultural UniversityHefeiAnhui230036China
| | - Han Zheng
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
| | - Hao Li
- Key Laboratory of Rice Genetic Breeding of Anhui ProvinceRice Research InstituteAnhui Academy of Agricultural SciencesHefei230031China
| | - Fei Zhang
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
| | - Yanhua Su
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
| | - Zuntao Xu
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
| | - Haiyan Lin
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhou310006China
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhou310006China
| | - Yong Ding
- CAS Center for Excellence in Molecular Plant SciencesSchool of Life SciencesUniversity of Science & Technology of ChinaHefeiAnhui230027China
| |
Collapse
|
146
|
Dotto M, Gómez MS, Soto MS, Casati P. UV-B radiation delays flowering time through changes in the PRC2 complex activity and miR156 levels in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2018; 41:1394-1406. [PMID: 29447428 DOI: 10.1111/pce.13166] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 05/18/2023]
Abstract
UV-B is a high-energy component of the solar radiation perceived by the plant and induces a number of modifications in plant growth and development, including changes in flowering time. However, the molecular mechanisms underlying these changes are largely unknown. In the present work, we demonstrate that Arabidopsis plants grown under white light supplemented with UV-B show a delay in flowering time, and this developmental reprogramming is mediated by the UVR8 photoreceptor. Using a combination of gene expression analyses and UV-B irradiation of different flowering mutants, we gained insight into the pathways involved in the observed flowering time delay in UV-B-exposed Arabidopsis plants. We provide evidence that UV-B light downregulates the expression of MSI1 and CLF, two of the components of the polycomb repressive complex 2, which in consequence drives a decrease in H3K27me3 histone methylation of MIR156 and FLC genes. Modification in the expression of several flowering time genes as a consequence of the decrease in the polycomb repressive complex 2 activity was also determined. UV-B exposure of flowering mutants supports the involvement of this complex in the observed delay in flowering time, mostly through the age pathway.
Collapse
Affiliation(s)
- Marcela Dotto
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
| | - María Sol Gómez
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
| | - María Soledad Soto
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
| |
Collapse
|
147
|
Wu B, Zhang M, Su S, Liu H, Gan J, Ma J. Structural insight into the role of VAL1 B3 domain for targeting to FLC locus in Arabidopsis thaliana. Biochem Biophys Res Commun 2018; 501:415-422. [PMID: 29733847 DOI: 10.1016/j.bbrc.2018.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 05/01/2018] [Indexed: 11/19/2022]
Abstract
Vernalization is a pivotal stage for some plants involving many epigenetic changes during cold exposure. In Arabidopsis, an essential step in vernalization for further flowering is successful silence the potent floral repressor Flowering Locus C (FLC) by repressing histone mark. AtVal1 is a multi-function protein containing five domains that participate into many recognition processes and is validated to recruit the repress histone modifier PHD-PRC2 complex and interact with components of the ASAP complex target to the FLC nucleation region through recognizing a cis element known as CME (cold memory element) by its plant-specific B3 domain. Here, we determine the crystal structure of the B3 domain in complex with Sph/RY motif in CME. Our structural analysis reveals the specific DNA recognition by B3 domain, combined with our in vitro experiments, we provide the structural insight into the important implication of AtVAL1-B3 domain in flowering process.
Collapse
Affiliation(s)
- Baixing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Mengmeng Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shichen Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hehua Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Centre of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
148
|
Xie Y, Zhang Y, Han J, Luo J, Li G, Huang J, Wu H, Tian Q, Zhu Q, Chen Y, Kawano Y, Liu YG, Chen L. The Intronic cis Element SE1 Recruits trans-Acting Repressor Complexes to Repress the Expression of ELONGATED UPPERMOST INTERNODE1 in Rice. MOLECULAR PLANT 2018. [PMID: 29524649 DOI: 10.1016/j.molp.2018.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plant height has a major effect on grain yield in crops such as rice (Oryza sativa), and the hormone gibberellic acid (GA) regulates many developmental processes that feed into plant height. Rice ELONGATED UPPERMOST INTERNODE1 (Eui1) encodes a GA-deactivating enzyme governing elongation of the uppermost internode. The expression of Eui1 is finely tuned, thereby maintaining homeostasis of endogenous bioactive GA and producing plants of normal plant height. Here, we identified a dominant dwarf mutant, dEui1, caused by the deletion of an RY motif-containing cis-silencing element (SE1) in the intron of Eui1. Detailed genetic and molecular analysis of SE1 revealed that this intronic cis element recruits at least one trans-acting repressor complex, containing the B3 repressors OsVAL2 and OsGD1, the SAP18 co-repressor, and the histone deacetylase OsHDA710, to negatively regulate the expression of Eui1. This complex generates closed chromatin at Eui1, suppressing Eui1 expression and modulating GA homeostasis. Loss of SE1 or dysfunction of the complex components impairs histone deacetylation and H3K27me3 methylation of Eui1 chromatin, thereby increasing Eui1 transcription and decreasing bioactive GA, producing dwarfism in rice. Together, our results reveal a novel silencing mechanism in which the intronic cis element SE1 negatively regulates Eui1 expression via repressor complexes that modulate histone deacetylation and/or methylation.
Collapse
Affiliation(s)
- Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yaling Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingluan Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jikai Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Gousi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jianle Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Haibin Wu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qingwei Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yuanling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yoji Kawano
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
149
|
Sasnauskas G, Kauneckaitė K, Siksnys V. Structural basis of DNA target recognition by the B3 domain of Arabidopsis epigenome reader VAL1. Nucleic Acids Res 2018; 46:4316-4324. [PMID: 29660015 PMCID: PMC5934628 DOI: 10.1093/nar/gky256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/08/2018] [Accepted: 03/27/2018] [Indexed: 11/14/2022] Open
Abstract
Arabidopsis thaliana requires a prolonged period of cold exposure during winter to initiate flowering in a process termed vernalization. Exposure to cold induces epigenetic silencing of the FLOWERING LOCUS C (FLC) gene by Polycomb group (PcG) proteins. A key role in this epigenetic switch is played by transcriptional repressors VAL1 and VAL2, which specifically recognize Sph/RY DNA sequences within FLC via B3 DNA binding domains, and mediate recruitment of PcG silencing machinery. To understand the structural mechanism of site-specific DNA recognition by VAL1, we have solved the crystal structure of VAL1 B3 domain (VAL1-B3) bound to a 12 bp oligoduplex containing the canonical Sph/RY DNA sequence 5'-CATGCA-3'/5'-TGCATG-3'. We find that VAL1-B3 makes H-bonds and van der Waals contacts to DNA bases of all six positions of the canonical Sph/RY element. In agreement with the structure, in vitro DNA binding studies show that VAL1-B3 does not tolerate substitutions at any position of the 5'-TGCATG-3' sequence. The VAL1-B3-DNA structure presented here provides a structural model for understanding the specificity of plant B3 domains interacting with the Sph/RY and other DNA sequences.
Collapse
Affiliation(s)
- Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Kotryna Kauneckaitė
- Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
150
|
Vachon G, Engelhorn J, Carles CC. Interactions between transcription factors and chromatin regulators in the control of flower development. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2461-2471. [PMID: 29506187 DOI: 10.1093/jxb/ery079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Chromatin modifiers and remodelers are involved in generating dynamic changes at the chromatin, which allow differential and specific readouts of the genome. While genetic evidence indicates that several chromatin factors play a key role in controlling basic developmental programs for inflorescence and flower morphogenesis, it remained unknown until recently how they exert their specificity toward gene expression, both temporally and spatially. An emerging topic is the recruitment or eviction of chromatin factors through the activity of sequence-specific DNA-binding domains, present in the chromatin factors themselves or in partnering transcription factors. Here we summarize recent progress that has been made in this regard in the model plant Arabidopsis thaliana. We further outline the different possible modes through which chromatin complexes specifically target genes involved in flower development.
Collapse
Affiliation(s)
- Gilles Vachon
- LPCV, CNRS, CEA, INRA, Université Grenoble Alpes, BIG, Grenoble, France
| | - Julia Engelhorn
- LPCV, CNRS, CEA, INRA, Université Grenoble Alpes, BIG, Grenoble, France
| | | |
Collapse
|