101
|
Emerging Roles of Cannabinoids and Synthetic Cannabinoids in Clinical Experimental Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1264:47-65. [PMID: 33332003 DOI: 10.1007/978-3-030-57369-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, an increasing number of investigations has demonstrated the therapeutic potential of molecules targeting the endocannabinoid system. Cannabinoids of endogenous, phytogenic, and synthetic nature have been assessed in a wide variety of disease models ranging from neurological to metabolic disorders. Even though very few compounds of this type have already reached the market, numerous preclinical and clinical studies suggest that cannabinoids are suitable drugs for the clinical management of diverse pathologies.In this chapter, we will provide an overview of the endocannabinoid system under certain physiopathological conditions, with a focus on neurological, oncologic, and metabolic disorders. Cannabinoids evaluated as potential therapeutic agents in experimental models with an emphasis in the most successful chemical entities and their perspectives towards the clinic will be discussed.
Collapse
|
102
|
Verhelst SHL, Bonger KM, Willems LI. Bioorthogonal Reactions in Activity-Based Protein Profiling. Molecules 2020; 25:E5994. [PMID: 33352858 PMCID: PMC7765892 DOI: 10.3390/molecules25245994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Activity-based protein profiling (ABPP) is a powerful technique to label and detect active enzyme species within cell lysates, cells, or whole animals. In the last two decades, a wide variety of applications and experimental read-out techniques have been pursued in order to increase our understanding of physiological and pathological processes, to identify novel drug targets, to evaluate selectivity of drugs, and to image probe targets in cells. Bioorthogonal chemistry has substantially contributed to the field of ABPP, as it allows the introduction of tags, which may be bulky or have unfavorable physicochemical properties, at a late stage in the experiment. In this review, we give an overview of the bioorthogonal reactions that have been implemented in ABPP, provide examples of applications of bioorthogonal chemistry in ABPP, and share some thoughts on future directions.
Collapse
Affiliation(s)
- Steven H. L. Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Herestr. 49, Box 802, 3000 Leuven, Belgium
- AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Kimberly M. Bonger
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Lianne I. Willems
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| |
Collapse
|
103
|
Baswan SM, Klosner AE, Glynn K, Rajgopal A, Malik K, Yim S, Stern N. Therapeutic Potential of Cannabidiol (CBD) for Skin Health and Disorders. Clin Cosmet Investig Dermatol 2020; 13:927-942. [PMID: 33335413 PMCID: PMC7736837 DOI: 10.2147/ccid.s286411] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
Though there is limited research confirming the purported topical benefits of cannabinoids, it is certain that cutaneous biology is modulated by the human endocannabinoid system (ECS). Receptors from the ECS have been identified in the skin and systemic abuse of synthetic cannabinoids, and their analogs, have also been associated with the manifestation of dermatological disorders, indicating the effects of the ECS on cutaneous biology. In particular, cannabidiol (CBD), a non-psychoactive compound from the cannabis plant, has garnered significant attention in recent years for its anecdotal therapeutic potential for various pathologies, including skin and cosmetic disorders. Though a body of preclinical evidence suggests topical application of CBD may be efficacious for some skin disorders, such as eczema, psoriasis, pruritis, and inflammatory conditions, confirmed clinical efficacy and elucidation of underlying molecular mechanisms have yet to be fully identified. This article provides an update on the advances in CBD research to date and the potential areas of future exploration.
Collapse
Affiliation(s)
- Sudhir M Baswan
- Innovation and Science, Amway Corporation, Ada, MI, 49355, USA
| | - Allison E Klosner
- Innovation and Science, Nutrilite Health Institute, Amway Corporation, Buena Park, CA, 90621, USA
| | - Kelly Glynn
- Innovation and Science, Amway Corporation, Ada, MI, 49355, USA
| | - Arun Rajgopal
- Innovation and Science, Amway Corporation, Ada, MI, 49355, USA
| | - Kausar Malik
- Innovation and Science, Amway Corporation, Ada, MI, 49355, USA
| | - Sunghan Yim
- Innovation and Science, Amway Corporation, Ada, MI, 49355, USA
| | - Nathan Stern
- Innovation and Science, Amway Corporation, Ada, MI, 49355, USA
| |
Collapse
|
104
|
Sholler DJ, Huestis MA, Amendolara B, Vandrey R, Cooper ZD. Therapeutic potential and safety considerations for the clinical use of synthetic cannabinoids. Pharmacol Biochem Behav 2020; 199:173059. [PMID: 33086126 PMCID: PMC7725960 DOI: 10.1016/j.pbb.2020.173059] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
The phytocannabinoid Δ9-tetrahydrocannabinol (THC) was isolated and synthesized in the 1960s. Since then, two synthetic cannabinoids (SCBs) targeting the cannabinoid 1 (CB1R) and 2 (CB2R) receptors were approved for medical use based on clinical safety and efficacy data: dronabinol (synthetic THC) and nabilone (synthetic THC analog). To probe the function of the endocannabinoid system further, hundreds of investigational compounds were developed; in particular, agonists with (1) greater CB1/2R affinity relative to THC and (2) full CB1/2R agonist activity. This pharmacological profile may pose greater risks for misuse and adverse effects relative to THC, and these SCBs proliferated in retail markets as legal alternatives to cannabis (e.g., novel psychoactive substances [NPS], "Spice," "K2"). These SCBs were largely outlawed in the U.S., but blanket policies that placed all SCB chemicals into restrictive control categories impeded research progress into novel mechanisms for SCB therapeutic development. There is a concerted effort to develop new, therapeutically useful SCBs that target novel pharmacological mechanisms. This review highlights the potential therapeutic efficacy and safety considerations for unique SCBs, including CB1R partial and full agonists, peripherally-restricted CB1R agonists, selective CB2R agonists, selective CB1R antagonists/inverse agonists, CB1R allosteric modulators, endocannabinoid-degrading enzyme inhibitors, and cannabidiol. We propose promising directions for SCB research that may optimize therapeutic efficacy and diminish potential for adverse events, for example, peripherally-restricted CB1R antagonists/inverse agonists and biased CB1/2R agonists. Together, these strategies could lead to the discovery of new, therapeutically useful SCBs with reduced negative public health impact.
Collapse
Affiliation(s)
- Dennis J Sholler
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Marilyn A Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| | - Benjamin Amendolara
- UCLA Cannabis Research Initiative, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Ryan Vandrey
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ziva D Cooper
- UCLA Cannabis Research Initiative, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
105
|
Gong L, Xu Y, Liu G, Zheng M, Zhang X, Hang Y, Kang J. Profiling
Drug‐Protein
Interactions by Micro Column Affinity Purification Combined with Label Free Quantification Proteomics
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li Gong
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yao Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Guizhen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Physical Science and Technology, ShanghaiTech University Haike Road 100 Shanghai 200120 China
| | - Mengmeng Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xuepei Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ying Hang
- School of Life Science and Technology, ShanghaiTech University Haike Road 100 Shanghai 200120 China
| | - Jingwu Kang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Physical Science and Technology, ShanghaiTech University Haike Road 100 Shanghai 200120 China
| |
Collapse
|
106
|
Willacey CC, Karu N, Harms AC, Hankemeier T. Metabolic profiling of material-limited cell samples by dimethylaminophenacyl bromide derivatization with UPLC-MS/MS analysis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
107
|
Ye Z, Wang Y, Wu H, Song T, Li X, Liu Q, Wang C. Chemoproteomic Profiling of an Ibrutinib Analogue Reveals its Unexpected Role in DNA Damage Repair. Chembiochem 2020; 22:129-133. [PMID: 32979005 DOI: 10.1002/cbic.202000527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/13/2020] [Indexed: 11/09/2022]
Abstract
Ibrutinib is an FDA-approved drug to treat B-lymphoid malignancies, which functions mechanistically as a covalent inhibitor for Bruton's tyrosine kinase (BTK). During the course of screening more potent and selective BTK inhibitors, we discovered that MM2-48, an ibrutinib analogue that contains the alkynyl amide functional group in place of the acrylamide warhead, exhibits a much stronger cytotoxicity. Comparative chemoproteomic profiling of the targets of ibrutinib and MM2-48 revealed that the alkynyl amide warhead exhibits much higher reactivity in proteomes. Unexpectedly, MM2-48 covalently targets a functional cysteine in a BRCA2 and CDKN1A-interacting protein, BCCIP, and significantly inhibits DNA damage repair. Our findings suggest that simultaneous inhibition of BTK activity and DNA damage repair might be a more effective therapeutic strategy for combating B-cell malignancies.
Collapse
Affiliation(s)
- Zi Ye
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Synthetic and Functional Biomolecules Center, Beijing National Laboratory of Molecular Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Peking, 100871, P. R. China
| | - Yankun Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Synthetic and Functional Biomolecules Center, Beijing National Laboratory of Molecular Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Peking, 100871, P. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230036, Anhui, P. R. China
| | - Tong Song
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Synthetic and Functional Biomolecules Center, Beijing National Laboratory of Molecular Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Peking, 100871, P. R. China
| | - Xixiang Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230036, Anhui, P. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230036, Anhui, P. R. China
| | - Chu Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Synthetic and Functional Biomolecules Center, Beijing National Laboratory of Molecular Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Peking, 100871, P. R. China
| |
Collapse
|
108
|
Keith JM, Jones W, Pierce JM, Seierstad M, Palmer JA, Webb M, Karbarz M, Scott BP, Wilson SJ, Luo L, Wennerholm M, Chang L, Rizzolio M, Rynberg R, Chaplan S, Guy Breitenbucher J. Heteroarylureas with fused bicyclic diamine cores as inhibitors of fatty acid amide hydrolase. Bioorg Med Chem Lett 2020; 30:127463. [PMID: 32784090 DOI: 10.1016/j.bmcl.2020.127463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 12/18/2022]
Abstract
A series of mechanism-based heteroaryl urea fatty acid amide hydrolase (FAAH) inhibitors with fused bicyclic diamine cores is described. In contrast to compounds built around a piperazine core, most of the fused bicyclic diamine bearing analogs prepared exhibited greater potency against rFAAH than the human enzyme. Several compounds equipotent against both species were identified and profiled in vivo.
Collapse
Affiliation(s)
- John M Keith
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.
| | - William Jones
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Joan M Pierce
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Mark Seierstad
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - James A Palmer
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Michael Webb
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Mark Karbarz
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Brian P Scott
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Sandy J Wilson
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Lin Luo
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Michelle Wennerholm
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Leon Chang
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Michele Rizzolio
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Raymond Rynberg
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Sandra Chaplan
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - J Guy Breitenbucher
- Janssen Pharmaceutical Companies of Johnson & Johnson, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| |
Collapse
|
109
|
Luján MÁ, Cheer JF, Melis M. Choosing the right drug: status and future of endocannabinoid research for the prevention of drug-seeking reinstatement. Curr Opin Pharmacol 2020; 56:29-38. [PMID: 33068883 DOI: 10.1016/j.coph.2020.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/06/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022]
Abstract
Prolonged exposure to drugs of abuse leads to severe alterations in mesocorticolimbic dopamine circuitry deeply implicated in substance use disorders. Despite considerable efforts, few medications to reduce relapse rates are currently available. To solve this issue, researchers are uncovering therapeutic opportunities offered by the endocannabinoid system. The cannabinoid receptor type 1 (CB1R), and its endogenous ligands, participate in orchestration of cue-triggered and stress-triggered responses leading to obtain natural and drug rewards. Here, we review the evidence supporting the use of CB1R neutral antagonists, allosteric modulators, indirect agonists, as well as multi-target compounds, as improved alternatives compared to classical CB1R antagonists. The promising therapeutic value of other substrates participating in endocannabinoid signaling, like peroxisome proliferator-activated receptors, is also covered. Overall, a wide body of pre-clinical evidence avails novel pharmacological strategies interacting with the endocannabinoid system as clinically amenable candidates able to counteract drug-induced dopamine maladaptations contributing to increased risk of relapse.
Collapse
Affiliation(s)
- Miguel Á Luján
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Italy.
| |
Collapse
|
110
|
Druggable Targets in Endocannabinoid Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:177-201. [PMID: 32894511 DOI: 10.1007/978-3-030-50621-6_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cannabis and cannabinoid-based extracts have long been utilized for their perceived therapeutic value, and support for the legalization of cannabis for medicinal purposes continues to increase worldwide. Since the discovery of Δ9-tetrahydrocannabinol (THC) as the primary psychoactive component of cannabis over 50 years ago, substantial effort has been directed toward detection of endogenous mediators of cannabinoid activity. The discovery of anandamide and 2-arachidonoylglycerol as two endogenous lipid mediators of cannabinoid-like effects (endocannabinoids) has inspired exponential growth in our understanding of this essential pathway, as well as the pathological conditions that result from dysregulated endocannabinoid signaling. This review examines current knowledge of the endocannabinoid system including metabolic enzymes involved in biosynthesis and degradation and their receptors, and evaluates potential druggable targets for therapeutic intervention.
Collapse
|
111
|
Alteba S, Mizrachi Zer-Aviv T, Tenenhaus A, Ben David G, Adelman J, Hillard CJ, Doron R, Akirav I. Antidepressant-like effects of URB597 and JZL184 in male and female rats exposed to early life stress. Eur Neuropsychopharmacol 2020; 39:70-86. [PMID: 32891517 DOI: 10.1016/j.euroneuro.2020.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022]
Abstract
Early life stress (ELS) may increase predisposition to depression. Despite extensive research, there is still a lack of knowledge of how to optimally treat depression. We aimed to establish a role for the endocannabinoid (ECB) system within the hippocampal-nucleus accumbens (NAc) network as a possible effective target in combating the pathophysiological development of depression-like behavior and neuronal alterations that are precipitated by ELS. Male and female rats were exposed to ELS during post-natal days (P) 7-14, injected with the fatty acid amide hydrolase (FAAH) inhibitor URB597 or the monoacylglycerol lipase (MAGL) inhibitor JZL184 for 2 weeks during late-adolescence (P45-60). Rats were tested starting at P90 for depressive- and anxiety-like behaviors as well as social preference and recognition; alterations in FAAH and MAGL activity; the expression of brain-derived neurotrophic factor (BDNF); and plasticity in the hippocampal-NAc pathway. FAAH and MAGL inhibitors during late-adolescence prevented: (i) the long-term effects of ELS on depression- and anxiety-like behavior and the impairment in social behavior and neuronal plasticity in males and females; (ii) ELS-induced alterations in MAGL activity in males' hippocampus and females' hippocampus and NAc; and (iii) ELS-induced alterations in BDNF in males' hippocampus and NAc and females' hippocampus. Significant correlations were observed between alterations in MAGL and BDNF levels and the behavioral phenotype. The findings suggest that alterations in MAGL activity and BDNF expression in the hippocampal-NAc network contribute to the depressive-like behavioral phenotype in ELS males and females. Moreover, the study suggests FAAH and MAGL inhibitors as potential intervention drugs for depression.
Collapse
Affiliation(s)
- Shirley Alteba
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel; The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, 3498838, Israel
| | - Tomer Mizrachi Zer-Aviv
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel; The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, 3498838, Israel
| | - Adi Tenenhaus
- Department of Education and Psychology, The Open University of Israel, Israel
| | - Gilad Ben David
- Department of Education and Psychology, The Open University of Israel, Israel
| | - Jacob Adelman
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, USA
| | - Ravid Doron
- Department of Education and Psychology, The Open University of Israel, Israel
| | - Irit Akirav
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa 3498838, Israel; The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
112
|
Miyajima R, Sakai K, Otani Y, Wadatsu T, Sakata Y, Nishikawa Y, Tanaka M, Yamashita Y, Hayashi M, Kondo K, Hayashi T. Novel Tetrafunctional Probes Identify Target Receptors and Binding Sites of Small-Molecule Drugs from Living Systems. ACS Chem Biol 2020; 15:2364-2373. [PMID: 32786265 DOI: 10.1021/acschembio.0c00335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significant advancement of chemoproteomics has contributed to uncovering the mechanism of action (MoA) of small-molecule drugs by characterizing drug-protein interactions in living systems. However, cell-membrane proteins such as G protein-coupled receptors (GPCRs) and ion channels, due to their low abundance and unique biophysical properties associated with multiple transmembrane domains, can present challenges for proteome-wide mapping of drug-receptor interactions. Herein, we describe the development of novel tetrafunctional probes, consisting of (1) a ligand of interest, (2) 2-aryl-5-carboxytetrazole (ACT) as a photoreactive group, (3) a hydrazine-labile cleavable linker, and (4) biotin for enrichment. In live cell labeling studies, we demonstrated that the ACT-based probe showed superior reactivity and selectivity for labeling on-target GPCR by mass spectrometry analysis compared with control probes including diazirine-based probes. By leveraging ACT-based cleavable probes, we further identified a set of representative ionotropic receptors, targeted by CNS drugs, with remarkable selectivity and precise binding site information from mouse brain slices. We anticipate that the robust chemoproteomic platform using the ACT-based cleavable probe coupled with phenotypic screening should promote identification of pharmacologically relevant target receptors of drug candidates and ultimately development of first-in-class drugs with novel MoA.
Collapse
Affiliation(s)
- Rin Miyajima
- Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Koji Sakai
- Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Yuki Otani
- Department of Lead Discovery Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Takashi Wadatsu
- Department of Lead Discovery Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Yasuyo Sakata
- The Time-Limited Research Project for MSM, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Yuki Nishikawa
- Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Masaki Tanaka
- Department of Lead Discovery Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Yu Yamashita
- Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Mikayo Hayashi
- Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Kazumi Kondo
- Pharmaceutical Business Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Takashi Hayashi
- Department of Lead Discovery Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| |
Collapse
|
113
|
Zhou J, Mock ED, Al Ayed K, Di X, Kantae V, Burggraaff L, Stevens AF, Martella A, Mohr F, Jiang M, van der Wel T, Wendel TJ, Ofman TP, Tran Y, de Koster N, van Westen GJP, Hankemeier T, van der Stelt M. Structure-Activity Relationship Studies of α-Ketoamides as Inhibitors of the Phospholipase A and Acyltransferase Enzyme Family. J Med Chem 2020; 63:9340-9359. [PMID: 32787138 PMCID: PMC7498158 DOI: 10.1021/acs.jmedchem.0c00522] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
The phospholipase A and acyltransferase
(PLAAT) family of cysteine
hydrolases consists of five members, which are involved in the Ca2+-independent production of N-acylphosphatidylethanolamines
(NAPEs). NAPEs are lipid precursors for bioactive N-acylethanolamines (NAEs) that are involved in various physiological
processes such as food intake, pain, inflammation, stress, and anxiety.
Recently, we identified α-ketoamides as the first pan-active
PLAAT inhibitor scaffold that reduced arachidonic acid levels in PLAAT3-overexpressing
U2OS cells and in HepG2 cells. Here, we report the structure–activity
relationships of the α-ketoamide series using activity-based
protein profiling. This led to the identification of LEI-301, a nanomolar potent inhibitor for the PLAAT family members. LEI-301 reduced the NAE levels, including anandamide, in cells
overexpressing PLAAT2 or PLAAT5. Collectively, LEI-301 may help to dissect the physiological role of the PLAATs.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Karol Al Ayed
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Xinyu Di
- Department of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Vasudev Kantae
- Department of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Lindsey Burggraaff
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Anna F Stevens
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Andrea Martella
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Florian Mohr
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Ming Jiang
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Tiemen J Wendel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Tim P Ofman
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Yvonne Tran
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Nicky de Koster
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| | - Gerard J P van Westen
- Department of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Thomas Hankemeier
- Department of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, 2300 RA Leiden, The Netherlands
| |
Collapse
|
114
|
Maramai S, Brindisi M. Targeting Endocannabinoid Metabolism: an Arrow with Multiple Tips Against Multiple Sclerosis. ChemMedChem 2020; 15:1985-2003. [PMID: 32762071 DOI: 10.1002/cmdc.202000310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/24/2020] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated disease of the central nervous system. At present, there is no definitive cure, and the few available disease-modifying options display either poor efficacy or life-threatening side effects. There is clear evidence that relapsing-remitting clinical attacks in MS are driven by inflammatory demyelination and that the subsequent disease steps, being irresponsive to immunotherapy, result from neurodegeneration. The endocannabinoid system (ECS) stands halfway between three key pathomechanisms underlying MS, namely inflammation, neurodegeneration and oxidative stress, thus representing a kingpin for the identification of novel therapeutic targets in MS. This review summarizes the current state of the art in the field of endocannabinoid metabolism modulators and their in vivo effects on relevant animal models. We also highlight key molecular underpinnings of their therapeutic efficacy as well as the potential to turn them into promising clinical candidates.
Collapse
Affiliation(s)
- Samuele Maramai
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Margherita Brindisi
- Department of Excellence of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
| |
Collapse
|
115
|
Abstract
The endocannabinoid system (ECS) is a highly versatile signaling system within the nervous system. Despite its widespread localization, its functions within the context of distinct neural processes are very well discernable and specific. This is remarkable, and the question remains as to how such specificity is achieved. One key player in the ECS is the cannabinoid type 1 receptor (CB1), a G protein-coupled receptor characterized by the complexity of its cell-specific expression, cellular and subcellular localization, and its adaptable regulation of intracellular signaling cascades. CB1 receptors are involved in different synaptic and cellular plasticity processes and in the brain's bioenergetics in a context-specific manner. CB2 receptors are also important in several processes in neurons, glial cells, and immune cells of the brain. As polymorphisms in ECS components, as well as external impacts such as stress and metabolic challenges, can both lead to dysregulated ECS activity and subsequently to possible neuropsychiatric disorders, pharmacological intervention targeting the ECS is a promising therapeutic approach. Understanding the neurobiology of cannabinoid receptor signaling in depth will aid optimal design of therapeutic interventions, minimizing unwanted side effects.
.
Collapse
Affiliation(s)
- Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
116
|
A quantitative thiol reactivity profiling platform to analyze redox and electrophile reactive cysteine proteomes. Nat Protoc 2020; 15:2891-2919. [PMID: 32690958 DOI: 10.1038/s41596-020-0352-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/05/2020] [Indexed: 02/08/2023]
Abstract
Cysteine is unique among all protein-coding amino acids, owing to its intrinsically high nucleophilicity. The cysteinyl thiol group can be covalently modified by a broad range of redox mechanisms or by various electrophiles derived from exogenous or endogenous sources. Measuring the response of protein cysteines to redox perturbation or electrophiles is critical for understanding the underlying mechanisms involved. Activity-based protein profiling based on thiol-reactive probes has been the method of choice for such analyses. We therefore adapted this approach and developed a new chemoproteomic platform, termed 'QTRP' (quantitative thiol reactivity profiling), that relies on the ability of a commercially available thiol-reactive probe IPM (2-iodo-N-(prop-2-yn-1-yl)acetamide) to covalently label, enrich and quantify the reactive cysteinome in cells and tissues. Here, we provide a detailed and updated workflow of QTRP that includes procedures for (i) labeling of the reactive cysteinome from cell or tissue samples (e.g., control versus treatment) with IPM, (ii) processing the protein samples into tryptic peptides and tagging the probe-modified peptides with isotopically labeled azido-biotin reagents containing a photo-cleavable linker via click chemistry reaction, (iii) capturing biotin-conjugated peptides with streptavidin beads, (iv) identifying and quantifying the photo-released peptides by mass spectrometry (MS)-based shotgun proteomics and (v) interpreting MS data by a streamlined informatic pipeline using a proteomics software, pFind 3, and an automatic post-processing algorithm. We also exemplified here how to use QTRP for mining H2O2-sensitive cysteines and for determining the intrinsic reactivity of cysteines in a complex proteome. We anticipate that this protocol should find broad applications in redox biology, chemical biology and the pharmaceutical industry. The protocol for sample preparation takes 3 d, whereas MS measurements and data analyses require 75 min and <30 min, respectively, per sample.
Collapse
|
117
|
Voorneveld J, Florea BI, Bakkum T, Mendowicz RJ, van der Veer MS, Gagestein B, van Kasteren SI, van der Stelt M, Overkleeft HS, Filippov DV. Olaparib-Based Photoaffinity Probes for PARP-1 Detection in Living Cells. Chembiochem 2020; 21:2431-2434. [PMID: 32282108 PMCID: PMC7496120 DOI: 10.1002/cbic.202000042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/11/2020] [Indexed: 12/31/2022]
Abstract
The poly-ADP-ribose polymerase (PARP) is a protein from the family of ADP-ribosyltransferases that catalyzes polyadenosine diphosphate ribose (ADPR) formation in order to attract the DNA repair machinery to sites of DNA damage. The inhibition of PARP activity by olaparib can cause cell death, which is of clinical relevance in some tumor types. This demonstrates that quantification of PARP activity in the context of living cells is of great importance. In this work, we present the design, synthesis and biological evaluation of photo-activatable affinity probes inspired by the olaparib molecule that are equipped with a diazirine for covalent attachment upon activation by UV light and a ligation handle for the addition of a reporter group of choice. SDS-PAGE, western blotting and label-free LC-MS/MS quantification analysis show that the probes target the PARP-1 protein and are selectively outcompeted by olaparib; this suggests that they bind in the same enzymatic pocket. Proteomics data are available via ProteomeXchange with identifier PXD018661.
Collapse
Affiliation(s)
- Jim Voorneveld
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Bogdan I. Florea
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Thomas Bakkum
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Rafal J. Mendowicz
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Miriam S. van der Veer
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Berend Gagestein
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Sander I. van Kasteren
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Mario van der Stelt
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Herman S. Overkleeft
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Dmitri V. Filippov
- Bio-organic Synthesis Group Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
118
|
van Egmond N, Straub VM, van der Stelt M. Targeting Endocannabinoid Signaling: FAAH and MAG Lipase Inhibitors. Annu Rev Pharmacol Toxicol 2020; 61:441-463. [PMID: 32867595 DOI: 10.1146/annurev-pharmtox-030220-112741] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inspired by the medicinal properties of the plant Cannabis sativa and its principal component (-)-trans-Δ9-tetrahydrocannabinol (THC), researchers have developed a variety of compounds to modulate the endocannabinoid system in the human brain. Inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), which are the enzymes responsible for the inactivation of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol, respectively, may exert therapeutic effects without inducing the adverse side effects associated with direct cannabinoid CB1 receptor stimulation by THC. Here we review the FAAH and MAGL inhibitors that have reached clinical trials, discuss potential caveats, and provide an outlook on where the field is headed.
Collapse
Affiliation(s)
- Noëlle van Egmond
- Department of Molecular Physiology, Leiden University, 2333 CC Leiden, The Netherlands;
| | - Verena M Straub
- Department of Molecular Physiology, Leiden University, 2333 CC Leiden, The Netherlands;
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden University, 2333 CC Leiden, The Netherlands;
| |
Collapse
|
119
|
Morales P, Jagerovic N. Novel approaches and current challenges with targeting the endocannabinoid system. Expert Opin Drug Discov 2020; 15:917-930. [PMID: 32336154 PMCID: PMC7502221 DOI: 10.1080/17460441.2020.1752178] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The pathophysiological relevance of the endocannabinoid system has been widely demonstrated in a variety of diseases including cancer, neurological disorders, and metabolic issues. Therefore, targeting the receptors and the endogenous machinery involved in this system can provide a successful therapeutic outcome. Ligands targeting the canonical cannabinoid receptors, CB1 and CB2, along with inhibitors of the endocannabinoid enzymes have been thoroughly studied in diverse disease models. In fact, phytocannabinoids such as cannabidiol or Δ9-tetrahydrocannabinol are currently on the market for the management of neuropathic pain due to spasticity in multiple sclerosis or seizures in children epilepsy amongst others. AREAS COVERED Challenges in the pharmacology of cannabinoids arise from its pharmacokinetics, off-target effects, and psychoactive effects. In this context, the current review outlines the novel molecular approaches emerging in the field discussing their clinical potential. EXPERT OPINION Even if orthosteric CB1 and CB2 ligands are on the forefront in cannabinoid clinical research, emerging strategies such as allosteric or biased modulation of these receptors along with controlled off-targets effects may increase the therapeutic potential of cannabinoids.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
120
|
Zhang X, Ruan C, Zhu H, Li K, Zhang W, Wang K, Hu L, Ye M. A Simplified Thermal Proteome Profiling Approach to Screen Protein Targets of a Ligand. Proteomics 2020; 20:e1900372. [PMID: 32578935 DOI: 10.1002/pmic.201900372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/10/2020] [Indexed: 01/10/2023]
Abstract
Thermal proteome profiling is a powerful energetic-based chemical proteomics method to reveal the ligand-protein interaction. However, the costly multiplexed isotopic labeling reagent, mainly Multiplexed isobaric tandem mass tag (TMT), and the long mass spectrometric time limits the wide application of this method. Here a simple and cost-effective strategy by using dimethyl labeling technique instead of TMT labeling is reported to quantify proteins and by using the peptides derived from the same protein to determine significantly changed proteins in one LC-MS run. This method is validated by identifying the known targets of methotrexate and geldanamycin. In addition, several potential off-targets involved in detoxification of reactive oxygen species pathway are also discovered for geldanamycin. This method is further applied to map the interactome of adenosine triphosphate (ATP) in the 293T cell lysate by using ATP analogue, adenylyl imidodiphosphate (AMP-PNP), as the ligand. As a result, a total of 123 AMP-PNP-sensitive proteins are found, of which 59 proteins are stabilized by AMP-PNP. Approximately 53% and 20% of these stabilized candidate protein targets are known as ATP and RNA binding proteins. Overall, above results demonstrated that this approach could be a valuable platform for the unbiased target proteins identification with reduced reagent cost and mass spectrometric time.
Collapse
Affiliation(s)
- Xiaolei Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Key Laboratory Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Chengfei Ruan
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - He Zhu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kejia Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wenbo Zhang
- Key Laboratory Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Keyun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lianghai Hu
- Key Laboratory Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
121
|
Field SD, Lee W, Dutra JK, Serneo FSF, Oyer J, Xu H, Johnson DS, am Ende CW, Seneviratne U. Fluorophosphonate‐Based Degrader Identifies Degradable Serine Hydrolases by Quantitative Proteomics. Chembiochem 2020; 21:2916-2920. [DOI: 10.1002/cbic.202000253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Indexed: 01/26/2023]
Affiliation(s)
- S. Denise Field
- Pfizer Worldwide Research and Development 1 Portland St Cambridge MA 02139 USA
| | - Wankyu Lee
- Pfizer Worldwide Research and Development 1 Portland St Cambridge MA 02139 USA
| | - Jason K. Dutra
- Pfizer Worldwide Research and Development Eastern Point Road Groton CT 06340 USA
| | - Finley Scott F. Serneo
- Pfizer Worldwide Research and Development 10770 Science Center Drive San Diego CA 92121 USA
| | - Jon Oyer
- Pfizer Worldwide Research and Development 10770 Science Center Drive San Diego CA 92121 USA
| | - Hua Xu
- Pfizer Worldwide Research and Development 1 Portland St Cambridge MA 02139 USA
| | - Douglas S. Johnson
- Pfizer Worldwide Research and Development 1 Portland St Cambridge MA 02139 USA
| | | | - Uthpala Seneviratne
- Pfizer Worldwide Research and Development 1 Portland St Cambridge MA 02139 USA
| |
Collapse
|
122
|
Soeberdt M, Kilic A, Abels C. Current and emerging treatments targeting the neuroendocrine system for disorders of the skin and its appendages. Exp Dermatol 2020; 29:801-813. [DOI: 10.1111/exd.14145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | - Ana Kilic
- Dr. August Wolff GmbH & Co. KG Arzneimittel Bielefeld Germany
| | - Christoph Abels
- Dr. August Wolff GmbH & Co. KG Arzneimittel Bielefeld Germany
| |
Collapse
|
123
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|
124
|
Witek TJ. Please don't call it medical marijuana unless it is; but it probably isn't. Canadian Journal of Public Health 2020; 112:74-77. [PMID: 32557287 DOI: 10.17269/s41997-020-00333-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022]
Abstract
The drug development process of demonstrating an agent is safe, effective and pure has, with rare exception, proven an exemplary path in translational research. The basic science, the clinical trials and the chemistry, manufacturing and control have served public health well. This carefully regulated approach forms the basis of a drug label with data from these studies also used to convey risk and benefit to prescribing physicians through the channels of medical literature and drug promotion by the industry. The latter is also important to public health in that such promotion must be based in the approved indication, be truthful, not be misleading and be substantiated by sufficient evidence. Why then is the emergence of "medical marijuana" any different? While substantial evidence exists for some conditions and some related products have undergone careful investigation through to NDA approval, most claims are not substantiated by research but driven by misguided enthusiasm. While recreational use of marijuana is not at debate here, nor is the right of an individual patient to explore cannabis therapeutically; however, allowing broad unsubstantiated claims around medicinal cannabis to infiltrate the general public is a disservice. To distill the potential medical benefits through the pharmacologic understanding of the endocannabinoid system, cannabis should follow the traditional drug development process or one that improves upon it. Until then, claims should remain as stated hypothesis to accept or reject.
Collapse
Affiliation(s)
- Theodore J Witek
- Institute of Health Policy Management & Evaluation, Dalla Lana School of Public Health, University of Toronto, 155 College Street (4th Floor), Toronto, ON, M5T 3M6, Canada.
| |
Collapse
|
125
|
Inner Engineering Practices and Advanced 4-day Isha Yoga Retreat Are Associated with Cannabimimetic Effects with Increased Endocannabinoids and Short-Term and Sustained Improvement in Mental Health: A Prospective Observational Study of Meditators. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8438272. [PMID: 32595741 PMCID: PMC7293737 DOI: 10.1155/2020/8438272] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
Background Anxiety and depression are common in the modern world, and there is growing demand for alternative therapies such as meditation. Meditation can decrease perceived stress and increase general well-being, although the physiological mechanism is not well-characterized. Endocannabinoids (eCBs), lipid mediators associated with enhanced mood and reduced anxiety/depression, have not been previously studied as biomarkers of meditation effects. Our aim was to assess biomarkers (eCBs and brain-derived neurotrophic factor [BDNF]) and psychological parameters after a meditation retreat. Methods This was an observational pilot study of adults before and after the 4-day Isha Yoga Bhava Spandana Program retreat. Participants completed online surveys (before and after retreat, and 1 month later) to assess anxiety, depression, focus, well-being, and happiness through validated psychological scales. Voluntary blood sampling for biomarker studies was done before and within a day after the retreat. The biomarkers anandamide, 2-arachidonoylglycerol (2-AG), 1-arachidonoylglycerol (1-AG), docosatetraenoylethanolamide (DEA), oleoylethanolamide (OLA), and BDNF were evaluated. Primary outcomes were changes in psychological scales, as well as changes in eCBs and BDNF. Results Depression and anxiety scores decreased while focus, happiness, and positive well-being scores increased immediately after retreat from their baseline values (P < 0.001). All improvements were sustained 1 month after BSP. All major eCBs including anandamide, 2-AG, 1-AG, DEA, and BDNF increased after meditation by > 70% (P < 0.001). Increases of ≥20% in anandamide, 2-AG, 1-AG, and total AG levels after meditation from the baseline had weak correlations with changes in happiness and well-being. Conclusions A short meditation experience improved focus, happiness, and positive well-being and reduced depression and anxiety in participants for at least 1 month. Participants had increased blood eCBs and BDNF, suggesting a role for these biomarkers in the underlying mechanism of meditation. Meditation is a simple, organic, and effective way to improve well-being and reduce depression and anxiety.
Collapse
|
126
|
Kabeiseman E, Paulsen R, Burrell BD. Characterization of a monoacylglycerol lipase in the medicinal leech, Hirudo verbana. Comp Biochem Physiol B Biochem Mol Biol 2020; 243-244:110433. [PMID: 32205202 PMCID: PMC7245046 DOI: 10.1016/j.cbpb.2020.110433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/05/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
Endocannabinoids are a class of lipid neuromodulators found throughout the animal kingdom. Among the endocannabinoids, 2-arachydonoyl glycerol (2-AG) is the most prevalent endocannabinoid and monoacylglycerol lipase (MAGL) is a serine hydrolase primarily responsible for metabolizing 2-AG in mammals. In the medicinal leech, Hirudo verbana, 2-AG has been found to be an important and multi-functional modulator of synaptic transmission and behavior. However, very little is known about the molecular components of its synthesis and degradation. In this study we have identified cDNA in Hirudo that encodes a putative MAGL (HirMAGL). The encoded protein exhibits considerable sequence and structural conservation with mammalian forms of MAGL, especially in the catalytic triad that mediates 2-AG metabolism. Additionally, HirMAGL transcripts are detected in the Hirudo central nervous system. When expressed in HEK 293 cells HirMAGL segregates to the plasma membrane as expected. It also exhibits serine hydrolase activity that is blocked when a critical active site residue is mutated. HirMAGL also demonstrates the capacity to metabolize 2-AG and this capacity is also prevented when the active site is mutated. Finally, HirMAGL activity is inhibited by JZL184 and MJN110, specific inhibitors of mammalian MAGL. To our knowledge these findings represent the first characterization of an invertebrate form of MAGL and show that HirMAGL exhibits many of the same properties as mammalian MAGL's that are responsible for 2-AG metabolism.
Collapse
Affiliation(s)
- Emily Kabeiseman
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research (CBBRe), Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States
| | - Riley Paulsen
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research (CBBRe), Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States; USD Neuroscience, Nanotechnology, and Networks Program (USD-N3), Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069,United States
| | - Brian D Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research (CBBRe), Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States; USD Neuroscience, Nanotechnology, and Networks Program (USD-N3), Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069,United States.
| |
Collapse
|
127
|
Mock ED, Mustafa M, Gunduz-Cinar O, Cinar R, Petrie GN, Kantae V, Di X, Ogasawara D, Varga ZV, Paloczi J, Miliano C, Donvito G, van Esbroeck ACM, van der Gracht AMF, Kotsogianni I, Park JK, Martella A, van der Wel T, Soethoudt M, Jiang M, Wendel TJ, Janssen APA, Bakker AT, Donovan CM, Castillo LI, Florea BI, Wat J, van den Hurk H, Wittwer M, Grether U, Holmes A, van Boeckel CAA, Hankemeier T, Cravatt BF, Buczynski MW, Hill MN, Pacher P, Lichtman AH, van der Stelt M. Discovery of a NAPE-PLD inhibitor that modulates emotional behavior in mice. Nat Chem Biol 2020; 16:667-675. [PMID: 32393901 PMCID: PMC7468568 DOI: 10.1038/s41589-020-0528-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
N-acylethanolamines (NAEs), which include the endocannabinoid anandamide, represent an important family of signaling lipids in the brain. The lack of chemical probes that modulate NAE biosynthesis in living systems hamper the understanding of the biological role of these lipids. Using a high-throughput screen, chemical proteomics and targeted lipidomics, we report here the discovery and characterization of LEI-401 as a CNS-active N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor. LEI-401 reduced NAE levels in neuroblastoma cells and in the brain of freely moving mice, but not in NAPE-PLD KO cells and mice, respectively. LEI-401 activated the hypothalamus-pituitary-adrenal axis and impaired fear extinction, thereby emulating the effect of a cannabinoid CB1 receptor antagonist, which could be reversed by a fatty acid amide hydrolase inhibitor. Our findings highlight the distinctive role of NAPE-PLD in NAE biosynthesis in the brain and suggest the presence of an endogenous NAE tone controlling emotional behavior.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Mohammed Mustafa
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), National Institute of Health (NIH), Bethesda, MD, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, NIAAA, NIH, Bethesda, MD, USA
| | - Gavin N Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Vasudev Kantae
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Xinyu Di
- Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Daisuke Ogasawara
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Zoltan V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIAAA, NIH, Bethesda, MD, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIAAA, NIH, Bethesda, MD, USA
| | - Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Giulia Donvito
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Annelot C M van Esbroeck
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Anouk M F van der Gracht
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Ioli Kotsogianni
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Joshua K Park
- Laboratory of Physiologic Studies, NIAAA, NIH, Bethesda, MD, USA
| | - Andrea Martella
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Oncode Institute, Leiden, the Netherlands
| | - Marjolein Soethoudt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Ming Jiang
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Oncode Institute, Leiden, the Netherlands
| | - Tiemen J Wendel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Antonius P A Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Oncode Institute, Leiden, the Netherlands
| | - Alexander T Bakker
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Colleen M Donovan
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), National Institute of Health (NIH), Bethesda, MD, USA
| | - Laura I Castillo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), National Institute of Health (NIH), Bethesda, MD, USA
| | - Bogdan I Florea
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Jesse Wat
- Pivot Park Screening Centre B.V., Oss, the Netherlands
| | | | - Matthias Wittwer
- Roche Innovation Center Basel, F. Hoffman-La Roche Ltd, Basel, Switzerland
| | - Uwe Grether
- Roche Innovation Center Basel, F. Hoffman-La Roche Ltd, Basel, Switzerland
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), National Institute of Health (NIH), Bethesda, MD, USA
| | - Constant A A van Boeckel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Pivot Park Screening Centre B.V., Oss, the Netherlands
| | - Thomas Hankemeier
- Analytical Biosciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthew W Buczynski
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIAAA, NIH, Bethesda, MD, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
- Oncode Institute, Leiden, the Netherlands.
| |
Collapse
|
128
|
Mäder P, Bartholomäus R, Nicolussi S, Baumann A, Weis M, Chicca A, Rau M, Simão AC, Gertsch J, Altmann KH. Synthesis and Biological Evaluation of Endocannabinoid Uptake Inhibitors Derived from WOBE437. ChemMedChem 2020; 16:145-154. [PMID: 32369259 DOI: 10.1002/cmdc.202000153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/02/2020] [Indexed: 01/18/2023]
Abstract
WOBE437 ((2E,4E)-N-(3,4-dimethoxyphenethyl)dodeca-2,4-dienamide, 1) is a natural product-derived, highly potent inhibitor of endocannabinoid reuptake. In this study, we synthesized almost 80 analogues of 1 with different types of modifications in the dodecadienoyl domain as well as the dimethoxyphenylethyl head group, and we investigated their effects on anandamide uptake into U937 cells. Intriguingly, none of these analogues was a more potent inhibitor of anandamide uptake than WOBE437 (1). At the same time, a number of WOBE437 variants exhibited potencies in the sub-100 nM range, with high selectivity over inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase; two compounds were virtually equipotent with 1. Interestingly, profound activity differences were observed between analogues in which either of the two methoxy substituents in the head group had been replaced by the same bulkier alkoxy group. Some of the compounds described here could be interesting departure points for the development of potent endocannabinoid uptake inhibitors with more drug-like properties.
Collapse
Affiliation(s)
- Patrick Mäder
- Department of Chemistry and Applied Biosciences, ETH Zürich HCI H405, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Ruben Bartholomäus
- Department of Chemistry and Applied Biosciences, ETH Zürich HCI H405, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Simon Nicolussi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland, Bühlstrasse 28 3012, Bern, Switzerland
| | - Alice Baumann
- Department of Chemistry and Applied Biosciences, ETH Zürich HCI H405, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Melanie Weis
- Department of Chemistry and Applied Biosciences, ETH Zürich HCI H405, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland, Bühlstrasse 28 3012, Bern, Switzerland
| | - Mark Rau
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland, Bühlstrasse 28 3012, Bern, Switzerland
| | - Ana Catarina Simão
- Department of Chemistry and Applied Biosciences, ETH Zürich HCI H405, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland, Bühlstrasse 28 3012, Bern, Switzerland
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, ETH Zürich HCI H405, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| |
Collapse
|
129
|
Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of ASP3652, a Reversible Fatty Acid Amide Hydrolase Inhibitor, in Healthy, Nonelderly, Japanese Men and Elderly, Japanese Men and Women: A Randomized, Double-blind, Placebo-controlled, Single and Multiple Oral Dose, Phase I Study. Clin Ther 2020; 42:906-923. [PMID: 32456804 DOI: 10.1016/j.clinthera.2020.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 11/20/2022]
Abstract
PURPOSE This study aimed to evaluate the safety, tolerability, and pharmacokinetic and pharmacodynamic properties of ASP3652, a peripherally acting inhibitor of peripheral fatty acid amide hydrolase (FAAH) after 30-, 100-, 300-, 600-, and 900-mg single and 100- and 300-mg BID multiple oral dose in Japanese patients. METHODS This was a randomized, double-blind, placebo-controlled, single and multiple oral dose Phase I study in healthy, nonelderly men and elderly men and women. The study consisted of 2 parts: in the single oral dose part, 40 healthy, nonelderly men were randomized to receive placebo or ASP3652; in the multiple oral dose part, 48 enrolled nonelderly men and elderly men and women were randomized to receive placebo or ASP3652. In both parts, the investigator judged whether the individuals were healthy based on the results of physical examinations and screening. The safety profile was assessed by examining adverse events, defined as any untoward medical occurrence in an individual administered the study drug and that did not necessarily have a causal relationship with the study treatment; clinical laboratory evaluations; vital signs; the Profile of Mood States scale; and standard 12-lead ECGs and 12-lead ECGs for QT assessment. Pharmacokinetic parameters were estimated using unchanged ASP3652 concentrations in plasma and urine. Pharmacodynamic parameters were estimated using FAAH activity and plasma anandamide, oleoylethanolamide, and palmitoylethanolamide concentrations. Safety and tolerability profiles were compared with the placebo group. FINDINGS ASP3652 was rapidly absorbed to reach Cmax in a single dose and near steady-state at approximately 3 days after the start of multiple dosing. The Cmax and AUC of ASP3652 were slightly higher than dose proportional after a single dose of ASP3652 at 30-900 mg. There was no apparent accumulation based on Cmax and AUC0-12 after multiple doses. Although no differences were found in Cmax or AUC0-12 by age in men, Cmax and AUC0-12 were slightly higher in elderly women than elderly men. FAAH activity was inhibited in a dose-dependent manner, and plasma levels of anandamide, oleoylethanolamide, and palmitoylethanolamide increased in all dose groups after single and multiple doses of ASP3652. The incidence of adverse events after multiple doses, which ranged from 44.4% to 66.7%, was similar across all treatment groups, including the placebo group. IMPLICATIONS Single and multiple doses of ASP3652 were well tolerated and increased endogenous cannabinoids.
Collapse
|
130
|
Shang Y, Hao Q, Jiang K, He M, Wang J. Discovery of heterocyclic carbohydrazide derivatives as novel selective fatty acid amide hydrolase inhibitors: design, synthesis and anti-neuroinflammatory evaluation. Bioorg Med Chem Lett 2020; 30:127118. [PMID: 32216992 DOI: 10.1016/j.bmcl.2020.127118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/28/2020] [Accepted: 03/17/2020] [Indexed: 01/23/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is a promising target for the development of drugs to treat pain, inflammation, and other central nervous system disorders. Herein, a series of novel heterocyclic carbohydrazide derivatives were firstly designed by the classic scaffold-hopping strategy. Then, multi-steps synthesis and human FAAH enzyme inhibiting activity assays were conducted. Among them, compound 26 showedstrong inhibition against human FAAH with IC50 of 2.8 μM. Corresponding docking studies revealed that the acyl hydrazide group of compound 26 well-occupied the acyl-chain binding pocket. It also exhibited high selectivity towards FAAH when comparing with CES2 and MAGL. Additionally, compound 26 effectively suppressed the LPS-induced neuroinflammation of microglial cells (BV2) via the reduction of interleukin-1β and tumor necrosis factor-α. Our results provided significative lead compounds for the further discovery of novel selective and safe FAAH inhibitors with potent anti-neuroinflammation activity.
Collapse
Affiliation(s)
- Yanguo Shang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Qingjing Hao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaixuan Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengting He
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
131
|
Deng H, Li W. Therapeutic potential of targeting α/β-Hydrolase domain-containing 6 (ABHD6). Eur J Med Chem 2020; 198:112353. [PMID: 32371333 DOI: 10.1016/j.ejmech.2020.112353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/05/2023]
Abstract
α/β-Hydrolase domain 6 (ABHD6) is a transmembrane serine hydrolase that hydrolyzes monoacylglycerol (MAG) lipids, particularly the endogenous cannabinoid 2-arachidonoylglycerol (2-AG), in both central and peripheral tissues. ABHD6 and its substrates have been shown to be involved in the modulation of various (patho)physiological processes, including neurotransmission, inflammation, insulin secretion, adipose browning, food intake, autoimmune disorders, as well as neurological and metabolic diseases, making this enzyme a promising therapeutic target to treat several diseases. This review will focus on the molecular mechanism, biological functions and pathological roles of ABHD6, as well as recent efforts to develop ABHD6 inhibitors, providing a strong basis for the development of small molecules by targeting ABHD6 to treat diverse diseases.
Collapse
Affiliation(s)
- Hui Deng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
132
|
Fazio D, Criscuolo E, Piccoli A, Barboni B, Fezza F, Maccarrone M. Advances in the discovery of fatty acid amide hydrolase inhibitors: what does the future hold? Expert Opin Drug Discov 2020; 15:765-778. [PMID: 32292082 DOI: 10.1080/17460441.2020.1751118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Fatty acid amide hydrolase (FAAH) is a membrane-bound enzyme, that inactivates endogenous signaling lipids of the fatty acid amide family, including the endocannabinoid anandamide (N-arachidonoylethanolamine, AEA). The latter compound has been shown to regulate a number of important pathophysiological conditions in humans, like feeding, obesity, immune response, reproductive events, motor coordination, and neurological disorders. Hence, direct manipulation of the endocannabinoid tone is thought to have therapeutic potential. A new opportunity to develop effective drugs may arise from multi-target directed ligand (MTDL) strategies, which brings the concept that a single compound can recognize different targets involved in the cascade of pathophysiological events. AREAS COVERED This review reports the latest advances in the development of new single targeted and dual-targeted FAAH inhibitors over the past 5 years. EXPERT OPINION In recent years, several FAAH inhibitors have been synthesized and investigated, yet to date none of them has reached the market as a systemic drug. Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases.
Collapse
Affiliation(s)
- Domenico Fazio
- Faculty of Biosciences and Technology for Food Agriculture and Environment, University of Teramo , Teramo, Italy.,European Center for Brain Research/IRCCS Santa Lucia Foundation , Rome, Italy
| | - Emanuele Criscuolo
- Department of Experimental Medicine, Tor Vergata University of Rome , Rome, Italy.,Department of Medicine, Campus Bio-Medico University of Rome , Rome, Italy
| | - Alessandra Piccoli
- Department of Medicine, Campus Bio-Medico University of Rome , Rome, Italy
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food Agriculture and Environment, University of Teramo , Teramo, Italy
| | - Filomena Fezza
- Department of Experimental Medicine, Tor Vergata University of Rome , Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation , Rome, Italy.,Department of Medicine, Campus Bio-Medico University of Rome , Rome, Italy
| |
Collapse
|
133
|
Jenkinson S, Schmidt F, Rosenbrier Ribeiro L, Delaunois A, Valentin JP. A practical guide to secondary pharmacology in drug discovery. J Pharmacol Toxicol Methods 2020; 105:106869. [PMID: 32302774 DOI: 10.1016/j.vascn.2020.106869] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Accepted: 04/03/2020] [Indexed: 01/29/2023]
Abstract
Secondary pharmacological profiling is increasingly applied in pharmaceutical drug discovery to address unwanted pharmacological side effects of drug candidates before entering the clinic. Regulators, drug makers and patients share a demand for deep characterization of secondary pharmacology effects of novel drugs and their metabolites. The scope of such profiling has therefore expanded substantially in the past two decades, leading to the implementation of broad in silico profiling methods and focused in vitro off-target screening panels, to identify liabilities, but also opportunities, as early as possible. The pharmaceutical industry applies such panels at all stages of drug discovery routinely up to early development. Nevertheless, target composition, screening technologies, assay formats, interpretation and scheduling of panels can vary significantly between companies in the absence of dedicated guidelines. To contribute towards best practices in secondary pharmacology profiling, this review aims to summarize the state-of-the art in this field. Considerations are discussed with respect to panel design, screening strategy, implementation and interpretation of the data, including regulatory perspectives. The cascaded, or integrated, use of in silico and off-target profiling allows to exploit synergies for comprehensive safety assessment of drug candidates.
Collapse
Affiliation(s)
- Stephen Jenkinson
- Drug Safety Research and Development, Pfizer Inc., La Jolla, CA 92121, United States of America.
| | - Friedemann Schmidt
- Sanofi, R&D Preclinical Safety, Industriepark Höchst, 65926 Frankfurt/Main, Germany
| | - Lyn Rosenbrier Ribeiro
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Alderley Edge, SK10 4TG, United Kingdom
| | - Annie Delaunois
- UCB BioPharma SRL, Early Solutions, Development Science, Non-Clinical Safety, 1420 Braine L'Alleud, Walloon Region, Belgium
| | - Jean-Pierre Valentin
- UCB BioPharma SRL, Early Solutions, Development Science, Non-Clinical Safety, 1420 Braine L'Alleud, Walloon Region, Belgium
| |
Collapse
|
134
|
Stefaniak J, Huber KVM. Importance of Quantifying Drug-Target Engagement in Cells. ACS Med Chem Lett 2020; 11:403-406. [PMID: 32292539 DOI: 10.1021/acsmedchemlett.9b00570] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Measuring and quantifying the binding of a drug to a protein target inside living cells and thereby correlating biochemical or biophysical activity with target engagement in cells or tissue represents a key step in target validation and drug development. A prototypic target engagement assay should allow for unbiased determination of small molecule-protein interactions in order to confirm cellular mechanism-of-action (MoA) while avoiding major artificial perturbations of cellular homeostasis and integrity. Recently, several new additions to the chemical biology toolbox have expanded our ability to study drug action in intact cells and enabled surveying of intracellular residence time and binding kinetics, which are particularly important for potent receptor ligands and therapeutic moieties with limited therapeutic index.
Collapse
Affiliation(s)
- Jakub Stefaniak
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, U.K
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Kilian V. M. Huber
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, U.K
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| |
Collapse
|
135
|
Deng H, Li W. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharm Sin B 2020; 10:582-602. [PMID: 32322464 PMCID: PMC7161712 DOI: 10.1016/j.apsb.2019.10.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/16/2019] [Accepted: 09/26/2019] [Indexed: 02/05/2023] Open
Abstract
Monoacylglycerol lipase (MAGL) is a serine hydrolase that plays a crucial role catalysing the hydrolysis of monoglycerides into glycerol and fatty acids. It links the endocannabinoid and eicosanoid systems together by degradation of the abundant endocannabinoid 2-arachidaoylglycerol into arachidonic acid, the precursor of prostaglandins and other inflammatory mediators. MAGL inhibitors have been considered as important agents in many therapeutic fields, including anti-nociceptive, anxiolytic, anti-inflammatory, and even anti-cancer. Currently, ABX-1431, a first-in-class inhibitor of MAGL, is entering clinical phase 2 studies for neurological disorders and other diseases. This review summarizes the diverse (patho)physiological roles of MAGL and will provide an overview on the development of MAGL inhibitors. Although a large number of MAGL inhibitors have been reported, novel inhibitors are still required, particularly reversible ones.
Collapse
Key Words
- 2-AG, 2-arachidonoyl glycerol
- 2-Arachidaoylglycerol
- 2-OG, 2-oleoylglycerol
- 4-NPA, 4-nitrophenylacetate
- 7-HCA, 7-hydroxycoumarinyl arachidonate
- AA, arachidonic acid
- ABHD6 and ABHD12, α/β-hydrolase 6 and 12
- ABP, activity-based probes
- ABPP, activity-based protein profiling
- AD, Alzheimer's disease
- AEA, anandamide
- Arachidonic acid
- BCRP, breast cancer resistant protein
- CB1R and CB2R, cannabinoid receptors
- CC-ABPP, click chemistry activity-based protein profiling
- CFA, complete Freund's adjuvant
- CNS, central nervous system
- COX, cyclooxygenases
- CYP, cytochrome P450 proteins
- Cancer
- DAG, diacylglycerol
- DAGLs, diacylglycerol lipases
- DTT, dithiothreitol
- Drug discovery
- EAE, encephalomyelitis
- EI, enzyme–inhibitor complex
- FAAH, amide hydrolase
- FFAs, free fatty acids
- FP, fluorophosphonate
- FP-Rh, fluorophosphonate-rhodamine
- FQ, fit quality
- HFD, high-fat diet
- HFIP, hexafluoroisopropyl
- LC–MS, liquid chromatographic mass spectrometry
- LFD, low-fat diet
- MAGL, monoacylglycerol lipase
- MAGs, monoglycerides
- MS, multiple sclerosis
- Metabolic syndrome
- Monoacylglycerol lipases
- NAM, N-arachidonoyl maleimide
- NHS, N-hydroxysuccinimidyl
- Neuroinflammation
- OCT2, organic cation transporter 2
- P-gp, P-glycoprotein
- PA, phosphatidic acid
- PD, Parkinson's disease
- PET, positron emission tomography
- PGE2, prostaglandin
- PGs, prostaglandins
- PK, pharmacokinetic
- PLA2G7, phospholipase A2 group VII
- SAR, structure–activity relationship
- SBDD, structure-based drug design
- SDS-PAGE, sodium dodecyl sulphate polyacrylamide gel electrophoresis
- THL, tetrahydrolipstatin
- cPLA2, cytosolic phospholipase A2
Collapse
Affiliation(s)
- Hui Deng
- Corresponding authors. Tel./fax: +86 28 85422197.
| | - Weimin Li
- Corresponding authors. Tel./fax: +86 28 85422197.
| |
Collapse
|
136
|
Ward JA, Pinto-Fernandez A, Cornelissen L, Bonham S, Díaz-Sáez L, Riant O, Huber KVM, Kessler BM, Feron O, Tate EW. Re-Evaluating the Mechanism of Action of α,β-Unsaturated Carbonyl DUB Inhibitors b-AP15 and VLX1570: A Paradigmatic Example of Unspecific Protein Cross-linking with Michael Acceptor Motif-Containing Drugs. J Med Chem 2020; 63:3756-3762. [PMID: 32109059 PMCID: PMC7152998 DOI: 10.1021/acs.jmedchem.0c00144] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Deubiquitinating
enzymes (DUBs) are a growing target class across
multiple disease states, with several inhibitors now reported. b-AP15
and VLX1570 are two structurally related USP14/UCH-37 inhibitors.
Through a proteomic approach, we demonstrate that these compounds
target a diverse range of proteins, resulting in the formation of
higher molecular weight (MW) complexes. Activity-based proteome profiling
identified CIAPIN1 as a submicromolar covalent target of VLX1570,
and further analysis demonstrated that high MW complex formation leads
to aggregation of CIAPIN1 in intact cells. Our results suggest that
in addition to DUB inhibition, these compounds induce nonspecific
protein aggregation, providing molecular explanation for general cellular
toxicity.
Collapse
Affiliation(s)
- Jennifer A Ward
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, U.K.,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.,Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London W12 0BZ, U.K
| | - Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.,Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.57.04, Brussels B-1200, Belgium
| | - Loïc Cornelissen
- Institute of Condensed Matter and Nanosciences, MOST Division, Place Louis Pasteur, UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | - Sarah Bonham
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Laura Díaz-Sáez
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, U.K.,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences, MOST Division, Place Louis Pasteur, UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | - Kilian V M Huber
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, U.K.,Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.57.04, Brussels B-1200, Belgium
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London W12 0BZ, U.K
| |
Collapse
|
137
|
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major challenge, with increasing impact as oncological treatments, using potentially neurotoxic chemotherapy, improve cancer cure and survival. Acute CIPN occurs during chemotherapy, sometimes requiring dose reduction or cessation, impacting on survival. Around 30% of patients will still have CIPN a year, or more, after finishing chemotherapy. Accurate assessment is essential to improve knowledge around prevalence and incidence of CIPN. Consensus is needed to standardize assessment and diagnosis, with use of well-validated tools, such as the EORTC-CIPN 20. Detailed phenotyping of the clinical syndrome moves toward a precision medicine approach, to individualize treatment. Understanding significant risk factors and pre-existing vulnerability may be used to improve strategies for CIPN prevention, or to use targeted treatment for established CIPN. No preventive therapies have shown significant clinical efficacy, although there are promising novel agents such as histone deacetylase 6 (HDAC6) inhibitors, currently in early phase clinical trials for cancer treatment. Drug repurposing, eg, metformin, may offer an alternative therapeutic avenue. Established treatment for painful CIPN is limited. Following recommendations for general neuropathic pain is logical, but evidence for agents such as gabapentinoids and amitriptyline is weak. The only agent currently recommended by the American Society of Clinical Oncology is duloxetine. Mechanisms are complex with changes in ion channels (sodium, potassium, and calcium), transient receptor potential channels, mitochondrial dysfunction, and immune cell interactions. Improved understanding is essential to advance CIPN management. On a positive note, there are many potential sites for modulation, with novel analgesic approaches.
Collapse
Affiliation(s)
- Lesley A Colvin
- Chair of Pain Medicine, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland
| |
Collapse
|
138
|
Budayeva HG, Kirkpatrick DS. Monitoring protein communities and their responses to therapeutics. Nat Rev Drug Discov 2020; 19:414-426. [PMID: 32139903 DOI: 10.1038/s41573-020-0063-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Most therapeutics are designed to alter the activities of proteins. From metabolic enzymes to cell surface receptors, connecting the function of a protein to a cellular phenotype, to the activity of a drug and to a clinical outcome represents key mechanistic milestones during drug development. Yet, even for therapeutics with exquisite specificity, the sequence of events following target engagement can be complex. Interconnected communities of structural, metabolic and signalling proteins modulate diverse downstream effects that manifest as interindividual differences in efficacy, adverse effects and resistance to therapy. Recent advances in mass spectrometry proteomics have made it possible to decipher these complex relationships and to understand how factors such as genotype, cell type, local environment and external perturbations influence them. In this Review, we explore how proteomic technologies are expanding our understanding of protein communities and their responses to large- and small-molecule therapeutics.
Collapse
Affiliation(s)
- Hanna G Budayeva
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
139
|
Carnevali L, Statello R, Vacondio F, Ferlenghi F, Spadoni G, Rivara S, Mor M, Sgoifo A. Antidepressant-like effects of pharmacological inhibition of FAAH activity in socially isolated female rats. Eur Neuropsychopharmacol 2020; 32:77-87. [PMID: 31948828 DOI: 10.1016/j.euroneuro.2019.12.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/24/2022]
Abstract
Pharmacological inhibition of the enzyme fatty acid amide hydrolase (FAAH), which terminates signaling of the endocannabinoid N-arachidonoylethanolamine (or anandamide, AEA), exerts favourable effects in rodent models of stress-related depression. Yet although depression seems to be more common among women than men and in spite of some evidence of sex differences in treatment efficacy, preclinical development of FAAH inhibitors for the pharmacotherapy of stress-related depression has been predominantly conducted in male animals. Here, adult female rats were exposed to six weeks of social isolation and, starting from the second week, treated with the FAAH inhibitor URB694 (0.3 mg/kg/day, i.p.) or vehicle. Compared to pair-housed females, socially isolated female rats treated with vehicle developed behavioral (mild anhedonia, passive stress coping) and physiological (reduced body weight gain, elevated plasma corticosterone levels) alterations. Moreover, prolonged social isolation provoked a reduction in brain-derived neurotrophic factor (BDNF) and AEA levels within the hippocampus. Together, these changes are indicative of an increased risk of developing a depressive-like state. Conversely, pharmacological inhibition of FAAH activity with URB694 restored both AEA and BDNF levels within the hippocampus of socially isolated rats and prevented the development of behavioral and physiological alterations. These results suggest a potential interplay between AEA-mediated signaling and hippocampal BDNF in the pathogenesis of depression-relevant behaviors and physiological alterations and antidepressant action of FAAH inhibition in socially isolated female rats.
Collapse
Affiliation(s)
- Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Rosario Statello
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | | | | | - Gilberto Spadoni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
140
|
Oral repeated-dose toxicity studies of BIA 10–2474 in Wistar rat. Regul Toxicol Pharmacol 2020; 111:104540. [DOI: 10.1016/j.yrtph.2019.104540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/20/2019] [Accepted: 11/16/2019] [Indexed: 12/27/2022]
|
141
|
Hayes AW. Commentary on BIA 10-2474. Regul Toxicol Pharmacol 2020; 111:104541. [DOI: 10.1016/j.yrtph.2019.104541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/25/2019] [Accepted: 11/16/2019] [Indexed: 01/01/2023]
|
142
|
Hayes A, Pressman P, Moser P, Soares-da-Silva P. Regulatory safety pharmacology evaluation of BIA 10-2474. J Pharmacol Toxicol Methods 2020; 102:106677. [DOI: 10.1016/j.vascn.2020.106677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/03/2019] [Accepted: 01/17/2020] [Indexed: 12/28/2022]
|
143
|
Koenders STA, van Rooden EJ, van den Elst H, Florea BI, Overkleeft HS, van der Stelt M. STA-55, an Easily Accessible, Broad-Spectrum, Activity-Based Aldehyde Dehydrogenase Probe. Chembiochem 2020; 21:1911-1917. [PMID: 31985142 DOI: 10.1002/cbic.201900771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Indexed: 12/22/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) convert aldehydes into carboxylic acids and are often upregulated in cancer. They have been linked to therapy resistance and are therefore potential therapeutic targets. However, only a few selective and potent inhibitors are currently available for this group of enzymes. Competitive activity-based protein profiling (ABPP) would aid the development and validation of new selective inhibitors. Herein, a broad-spectrum activity-based probe that reports on several ALDHs is presented. This probe was used in a competitive ABPP protocol against three ALDH inhibitors in lung cancer cells to determine their selectivity profiles and establish their target engagement.
Collapse
Affiliation(s)
- Sebastiaan T A Koenders
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Eva J van Rooden
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Hans van den Elst
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bogdan I Florea
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Herman S Overkleeft
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
144
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Peripherally Restricted Cannabinoid Receptor 1, Cannabinoid Receptor 2, and Endocannabinoid-Degrading Enzymes for the Treatment of Neuropathic Pain Including Neuropathic Orofacial Pain. Int J Mol Sci 2020; 21:E1423. [PMID: 32093166 PMCID: PMC7073137 DOI: 10.3390/ijms21041423] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain conditions including neuropathic orofacial pain (NOP) are difficult to treat. Contemporary therapeutic agents for neuropathic pain are often ineffective in relieving pain and are associated with various adverse effects. Finding new options for treating neuropathic pain is a major priority in pain-related research. Cannabinoid-based therapeutic strategies have emerged as promising new options. Cannabinoids mainly act on cannabinoid 1 (CB1) and 2 (CB2) receptors, and the former is widely distributed in the brain. The therapeutic significance of cannabinoids is masked by their adverse effects including sedation, motor impairment, addiction and cognitive impairment, which are thought to be mediated by CB1 receptors in the brain. Alternative approaches have been developed to overcome this problem by selectively targeting CB2 receptors, peripherally restricted CB1 receptors and endocannabinoids that may be locally synthesized on demand at sites where their actions are pertinent. Many preclinical studies have reported that these strategies are effective for treating neuropathic pain and produce no or minimal side effects. Recently, we observed that inhibition of degradation of a major endocannabinoid, 2-arachydonoylglycerol, can attenuate NOP following trigeminal nerve injury in mice. This review will discuss the above-mentioned alternative approaches that show potential for treating neuropathic pain including NOP.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| |
Collapse
|
145
|
Parker CG, Pratt MR. Click Chemistry in Proteomic Investigations. Cell 2020; 180:605-632. [PMID: 32059777 PMCID: PMC7087397 DOI: 10.1016/j.cell.2020.01.025] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/20/2023]
Abstract
Despite advances in genetic and proteomic techniques, a complete portrait of the proteome and its complement of dynamic interactions and modifications remains a lofty, and as of yet, unrealized, objective. Specifically, traditional biological and analytical approaches have not been able to address key questions relating to the interactions of proteins with small molecules, including drugs, drug candidates, metabolites, or protein post-translational modifications (PTMs). Fortunately, chemists have bridged this experimental gap through the creation of bioorthogonal reactions. These reactions allow for the incorporation of chemical groups with highly selective reactivity into small molecules or protein modifications without perturbing their biological function, enabling the selective installation of an analysis tag for downstream investigations. The introduction of chemical strategies to parse and enrich subsets of the "functional" proteome has empowered mass spectrometry (MS)-based methods to delve more deeply and precisely into the biochemical state of cells and its perturbations by small molecules. In this Primer, we discuss how one of the most versatile bioorthogonal reactions, "click chemistry", has been exploited to overcome limitations of biological approaches to enable the selective marking and functional investigation of critical protein-small-molecule interactions and PTMs in native biological environments.
Collapse
Affiliation(s)
- Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Matthew R Pratt
- Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
146
|
Deng H, Lei Q, Wu Y, He Y, Li W. Activity-based protein profiling: Recent advances in medicinal chemistry. Eur J Med Chem 2020; 191:112151. [PMID: 32109778 DOI: 10.1016/j.ejmech.2020.112151] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 02/05/2023]
Abstract
Activity-based protein profiling (ABPP) has become an emerging chemical proteomic approach to illustrate the interaction mechanisms between compounds and proteins. This approach has combined organic synthesis, biochemistry, cell biology, biophysics and bioinformatics to accelerate the process of drug discovery in target identification and validation, as well as in the stage of lead discovery and optimization. This review will summarize new developments and applications of ABPP in medicinal chemistry. Here, we mainly described the design principles of activity-base probes (ABPs) and general workflows of ABPP approach. Moreover, we discussed various basic and advanced ABPP strategies and their applications in medicinal chemistry, including competitive and comparative ABPP, two-step ABPP, fluorescence polarization ABPP (FluoPol-ABPP) and ABPs for visualization. In conclusion, this review will give a general overview of the applications of ABPP as a powerful and efficient technique in medicinal chemistry.
Collapse
Affiliation(s)
- Hui Deng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Qian Lei
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yangping Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
147
|
Bonifácio MJ, Sousa F, Aires C, Loureiro AI, Fernandes-Lopes C, Pires NM, Palma PN, Moser P, Soares-da-Silva P. Preclinical pharmacological evaluation of the fatty acid amide hydrolase inhibitor BIA 10-2474. Br J Pharmacol 2020; 177:2123-2142. [PMID: 31901141 PMCID: PMC7161550 DOI: 10.1111/bph.14973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/17/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
Abstract
Background and Purpose In 2016, one person died and four others had mild‐to‐severe neurological symptoms during a phase I trial of the fatty acid amide hydrolase (FAAH) inhibitor BIA 10‐2474. Experimental Approach Pharmacodynamic and pharmacokinetic studies were performed with BIA 10‐2474, PF‐04457845 and JNJ‐42165279 using mice, rats and human FAAH expressed in COS cells. Selectivity was evaluated by activity‐based protein profiling (APBB) in rats. BIA 10‐2474 effect in stroke‐prone spontaneously hypertensive rats (SHRSP) was investigated. Key Results BIA 10‐2474 was 10‐fold less potent than PF‐04457845 in inhibiting human FAAH in situ but inhibited mouse brain and liver FAAH with ED50 values of 13.5 and 6.2 μg·kg−1, respectively. Plasma and brain BIA 10‐2474 levels were consistent with in situ potency and neither BIA 10‐2474 nor its metabolites accumulated following repeat administration. FAAH and α/β‐hydrolase domain containing 6 were the primary targets of BIA 10‐2474 and, at higher exposure levels, ABHD11, PNPLA6, PLA2G15, PLA2G6 and androgen‐induced protein 1. At 100 mg·kg−1 for 28 days, the level of several lipid species containing arachidonic acid increased. Daily treatment of SHRSP with BIA 10‐2474 did not affect mortality rate or increased the incidence of haemorrhage or oedema in surviving animals. Conclusions and Implications BIA 10‐2474 potently inhibits FAAH in vivo, similarly to PF‐04457845 and interacts with a number of lipid processing enzymes, some previously identified in human cells as off‐targets particularly at high levels of exposure. These interactions occurred at doses used in toxicology studies, but the implication of these off‐targets in the clinical trial accident remains unclear.
Collapse
Affiliation(s)
- Maria-João Bonifácio
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Filipa Sousa
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Cátia Aires
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Ana I Loureiro
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Carlos Fernandes-Lopes
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Nuno M Pires
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Pedro Nuno Palma
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Paul Moser
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Patrício Soares-da-Silva
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal.,Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| |
Collapse
|
148
|
Profiling the Protein Targets of Unmodified Bio‐Active Molecules with Drug Affinity Responsive Target Stability and Liquid Chromatography/Tandem Mass Spectrometry. Proteomics 2020; 20:e1900325. [DOI: 10.1002/pmic.201900325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/28/2019] [Indexed: 12/17/2022]
|
149
|
Dalton SE, Campos S. Covalent Small Molecules as Enabling Platforms for Drug Discovery. Chembiochem 2020; 21:1080-1100. [DOI: 10.1002/cbic.201900674] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Samuel E. Dalton
- Astex Pharmaceuticals 436 Cambridge Science Park Milton Road Cambridge CB4 0QA UK
| | - Sebastien Campos
- PharmaronDrug Discovery Services Europe Hertford Road Hoddesdon Hertfordshire EN11 9BU UK
| |
Collapse
|
150
|
Ogasawara D. [Efficient Discovery of Ligands Targeting Poor Lipid-signaling Metabolic Enzymes, as Facilitated by Activity-based Protein Profiling]. YAKUGAKU ZASSHI 2020; 140:25-29. [PMID: 31902881 DOI: 10.1248/yakushi.19-00186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite a continuous increase in R&D spending on potential new medicines, the success rate of drug development has not improved. The pharmaceutical industry is now facing a major challenge. As a college student who was studying pharmaceutical sciences in Japan, I became passionate about developing a new technology that would allow us to efficiently discover novel drug targets and selective chemical ligands for these targets. This realization encouraged me to join the PhD program at The Scripps Research Institute (TSRI) in 2013, where I carried out thesis research focusing on ligand discovery for poorly characterized metabolic enzymes for lipid signaling under the guidance of Prof. Benjamin Cravatt. TSRI is a unique place where researchers with different backgrounds collaborate frequently to conduct highly interdisciplinary research with the goal of translating cutting-edge research into clinical use. In this column, I am sharing my experiences as a PhD student at TSRI. I hope this column will be a useful source of information for younger students considering going abroad for a PhD degree.
Collapse
|