101
|
Canzio D, Nwakeze CL, Horta A, Rajkumar SM, Coffey EL, Duffy EE, Duffié R, Monahan K, O'Keeffe S, Simon MD, Lomvardas S, Maniatis T. Antisense lncRNA Transcription Mediates DNA Demethylation to Drive Stochastic Protocadherin α Promoter Choice. Cell 2019; 177:639-653.e15. [PMID: 30955885 DOI: 10.1016/j.cell.2019.03.008] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 11/08/2018] [Accepted: 03/04/2019] [Indexed: 11/15/2022]
Abstract
Stochastic activation of clustered Protocadherin (Pcdh) α, β, and γ genes generates a cell-surface identity code in individual neurons that functions in neural circuit assembly. Here, we show that Pcdhα gene choice involves the activation of an antisense promoter located in the first exon of each Pcdhα alternate gene. Transcription of an antisense long noncoding RNA (lncRNA) from this antisense promoter extends through the sense promoter, leading to DNA demethylation of the CTCF binding sites proximal to each promoter. Demethylation-dependent CTCF binding to both promoters facilitates cohesin-mediated DNA looping with a distal enhancer (HS5-1), locking in the transcriptional state of the chosen Pcdhα gene. Uncoupling DNA demethylation from antisense transcription by Tet3 overexpression in mouse olfactory neurons promotes CTCF binding to all Pcdhα promoters, resulting in proximity-biased DNA looping of the HS5-1 enhancer. Thus, antisense transcription-mediated promoter demethylation functions as a mechanism for distance-independent enhancer/promoter DNA looping to ensure stochastic Pcdhα promoter choice.
Collapse
Affiliation(s)
- Daniele Canzio
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Chiamaka L Nwakeze
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Adan Horta
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Sandy M Rajkumar
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Eliot L Coffey
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Erin E Duffy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06516, USA
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Kevin Monahan
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Sean O'Keeffe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06516, USA
| | - Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; New York Genome Center, New York, NY 10013, USA.
| |
Collapse
|
102
|
Tan L, Xing D, Daley N, Xie XS. Three-dimensional genome structures of single sensory neurons in mouse visual and olfactory systems. Nat Struct Mol Biol 2019; 26:297-307. [PMID: 30936528 DOI: 10.1038/s41594-019-0205-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/20/2019] [Indexed: 11/09/2022]
Abstract
Sensory neurons in the mouse eye and nose have unusual chromatin organization. Here we report their three-dimensional (3D) genome structure at 20-kilobase (kb) resolution, achieved by applying our recently developed diploid chromatin conformation capture (Dip-C) method to 409 single cells from the retina and the main olfactory epithelium of adult and newborn mice. The 3D genome of rod photoreceptors exhibited inverted radial distribution of euchromatin and heterochromatin compared with that of other cell types, whose nuclear periphery is mainly heterochromatin. Such genome-wide inversion is not observed in olfactory sensory neurons (OSNs). However, OSNs exhibited an interior bias for olfactory receptor (OR) genes and enhancers, in clear contrast to non-neuronal cells. Each OSN harbored multiple aggregates of OR genes and enhancers from different chromosomes. We also observed structural heterogeneity of the protocadherin gene cluster. This type of genome organization may provide the structural basis of the 'one-neuron, one-receptor' rule of olfaction.
Collapse
Affiliation(s)
- Longzhi Tan
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Dong Xing
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Nicholas Daley
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA.,Belmont Hill School, Belmont, MA, USA
| | - X Sunney Xie
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA. .,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China. .,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.
| |
Collapse
|
103
|
Jin Y, Li H. Revisiting Dscam diversity: lessons from clustered protocadherins. Cell Mol Life Sci 2019; 76:667-680. [PMID: 30343321 PMCID: PMC11105660 DOI: 10.1007/s00018-018-2951-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
The complexity of neuronal wiring relies on the extraordinary recognition diversity of cell surface molecules. Drosophila Dscam1 and vertebrate clustered protocadherins (Pcdhs) are two classic examples of the striking diversity from a complex genomic locus, wherein the former encodes more than 10,000 distinct isoforms via alternative splicing, while the latter employs alternative promoters to attain isoform diversity. These structurally unrelated families show remarkably striking molecular parallels and even similar functions. Recent studies revealed a novel Dscam gene family with tandemly arrayed 5' cassettes in Chelicerata (e.g., the scorpion Mesobuthus martensii and the tick Ixodes scapularis), similar to vertebrate clustered Pcdhs. Likewise, octopus shows a more remarkable expansion of the Pcdh isoform repertoire than human. These discoveries of Dscam and Pcdh diversification reshape the evolutionary landscape of recognition molecule diversity and provide a greater understanding of convergent molecular strategies for isoform diversity. This article reviews new insights into the evolution, regulatory mechanisms, and functions of Dscam and Pcdh isoform diversity. In particular, the convergence of clustered Dscams and Pcdhs is highlighted.
Collapse
Affiliation(s)
- Yongfeng Jin
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang (ZJ), People's Republic of China.
| | - Hao Li
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang (ZJ), People's Republic of China
| |
Collapse
|
104
|
The role of Pax6 in brain development and its impact on pathogenesis of autism spectrum disorder. Brain Res 2019; 1705:95-103. [DOI: 10.1016/j.brainres.2018.02.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 12/14/2022]
|
105
|
Bisogni AJ, Ghazanfar S, Williams EO, Marsh HM, Yang JYH, Lin DM. Tuning of delta-protocadherin adhesion through combinatorial diversity. eLife 2018; 7:e41050. [PMID: 30547884 PMCID: PMC6326727 DOI: 10.7554/elife.41050] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
The delta-protocadherins (δ-Pcdhs) play key roles in neural development, and expression studies suggest they are expressed in combination within neurons. The extent of this combinatorial diversity, and how these combinations influence cell adhesion, is poorly understood. We show that individual mouse olfactory sensory neurons express 0-7 δ-Pcdhs. Despite this apparent combinatorial complexity, K562 cell aggregation assays revealed simple principles that mediate tuning of δ-Pcdh adhesion. Cells can vary the number of δ-Pcdhs expressed, the level of surface expression, and which δ-Pcdhs are expressed, as different members possess distinct apparent adhesive affinities. These principles contrast with those identified previously for the clustered protocadherins (cPcdhs), where the particular combination of cPcdhs expressed does not appear to be a critical factor. Despite these differences, we show δ-Pcdhs can modify cPcdh adhesion. Our studies show how intra- and interfamily interactions can greatly amplify the impact of this small subfamily on neuronal function.
Collapse
Affiliation(s)
- Adam J Bisogni
- Department of Biomedical SciencesCornell UniversityIthacaUnited States
| | - Shila Ghazanfar
- School of Mathematics and StatisticsThe University of SydneySydneyAustralia
| | - Eric O Williams
- Department of Biomedical SciencesCornell UniversityIthacaUnited States
- Department of Biology and ChemistryFitchburg State UniversityFitchburgUnited States
| | - Heather M Marsh
- Department of Biomedical SciencesCornell UniversityIthacaUnited States
| | - Jean YH Yang
- School of Mathematics and StatisticsThe University of SydneySydneyAustralia
| | - David M Lin
- Department of Biomedical SciencesCornell UniversityIthacaUnited States
| |
Collapse
|
106
|
Abstract
Proper neuronal wiring is central to all bodily functions, sensory perception, cognition, memory, and learning. Establishment of a functional neuronal circuit is a highly regulated and dynamic process involving axonal and dendritic branching and navigation toward appropriate targets and connection partners. This intricate circuitry includes axo-dendritic synapse formation, synaptic connections formed with effector cells, and extensive dendritic arborization that function to receive and transmit mechanical and chemical sensory inputs. Such complexity is primarily achieved by extensive axonal and dendritic branch formation and pruning. Fundamental to neuronal branching are cytoskeletal dynamics and plasma membrane expansion, both of which are regulated via numerous extracellular and intracellular signaling mechanisms and molecules. This review focuses on recent advances in understanding the biology of neuronal branching.
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie Gupton
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, Chapel Hill, NC, 27599, USA.,Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
107
|
Fan L, Lu Y, Shen X, Shao H, Suo L, Wu Q. Alpha protocadherins and Pyk2 kinase regulate cortical neuron migration and cytoskeletal dynamics via Rac1 GTPase and WAVE complex in mice. eLife 2018; 7:e35242. [PMID: 29911975 PMCID: PMC6047886 DOI: 10.7554/elife.35242] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Diverse clustered protocadherins are thought to function in neurite morphogenesis and neuronal connectivity in the brain. Here, we report that the protocadherin alpha (Pcdha) gene cluster regulates neuronal migration during cortical development and cytoskeletal dynamics in primary cortical culture through the WAVE (Wiskott-Aldrich syndrome family verprolin homologous protein, also known as Wasf) complex. In addition, overexpression of proline-rich tyrosine kinase 2 (Pyk2, also known as Ptk2b, Cakβ, Raftk, Fak2, and Cadtk), a non-receptor cell-adhesion kinase and scaffold protein downstream of Pcdhα, impairs cortical neuron migration via inactivation of the small GTPase Rac1. Thus, we define a molecular Pcdhα/WAVE/Pyk2/Rac1 axis from protocadherin cell-surface receptors to actin cytoskeletal dynamics in cortical neuron migration and dendrite morphogenesis in mouse brain.
Collapse
Affiliation(s)
- Li Fan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji Hospital affiliated to Shanghai Jiao Tong University Medical SchoolShanghaiChina
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yichao Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji Hospital affiliated to Shanghai Jiao Tong University Medical SchoolShanghaiChina
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiulian Shen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji Hospital affiliated to Shanghai Jiao Tong University Medical SchoolShanghaiChina
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hong Shao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji Hospital affiliated to Shanghai Jiao Tong University Medical SchoolShanghaiChina
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Lun Suo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Assisted ReproductionShanghai Jiao Tong University Medical SchoolShanghaiChina
| | - Qiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji Hospital affiliated to Shanghai Jiao Tong University Medical SchoolShanghaiChina
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
108
|
Ing-Esteves S, Kostadinov D, Marocha J, Sing AD, Joseph KS, Laboulaye MA, Sanes JR, Lefebvre JL. Combinatorial Effects of Alpha- and Gamma-Protocadherins on Neuronal Survival and Dendritic Self-Avoidance. J Neurosci 2018; 38:2713-2729. [PMID: 29439167 PMCID: PMC5852656 DOI: 10.1523/jneurosci.3035-17.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/12/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022] Open
Abstract
The clustered protocadherins (Pcdhs) comprise 58 cadherin-related proteins encoded by three tandemly arrayed gene clusters, Pcdh-α, Pcdh-β, and Pcdh-γ (Pcdha, Pcdhb, and Pcdhg, respectively). Pcdh isoforms from different clusters are combinatorially expressed in neurons. They form multimers that interact homophilically and mediate a variety of developmental processes, including neuronal survival, synaptic maintenance, axonal tiling, and dendritic self-avoidance. Most studies have analyzed clusters individually. Here, we assessed functional interactions between Pcdha and Pcdhg clusters. To circumvent neonatal lethality associated with deletion of Pcdhgs, we used Crispr-Cas9 genome editing in mice to combine a constitutive Pcdha mutant allele with a conditional Pcdhg allele. We analyzed roles of Pcdhas and Pcdhgs in the retina and cerebellum from mice (both sexes) lacking one or both clusters. In retina, Pcdhgs are essential for survival of inner retinal neurons and dendritic self-avoidance of starburst amacrine cells, whereas Pcdhas are dispensable for both processes. Deletion of both Pcdha and Pcdhg clusters led to far more dramatic defects in survival and self-avoidance than Pcdhg deletion alone. Comparisons of an allelic series of mutants support the conclusion that Pcdhas and Pcdhgs function together in a dose-dependent and cell-type-specific manner to provide a critical threshold of Pcdh activity. In the cerebellum, Pcdhas and Pcdhgs also cooperate to mediate self-avoidance of Purkinje cell dendrites, with modest but significant defects in either single mutant and dramatic defects in the double mutant. Together, our results demonstrate complex patterns of redundancy between Pcdh clusters and the importance of Pcdh cluster diversity in postnatal CNS development.SIGNIFICANCE STATEMENT The formation of neural circuits requires diversification and combinatorial actions of cell surface proteins. Prominent among them are the clustered protocadherins (Pcdhs), a family of ∼60 neuronal recognition molecules. Pcdhs are encoded by three closely linked gene clusters called Pcdh-α, Pcdh-β, and Pcdh-γ. The Pcdhs mediate a variety of developmental processes, including neuronal survival, synaptic maintenance, and spatial patterning of axons and dendrites. Most studies to date have been limited to single clusters. Here, we used genome editing to assess interactions between Pcdh-α and Pcdh-γ gene clusters. We examined two regions of the CNS, the retina and cerebellum and show that the 14 α-Pcdhs and 22 γ-Pcdhs act synergistically to mediate neuronal survival and dendrite patterning.
Collapse
Affiliation(s)
- Samantha Ing-Esteves
- Program for Neurosciences and Mental Health, Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada and
| | - Dimitar Kostadinov
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Julie Marocha
- Program for Neurosciences and Mental Health, Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada and
| | - Anson D Sing
- Program for Neurosciences and Mental Health, Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada and
| | - Kezia S Joseph
- Program for Neurosciences and Mental Health, Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada and
| | - Mallory A Laboulaye
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Julie L Lefebvre
- Program for Neurosciences and Mental Health, Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada and
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
109
|
Astigarraga S, Douthit J, Tarnogorska D, Creamer MS, Mano O, Clark DA, Meinertzhagen IA, Treisman JE. Drosophila Sidekick is required in developing photoreceptors to enable visual motion detection. Development 2018; 145:dev.158246. [PMID: 29361567 DOI: 10.1242/dev.158246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
The assembly of functional neuronal circuits requires growth cones to extend in defined directions and recognize the correct synaptic partners. Homophilic adhesion between vertebrate Sidekick proteins promotes synapse formation between retinal neurons involved in visual motion detection. We show here that Drosophila Sidekick accumulates in specific synaptic layers of the developing motion detection circuit and is necessary for normal optomotor behavior. Sidekick is required in photoreceptors, but not in their target lamina neurons, to promote the alignment of lamina neurons into columns and subsequent sorting of photoreceptor axons into synaptic modules based on their precise spatial orientation. Sidekick is also localized to the dendrites of the direction-selective T4 and T5 cells, and is expressed in some of their presynaptic partners. In contrast to its vertebrate homologs, Sidekick is not essential for T4 and T5 to direct their dendrites to the appropriate layers or to receive synaptic contacts. These results illustrate a conserved requirement for Sidekick proteins in establishing visual motion detection circuits that is achieved through distinct cellular mechanisms in Drosophila and vertebrates.
Collapse
Affiliation(s)
- Sergio Astigarraga
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jessica Douthit
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Dorota Tarnogorska
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, Kline Biology Tower Room 224, 219 Whitney Avenue, New Haven, CT 06511, USA
| | - Omer Mano
- Department of Molecular, Cellular and Developmental Biology, Yale University, Kline Biology Tower Room 224, 219 Whitney Avenue, New Haven, CT 06511, USA
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, Kline Biology Tower Room 224, 219 Whitney Avenue, New Haven, CT 06511, USA
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Jessica E Treisman
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
110
|
Dang P, Fisher SA, Stefanik DJ, Kim J, Raper JA. Coordination of olfactory receptor choice with guidance receptor expression and function in olfactory sensory neurons. PLoS Genet 2018; 14:e1007164. [PMID: 29385124 PMCID: PMC5809090 DOI: 10.1371/journal.pgen.1007164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/12/2018] [Accepted: 12/25/2017] [Indexed: 11/18/2022] Open
Abstract
Olfactory sensory neurons choose to express a single odorant receptor (OR) from a large gene repertoire and extend axons to reproducible, OR-specific locations within the olfactory bulb. This developmental process produces a topographically organized map of odorant experience in the brain. The axon guidance mechanisms that generate this pattern of connectivity, as well as those that coordinate OR choice and axonal guidance receptor expression, are incompletely understood. We applied the powerful approach of single-cell RNA-seq on newly born olfactory sensory neurons (OSNs) in young zebrafish larvae to address these issues. Expression profiles were generated for 56 individual Olfactory Marker Protein (OMP) positive sensory neurons by single-cell (SC) RNA-seq. We show that just as in mouse OSNs, mature zebrafish OSNs typically express a single predominant OR transcript. Our previous work suggests that OSN targeting is related to the OR clade from which a sensory neuron chooses to express its odorant receptor. We categorized each of the mature cells based on the clade of their predominantly expressed OR. Transcripts expressed at higher levels in each of three clade-related categories were identified using Penalized Linear Discriminant Analysis (PLDA). A genome-wide approach was used to identify membrane-associated proteins that are most likely to have guidance-related activity. We found that OSNs that choose to express an OR from a particular clade also express specific subsets of potential axon guidance genes and transcription factors. We validated our identification of candidate axon guidance genes for one clade of OSNs using bulk RNA-seq from a subset of transgene-labeled neurons that project to a single protoglomerulus. The differential expression patterns of selected candidate guidance genes were confirmed using fluorescent in situ hybridization. Most importantly, we observed axonal mistargeting in knockouts of three candidate axonal guidance genes identified in this analysis: nrp1a, nrp1b, and robo2. In each case, targeting errors were detected in the subset of axons that normally express these transcripts at high levels, and not in the axons that express them at low levels. Our findings demonstrate that specific, functional, axonal guidance related genes are expressed in subsets of OSNs that that can be categorized by their patterns of OR expression.
Collapse
Affiliation(s)
- Puneet Dang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, United States of America
| | - Stephen A. Fisher
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Derek J. Stefanik
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jonathan A. Raper
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
111
|
A chelicerate-specific burst of nonclassical Dscam diversity. BMC Genomics 2018; 19:66. [PMID: 29351731 PMCID: PMC5775551 DOI: 10.1186/s12864-017-4420-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The immunoglobulin (Ig) superfamily receptor Down syndrome cell adhesion molecule (Dscam) gene can generate tens of thousands of isoforms via alternative splicing, which is essential for both nervous and immune systems in insects. However, further information is required to develop a comprehensive view of Dscam diversification across the broad spectrum of Chelicerata clades, a basal branch of arthropods and the second largest group of terrestrial animals. RESULTS In this study, a genome-wide comprehensive analysis of Dscam genes across Chelicerata species revealed a burst of nonclassical Dscams, categorised into four types-mDscam, sDscamα, sDscamβ, and sDscamγ-based on their size and structure. Although the mDscam gene class includes the highest number of Dscam genes, the sDscam genes utilise alternative promoters to expand protein diversity. Furthermore, we indicated that the 5' cassette duplicate is inversely correlated with the sDscam gene duplicate. We showed differential and sDscam- biased expression of nonclassical Dscam isoforms. Thus, the Dscam isoform repertoire across Chelicerata is entirely dominated by the number and expression levels of nonclassical Dscams. Taken together, these data show that Chelicerata evolved a large conserved and lineage-specific repertoire of nonclassical Dscams. CONCLUSIONS This study showed that arthropods have a large diversified Chelicerata-specific repertoire of nonclassical Dscam isoforms, which are structurally and mechanistically distinct from those of insects. These findings provide a global framework for the evolution of Dscam diversity in arthropods and offer mechanistic insights into the diversification of the clade-specific Ig superfamily repertoire.
Collapse
|
112
|
Abstract
Clustered protocadherins (Pcdhs) mediate numerous neural patterning functions, including neuronal self-recognition and non-self-discrimination to direct self-avoidance among vertebrate neurons. Individual neurons stochastically express a subset of Pcdh isoforms, which assemble to form a stochastic repertoire of cis-dimers. We describe the structure of a PcdhγB7 cis-homodimer, which includes the membrane-proximal extracellular cadherin domains EC5 and EC6. The structure is asymmetric with one molecule contributing interface surface from both EC5 and EC6, and the other only from EC6. Structural and sequence analyses suggest that all Pcdh isoforms will dimerize through this interface. Site-directed mutants at this interface interfere with both Pcdh cis-dimerization and cell surface transport. The structure explains the known restrictions of cis-interactions of some Pcdh isoforms, including α-Pcdhs, which cannot form homodimers. The asymmetry of the interface approximately doubles the size of the recognition repertoire, and restrictions on cis-interactions among Pcdh isoforms define the limits of the Pcdh recognition unit repertoire.
Collapse
|
113
|
Affiliation(s)
- Satoshi Yoshinaga
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
114
|
Lefebvre JL. Neuronal territory formation by the atypical cadherins and clustered protocadherins. Semin Cell Dev Biol 2017; 69:111-121. [DOI: 10.1016/j.semcdb.2017.07.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 02/04/2023]
|
115
|
Mah KM, Weiner JA. Regulation of Wnt signaling by protocadherins. Semin Cell Dev Biol 2017; 69:158-171. [PMID: 28774578 PMCID: PMC5586504 DOI: 10.1016/j.semcdb.2017.07.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 12/23/2022]
Abstract
The ∼70 protocadherins comprise the largest group within the cadherin superfamily. Their diversity, the complexity of the mechanisms through which their genes are regulated, and their many critical functions in nervous system development have engendered a growing interest in elucidating the intracellular signaling pathways through which they act. Recently, multiple protocadherins across several subfamilies have been implicated as modulators of Wnt signaling pathways, and through this as potential tumor suppressors. Here, we review the extant data on the regulation by protocadherins of Wnt signaling pathways and components, and highlight some key unanswered questions that could shape future research.
Collapse
Affiliation(s)
- Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, IA, USA.
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, Iowa City, IA, USA; Department of Psychiatry, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
116
|
Rubinstein R, Goodman KM, Maniatis T, Shapiro L, Honig B. Structural origins of clustered protocadherin-mediated neuronal barcoding. Semin Cell Dev Biol 2017; 69:140-150. [PMID: 28743640 DOI: 10.1016/j.semcdb.2017.07.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
Clustered protocadherins mediate neuronal self-recognition and non-self discrimination-neuronal "barcoding"-which underpin neuronal self-avoidance in vertebrate neurons. Recent structural, biophysical, computational, and cell-based studies on protocadherin structure and function have led to a compelling molecular model for the barcoding mechanism. Protocadherin isoforms assemble into promiscuous cis-dimeric recognition units and mediate cell-cell recognition through homophilic trans-interactions. Each recognition unit is composed of two arms extending from the membrane proximal EC6 domains. A cis-dimeric recognition unit with each arm coding adhesive trans homophilic specificity can generate a zipper-like assembly that in turn suggests a chain termination mechanism for self-vs-non-self-discrimination among vertebrate neurons.
Collapse
Affiliation(s)
- Rotem Rubinstein
- Department of Biochemistry and Molecular Biophysics, New York, NY 10032, USA; Department of Systems Biology, New York, NY 10032, USA
| | - Kerry Marie Goodman
- Department of Biochemistry and Molecular Biophysics, New York, NY 10032, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, New York, NY 10032, USA.
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, New York, NY 10032, USA.
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, New York, NY 10032, USA; Department of Systems Biology, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, New York, NY 10032, USA; Howard Hughes Medical Institute, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
117
|
Hirayama T, Yagi T. Regulation of clustered protocadherin genes in individual neurons. Semin Cell Dev Biol 2017; 69:122-130. [PMID: 28591566 DOI: 10.1016/j.semcdb.2017.05.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/06/2023]
Abstract
Individual neurons are basic functional units in the complex system of the brain. One aspect of neuronal individuality is generated by stochastic and combinatorial expression of diverse clustered protocadherins (Pcdhs), encoded by the Pcdha, Pcdhb, and Pcdhg gene clusters, that are critical for several aspects of neural circuit formation. Each clustered Pcdh gene has its own promoter containing conserved sequences and is transcribed by a promoter choice mechanism involving interaction between the promoter and enhancers. A CTCF/Cohesin complex induces this interaction by configuration of DNA-looping in the chromatin structure. At the same time, the semi-stochastic expression of clustered Pcdh genes is regulated in individual neurons by DNA methylation: the methyltransferase Dnmt3b regulates methylation state of individual clustered Pcdh genes during early embryonic stages prior to the establishment of neural stem cells. Several other factors, including Smchd1, also contribute to the regulation of clustered Pcdh gene expression. In addition, psychiatric diseases and early life experiences of individuals can influence expression of clustered Pcdh genes in the brain, through epigenetic alterations. Clustered Pcdh gene expression is thus a significant and highly regulated step in establishing neuronal individuality and generating functional neural circuits in the brain.
Collapse
Affiliation(s)
- Teruyoshi Hirayama
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
118
|
VanHook AM. Papers of note in
Science
356
(6336). Sci Signal 2017. [DOI: 10.1126/scisignal.aan5373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This week’s articles highlight the importance of protocadherins in the developing nervous system and the mechanism by which plants limit the number of germ cells derived from somatic cells.
Collapse
|
119
|
Chen WV, Nwakeze CL, Denny CA, O'Keeffe S, Rieger MA, Mountoufaris G, Kirner A, Dougherty JD, Hen R, Wu Q, Maniatis T. Pcdhαc2 is required for axonal tiling and assembly of serotonergic circuitries in mice. Science 2017; 356:406-411. [PMID: 28450636 PMCID: PMC5529183 DOI: 10.1126/science.aal3231] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/21/2017] [Indexed: 12/19/2022]
Abstract
Serotonergic neurons project their axons pervasively throughout the brain and innervate various target fields in a space-filling manner, leading to tiled arrangements of their axon terminals to allow optimal allocation of serotonin among target neurons. Here we show that conditional deletion of the mouse protocadherin α (Pcdhα) gene cluster in serotonergic neurons disrupts local axonal tiling and global assembly of serotonergic circuitries and results in depression-like behaviors. Genetic dissection and expression profiling revealed that this role is specifically mediated by Pcdhαc2, which is the only Pcdhα isoform expressed in serotonergic neurons. We conclude that, in contrast to neurite self-avoidance, which requires single-cell identity mediated by Pcdh diversity, a single cell-type identity mediated by the common C-type Pcdh isoform is required for axonal tiling and assembly of serotonergic circuitries.
Collapse
Affiliation(s)
- Weisheng V Chen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Chiamaka L Nwakeze
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Christine A Denny
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Integrative Neuroscience, Research Foundation for Mental Hygiene, New York, NY 10032, USA
| | - Sean O'Keeffe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Michael A Rieger
- Departments of Genetics and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - George Mountoufaris
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Amy Kirner
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Joseph D Dougherty
- Departments of Genetics and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - René Hen
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Integrative Neuroscience, Research Foundation for Mental Hygiene, New York, NY 10032, USA
- Departments of Neuroscience and Pharmacology, Columbia University, New York, NY 10032, USA
| | - Qiang Wu
- Center for Comparative Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|