101
|
Abstract
Cryptochrome (CRY) photoreceptors undergo photoresponsive homo-oligomerization to become physiologically active, and BICs (blue-light inhibitors of CRYs) suppress homo-oligomerization. Structural elucidation of CRY–CRY homo-oligomers and a CRY–BIC heterodimer reveals how the activity of plant CRYs is regulated by alternative protein–protein interactions.
Collapse
Affiliation(s)
- Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
102
|
Abstract
Cryptochromes are blue-light receptors that mediate photoresponses in plants. The genomes of most land plants encode two clades of cryptochromes, CRY1 and CRY2, which mediate distinct and overlapping photoresponses within the same species and between different plant species. Photoresponsive protein-protein interaction is the primary mode of signal transduction of cryptochromes. Cryptochromes exist as physiologically inactive monomers in the dark; the absorption of photons leads to conformational change and cryptochrome homooligomerization, which alters the affinity of cryptochromes interacting with cryptochrome-interacting proteins to form various cryptochrome complexes. These cryptochrome complexes, collectively referred to as the cryptochrome complexome, regulate transcription or stability of photoresponsive proteins to modulate plant growth and development. The activity of cryptochromes is regulated by photooligomerization; dark monomerization; cryptochrome regulatory proteins; and cryptochrome phosphorylation, ubiquitination, and degradation. Most of the more than 30 presently known cryptochrome-interacting proteins are either regulated by other photoreceptors or physically interactingwith the protein complexes of other photoreceptors. Some cryptochrome-interacting proteins are also hormonal signaling or regulatory proteins. These two mechanisms enable cryptochromes to integrate blue-light signals with other internal and external signals to optimize plant growth and development.
Collapse
Affiliation(s)
- Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA;
| |
Collapse
|
103
|
Sun Z, Huang K, Han Z, Wang P, Fang Y. Genome-wide identification of Arabidopsis long noncoding RNAs in response to the blue light. Sci Rep 2020; 10:6229. [PMID: 32277122 PMCID: PMC7148362 DOI: 10.1038/s41598-020-63187-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/17/2020] [Indexed: 01/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown in animals to play roles in a wide range of biological processes. In plant, light modulates the growth and development as a key external signal. However, little is known about the role of plant lncRNA in response to light. In this study, we sequenced the messenger RNAs (mRNAs), lncRNAs and microRNAs (miRNAs) in Arabidopsis seedlings under blue light for 2 h and 8 h. Compared to dark, we identified 4197 mRNAs, 375 miRNAs and 481 lncRNAs, or 5207 mRNAs, 286 miRNAs and 545 lncRNAs of differential expressions under blue light treatments for 2 h or 8 h respectively. Subsequently, a total of 407 competing endogenous RNA (ceRNA) pairs (lncRNA-mRNA-miRNA) were constructed. We identified a blue light-induced lncRNA which plays roles in blue light-directed plant photomorphogenesis and response to mannitol stress by serving as a ceRNA to sequester miR167 in a type of target mimicry. These results revealed previously unknown roles of the lncRNA in blue light signaling and mannitol stress, and provided useful resources of lncRNAs associated with miRNAs in response to blue light.
Collapse
Affiliation(s)
- Zhenfei Sun
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.,National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Kai Huang
- Beijing igeneCode Biotech CO., Ltd, Beijing, 100096, China
| | - Zujing Han
- Beijing igeneCode Biotech CO., Ltd, Beijing, 100096, China
| | - Pan Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuda Fang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
104
|
Cloning, expression, and characterization of a novel plant type cryptochrome gene from the green alga Haematococcus pluvialis. Protein Expr Purif 2020; 172:105633. [PMID: 32259580 DOI: 10.1016/j.pep.2020.105633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/30/2020] [Indexed: 11/20/2022]
Abstract
A full-length cDNA sequence of plant type CRY (designated Hae-P-CRY) was cloned from the green alga Haematococcus pluvialis. The cDNA sequence was 3608 base pairs (bp) in length, which contained a 2988-bp open reading frame encoding 995 amino acids with molecular mass of 107.7 kDa and isoelectric point of 6.19. Multiple alignment analysis revealed that the deduced amino acid sequence of Hae-P-CRY shared high identity of 47-66% with corresponding plant type CRYs from other eukaryotes. The catalytic motifs of plant type CRYs were detected in the amino acid sequence of Hae-P-CRY including the typical PHR and CTE domains. Phylogenetic analysis showed that the Hae-P-CRY was grouped together with other plant type CRYs from green algae and higher plants, which distinguished from other distinct groups. The transcriptional level of Hae-P-CRY was strongly decreased after 0-4 h under HL stress. In addition, the Hae-P-CRY gene was heterologously expressed in Escherichia coli BL21 (DE3) and successfully purified. The typical spectroscopic characteristics of plant type CRYs were present in Hae-P-CRY indicated that it may be an active enzyme, which provided valuable clue for further functional investigation in the green alga H. pluvialis. These results lay the foundation for further function and interaction protein identification involved in CRYs mediated signal pathway under HL stress in H. pluvialis.
Collapse
|
105
|
Li Y, Lin B, Zhu T, Zhang H, Su J. The interactions of PhSPL17 and PhJAZ1 mediate the on- and off-year moso bamboo (Phyllostachys heterocycla) resistance to the Pantana phyllostachysae larval feeding. PEST MANAGEMENT SCIENCE 2020; 76:1588-1595. [PMID: 31713977 DOI: 10.1002/ps.5681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/07/2019] [Accepted: 11/07/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND The immunity of moso bamboo (Phyllostachys heterocycle) to insect defoliator outbreaks differs between on-years to off-years; however, the underlying genetic mechanisms remain unknown. In this study, the genetic relationships of functional genes conferring pest resistance were investigated. RESULTS PhJAZ1 (Phyllostachys heterocycla JASMONATE ZIM-domain protein 1) exhibited the highest enrichment and was expressed at higher levels in the leaves of on-year bamboo plants compared with off-year, whereas the expression of PhSPL17 (Phyllostachys heterocycla SQUAMOSA Promoter binding protein-Like 17) showed the reverse pattern. The expression pattern of PhJAZ1 differed in on- and off-year bamboo (i.e., decreasing in the off-year with no obvious change in the on-year) after feeding by Pantana phyllostachysae (lepidopteran caterpillar of moso bamboo). Due to the lack of a genetic transformation system, the model plant Arabidopsis was used for the investigation of the genetic relationships between PhJAZ1 and PhSPL17. Overexpression of the PhJAZ1 protein in Arabidopsis showed a negative impact on the survival ratio and weight of third-instar Helicoverpa armigera (Arabidopsis leaf-feeding lepidopteran caterpillar). Transcriptional suppression of PhJAZ1 by PhSPL17 was observed, which was able to reveal the reverse expression pattern of PhJAZ1 and PhSPL17. CONCLUSION Together, these results suggest that on- and off-years (leaf age) regulate the expression of PhSPL17, which negatively regulates the expression of PhJAZ1 to generate differential response to Jasmonate. This study is the first to detail the genetic connection between leaf age and Jasmonate response in moso bamboo and provides a foundation for further pest control via the genetic breeding of moso bamboo. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuhong Li
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bairong Lin
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tengfei Zhu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huafeng Zhang
- Xiamen Forest Pest Management Station, Xiamen, Fujian, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
106
|
Cryptochrome-mediated blue-light signalling modulates UVR8 photoreceptor activity and contributes to UV-B tolerance in Arabidopsis. Nat Commun 2020; 11:1323. [PMID: 32165634 PMCID: PMC7067804 DOI: 10.1038/s41467-020-15133-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
UV-B constitutes a critical part of the sunlight reaching the earth surface. The homodimeric plant UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) monomerizes in response to UV-B and induces photomorphogenic responses, including UV-B acclimation and tolerance. REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 are negative feedback regulators that operate by facilitating UVR8 ground state reversion through re-dimerization. Here we show that RUP1 and RUP2 are transcriptionally induced by cryptochrome photoreceptors in response to blue light, which is dependent on the bZIP transcriptional regulator ELONGATED HYPOCOTYL 5 (HY5). Elevated RUP1 and RUP2 levels under blue light enhance UVR8 re-dimerization, thereby negatively regulating UVR8 signalling and providing photoreceptor pathway cross-regulation in a polychromatic light environment, as is the case in nature. We further show that cryptochrome 1, as well as the red-light photoreceptor phytochrome B, contribute to UV-B tolerance redundantly with UVR8. Thus, photoreceptors for both visible light and UV-B regulate UV-B tolerance through an intricate interplay allowing the integration of diverse sunlight signals. The Arabidopsis UVR8 photoreceptor is a dimer that monomerizes in response to UV-B. Here the authors show that cryptochromes contribute to UV tolerance and facilitate UVR8 redimerization via induction of RUP proteins in response to blue light, modifying UV-B signalling in polychromatic light environments.
Collapse
|
107
|
Yang Y, Liu H. Coordinated Shoot and Root Responses to Light Signaling in Arabidopsis. PLANT COMMUNICATIONS 2020; 1:100026. [PMID: 33367230 PMCID: PMC7748005 DOI: 10.1016/j.xplc.2020.100026] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 05/05/2023]
Abstract
Light is one of the most important environmental signals and regulates many biological processes in plants. Studies on light-regulated development have mainly focused on aspects of shoot growth, such as de-etiolation, cotyledon opening, inhibition of hypocotyl elongation, flowering, and anthocyanin accumulation. However, recent studies have demonstrated that light is also involved in regulating root growth and development in Arabidopsis. In this review, we summarize the progress in understanding how shoots and roots coordinate their responses to light through different light-signaling components and pathways, including the COP1 (CONSTITUTIVELY PHOTOMORPHOGENIC 1), HY5 (ELONGATED HYPOCOTYL 5), and MYB73/MYB77 (MYB DOMAIN PROTEIN 73/77) pathways.
Collapse
Affiliation(s)
- Yu Yang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, 200032 Shanghai, P. R. China
- University of Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, 200032 Shanghai, P. R. China
- Corresponding author
| |
Collapse
|
108
|
Choi SW, Ryu MY, Viczián A, Jung HJ, Kim GM, Arce AL, Achkar NP, Manavella P, Dolde U, Wenkel S, Molnár A, Nagy F, Cho SK, Yang SW. Light Triggers the miRNA-Biogenetic Inconsistency for De-etiolated Seedling Survivability in Arabidopsis thaliana. MOLECULAR PLANT 2020; 13:431-445. [PMID: 31678531 DOI: 10.1016/j.molp.2019.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
The shift of dark-grown seedlings into light causes enormous transcriptome changes followed by a dramatic developmental transition. Here, we show that microRNA (miRNA) biogenesis also undergoes regulatory changes during de-etiolation. Etiolated seedlings maintain low levels of primary miRNAs (pri-miRNAs) and miRNA processing core proteins, such as Dicer-like 1, SERRATE, and HYPONASTIC LEAVES 1, whereas during de-etiolation both pri-miRNAs and the processing components accumulate to high levels. However, the levels of most miRNAs do not notably increase in response to light. To reconcile this inconsistency, we demonstrated that an unknown suppressor decreases miRNA-processing activity and light-induced SMALL RNA DEGRADING NUCLEASE 1 shortens the half-life of several miRNAs in de-etiolated seedlings. Taken together, these data suggest a novel mechanism, miRNA-biogenetic inconsistency, which accounts for the intricacy of miRNA biogenesis during de-etiolation. This mechanism is essential for the survival of de-etiolated seedlings after long-term skotomorphogenesis and their optimal adaptation to ever-changing light conditions.
Collapse
Affiliation(s)
- Suk Won Choi
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Moon Young Ryu
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - András Viczián
- Institute of Plant Biology, Biological Research Centre (BRC), Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Hyun Ju Jung
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Gu Min Kim
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Agustin L Arce
- Instituto de Agrobiotecnología del Litoral (IAL) Centro Científico Tecnológico Santa Fe (CCT), Santa Fe, Argentina
| | - Natalia P Achkar
- Instituto de Agrobiotecnología del Litoral (IAL) Centro Científico Tecnológico Santa Fe (CCT), Santa Fe, Argentina
| | - Pablo Manavella
- Instituto de Agrobiotecnología del Litoral (IAL) Centro Científico Tecnológico Santa Fe (CCT), Santa Fe, Argentina
| | - Ulla Dolde
- Laboratoire de Recherche en Sciences Végétales, 24, chemin de Borde-Rouge, BP 42617 Auzeville, Castanet-Tolosan 31326, France
| | - Stephan Wenkel
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, Copenhagen 1871, Denmark
| | - Attila Molnár
- Institute of Molecular Plant Sciences, School of Biological Sciences, The King's Buildings, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre (BRC), Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Seok Keun Cho
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea.
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, Copenhagen 1871, Denmark.
| |
Collapse
|
109
|
Liu Q, Su T, He W, Ren H, Liu S, Chen Y, Gao L, Hu X, Lu H, Cao S, Huang Y, Wang X, Wang Q, Lin C. Photooligomerization Determines Photosensitivity and Photoreactivity of Plant Cryptochromes. MOLECULAR PLANT 2020; 13:398-413. [PMID: 31953223 PMCID: PMC7056577 DOI: 10.1016/j.molp.2020.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/20/2019] [Accepted: 01/10/2020] [Indexed: 05/18/2023]
Abstract
Plant and non-plant species possess cryptochrome (CRY) photoreceptors to mediate blue light regulation of development or the circadian clock. The blue light-dependent homooligomerization of Arabidopsis CRY2 is a known early photoreaction necessary for its functions, but the photobiochemistry and function of light-dependent homooligomerization and heterooligomerization of cryptochromes, collectively referred to as CRY photooligomerization, have not been well established. Here, we show that photooligomerization is an evolutionarily conserved photoreaction characteristic of CRY photoreceptors in plants and some non-plant species. Our analyses of the kinetics of the forward and reverse reactions of photooligomerization of Arabidopsis CRY1 and CRY2 provide a previously unrecognized mechanism underlying the different photosensitivity and photoreactivity of these two closely related photoreceptors. We found that photooligomerization is necessary but not sufficient for the functions of CRY2, implying that CRY photooligomerization is presumably accompanied by additional function-empowering conformational changes. We further demonstrated that the CRY2-CRY1 heterooligomerization plays roles in regulating functions of Arabidopsis CRYs in vivo. Taken together, these results suggest that photooligomerization is an evolutionarily conserved mechanism determining the photosensitivity and photoreactivity of plant CRYs.
Collapse
Affiliation(s)
- Qing Liu
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tiantian Su
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Wenjin He
- College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Huibo Ren
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyuan Liu
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yadi Chen
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Gao
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaohua Hu
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haoyue Lu
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Huang
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Wang
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Qin Wang
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
110
|
Mao Z, He S, Xu F, Wei X, Jiang L, Liu Y, Wang W, Li T, Xu P, Du S, Li L, Lian H, Guo T, Yang HQ. Photoexcited CRY1 and phyB interact directly with ARF6 and ARF8 to regulate their DNA-binding activity and auxin-induced hypocotyl elongation in Arabidopsis. THE NEW PHYTOLOGIST 2020; 225:848-865. [PMID: 31514232 DOI: 10.1111/nph.16194] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 05/26/2023]
Abstract
Arabidopsis CRY1 and phyB are the primary blue and red light photoreceptors mediating blue and red light inhibition of hypocotyl elongation, respectively. Auxin is a pivotal phytohormone involved in promoting hypocotyl elongation. CRY1 and phyB interact with and stabilize auxin/indole acetic acid proteins (Aux/IAAs) to inhibit auxin signaling. The present study investigated whether photoreceptors might interact directly with Auxin Response Factors (ARFs) to regulate auxin signaling. Protein-protein interaction studies demonstrated that CRY1 and phyB interact physically with ARF6 and ARF8 through their N-terminal domains in a blue and red light-dependent manner, respectively. Moreover, the N-terminal DNA-binding domain of ARF6 and ARF8 is involved in mediating their interactions with CRY1. Genetic studies showed that ARF6 and ARF8 act partially downstream from CRY1 and PHYB to regulate hypocotyl elongation under blue and red light, respectively. Chromatin immunoprecipitation-PCR assays demonstrated that CRY1 and phyB mediate blue and red light repression of the DNA-binding activity of ARF6 and ARF6-target gene expression, respectively. Altogether, the results herein suggest that the direct repression of auxin-responsive gene expression mediated by the interactions of CRY1 and phyB with ARFs constitutes a new layer of the regulatory mechanisms by which light inhibits auxin-induced hypocotyl elongation.
Collapse
Affiliation(s)
- Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shengbo He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feng Xu
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xuxu Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Lu Jiang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ting Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengbo Xu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shasha Du
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ling Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
111
|
Ronald J, Davis SJ. Focusing on the nuclear and subnuclear dynamics of light and circadian signalling. PLANT, CELL & ENVIRONMENT 2019; 42:2871-2884. [PMID: 31369151 DOI: 10.1111/pce.13634] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 05/22/2023]
Abstract
Circadian clocks provide organisms the ability to synchronize their internal physiological responses with the external environment. This process, termed entrainment, occurs through the perception of internal and external stimuli. As with other organisms, in plants, the perception of light is a critical for the entrainment and sustainment of circadian rhythms. Red, blue, far-red, and UV-B light are perceived by the oscillator through the activity of photoreceptors. Four classes of photoreceptors signal to the oscillator: phytochromes, cryptochromes, UVR8, and LOV-KELCH domain proteins. In most cases, these photoreceptors localize to the nucleus in response to light and can associate to subnuclear structures to initiate downstream signalling. In this review, we will highlight the recent advances made in understanding the mechanisms facilitating the nuclear and subnuclear localization of photoreceptors and the role these subnuclear bodies have in photoreceptor signalling, including to the oscillator. We will also highlight recent progress that has been made in understanding the regulation of the nuclear and subnuclear localization of components of the plant circadian clock.
Collapse
Affiliation(s)
- James Ronald
- Department of Biology, University of York, YO10 5DD, York, UK
| | - Seth J Davis
- Department of Biology, University of York, YO10 5DD, York, UK
| |
Collapse
|
112
|
Oligomerization and Photo-Deoligomerization of HOOKLESS1 Controls Plant Differential Cell Growth. Dev Cell 2019; 51:78-88.e3. [DOI: 10.1016/j.devcel.2019.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/11/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
|
113
|
He Y, Chen H, Zhou L, Liu Y, Chen H. Comparative transcription analysis of photosensitive and non-photosensitive eggplants to identify genes involved in dark regulated anthocyanin synthesis. BMC Genomics 2019; 20:678. [PMID: 31455222 PMCID: PMC6712802 DOI: 10.1186/s12864-019-6023-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/12/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Light is a key environmental factor in regulation of anthocyanin biosynthesis. Through a large number of bagging screenings, we obtained non-photosensitive eggplants that still have decent amount of anthocyanin synthesized after bagging. In the present study, transcriptome was made to explore the molecular mechanism of dark-regulated anthocyanin synthesis in non-photosensitive eggplant. RESULTS The transcriptome of the pericarp at 0 h, 0.5 h, 4 h, and 8 h after bag removal were sequenced and analyzed. Comparison of the sequencing data with those of photosensitive eggplant for the same time period showed that anthocyanin synthesis genes had different expression trends. Based on the expression trends of the structural genes, it was discovered that 22 transcription factors and 4 light signal transduction elements may be involved in the anthocyanin synthesis in two types of eggplants. Through transcription factor target gene prediction and yeast one-hybrid assay, SmBIM1, SmAP2, SmHD, SmMYB94, SmMYB19, SmTT8, SmYABBY, SmTTG2, and SmMYC2 were identified to be directly or indirectly bound to the promoter of the structural gene SmCHS. These results indicate that the identified 9 genes participated in the anthocyanin synthesis in eggplant peel and formed a network of interactions among themselves. CONCLUSIONS Based on the comparative transcription, the identified 22 transcription factors and 4 light signal transduction elements may act as the key factors in dark regulated anthocyanin synthesis in non-photosensitive eggplant. The results provided a step stone for further analysis of the molecular mechanism of dark-regulated anthocyanin synthesis in non-photosensitive eggplant.
Collapse
Affiliation(s)
- Yongjun He
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Hang Chen
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Lu Zhou
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| |
Collapse
|
114
|
Abstract
How structurally distinct photoreceptors regulate evolutionarily diverse transcription factors to modulate common photoresponses is an intriguing question in plant biology. In this issue of The EMBO Journal, Lau et al demonstrate that COP1, the substrate receptor of E3 ubiquitin ligase CUL4COP 1- SPA s , interacts with the diverse VP motif-containing transcription factors and photoreceptors via its highly plastic WD40 domain. Light-activated photoreceptors increase their affinity to COP1 to outcompete the COP1-interacting transcription factors, allowing their accumulation and inducing photomorphogenic development of plants.
Collapse
Affiliation(s)
- Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
115
|
Jin H, Zhu Z. Dark, Light, and Temperature: Key Players in Plant Morphogenesis. PLANT PHYSIOLOGY 2019; 180:1793-1802. [PMID: 31113832 PMCID: PMC6670080 DOI: 10.1104/pp.19.00331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/14/2019] [Indexed: 05/20/2023]
Abstract
Recent advances in plant thermomorphogenesis under different light conditions reveal the roles of plant photoreceptors in the control of thermomorphogenesis
Collapse
Affiliation(s)
- Huanhuan Jin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
116
|
Xiong L, Li C, Li H, Lyu X, Zhao T, Liu J, Zuo Z, Liu B. A transient expression system in soybean mesophyll protoplasts reveals the formation of cytoplasmic GmCRY1 photobody-like structures. SCIENCE CHINA. LIFE SCIENCES 2019; 62:1070-1077. [PMID: 30929191 DOI: 10.1007/s11427-018-9496-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
Abstract
Soybean (Glycine max (L.) Merr.), grown for its plant oils and proteins, is one of the most important crops throughout the world. Generating stable and heritable transgenic soybeans is relatively inefficient; therefore, there is an urgent need for a simple and high-efficient transient transformation method by which to enable the investigation of gene functions in soybeans, which will facilitate the elucidation and improvement of the molecular mechanisms regulating the associated agronomic traits. We established a system of transient expression in soybean mesophyll protoplasts and obtained a high level of protoplast transfection efficiency (up to 83.5%). The subcellular activity of the protoplasts was well preserved, as demonstrated by the dynamic formation of GmCRY nucleus photobodies (NPs) and/or cytoplasmic photobody-like structures (CPs) in response to blue light. In addition, we showed that GmCRY1b CPs colocalized with GmCOP1b, a co-ortholog of Arabidopsis thaliana CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), which provided new insight into the potential roles of GmCRY1s in the cytoplasm.
Collapse
Affiliation(s)
- Lu Xiong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Cong Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongyu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiangguang Lyu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
117
|
Hoang QTN, Han YJ, Kim JI. Plant Phytochromes and their Phosphorylation. Int J Mol Sci 2019; 20:ijms20143450. [PMID: 31337079 PMCID: PMC6678601 DOI: 10.3390/ijms20143450] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Extensive research over several decades in plant light signaling mediated by photoreceptors has identified the molecular mechanisms for how phytochromes regulate photomorphogenic development, which includes degradation of phytochrome-interacting factors (PIFs) and inactivation of COP1-SPA complexes with the accumulation of master transcription factors for photomorphogenesis, such as HY5. However, the initial biochemical mechanism for the function of phytochromes has not been fully elucidated. Plant phytochromes have long been known as phosphoproteins, and a few protein phosphatases that directly interact with and dephosphorylate phytochromes have been identified. However, there is no report thus far of a protein kinase that acts on phytochromes. On the other hand, plant phytochromes have been suggested as autophosphorylating serine/threonine protein kinases, proposing that the kinase activity might be important for their functions. Indeed, the autophosphorylation of phytochromes has been reported to play an important role in the regulation of plant light signaling. More recently, evidence that phytochromes function as protein kinases in plant light signaling has been provided using phytochrome mutants displaying reduced kinase activities. In this review, we highlight recent advances in the reversible phosphorylation of phytochromes and their functions as protein kinases in plant light signaling.
Collapse
Affiliation(s)
- Quyen T N Hoang
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| | - Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
118
|
Plant photoreceptors: Multi-functional sensory proteins and their signaling networks. Semin Cell Dev Biol 2019; 92:114-121. [PMID: 30946988 DOI: 10.1016/j.semcdb.2019.03.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 03/29/2019] [Indexed: 12/31/2022]
Abstract
Light is a crucial environmental cue not only for photosynthetic energy production but also for plant growth and development. Plants employ sophisticated methods to detect and interpret information from incoming light. Five classes of photoreceptors have been discovered in the model plant Arabidopsis thaliana. These photoreceptors act either distinctly and/or redundantly in fine-tuning many aspects of plant life cycle. Unlike mobile animals, sessile plants have developed an enormous plasticity to adapt and survive in changing environment. By monitoring different information arising from ambient light, plants precisely regulate downstream signaling pathways to adapt accordingly. Given that changes in the light environment is typically synchronized with other environmental cues such as temperature, abiotic stresses, and seasonal changes, it is not surprising that light signaling pathways are interconnected with multiple pathways to regulate plant physiology and development. Indeed, recent advances in plant photobiology revealed a large network of co-regulation among different photoreceptor signaling pathways as well as other internal signaling pathways (e.g., hormone signaling). In addition, some photoreceptors are directly involved in perception of non-light stimuli (e.g., temperature). Therefore, understanding highly inter-connected signaling networks is essential to explore the photoreceptor functions in plants. Here, we summarize how plants co-ordinate multiple photoreceptors and their internal signaling pathways to regulate a myriad of downstream responses at molecular and physiological levels.
Collapse
|
119
|
Fantini E, Sulli M, Zhang L, Aprea G, Jiménez-Gómez JM, Bendahmane A, Perrotta G, Giuliano G, Facella P. Pivotal Roles of Cryptochromes 1a and 2 in Tomato Development and Physiology. PLANT PHYSIOLOGY 2019; 179:732-748. [PMID: 30541876 PMCID: PMC6426409 DOI: 10.1104/pp.18.00793] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/05/2018] [Indexed: 05/18/2023]
Abstract
Cryptochromes are flavin-containing blue/UVA light photoreceptors that regulate various plant light-induced physiological processes. In Arabidopsis (Arabidopsis thaliana), cryptochromes mediate de-etiolation, photoperiodic control of flowering, entrainment of the circadian clock, cotyledon opening and expansion, anthocyanin accumulation, and root growth. In tomato (Solanum lycopersicum), cryptochromes are encoded by a multigene family, comprising CRY1a, CRY1b, CRY2, and CRY3 We have previously reported the phenotypes of tomato cry1a mutants and CRY2 overexpressing plants. Here, we report the isolation by targeting induced local lesions in genomes, of a tomato cry2 knock-out mutant, its introgression in the indeterminate Moneymaker background, and the phenotypes of cry1a/cry2 single and double mutants. The cry1a/cry2 mutant showed phenotypes similar to its Arabidopsis counterpart (long hypocotyls in white and blue light), but also several additional features such as increased seed weight and internode length, enhanced hypocotyl length in red light, inhibited primary root growth under different light conditions, anticipation of flowering under long-day conditions, and alteration of the phase of circadian leaf movements. Both cry1a and cry2 control the levels of photosynthetic pigments in leaves, but cry2 has a predominant role in fruit pigmentation. Metabolites of the sterol, tocopherol, quinone, and sugar classes are differentially accumulated in cry1a and cry2 leaves and fruits. These results demonstrate a pivotal role of cryptochromes in controlling tomato development and physiology. The manipulation of these photoreceptors represents a powerful tool to influence important agronomic traits such as flowering time and fruit quality.
Collapse
Affiliation(s)
- Elio Fantini
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Trisaia Research Center, 75026 Rotondella (Matera), Italy
| | - Maria Sulli
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Center, 00123 Roma, Italy
| | - Lei Zhang
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Giuseppe Aprea
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Center, 00123 Roma, Italy
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78026 Versailles Cedex, France
| | - Abdelhafid Bendahmane
- Institute of Plant Science - Paris-Saclay, Institut National de la Recherche Agronomique (INRA), 91190 Gif-sur-Yvette, France
| | - Gaetano Perrotta
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Trisaia Research Center, 75026 Rotondella (Matera), Italy
| | - Giovanni Giuliano
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Center, 00123 Roma, Italy
| | - Paolo Facella
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Trisaia Research Center, 75026 Rotondella (Matera), Italy
| |
Collapse
|
120
|
Lian H, Xu P, He S, Wu J, Pan J, Wang W, Xu F, Wang S, Pan J, Huang J, Yang HQ. Photoexcited CRYPTOCHROME 1 Interacts Directly with G-Protein β Subunit AGB1 to Regulate the DNA-Binding Activity of HY5 and Photomorphogenesis in Arabidopsis. MOLECULAR PLANT 2018; 11:1248-1263. [PMID: 30176372 DOI: 10.1016/j.molp.2018.08.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/25/2018] [Accepted: 08/23/2018] [Indexed: 05/25/2023]
Abstract
Light and the heterotrimeric G-protein are known to antagonistically regulate photomorphogenesis in Arabidopsis. However, whether light and G-protein coordinate the regulation of photomorphogenesis is largely unknown. Here we show that the blue light photoreceptor cryptochrome 1 (CRY1) physically interacts with the G-protein β subunit, AGB1, in a blue light-dependent manner. We also show that AGB1 directly interacts with HY5, a basic leucine zipper transcriptional factor that acts as a critical positive regulator of photomorphogenesis, to inhibit its DNA-binding activity. Genetic studies suggest that CRY1 acts partially through AGB1, and AGB1 acts partially through HY5 to regulate photomorphogenesis. Moreover, we demonstrate that blue light-triggered interaction of CRY1 with AGB1 promotes the dissociation of HY5 from AGB1. Our results suggest that the CRY1 signaling mechanism involves positive regulation of the DNA-binding activity of HY5 mediated by the CRY1-AGB1 interaction, which inhibits the association of AGB1 with HY5. We propose that the antagonistic regulation of HY5 DNA-binding activity by CRY1 and AGB1 may allow plants to balance light and G-protein signaling and optimize photomorphogenesis.
Collapse
Affiliation(s)
- Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengbo Xu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengbo He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenxiu Wang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Feng Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Sheng Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jirong Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hong-Quan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
121
|
Wang Q, Zuo Z, Wang X, Liu Q, Gu L, Oka Y, Lin C. Beyond the photocycle-how cryptochromes regulate photoresponses in plants? CURRENT OPINION IN PLANT BIOLOGY 2018; 45:120-126. [PMID: 29913346 PMCID: PMC6240499 DOI: 10.1016/j.pbi.2018.05.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/01/2018] [Accepted: 05/22/2018] [Indexed: 05/17/2023]
Abstract
Cryptochromes (CRYs) are blue light receptors that mediate light regulation of plant growth and development. Land plants possess various numbers of cryptochromes, CRY1 and CRY2, which serve overlapping and partially redundant functions in different plant species. Cryptochromes exist as physiologically inactive monomers in darkness; photoexcited cryptochromes undergo homodimerization to increase their affinity to the CRY-signaling proteins, such as CIBs (CRY2-interacting bHLH), PIFs (Phytochrome-Interacting Factors), AUX/IAA (Auxin/INDOLE-3-ACETIC ACID), and the COP1-SPAs (Constitutive Photomorphogenesis 1-Suppressors of Phytochrome A) complexes. These light-dependent protein-protein interactions alter the activity of the CRY-signaling proteins to change gene expression and developmental programs in response to light. In the meantime, photoexcitation also changes the affinity of cryptochromes to the CRY-regulatory proteins, such as BICs (Blue-light Inhibitors of CRYs) and PPKs (Photoregulatory Protein Kinases), to modulate the activity, modification, or abundance of cryptochromes and photosensitivity of plants in response to the changing light environment.
Collapse
Affiliation(s)
- Qin Wang
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA.
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Wang
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Qing Liu
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
122
|
Eckel M, Steinchen W, Batschauer A. ATP boosts lit state formation and activity of Arabidopsis cryptochrome 2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:389-403. [PMID: 30044014 DOI: 10.1111/tpj.14039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/27/2018] [Accepted: 07/04/2018] [Indexed: 05/21/2023]
Abstract
Cryptochrome (cry) blue light photoreceptors have important roles in the regulation of plant development. Their photocycle includes redox changes of their flavin adenine dinucleotide (FAD) chromophore, which is fully oxidised in the dark state and semi-reduced in the signalling-active lit state. The two Arabidopsis thaliana cryptochromes, cry1 and cry2, and the plant-type cryptochrome CPH1 from Chlamydomonas rheinhardtii bind ATP and other nucleotides. Binding of ATP affects the photocycle of these photoreceptors and causes structural alterations. However, the exact regions that undergo structural changes have not been defined, and most importantly it is not known whether ATP binding affects the biological activity of these photoreceptors in planta. Here we present studies on the effect of ATP on Arabidopsis cry2. Recombinant cry2 protein showed a high affinity for ATP (KD of 1.09 ± 0.48 μm). Binding of ATP and other adenines promoted photoreduction of the FAD chromophore in vitro and caused structural changes, particularly in α-helix 21 which links the photosensory domain with the C-terminal extension. The constructed cry2Y399A mutant was unable to bind ATP and did not show enhancement of photoreduction by ATP. When this mutant gene was expressed in Arabidopsis null cry2 mutant plants it retained some biological activity, which was, however, lower than that of the wild type. Our results indicate that binding of ATP to cry2, and most likely to other plant-type cryptochromes, is not essential but boosts the formation of the signalling state and biological activity.
Collapse
Affiliation(s)
- Maike Eckel
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Wieland Steinchen
- Faculty of Chemistry and LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Alfred Batschauer
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-Universität Marburg, 35032, Marburg, Germany
| |
Collapse
|
123
|
Wang W, Lu X, Li L, Lian H, Mao Z, Xu P, Guo T, Xu F, Du S, Cao X, Wang S, Shen H, Yang HQ. Photoexcited CRYPTOCHROME1 Interacts with Dephosphorylated BES1 to Regulate Brassinosteroid Signaling and Photomorphogenesis in Arabidopsis. THE PLANT CELL 2018; 30:1989-2005. [PMID: 30131420 PMCID: PMC6181010 DOI: 10.1105/tpc.17.00994] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/10/2018] [Accepted: 08/15/2018] [Indexed: 05/20/2023]
Abstract
Cryptochromes (CRYs) are blue light photoreceptors that mediate a variety of light responses in plants and animals, including photomorphogenesis, flowering, and circadian rhythms. The signaling mechanism by which Arabidopsis thaliana cryptochromes CRY1 and CRY2 promote photomorphogenesis involves direct interactions with COP1, a RING motif-containing E3 ubiquitin ligase, and its enhancer SPA1. Brassinosteroid (BR) is a key phytohormone involved in the repression of photomorphogenesis, and here, we show that the signaling mechanism of Arabidopsis CRY1 involves the inhibition of BR signaling. CRY1 and CRY2 physically interact with BES1-INTERACTING MYC-LIKE1 (BIM1), a basic helix-loop-helix protein. BIM1, in turn, interacts with and enhances the activity of BRI1-EMS SUPPRESSOR1 (BES1), a master transcription factor in the BR signaling pathway. In addition, CRY1 and CRY2 interact specifically with dephosphorylated BES1, the physiologically active form of BES1 that is activated by BR in a blue light-dependent manner. The CRY1-BES1 interaction leads to both the inhibition of BES1 DNA binding activity and the repression of its target gene expression. Our study suggests that the blue light-dependent, BR-induced interaction of CRY1 with BES1 is a tightly regulated mechanism by which plants optimize photomorphogenesis according to the availability of external light and internal BR signals.
Collapse
Affiliation(s)
- Wenxiu Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xuedan Lu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Ling Li
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Hongli Lian
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Zhilei Mao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Pengbo Xu
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Tongtong Guo
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Feng Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shasha Du
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoli Cao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Sheng Wang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Hongyun Shen
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hong-Quan Yang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
124
|
Jones MA. Using light to improve commercial value. HORTICULTURE RESEARCH 2018; 5:47. [PMID: 30181887 PMCID: PMC6119199 DOI: 10.1038/s41438-018-0049-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 05/20/2023]
Abstract
The plasticity of plant morphology has evolved to maximize reproductive fitness in response to prevailing environmental conditions. Leaf architecture elaborates to maximize light harvesting, while the transition to flowering can either be accelerated or delayed to improve an individual's fitness. One of the most important environmental signals is light, with plants using light for both photosynthesis and as an environmental signal. Plants perceive different wavelengths of light using distinct photoreceptors. Recent advances in LED technology now enable light quality to be manipulated at a commercial scale, and as such opportunities now exist to take advantage of plants' developmental plasticity to enhance crop yield and quality through precise manipulation of a crops' lighting regime. This review will discuss how plants perceive and respond to light, and consider how these specific signaling pathways can be manipulated to improve crop yield and quality.
Collapse
Affiliation(s)
- Matthew Alan Jones
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, Colchester, CO4 3SQ UK
| |
Collapse
|
125
|
Lin F, Jiang Y, Li J, Yan T, Fan L, Liang J, Chen ZJ, Xu D, Deng XW. B-BOX DOMAIN PROTEIN28 Negatively Regulates Photomorphogenesis by Repressing the Activity of Transcription Factor HY5 and Undergoes COP1-Mediated Degradation. THE PLANT CELL 2018; 30:2006-2019. [PMID: 30099385 PMCID: PMC6181009 DOI: 10.1105/tpc.18.00226] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/27/2018] [Accepted: 08/06/2018] [Indexed: 05/04/2023]
Abstract
Plants have evolved a delicate molecular system to fine-tune their growth and development in response to dynamically changing light environments. In this study, we found that BBX28, a B-box domain protein, negatively regulates photomorphogenic development in a dose-dependent manner in Arabidopsis thaliana BBX28 interferes with the binding of transcription factor HY5 to the promoters of its target genes through physical interactions, thereby repressing its activity and negatively affecting HY5-regulated gene expression. In darkness, BBX28 associates with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and undergoes COP1-mediated degradation via the 26S proteasome system. Collectively, these results demonstrate that BBX28 acts as a key factor in the COP1-HY5 regulatory hub by maintaining proper HY5 activity to ensure normal photomorphogenic development in plants.
Collapse
Affiliation(s)
- Fang Lin
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Jiang
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Tingting Yan
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liumin Fan
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiansheng Liang
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas 78712
| | - Dongqing Xu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas 78712
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Plant and Food Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
126
|
Wang S, Li L, Xu P, Lian H, Wang W, Xu F, Mao Z, Zhang T, Yang H. CRY1 interacts directly with HBI1 to regulate its transcriptional activity and photomorphogenesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3867-3881. [PMID: 29860272 PMCID: PMC6054188 DOI: 10.1093/jxb/ery209] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/21/2018] [Indexed: 05/03/2023]
Abstract
Cryptochromes (CRYs) are blue light photoreceptors that mediate various light responses in plants and animals. In Arabidopsis, there are two homologous CRYs, CRY1 and CRY2, which mediate blue light inhibition of hypocotyl elongation. It is known that CRY2 interacts with CIB1, a basic helix-loop-helix (bHLH) transcriptional factor, to regulate transcription and floral induction. In this study, we performed yeast two-hybrid screening and identified CIB1 as a CRY1-interacting protein. Moreover, we demonstrated that CRY1 physically interacted with the close homolog of CIB1, HBI1, which is known to act downstream of brassinosteroid (BR) and gibberellin acid (GA) signaling pathways to promote hypocotyl elongation, in a blue light-dependent manner. Transgenic and genetic interaction studies showed that overexpression of HBI1 resulted in enhanced hypocotyl elongation under blue light and that HBI1 acted downstream of CRYs to promote hypocotyl elongation. Genome-wide gene expression analysis indicated that CRYs and HBI1 antagonistically regulated the expression of genes involved in regulating cell elongation. Moreover, we demonstrated that CRY1-HBI1 interaction led to inhibition of HBI1's DNA binding activity and its target gene expression. Together, our results suggest that HBI1 acts as a new CRY1-interacting protein and that the signaling mechanism of CRY1 involves repression of HBI1 transcriptional activity by direct CRY1-HBI1 interaction.
Collapse
Affiliation(s)
- Sheng Wang
- School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Ling Li
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | - Pengbo Xu
- School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | - Wenxiu Wang
- State Key laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Feng Xu
- State Key laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhilei Mao
- State Key laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Hongquan Yang
- State Key laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Correspondence:
| |
Collapse
|
127
|
Yang L, Mo W, Yu X, Yao N, Zhou Z, Fan X, Zhang L, Piao M, Li S, Yang D, Lin C, Zuo Z. Reconstituting Arabidopsis CRY2 Signaling Pathway in Mammalian Cells Reveals Regulation of Transcription by Direct Binding of CRY2 to DNA. Cell Rep 2018; 24:585-593.e4. [DOI: 10.1016/j.celrep.2018.06.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/20/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022] Open
|
128
|
Xu F, He S, Zhang J, Mao Z, Wang W, Li T, Hua J, Du S, Xu P, Li L, Lian H, Yang HQ. Photoactivated CRY1 and phyB Interact Directly with AUX/IAA Proteins to Inhibit Auxin Signaling in Arabidopsis. MOLECULAR PLANT 2018; 11:523-541. [PMID: 29269022 DOI: 10.1016/j.molp.2017.12.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 05/04/2023]
Abstract
Light is a key environmental cue that inhibits hypocotyl cell elongation through the blue and red/far-red light photoreceptors cryptochrome- and phytochrome-mediated pathways in Arabidopsis. In contrast, as a pivotal endogenous phytohormone auxin promotes hypocotyl elongation through the auxin receptors TIR1/AFBs-mediated degradation of AUX/IAA proteins (AUX/IAAs). However, the molecular mechanisms underlying the antagonistic interaction of light and auxin signaling remain unclear. Here, we report that light inhibits auxin signaling through stabilization of AUX/IAAs by blue and red light-dependent interactions of cryptochrome 1 (CRY1) and phytochrome B with AUX/IAAs, respectively. Blue light-triggered interactions of CRY1 with AUX/IAAs inhibit the associations of TIR1 with AUX/IAAs, leading to the repression of auxin-induced degradation of these proteins. Our results indicate that photoreceptors share AUX/IAAs with auxin receptors as the same direct downstream signaling components. We propose that antagonistic regulation of AUX/IAA protein stability by photoreceptors and auxin receptors allows plants to balance light and auxin signals to optimize their growth.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shengbo He
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Jingyi Zhang
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Zhilei Mao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wenxiu Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ting Li
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Jie Hua
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shasha Du
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Pengbo Xu
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Ling Li
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Hongli Lian
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Hong-Quan Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
129
|
Benedetti L, Barentine AES, Messa M, Wheeler H, Bewersdorf J, De Camilli P. Light-activated protein interaction with high spatial subcellular confinement. Proc Natl Acad Sci U S A 2018; 115:E2238-E2245. [PMID: 29463750 PMCID: PMC5877946 DOI: 10.1073/pnas.1713845115] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Methods to acutely manipulate protein interactions at the subcellular level are powerful tools in cell biology. Several blue-light-dependent optical dimerization tools have been developed. In these systems one protein component of the dimer (the bait) is directed to a specific subcellular location, while the other component (the prey) is fused to the protein of interest. Upon illumination, binding of the prey to the bait results in its subcellular redistribution. Here, we compared and quantified the extent of light-dependent dimer occurrence in small, subcellular volumes controlled by three such tools: Cry2/CIB1, iLID, and Magnets. We show that both the location of the photoreceptor protein(s) in the dimer pair and its (their) switch-off kinetics determine the subcellular volume where dimer formation occurs and the amount of protein recruited in the illuminated volume. Efficient spatial confinement of dimer to the area of illumination is achieved when the photosensitive component of the dimerization pair is tethered to the membrane of intracellular compartments and when on and off kinetics are extremely fast, as achieved with iLID or Magnets. Magnets and the iLID variants with the fastest switch-off kinetics induce and maintain protein dimerization in the smallest volume, although this comes at the expense of the total amount of dimer. These findings highlight the distinct features of different optical dimerization systems and will be useful guides in the choice of tools for specific applications.
Collapse
Affiliation(s)
- Lorena Benedetti
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Andrew E S Barentine
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
| | - Mirko Messa
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Heather Wheeler
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Nanobiology Institute, Yale University, West Haven, CT 06516
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510;
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
130
|
Zhou T, Meng L, Ma Y, Liu Q, Zhang Y, Yang Z, Yang D, Bian M. Overexpression of sweet sorghum cryptochrome 1a confers hypersensitivity to blue light, abscisic acid and salinity in Arabidopsis. PLANT CELL REPORTS 2018; 37:251-264. [PMID: 29098377 DOI: 10.1007/s00299-017-2227-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/16/2017] [Indexed: 05/14/2023]
Abstract
This work provides the bioinformatics, expression pattern and functional analyses of cryptochrome 1a from sweet sorghum (SbCRY1a), together with an exploration of the signaling mechanism mediated by SbCRY1a. Sweet sorghum [Sorghum bicolor (L.) Moench] is considered to be an ideal candidate for biofuel production due to its high efficiency of photosynthesis and the ability to maintain yield under harsh environmental conditions. Blue light receptor cryptochromes regulate multiple aspects of plant growth and development. Here, we reported the function and signal mechanism of sweet sorghum cryptochrome 1a (SbCRY1a) to explore its potential for genetic improvement of sweet sorghum varieties. SbCRY1a transcripts experienced almost 24 h diurnal cycling; however, its protein abundance showed no oscillation. Overexpression of SbCRY1a in Arabidopsis rescued the phenotype of cry1 mutant in a blue light-specific manner and regulated HY5 accumulation under blue light. SbCRY1a protein was present in both nucleus and cytoplasm. The photoexcited SbCRY1a interacted directly with a putative RING E3 ubiquitin ligase constitutive photomorphogenesis 1 (COP1) from sweet sorghum (SbCOP1) instead of SbSPA1 to suppress SbCOP1-SbHY5 interaction responding to blue light. These observations indicate that the function and signaling mechanism of cryptochromes are basically conservative between monocotyledons and dicotyledons. Moreover, SbCRY1a-overexpressed transgenic Arabidopsis showed oversensitive to abscisic acid (ABA) and salinity. The ABA-responsive gene ABI5 was up-regulated evidently in SbCRY1a transgenic lines, suggesting that SbCRY1a might regulate ABA signaling through the HY5-ABI5 regulon.
Collapse
Affiliation(s)
- Tingting Zhou
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, 5333 xi'an Road, Changchun, 130062, China
| | - Lingyang Meng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, 5333 xi'an Road, Changchun, 130062, China
| | - Yue Ma
- Agronomy College of Northeast Agricultural University, 59 Wood Street, Harbin, 150030, China
| | - Qing Liu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, 5333 xi'an Road, Changchun, 130062, China
| | - Yunyun Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, 5333 xi'an Road, Changchun, 130062, China
| | - Zhenming Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, 5333 xi'an Road, Changchun, 130062, China
| | - Deguang Yang
- Agronomy College of Northeast Agricultural University, 59 Wood Street, Harbin, 150030, China
| | - Mingdi Bian
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, 5333 xi'an Road, Changchun, 130062, China.
| |
Collapse
|
131
|
Casal JJ, Qüesta JI. Light and temperature cues: multitasking receptors and transcriptional integrators. THE NEW PHYTOLOGIST 2018; 217:1029-1034. [PMID: 29139132 DOI: 10.1111/nph.14890] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/05/2017] [Indexed: 05/21/2023]
Abstract
Contents Summary 1029 I. Introduction 1029 II. Convergence at the receptor 1030 III. Convergence at transcriptional hubs 1031 IV. Convergence involving clock components 1033 V. Conclusions 1033 Acknowledgements 1033 References 1033 SUMMARY: The combined information provided by light and temperature cues helps to optimise plant body architecture and physiology. Plants possess elaborate systems to sense and respond to these stimuli. Simultaneous perception of light and temperature by dual receptors such as phytochrome B and phototropin leads to immediate signalling convergence. Conversely, cue asynchronies initiate separate pathways and the information of the earliest cue is stored, awaiting the arrival of the later cue to control transcription. Storage mechanisms can involve changes in the activity of selected clock components or epigenetic modifications, depending on the time delay between cues (hours, days or several months). We propose a conceptual framework in which the mechanisms of integration relate to the timing of cue sensing.
Collapse
Affiliation(s)
- Jorge J Casal
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, Buenos Aires, 1417, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, 1405, Argentina
| | - Julia I Qüesta
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
132
|
Yang Y, Liang T, Zhang L, Shao K, Gu X, Shang R, Shi N, Li X, Zhang P, Liu H. UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. NATURE PLANTS 2018; 4:98-107. [PMID: 29379156 DOI: 10.1038/s41477-017-0099-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/27/2017] [Indexed: 05/20/2023]
Abstract
UV RESISTANCE LOCUS 8 (UVR8) is an ultraviolet-B (UVB) radiation photoreceptor that mediates light responses in plants. How plant UVR8 acts in response to UVB light is not well understood. Here, we report the identification and characterization of the Arabidopsis WRKY DNA-BINDING PROTEIN 36 (WRKY36) protein. WRKY36 interacts with UVR8 in yeast and Arabidopsis cells and it promotes hypocotyl elongation by inhibiting HY5 transcription. Inhibition of hypocotyl elongation under UVB requires the inhibition of WRKY36. WRKY36 binds to the W-box motif of the HY5 promoter to inhibit its transcription, while nuclear localized UVR8 directly interacts with WRKY36 to inhibit WRKY36-DNA binding both in vitro and in vivo, leading to the release of inhibition of HY5 transcription. These results indicate that WRKY36 is a negative regulator of HY5 and that UVB represses WRKY36 via UVR8 to promote the transcription of HY5 and photomorphogenesis. The UVR8-WRKY36 interaction in the nucleus represents a novel mechanism of early UVR8 signal transduction in Arabidopsis.
Collapse
Affiliation(s)
- Yu Yang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Tong Liang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Libo Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Kai Shao
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Xingxing Gu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Ruixin Shang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Nan Shi
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xu Li
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
133
|
Wang Q, Liu Q, Wang X, Zuo Z, Oka Y, Lin C. New insights into the mechanisms of phytochrome-cryptochrome coaction. THE NEW PHYTOLOGIST 2018; 217:547-551. [PMID: 29139123 PMCID: PMC6677561 DOI: 10.1111/nph.14886] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/02/2017] [Indexed: 05/18/2023]
Abstract
Contents Summary 547 I. Introduction 547 II. Phytochromes mediate light-induced transcription of BICs to inactivate cryptochromes 548 III. PPKs phosphorylate light-signaling proteins and histones to affect plant development 548 IV. Prospect 550 Acknowledgements 550 References 550 SUMMARY: Plants perceive and respond to light signals by multiple sensory photoreceptors, including phytochromes and cryptochromes, which absorb different wavelengths of light to regulate genome expression and plant development. Photophysiological analyses have long revealed the coordinated actions of different photoreceptors, a phenomenon referred to as the photoreceptor coaction. The mechanistic explanations of photoreceptor coactions are not fully understood. The function of direct protein-protein interaction of phytochromes and cryptochromes and common signaling molecules of these photoreceptors, such as SPA1/COP1 E3 ubiquitin ligase complex and bHLH transcription factors PIFs, would partially explain phytochrome-cryptochrome coactions. In addition, newly discovered proteins that block cryptochrome photodimerization or catalyze cryptochrome phosphorylation may also participate in the phytochrome and cryptochrome coaction. This Tansley insight, which is not intended to make a comprehensive review of the studies of photoreceptor coactions, attempts to highlight those recent findings and their possible roles in the photoreceptor coaction.
Collapse
Affiliation(s)
- Qin Wang
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Qing Liu
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Wang
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
134
|
Wang X, Wang Q, Han YJ, Liu Q, Gu L, Yang Z, Su J, Liu B, Zuo Z, He W, Wang J, Liu B, Matsui M, Kim JII, Oka Y, Lin C. A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:426-436. [PMID: 28833729 PMCID: PMC6717659 DOI: 10.1111/tpj.13664] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 05/15/2023]
Abstract
Cryptochromes are blue light receptors that regulate various light responses in plants. Arabidopsis cryptochrome 1 (CRY1) and cryptochrome 2 (CRY2) mediate blue light inhibition of hypocotyl elongation and long-day (LD) promotion of floral initiation. It has been reported recently that two negative regulators of Arabidopsis cryptochromes, Blue light Inhibitors of Cryptochromes 1 and 2 (BIC1 and BIC2), inhibit cryptochrome function by blocking blue light-dependent cryptochrome dimerization. However, it remained unclear how cryptochromes regulate the BIC gene activity. Here we show that cryptochromes mediate light activation of transcription of the BIC genes, by suppressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), resulting in activation of the transcription activator ELONGATED HYPOCOTYL 5 (HY5) that is associated with chromatins of the BIC promoters. These results demonstrate a CRY-BIC negative-feedback circuitry that regulates the activity of each other. Surprisingly, phytochromes also mediate light activation of BIC transcription, suggesting a novel photoreceptor co-action mechanism to sustain blue light sensitivity of plants under the broad spectra of solar radiation in nature.
Collapse
Affiliation(s)
- Xu Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Qing Liu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaohe Yang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bobin Liu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjin He
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
- College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Jian Wang
- Institute of Crop Sciences, Ningxia Academy of Agriculture and Forestry Sciences, Ningxia 750105, China
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minami Matsui
- Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Jeong-II Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
- For correspondence (, or )
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- For correspondence (, or )
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
- For correspondence (, or )
| |
Collapse
|
135
|
Holtkotte X, Ponnu J, Ahmad M, Hoecker U. The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling. PLoS Genet 2017; 13:e1007044. [PMID: 28991901 PMCID: PMC5648270 DOI: 10.1371/journal.pgen.1007044] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/19/2017] [Accepted: 09/27/2017] [Indexed: 12/30/2022] Open
Abstract
Plants constantly adjust their growth, development and metabolism to the ambient light environment. Blue light is sensed by the Arabidopsis photoreceptors CRY1 and CRY2 which subsequently initiate light signal transduction by repressing the COP1/SPA E3 ubiquitin ligase. While the interaction between cryptochromes and SPA is blue light-dependent, it was proposed that CRY1 interacts with COP1 constitutively, i.e. also in darkness. Here, our in vivo co-immunoprecipitation experiments suggest that CRY1 and CRY2 form a complex with COP1 only after seedlings were exposed to blue light. No association between COP1 and CRY1 or CRY2 was observed in dark-grown seedlings. Thus, our results suggest that cryptochromes bind the COP1/SPA complex after photoactivation by blue light. In a spa quadruple mutant that is devoid of all four SPA proteins, CRY1 and COP1 did not interact in vivo, neither in dark-grown nor in blue light-grown seedlings. Hence, SPA proteins are required for the high-affinity interaction between CRY1 and COP1 in blue light. Yeast three-hybrid experiments also show that SPA1 enhances the CRY1-COP1 interaction. The coiled-coil domain of SPA1 which is responsible for COP1-binding was necessary to mediate a CRY1-SPA1 interaction in vivo, implying that-in turn-COP1 may be necessary for a CRY1-SPA1 complex formation. Hence, SPA1 and COP1 may act cooperatively in recognizing and binding photoactivated CRY1. In contrast, the blue light-induced association between CRY2 and COP1 was not dependent on SPA proteins in vivo. Similarly, ΔCC-SPA1 interacted with CRY2, though with a much lower affinity than wild-type SPA1. In total, our results demonstrate that CRY1 and CRY2 strongly differ in their blue light-induced interaction with the COP1/SPA complex.
Collapse
Affiliation(s)
- Xu Holtkotte
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Jathish Ponnu
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Margaret Ahmad
- UMR 8256 (B2A) CNRA—UPMC, IBPS, Université Pierre et Marie Curie, 9 quai Saint Bernard, Paris, France
| | - Ute Hoecker
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
136
|
Holtkotte X, Ponnu J, Ahmad M, Hoecker U. The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling. PLoS Genet 2017. [PMID: 28991901 DOI: 10.1371/journal.pone.1007044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
Plants constantly adjust their growth, development and metabolism to the ambient light environment. Blue light is sensed by the Arabidopsis photoreceptors CRY1 and CRY2 which subsequently initiate light signal transduction by repressing the COP1/SPA E3 ubiquitin ligase. While the interaction between cryptochromes and SPA is blue light-dependent, it was proposed that CRY1 interacts with COP1 constitutively, i.e. also in darkness. Here, our in vivo co-immunoprecipitation experiments suggest that CRY1 and CRY2 form a complex with COP1 only after seedlings were exposed to blue light. No association between COP1 and CRY1 or CRY2 was observed in dark-grown seedlings. Thus, our results suggest that cryptochromes bind the COP1/SPA complex after photoactivation by blue light. In a spa quadruple mutant that is devoid of all four SPA proteins, CRY1 and COP1 did not interact in vivo, neither in dark-grown nor in blue light-grown seedlings. Hence, SPA proteins are required for the high-affinity interaction between CRY1 and COP1 in blue light. Yeast three-hybrid experiments also show that SPA1 enhances the CRY1-COP1 interaction. The coiled-coil domain of SPA1 which is responsible for COP1-binding was necessary to mediate a CRY1-SPA1 interaction in vivo, implying that-in turn-COP1 may be necessary for a CRY1-SPA1 complex formation. Hence, SPA1 and COP1 may act cooperatively in recognizing and binding photoactivated CRY1. In contrast, the blue light-induced association between CRY2 and COP1 was not dependent on SPA proteins in vivo. Similarly, ΔCC-SPA1 interacted with CRY2, though with a much lower affinity than wild-type SPA1. In total, our results demonstrate that CRY1 and CRY2 strongly differ in their blue light-induced interaction with the COP1/SPA complex.
Collapse
Affiliation(s)
- Xu Holtkotte
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Jathish Ponnu
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Margaret Ahmad
- UMR 8256 (B2A) CNRA-UPMC, IBPS, Université Pierre et Marie Curie, 9 quai Saint Bernard, Paris, France
| | - Ute Hoecker
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| |
Collapse
|
137
|
Understanding CRY2 interactions for optical control of intracellular signaling. Nat Commun 2017; 8:547. [PMID: 28916751 PMCID: PMC5601944 DOI: 10.1038/s41467-017-00648-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 07/17/2017] [Indexed: 01/19/2023] Open
Abstract
Arabidopsis cryptochrome 2 (CRY2) can simultaneously undergo light-dependent CRY2–CRY2 homo-oligomerization and CRY2–CIB1 hetero-dimerization, both of which have been widely used to optically control intracellular processes. Applications using CRY2–CIB1 interaction desire minimal CRY2 homo-oligomerization to avoid unintended complications, while those utilizing CRY2–CRY2 interaction prefer robust homo-oligomerization. However, selecting the type of CRY2 interaction has not been possible as the molecular mechanisms underlying CRY2 interactions are unknown. Here we report CRY2–CIB1 and CRY2–CRY2 interactions are governed by well-separated protein interfaces at the two termini of CRY2. N-terminal charges are critical for CRY2–CIB1 interaction. Moreover, two C-terminal charges impact CRY2 homo-oligomerization, with positive charges facilitating oligomerization and negative charges inhibiting it. By engineering C-terminal charges, we develop CRY2high and CRY2low with elevated or suppressed oligomerization respectively, which we use to tune the levels of Raf/MEK/ERK signaling. These results contribute to our understanding of the mechanisms underlying light-induced CRY2 interactions and enhance the controllability of CRY2-based optogenetic systems. Cryptochrome 2 (CRY2) can form light-regulated CRY2-CRY2 homo-oligomers or CRY2-CIB1 hetero-dimers, but modulating these interactions is difficult owing to the lack of interaction mechanism. Here the authors identify the interactions facilitating homo-oligomers and introduce mutations to create low and high oligomerization versions.
Collapse
|
138
|
Liu Q, Wang Q, Deng W, Wang X, Piao M, Cai D, Li Y, Barshop WD, Yu X, Zhou T, Liu B, Oka Y, Wohlschlegel J, Zuo Z, Lin C. Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2. Nat Commun 2017; 8:15234. [PMID: 28492234 PMCID: PMC5437284 DOI: 10.1038/ncomms15234] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/03/2017] [Indexed: 12/16/2022] Open
Abstract
Plant cryptochromes undergo blue light-dependent phosphorylation to regulate their activity and abundance, but the protein kinases that phosphorylate plant cryptochromes have remained unclear. Here we show that photoexcited Arabidopsis cryptochrome 2 (CRY2) is phosphorylated in vivo on as many as 24 different residues, including 7 major phosphoserines. We demonstrate that four closely related Photoregulatory Protein Kinases (previously referred to as MUT9-like kinases) interact with and phosphorylate photoexcited CRY2. Analyses of the ppk123 and ppk124 triple mutants and amiR4k artificial microRNA-expressing lines demonstrate that PPKs catalyse blue light-dependent CRY2 phosphorylation to both activate and destabilize the photoreceptor. Phenotypic analyses of these mutant lines indicate that PPKs may have additional substrates, including those involved in the phytochrome signal transduction pathway. These results reveal a mechanism underlying the co-action of cryptochromes and phytochromes to coordinate plant growth and development in response to different wavelengths of solar radiation in nature. Plant cryptochromes are regulated by blue-light dependent phosphorylation. Here the authors map the in vivo phosphorylation sites of Arabidopsis cryptochrome 2 and identify four closely related kinases that act to both activate and destabilize the receptor in response to blue light.
Collapse
Affiliation(s)
- Qing Liu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Plant Science, Jilin University, Changchun 130062, China.,Department of Molecular, Cell &Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Department of Molecular, Cell &Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Weixian Deng
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Plant Science, Jilin University, Changchun 130062, China
| | - Xu Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Department of Molecular, Cell &Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Mingxin Piao
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Plant Science, Jilin University, Changchun 130062, China
| | - Dawei Cai
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaxing Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - William D Barshop
- Department of Biological Chemistry, University of California, Los Angeles, California 90095, USA
| | - Xiaolan Yu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tingting Zhou
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, California 90095, USA
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Plant Science, Jilin University, Changchun 130062, China
| | - Chentao Lin
- Department of Molecular, Cell &Developmental Biology, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
139
|
Coordination of Cryptochrome and Phytochrome Signals in the Regulation of Plant Light Responses. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
140
|
Yang Z, Liu B, Su J, Liao J, Lin C, Oka Y. Cryptochromes Orchestrate Transcription Regulation of Diverse Blue Light Responses in Plants. Photochem Photobiol 2017; 93:112-127. [PMID: 27861972 DOI: 10.1111/php.12663] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/02/2016] [Indexed: 11/30/2022]
Abstract
Blue light affects many aspects of plant growth and development throughout the plant lifecycle. Plant cryptochromes (CRYs) are UV-A/blue light photoreceptors that play pivotal roles in regulating blue light-mediated physiological responses via the regulated expression of more than one thousand genes. Photoactivated CRYs regulate transcription via two distinct mechanisms: indirect promotion of the activity of transcription factors by inactivation of the COP1/SPA E3 ligase complex or direct activation or inactivation of at least two sets of basic helix-loop-helix transcription factor families by physical interaction. Hence, CRYs govern intricate mechanisms that modulate activities of transcription factors to regulate multiple aspects of blue light-responsive photomorphogenesis. Here, we review recent progress in dissecting the pathways of CRY signaling and discuss accumulating evidence that shows how CRYs regulate broad physiological responses to blue light.
Collapse
Affiliation(s)
- Zhaohe Yang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bobin Liu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiakai Liao
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
141
|
Abstract
Plants use context-dependent information to calibrate growth responses to temperature signals. A new study shows that plants modulate their sensitivity to temperature depending on whether or not they are in direct sunlight. This enables them to make adaptive decisions in a complex natural environment.
Collapse
|
142
|
Ong WD, Okubo-Kurihara E, Kurihara Y, Shimada S, Makita Y, Kawashima M, Honda K, Kondoh Y, Watanabe N, Osada H, Cutler SR, Sudesh K, Matsui M. Chemical-Induced Inhibition of Blue Light-Mediated Seedling Development Caused by Disruption of Upstream Signal Transduction Involving Cryptochromes in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2017; 58:95-105. [PMID: 28011868 DOI: 10.1093/pcp/pcw181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Plants have a remarkable ability to perceive and respond to various wavelengths of light and initiate regulation of different cascades of light signaling and molecular components. While the perception of red light and the mechanisms of its signaling involving phytochromes are largely known, knowledge of the mechanisms of blue light signaling is still limited. Chemical genetics involves the use of diverse small active or synthetic molecules to evaluate biological processes. By combining chemicals and analyzing the effects they have on plant morphology, we identified a chemical, 3-bromo-7-nitroindazole (3B7N), that promotes hypocotyl elongation of wild-type Arabidopsis only under continuous blue light. Further evaluation with loss-of-function mutants confirmed that 3B7N inhibits photomorphogenesis through cryptochrome-mediated light signaling. Microarray analysis demonstrated that the effect of 3B7N treatment on gene expression in cry1cry2 is considerably smaller than that in the wild type, indicating that 3B7N specifically interrupts cryptochrome function in the control of seedling development in a light-dependent manner. We demonstrated that 3B7N directly binds to CRY1 protein using an in vitro binding assay. These results suggest that 3B7N is a novel chemical that directly inhibits plant cryptochrome function by physical binding. The application of 3B7N can be used on other plants to study further the blue light mechanism and the genetic control of cryptochromes in the growth and development of plant species.
Collapse
Affiliation(s)
- Wen-Dee Ong
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Emiko Okubo-Kurihara
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Yukio Kurihara
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Setsuko Shimada
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Yuko Makita
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Mika Kawashima
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kaori Honda
- Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Nobumoto Watanabe
- Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Sean R Cutler
- Department of Botany and Plant Sciences, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Minami Matsui
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| |
Collapse
|
143
|
|
144
|
|