101
|
Mika M, Maurer J, Korten I, Allemann A, Aebi S, Brugger SD, Qi W, Frey U, Latzin P, Hilty M. Influence of the pneumococcal conjugate vaccines on the temporal variation of pneumococcal carriage and the nasal microbiota in healthy infants: a longitudinal analysis of a case-control study. MICROBIOME 2017; 5:85. [PMID: 28738889 PMCID: PMC5525364 DOI: 10.1186/s40168-017-0302-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/06/2017] [Indexed: 05/31/2023]
Abstract
BACKGROUND Bacterial colonization of the upper airways is a prerequisite for subsequent invasive disease. With the introduction of the 7- and 13-valent pneumococcal conjugate vaccines (PCV7 and PCV13), changes in pneumococcal upper airway colonization have been described. It is, however, less evident whether the vaccines lead to compositional changes of the upper airway microbiota. Here, we performed a case-control study using samples from a longitudinal infant cohort from Switzerland. We compared pneumococcal carriage and the nasal microbiota within the first year of life of healthy infants vaccinated with either PCV7 (n = 20, born in 2010) or PCV13 (n = 21, born between 2011 and 2013). Nasal swabs were collected every second week (n = 763 in total). Pneumococcal carriage was analyzed by quantitative PCR of the pneumococcal-specific lytA gene. Analysis of the bacterial core microbiota was performed based on 16S rRNA sequencing and subsequent oligotyping. We exclusively performed oligotyping of the core microbiota members, which were defined as the five most abundant bacterial families (Moraxellaceae, Streptococcaceae, Staphylococcaceae, Corynebacteriaceae, and Pasteurellaceae). Linear mixed effect (LME) and negative binomial regression models were used for statistical analyses. RESULTS We found a higher number of samples positive for pneumococcal carriage in PCV7- compared to PCV13-vaccinated infants (LME model; P = 0.01). In contrast, infants vaccinated in the PCV13 era had an increased alpha diversity as measured by the richness and the Shannon Diversity Index (LME model; P = 0.003 and P = 0.01, respectively). Accordingly, the PCV13 era was associated with clusters of a higher diversity than PCV7-associated clusters. Furthermore, infants vaccinated with PCV13 had a higher binary-based within-subject microbiota similarity, as well as a decreased Jensen-Shannon distance over time as compared to PCV7-vaccinated infants, indicating a higher microbiota stability in the PCV13 era (LME model and t test; P = 0.06 and P = 0.03, respectively). CONCLUSIONS We hypothesize that the higher diversity and stability of the upper airway microbiota in the PCV13 era is the result of the lower pneumococcal carriage rate. This seems to indicate that the nasal bacterial microbiota of infants has changed in recent years as compared to the beginning of this study.
Collapse
Affiliation(s)
- Moana Mika
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Josua Maurer
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
| | - Insa Korten
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Aurélie Allemann
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Suzanne Aebi
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
| | - Silvio D Brugger
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Weihong Qi
- Functional Genomics Center, Swiss Federal Institute of Technology Zurich/University of Zurich, Zurich, Switzerland
| | - Urs Frey
- University Children's Hospital (UKBB), Basel, Switzerland
| | - Philipp Latzin
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3010, Bern, Switzerland.
- Department of Infectious Diseases, University Hospital, Bern, Switzerland.
| |
Collapse
|
102
|
Álvarez B, Fernández LÁ. Sustainable therapies by engineered bacteria. Microb Biotechnol 2017; 10:1057-1061. [PMID: 28696008 PMCID: PMC5609241 DOI: 10.1111/1751-7915.12778] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/17/2022] Open
Abstract
The controlled in situ delivery of biologics (e.g. enzymes, cytokines, antibodies) by engineered bacteria of our microbiome will allow the sustainable production of these complex and expensive drugs locally in the human body, overcoming many of the technical and economical barriers currently associated with the global use of these potent medicines. We provide examples showing how engineered bacteria can be effective treatments against multiple pathologies, including autoimmune and inflammatory diseases, metabolic disorders, diabetes, obesity, infectious diseases and cancer, hence contributing to achieve the Global Sustainable Goal 3: ensure healthy lives and promote well‐being for all at all ages.
Collapse
Affiliation(s)
- Beatriz Álvarez
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus UAM Cantoblanco, 28049, Madrid, Spain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus UAM Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
103
|
Identification of donor microbe species that colonize and persist long term in the recipient after fecal transplant for recurrent Clostridium difficile. NPJ Biofilms Microbiomes 2017. [PMID: 28649413 PMCID: PMC5462795 DOI: 10.1038/s41522-017-0020-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fecal microbiota transplantation has been shown to be an effective treatment for patients with recurrent C. difficile colitis. Although fecal microbiota transplantation helps to re-establish a normal gut function in patients, the extent of the repopulation of the recipient microbial community varies. To further understand this variation, it is important to determine the fate of donor microbes in the patients following fecal microbiota transplantation. We have developed a new method that utilizes the unique single nucleotide variants of gut microbes to accurately identify microbes in paired fecal samples from the same individual taken at different times. Using this method, we identified transplant donor microbes in seven recipients 3-6 months after fecal microbiota transplantation; in two of these fecal microbiota transplantation, we were able to identify donor microbes that persist in recipients up to 2 years post-fecal microbiota transplantation. Our study provides new insights into the dynamics of the reconstitution of the gastrointestinal microbe community structure following fecal microbiota transplantation.
Collapse
|
104
|
Kim D, Zeng MY, Núñez G. The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp Mol Med 2017; 49:e339. [PMID: 28546562 PMCID: PMC5454439 DOI: 10.1038/emm.2017.24] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 01/02/2017] [Indexed: 02/08/2023] Open
Abstract
Many benefits provided by the gut microbiota to the host rely on its intricate interactions with host cells. Perturbations of the gut microbiota, termed gut dysbiosis, affect the interplay between the gut microbiota and host cells, resulting in dysregulation of inflammation that contributes to the pathogenesis of chronic inflammatory diseases, including inflammatory bowel disease, multiple sclerosis, allergic asthma and rheumatoid arthritis. In this review, we provide an overview of how gut bacteria modulates host metabolic and immune functions, summarize studies that examined the roles of gut dysbiosis in chronic inflammatory diseases, and finally discuss measures to correct gut dysbiosis as potential therapeutics for chronic inflammatory diseases.
Collapse
Affiliation(s)
- Donghyun Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Korea
| | - Melody Y Zeng
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
105
|
Precision monitoring of immunotherapies in solid organ and hematopoietic stem cell transplantation. Adv Drug Deliv Rev 2017. [PMID: 28625828 DOI: 10.1016/j.addr.2017.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pharmacological immunotherapies are a key component of post-transplant therapy in solid-organ and hematopoietic stem cell transplantation. In current clinical practice, immunotherapies largely follow a one-size fits all approach, leaving a large portion of transplant recipients either over- or under-immunosuppressed, and consequently at risk of infections or immune-mediated complications. Our goal here is to review recent and rapid advances in precision and genomic medicine approaches to monitoring of post-transplant immunotherapies. We will discuss recent advances in precision measurements of pharmacological immunosuppression, measurements of the plasma and gut microbiome, strategies to monitor for allograft injury and post-transplant malignancies via circulating cell-free DNA, and comprehensive measurements of the B and T cell immune cell repertoire.
Collapse
|
106
|
Slingerland AE, Schwabkey Z, Wiesnoski DH, Jenq RR. Clinical Evidence for the Microbiome in Inflammatory Diseases. Front Immunol 2017; 8:400. [PMID: 28446909 PMCID: PMC5388779 DOI: 10.3389/fimmu.2017.00400] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/21/2017] [Indexed: 12/11/2022] Open
Abstract
Clinical evidence is accumulating for a role of the microbiome in contributing to or modulating severity of inflammatory diseases. These studies can be organized by various organ systems involved, as well as type of study approach utilized, whether investigators compared the microbiome of cases versus controls, followed patients longitudinally, or intervened with antibiotics, prebiotics, or bacterial introduction. In this review, we summarize the clinical evidence supporting the microbiome as an important mechanism in the onset and maintenance of inflammation.
Collapse
Affiliation(s)
- Ann E Slingerland
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zaker Schwabkey
- Department of Genomic Medicine, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Diana H Wiesnoski
- Department of Genomic Medicine, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert R Jenq
- Department of Genomic Medicine, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
107
|
Szafrański SP, Winkel A, Stiesch M. The use of bacteriophages to biocontrol oral biofilms. J Biotechnol 2017; 250:29-44. [PMID: 28108235 DOI: 10.1016/j.jbiotec.2017.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/15/2022]
Abstract
Infections induced by oral biofilms include caries, as well as periodontal, and peri-implant disease, and may influence quality of life, systemic health, and expenditure. As bacterial biofilms are highly resistant and resilient to conventional antibacterial therapy, it has been difficult to combat these infections. An innovative alternative to the biocontrol of oral biofilms could be to use bacteriophages or phages, the viruses of bacteria, which are specific, non-toxic, self-proliferating, and can penetrate into biofilms. Phages for Actinomyces naeslundii, Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, Fusobacterium nucleatum, Lactobacillus spp., Neisseria spp., Streptococcus spp., and Veillonella spp. have been isolated and characterised. Recombinant phage enzymes (lysins) have been shown to lyse A. naeslundii and Streptococcus spp. However, only a tiny fraction of available phages and their lysins have been explored so far. The unique properties of phages and their lysins make them promising but challenging antimicrobials. The genetics and biology of phages have to be further explored in order to determine the most effective way of applying them. Studying the effect of phages and lysins on multispecies biofilms should pave the way for microbiota engineering and microbiota-based therapy.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | - Andreas Winkel
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Meike Stiesch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| |
Collapse
|
108
|
|
109
|
Cao HT, Gibson TE, Bashan A, Liu YY. Inferring human microbial dynamics from temporal metagenomics data: Pitfalls and lessons. Bioessays 2016; 39. [PMID: 28000336 DOI: 10.1002/bies.201600188] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The human gut microbiota is a very complex and dynamic ecosystem that plays a crucial role in health and well-being. Inferring microbial community structure and dynamics directly from time-resolved metagenomics data is key to understanding the community ecology and predicting its temporal behavior. Many methods have been proposed to perform the inference. Yet, as we point out in this review, there are several pitfalls along the way. Indeed, the uninformative temporal measurements and the compositional nature of the relative abundance data raise serious challenges in inference. Moreover, the inference results can be largely distorted when only focusing on highly abundant species by ignoring or grouping low-abundance species. Finally, the implicit assumptions in various regularization methods may not reflect reality. Those issues have to be seriously considered in ecological modeling of human gut microbiota.
Collapse
Affiliation(s)
- Hong-Tai Cao
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA.,Chu Kochen Honors College, College of Electrical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Travis E Gibson
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amir Bashan
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
110
|
Patients as Patches: Ecology and Epidemiology in Healthcare Environments. Infect Control Hosp Epidemiol 2016; 37:1507-1512. [PMID: 27760571 DOI: 10.1017/ice.2016.224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The modern healthcare system involves complex interactions among microbes, patients, providers, and the built environment. It represents a unique and challenging setting for control of the emergence and spread of infectious diseases. We examine an extension of the perspectives and methods from ecology (and especially urban ecology) to address these unique issues, and we outline 3 examples: (1) viewing patients as individual microbial ecosystems; (2) the altered ecology of infectious diseases specifically within hospitals; and (3) ecosystem management perspectives for infection surveillance and control. In each of these cases, we explore the accuracy and relevance of analogies to existing urban ecological perspectives, and we demonstrate a few of the potential direct uses of this perspective for altering research into the control of healthcare-associated infections. Infect Control Hosp Epidemiol. 2016;1507-1512.
Collapse
|
111
|
Li J, Hao C, Ren L, Xiao Y, Wang J, Qin X. Data Mining of Lung Microbiota in Cystic Fibrosis Patients. PLoS One 2016; 11:e0164510. [PMID: 27741283 PMCID: PMC5065158 DOI: 10.1371/journal.pone.0164510] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022] Open
Abstract
The major therapeutic strategy used to treat exacerbated cystic fibrosis (CF) is antibiotic treatment. As this approach easily generates antibiotic-resistant strains of opportunistic bacteria, optimized antibiotic therapies are required to effectively control chronic and recurrent bacterial infections in CF patients. A promising future for the proper use of antibiotics is the management of lung microbiota. However, the impact of antibiotic treatments on CF microbiota and vice versa is not fully understood. This study analyzed 718 sputum samples from 18 previous studies to identify differences between CF and uninfected lung microbiota and to evaluate the effects of antibiotic treatments on exacerbated CF microbiota. A reference-based OTU (operational taxonomic unit) picking method was used to combine analyses of data generated using different protocols and platforms. Findings show that CF microbiota had greater richness and lower diversity in the community structure than uninfected control (NIC) microbiota. Specifically, CF microbiota showed higher levels of opportunistic bacteria and dramatically lower levels of commensal bacteria. Antibiotic treatment affected exacerbated CF microbiota notably but only transiently during the treatment period. Limited decrease of the dominant opportunistic bacteria and a dramatic decrease of commensal bacteria were observed during the antibiotic treatment for CF exacerbation. Simultaneously, low abundance opportunistic bacteria were thriving after the antibiotic treatment. The inefficiency of the current antibiotic treatment against major opportunistic bacteria and the detrimental effects on commensal bacteria indicate that the current empiric antibiotic treatment on CF exacerbation should be reevaluated and optimized.
Collapse
Affiliation(s)
- Jianguo Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Chunyan Hao
- College of Chemical & Biological Engineering, Taiyuan University of Science & Technology, Taiyuan 030021, China
| | - Lili Ren
- MOH Key Laboratory of System Pathogen Biology and Christophe Mérieux Laboratory, IPB, CAMS-Foundation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yan Xiao
- MOH Key Laboratory of System Pathogen Biology and Christophe Mérieux Laboratory, IPB, CAMS-Foundation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jianwei Wang
- MOH Key Laboratory of System Pathogen Biology and Christophe Mérieux Laboratory, IPB, CAMS-Foundation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
112
|
Winek K, Dirnagl U, Meisel A. The Gut Microbiome as Therapeutic Target in Central Nervous System Diseases: Implications for Stroke. Neurotherapeutics 2016; 13:762-774. [PMID: 27714645 PMCID: PMC5081128 DOI: 10.1007/s13311-016-0475-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Research on commensal microbiota and its contribution to health and disease is a new and very dynamically developing field of biology and medicine. Recent experimental and clinical investigations underscore the importance of gut microbiota in the pathogenesis and course of stroke. Importantly, microbiota may influence the outcome of cerebral ischemia by modulating central nervous system antigen-specific immune responses. In this review we summarize studies linking gut microbiota with physiological function and disorders of the central nervous system. Based on these insights we speculate about targeting the gut microbiome in order to treat stroke.
Collapse
Affiliation(s)
- Katarzyna Winek
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegeneration Research (DZNE), partner site Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Andreas Meisel
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- NeuroCure Clinical Research, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
113
|
Cui H, Li Y, Zhang X. An overview of major metagenomic studies on human microbiomes in health and disease. QUANTITATIVE BIOLOGY 2016. [DOI: 10.1007/s40484-016-0078-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
114
|
Shang Q, Shi J, Song G, Zhang M, Cai C, Hao J, Li G, Yu G. Structural modulation of gut microbiota by chondroitin sulfate and its oligosaccharide. Int J Biol Macromol 2016; 89:489-98. [DOI: 10.1016/j.ijbiomac.2016.04.091] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 12/24/2022]
|
115
|
Cattadori IM, Sebastian A, Hao H, Katani R, Albert I, Eilertson KE, Kapur V, Pathak A, Mitchell S. Impact of Helminth Infections and Nutritional Constraints on the Small Intestine Microbiota. PLoS One 2016; 11:e0159770. [PMID: 27438701 PMCID: PMC4954658 DOI: 10.1371/journal.pone.0159770] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023] Open
Abstract
Helminth infections and nutrition can independently alter the composition and abundance of the gastrointestinal microbiota, however, their combined effect is poorly understood. Here, we used the T. retortaeformis-rabbit system to examine how the helminth infection and host restriction from coprophagy/ready-to-absorb nutrients affected the duodenal microbiota, and how these changes related to the acquired immune response at the site of infection. A factorial experiment was performed where the bacterial community, its functionality and the immune response were examined in four treatments (Infect, Infect+Collar, Control+Collar and Control). Helminths reduced the diversity and abundance of the microbiota while the combination of parasites and coprophagic restriction led to a more diversified and abundant microbiota than infected cases, without significantly affecting the intensity of infection. Animals restricted from coprophagy and free from parasites exhibited the richest and most abundant bacterial community. By forcing the individuals to absorb nutrients from less digested food, the coprophagic restriction appears to have facilitated the diversity and proliferation of bacteria in the duodenum. Changes in the microbiota were more clearly associated with changes in the immune response for the infected than the nutrient restricted animals. The functional and metabolic characteristics of the duodenal microbiota were not significantly different between treatments. Overall, infection and diet affect the gut microbiota but their interactions and outcome can be complex. These findings can have important implications for the development of control measures to helminth infections where poor nutrition/malnutrition can also be a concern.
Collapse
Affiliation(s)
- Isabella M. Cattadori
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, 16082 PA, United States of America
- Department of Biology, The Pennsylvania State University, University Park, 16082 PA, United States of America
- * E-mail:
| | - Aswathy Sebastian
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16082 PA, United States of America
| | - Han Hao
- Department of Statistics, The Pennsylvania State University, University Park, 16082 PA, United States of America
| | - Robab Katani
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, 16082 PA, United States of America
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16082 PA, United States of America
| | - Kirsten E. Eilertson
- Department of Statistics, The Pennsylvania State University, University Park, 16082 PA, United States of America
| | - Vivek Kapur
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, 16082 PA, United States of America
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, 16082 PA, United States of America
| | - Ashutosh Pathak
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, 16082 PA, United States of America
- Department of Biology, The Pennsylvania State University, University Park, 16082 PA, United States of America
| | - Susan Mitchell
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, 16082 PA, United States of America
- Department of Biology, The Pennsylvania State University, University Park, 16082 PA, United States of America
| |
Collapse
|
116
|
Affiliation(s)
- Silvio D. Brugger
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Lindsey Bomar
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Katherine P. Lemon
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
117
|
Abstract
The recent realization that human-associated microbial communities play a crucial role in determining our health and well-being1,2 has led to the ongoing development of microbiome-based therapies3 such as fecal microbiota transplantation4,5. Thosemicrobial communities are very complex, dynamic6 and highly personalized ecosystems3,7, exhibiting a high degree of inter-individual variability in both species assemblages8 and abundance profiles9. It is not known whether the underlying ecological dynamics, which can be parameterized by growth rates, intra- and inter-species interactions in population dynamics models10, are largely host-independent (i.e. “universal”) or host-specific. If the inter-individual variability reflects host-specific dynamics due to differences in host lifestyle11, physiology12, or genetics13, then generic microbiome manipulations may have unintended consequences, rendering them ineffectual or even detrimental. Alternatively, microbial ecosystems of different subjects may follow a universal dynamics with the inter-individual variability mainly stemming from differences in the sets of colonizing species7,14. Here we developed a novel computational method to characterize human microbial dynamics. Applying this method to cross-sectional data from two large-scale metagenomic studies, the Human Microbiome Project9,15 and the Student Microbiome Project16, we found that both gut and mouth microbiomes display pronounced universal dynamics, whereas communities associated with certain skin sites are likely shaped by differences in the host environment. Interestingly, the universality of gut microbial dynamics is not observed in subjects with recurrent Clostridium difficile infection17 but is observed in the same set of subjects after fecal microbiota transplantation. These results fundamentally improve our understanding of forces and processes shaping human microbial ecosystems, paving the way to design general microbiome-based therapies18.
Collapse
|
118
|
Maxson T, Mitchell DA. Targeted Treatment for Bacterial Infections: Prospects for Pathogen-Specific Antibiotics Coupled with Rapid Diagnostics. Tetrahedron 2016; 72:3609-3624. [PMID: 27429480 PMCID: PMC4941824 DOI: 10.1016/j.tet.2015.09.069] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antibiotics are a cornerstone of modern medicine and have significantly reduced the burden of infectious diseases. However, commonly used broad-spectrum antibiotics can cause major collateral damage to the human microbiome, causing complications ranging from antibiotic-associated colitis to the rapid spread of resistance. Employing narrower spectrum antibiotics targeting specific pathogens may alleviate this predicament as well as provide additional tools to expand an antibiotic repertoire threatened by the inevitability of resistance. Improvements in clinical diagnosis will be required to effectively utilize pathogen-specific antibiotics and new molecular diagnostics are poised to fulfill this need. Here we review recent trends and the future prospects of deploying narrower spectrum antibiotics coupled with rapid diagnostics. Further, we discuss the theoretical advantages and limitations of this emerging approach to controlling bacterial infectious diseases.
Collapse
Affiliation(s)
- Tucker Maxson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
119
|
Van de Wiele T, Van Praet JT, Marzorati M, Drennan MB, Elewaut D. How the microbiota shapes rheumatic diseases. Nat Rev Rheumatol 2016; 12:398-411. [PMID: 27305853 DOI: 10.1038/nrrheum.2016.85] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The human gut harbours a tremendously diverse and abundant microbial community that correlates with, and even modulates, many health-related processes. The mucosal interfaces are particularly active sites of microorganism-host interplay. Growing insight into the characteristic composition and functionality of the mucosal microbiota has revealed that the microbiota is involved in mucosal barrier integrity and immune function. This involvement affects proinflammatory and anti-inflammatory processes not only at the epithelial level, but also at remote sites such as the joints. Here, we review the role of the gut microbiota in shaping local and systemic immune responses and how disturbances in the host-microorganism interplay can potentially affect the development and progression of rheumatic diseases. Increasing our understanding of how to promote host-microorganism homeostasis could therefore reveal novel strategies for the prevention or alleviation of rheumatic disease.
Collapse
Affiliation(s)
- Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
| | - Jens T Van Praet
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, De Pintelaan 185, Ghent, B-9000, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, 'Fiers-Schell-Van Montagu' building, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium.,Division of Nephrology and Infectious Diseases, AZ Sint-Jan Brugge-Oostende AV, Ruddershove 10, 8000 Bruges, Belgium
| | - Massimo Marzorati
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
| | - Michael B Drennan
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, De Pintelaan 185, Ghent, B-9000, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, 'Fiers-Schell-Van Montagu' building, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
| | - Dirk Elewaut
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, De Pintelaan 185, Ghent, B-9000, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent University, 'Fiers-Schell-Van Montagu' building, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
| |
Collapse
|
120
|
Ahuja NK, Ahuja A. Gastroenvironmental distress: metaphorical antecedents of the gut microbiome. MEDICAL HUMANITIES 2016; 42:121-127. [PMID: 26856356 DOI: 10.1136/medhum-2015-010784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
The human gut has been viewed for centuries as a potential mediator of systemic disease. The theory of autointoxication, which found its clearest articulation in the late nineteenth and early twentieth centuries, focused on altered bowel habits as the cause of widespread physical decay and advocated for the pursuit of health through regular defecation. More recently, under the banner of the microbiome, research on commensal bacteria makes a similar case for associations between alimentary dynamics and illness manifestations far outside the gastrointestinal tract. Surface distinctions between these two conceptual frameworks are apparently antipodal, the former championing emptiness and sterility, the latter abundance and restoration. Within both models, however, persists a common anxiety about the detrimental effects of civilisation on the body in relation to the natural world. As scientific understanding of the microbiome continues to mature, acknowledging the historical and moral parameters of its borrowed ecological idiom may facilitate critical distinctions between what is true and what feels like it should be.
Collapse
Affiliation(s)
- Nitin K Ahuja
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amisha Ahuja
- Cooper Medical School of Rowan University, Camden, New Jersey, USA
| |
Collapse
|
121
|
Abstract
Humans are virtually identical in their genetic makeup, yet the small differences in our DNA give rise to tremendous phenotypic diversity across the human population. By contrast, the metagenome of the human microbiome—the total DNA content of microbes inhabiting our bodies—is quite a bit more variable, with only a third of its constituent genes found in a majority of healthy individuals. Understanding this variability in the “healthy microbiome” has thus been a major challenge in microbiome research, dating back at least to the 1960s, continuing through the Human Microbiome Project and beyond. Cataloguing the necessary and sufficient sets of microbiome features that support health, and the normal ranges of these features in healthy populations, is an essential first step to identifying and correcting microbial configurations that are implicated in disease. Toward this goal, several population-scale studies have documented the ranges and diversity of both taxonomic compositions and functional potentials normally observed in the microbiomes of healthy populations, along with possible driving factors such as geography, diet, and lifestyle. Here, we review several definitions of a ‘healthy microbiome’ that have emerged, the current understanding of the ranges of healthy microbial diversity, and gaps such as the characterization of molecular function and the development of ecological therapies to be addressed in the future.
Collapse
Affiliation(s)
- Jason Lloyd-Price
- Biostatistics Department, Harvard School of Public Health, Boston, MA, 02115, USA.,Microbial Systems and Communities, Genome Sequencing and Analysis Program, The Broad Institute, Cambridge, MA, 02142, USA
| | - Galeb Abu-Ali
- Biostatistics Department, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Curtis Huttenhower
- Biostatistics Department, Harvard School of Public Health, Boston, MA, 02115, USA. .,Microbial Systems and Communities, Genome Sequencing and Analysis Program, The Broad Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|
122
|
Dennis ML, Pitcher NP, Lee MD, DeBono AJ, Wang ZC, Harjani JR, Rahmani R, Cleary B, Peat TS, Baell JB, Swarbrick JD. Structural Basis for the Selective Binding of Inhibitors to 6-Hydroxymethyl-7,8-dihydropterin Pyrophosphokinase from Staphylococcus aureus and Escherichia coli. J Med Chem 2016; 59:5248-63. [PMID: 27094768 DOI: 10.1021/acs.jmedchem.6b00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a member of the folate biosynthesis pathway found in prokaryotes and lower eukaryotes that catalyzes the pyrophosphoryl transfer from the ATP cofactor to a 6-hydroxymethyl-7,8-dihydropterin substrate. We report the chemical synthesis of a series of S-functionalized 8-mercaptoguanine (8MG) analogues as substrate site inhibitors of HPPK and quantify binding against the E. coli and S. aureus enzymes (EcHPPK and SaHPPK). The results demonstrate that analogues incorporating acetophenone-based substituents have comparable affinities for both enzymes. Preferential binding of benzyl-substituted 8MG derivatives to SaHPPK was reconciled when a cryptic pocket unique to SaHPPK was revealed by X-ray crystallography. Differential chemical shift perturbation analysis confirmed this to be a common mode of binding for this series to SaHPPK. One compound (41) displayed binding affinities of 120 nM and 1.76 μM for SaHPPK and EcHPPK, respectively, and represents a lead for the development of more potent and selective inhibitors of SaHPPK.
Collapse
Affiliation(s)
- Matthew L Dennis
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia.,CSIRO Biosciences Program , Parkville, Victoria 3052, Australia
| | - Noel P Pitcher
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Michael D Lee
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Aaron J DeBono
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Zhong-Chang Wang
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University , Nanjing 210093, People's Republic of China
| | - Jitendra R Harjani
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Raphaël Rahmani
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Ben Cleary
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Thomas S Peat
- CSIRO Biosciences Program , Parkville, Victoria 3052, Australia
| | - Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - James D Swarbrick
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| |
Collapse
|
123
|
Peptidoglycan from the gut microbiota governs the lifespan of circulating phagocytes at homeostasis. Blood 2016; 127:2460-71. [PMID: 26989200 DOI: 10.1182/blood-2015-10-675173] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 03/10/2016] [Indexed: 12/17/2022] Open
Abstract
Maintenance of myeloid cell homeostasis requires continuous turnover of phagocytes from the bloodstream, yet whether environmental signals influence phagocyte longevity in the absence of inflammation remains unknown. Here, we show that the gut microbiota regulates the steady-state cellular lifespan of neutrophils and inflammatory monocytes, the 2 most abundant circulating myeloid cells and key contributors to inflammatory responses. Treatment of mice with broad-spectrum antibiotics, or with the gut-restricted aminoglycoside neomycin alone, accelerated phagocyte turnover and increased the rates of their spontaneous apoptosis. Metagenomic analyses revealed that neomycin altered the abundance of intestinal bacteria bearing γ-d-glutamyl-meso-diaminopimelic acid, a ligand for the intracellular peptidoglycan sensor Nod1. Accordingly, signaling through Nod1 was both necessary and sufficient to mediate the stimulatory influence of the flora on myeloid cell longevity. Stimulation of Nod1 signaling increased the frequency of lymphocytes in the murine intestine producing the proinflammatory cytokine interleukin 17A (IL-17A), and liberation of IL-17A was required for transmission of Nod1-dependent signals to circulating phagocytes. Together, these results define a mechanism through which intestinal microbes govern a central component of myeloid homeostasis and suggest perturbations of commensal communities can influence steady-state regulation of cell fate.
Collapse
|
124
|
Javan GT, Finley SJ, Abidin Z, Mulle JG. The Thanatomicrobiome: A Missing Piece of the Microbial Puzzle of Death. Front Microbiol 2016; 7:225. [PMID: 26941736 PMCID: PMC4764706 DOI: 10.3389/fmicb.2016.00225] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/12/2016] [Indexed: 11/13/2022] Open
Abstract
Death is a universal phenomenon; however, is there "life after death?" This topic has been investigated for centuries but still there are gray areas that have yet to be elucidated. Forensic microbiologists are developing new applications to investigate the dynamic and coordinated changes in microbial activity that occur when a human host dies. There is currently a paucity of explorations of the thanatomicrobiome (thanatos-, Greek for death) and epinecrotic communities (microbial communities residing in and/or moving on the surface of decomposing remains). Ongoing studies can help clarify the structure and function of these postmortem microbiomes. Human microbiome studies have revealed that 75-90% of cells in the body prior to death are microbial. Upon death, putrefaction occurs and is a complicated process encompassing chemical degradation and autolysis of cells. Decomposition also involves the release of contents of the intestines due to enzymes under the effects of abiotic and biotic factors. These factors likely have predictable effects on postmortem microbial communities and can be leveraged for forensic studies. This mini review provides a critical examination of emerging research relating to thanatomicrobiome and epinecrotic communities, how each is studied, and possible strategies of stochastic processes.
Collapse
Affiliation(s)
- Gulnaz T. Javan
- Forensic Science Program, Physical Sciences Department, Alabama State UniversityMontgomery, AL, USA
| | - Sheree J. Finley
- Ph.D. Program in Microbiology, Department of Biological Sciences, Alabama State UniversityMontgomery, AL, USA
| | - Zain Abidin
- Forensic Science Program, Physical Sciences Department, Alabama State UniversityMontgomery, AL, USA
| | - Jennifer G. Mulle
- Department of Epidemiology, Rollins School of Public Health, Emory UniversityAtlanta, GA, USA
- Department of Human Genetics, School of Medicine, Emory UniversityAtlanta, GA, USA
| |
Collapse
|
125
|
Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols. mBio 2016; 7:e01725-15. [PMID: 26733066 PMCID: PMC4725001 DOI: 10.1128/mbio.01725-15] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. IMPORTANCE Little is known about how harmless Corynebacterium species that colonize the human nose and skin might impact pathogen colonization and proliferation at these sites. We show that Corynebacterium accolens, a common benign nasal bacterium, modifies its local habitat in vitro as it inhibits growth of Streptococcus pneumoniae by releasing antibacterial free fatty acids from host skin surface triacylglycerols. We further identify the primary C. accolens lipase required for this activity. We postulate a model in which higher numbers of C. accolens cells deter/limit S. pneumoniae nostril colonization, which might partly explain why children without S. pneumoniae colonization have higher levels of nasal Corynebacterium. This work narrows the gap between descriptive studies and the needed in-depth understanding of the molecular mechanisms of microbe-microbe interactions that help shape the human microbiome. It also lays the foundation for future in vivo studies to determine whether habitat modification by C. accolens could be promoted to control pathogen colonization.
Collapse
|
126
|
El Aidy S, Stilling R, Dinan TG, Cryan JF. Microbiome to Brain: Unravelling the Multidirectional Axes of Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:301-36. [PMID: 26589226 DOI: 10.1007/978-3-319-20215-0_15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbiome plays a crucial role in host physiology. Disruption of its community structure and function can have wide-ranging effects making it critical to understand exactly how the interactive dialogue between the host and its microbiota is regulated to maintain homeostasis. An array of multidirectional signalling molecules is clearly involved in the host-microbiome communication. This interactive signalling not only impacts the gastrointestinal tract, where the majority of microbiota resides, but also extends to affect other host systems including the brain and liver as well as the microbiome itself. Understanding the mechanistic principles of this inter-kingdom signalling is fundamental to unravelling how our supraorganism function to maintain wellbeing, subsequently opening up new avenues for microbiome manipulation to favour desirable mental health outcome.
Collapse
Affiliation(s)
- Sahar El Aidy
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Roman Stilling
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland. .,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
127
|
Luo ML, Leenay RT, Beisel CL. Current and future prospects for CRISPR-based tools in bacteria. Biotechnol Bioeng 2015; 113:930-43. [PMID: 26460902 DOI: 10.1002/bit.25851] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/04/2015] [Accepted: 10/05/2015] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas systems have rapidly transitioned from intriguing prokaryotic defense systems to powerful and versatile biomolecular tools. This article reviews how these systems have been translated into technologies to manipulate bacterial genetics, physiology, and communities. Recent applications in bacteria have centered on multiplexed genome editing, programmable gene regulation, and sequence-specific antimicrobials, while future applications can build on advances in eukaryotes, the rich natural diversity of CRISPR-Cas systems, and the untapped potential of CRISPR-based DNA acquisition. Overall, these systems have formed the basis of an ever-expanding genetic toolbox and hold tremendous potential for our future understanding and engineering of the bacterial world.
Collapse
Affiliation(s)
- Michelle L Luo
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695-7905
| | - Ryan T Leenay
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695-7905
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695-7905.
| |
Collapse
|
128
|
Christian N, Whitaker BK, Clay K. Microbiomes: unifying animal and plant systems through the lens of community ecology theory. Front Microbiol 2015; 6:869. [PMID: 26441846 PMCID: PMC4561359 DOI: 10.3389/fmicb.2015.00869] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/10/2015] [Indexed: 12/20/2022] Open
Abstract
The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant-fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant-fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant-fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration). The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research.
Collapse
Affiliation(s)
- Natalie Christian
- *Correspondence: Natalie Christian and Briana K. Whitaker, Evolution, Ecology and Behavior Program, Department of Biology, Indiana University, Jordan Hall, 1001 East 3rd Street, Bloomington, IN 47405, USA, ;
| | - Briana K. Whitaker
- *Correspondence: Natalie Christian and Briana K. Whitaker, Evolution, Ecology and Behavior Program, Department of Biology, Indiana University, Jordan Hall, 1001 East 3rd Street, Bloomington, IN 47405, USA, ;
| | | |
Collapse
|
129
|
Smith VH, Rubinstein RJ, Park S, Kelly L, Klepac-Ceraj V. Microbiology and ecology are vitally important to premedical curricula. EVOLUTION MEDICINE AND PUBLIC HEALTH 2015. [PMID: 26198190 PMCID: PMC4536855 DOI: 10.1093/emph/eov014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the impact of the human microbiome on health, an appreciation of microbial ecology is yet to be translated into mainstream medical training and practice. The human microbiota plays a role in the development of the immune system, in the development and function of the brain, in digestion, and in host defense, and we anticipate that many more functions are yet to be discovered. We argue here that without formal exposure to microbiology and ecology—fields that explore the networks, interactions and dynamics between members of populations of microbes—vitally important links between the human microbiome and health will be overlooked. This educational shortfall has significant downstream effects on patient care and biomedical research, and we provide examples from current research highlighting the influence of the microbiome on human health. We conclude that formally incorporating microbiology and ecology into the premedical curricula is invaluable to the training of future health professionals and critical to the development of novel therapeutics and treatment practices.
Collapse
Affiliation(s)
- Val H Smith
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | | | - Serry Park
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Libusha Kelly
- Department of Systems and Computational Biology and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA,
| |
Collapse
|
130
|
Shen TCD, Albenberg L, Bittinger K, Chehoud C, Chen YY, Judge CA, Chau L, Ni J, Sheng M, Lin A, Wilkins BJ, Buza EL, Lewis JD, Daikhin Y, Nissim I, Yudkoff M, Bushman FD, Wu GD. Engineering the gut microbiota to treat hyperammonemia. J Clin Invest 2015; 125:2841-50. [PMID: 26098218 DOI: 10.1172/jci79214] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 05/14/2015] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence indicates that the gut microbiota can be altered to ameliorate or prevent disease states, and engineering the gut microbiota to therapeutically modulate host metabolism is an emerging goal of microbiome research. In the intestine, bacterial urease converts host-derived urea to ammonia and carbon dioxide, contributing to hyperammonemia-associated neurotoxicity and encephalopathy in patients with liver disease. Here, we engineered murine gut microbiota to reduce urease activity. Animals were depleted of their preexisting gut microbiota and then inoculated with altered Schaedler flora (ASF), a defined consortium of 8 bacteria with minimal urease gene content. This protocol resulted in establishment of a persistent new community that promoted a long-term reduction in fecal urease activity and ammonia production. Moreover, in a murine model of hepatic injury, ASF transplantation was associated with decreased morbidity and mortality. These results provide proof of concept that inoculation of a prepared host with a defined gut microbiota can lead to durable metabolic changes with therapeutic utility.
Collapse
|
131
|
Derrien M, van Hylckama Vlieg JE. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol 2015; 23:354-66. [DOI: 10.1016/j.tim.2015.03.002] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/28/2015] [Accepted: 03/03/2015] [Indexed: 02/07/2023]
|
132
|
Lang D. Opportunities to assess factors contributing to the development of the intestinal microbiota in infants living in developing countries. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:28316. [PMID: 26031686 PMCID: PMC4451096 DOI: 10.3402/mehd.v26.28316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recent evidence suggests that establishment of a healthy gut microbiota shortly after birth is important to achieve optimal growth and development of children. Being born into a resource-poor environment presents challenges to the establishment of a healthy gut microbial flora in the newborn. Among these challenges are births that occur at home, traditional pre-lacteal feeding of newborns leading to failure to initiate lactation, poor sanitation and water quality, early environmental exposure to, and infection with, enteric or other pathogens, suboptimal breast feeding duration and intensity, deficiencies in weaning and childhood diets contributing to micro- and macro-nutrient deficiencies, and the frequent use of antibiotics. These factors should be considered in the design and implementation of preventive and therapeutic interventions aimed at improving the health and development of these children.
Collapse
Affiliation(s)
- Dennis Lang
- Foundation for the National Institutes of Health, Bethesda, MD, USA;
| | | |
Collapse
|
133
|
GUT in FOCUS Symposium NOBEL FORUM, Karolinska Institutet, February 2nd 2015. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:28480. [PMID: 26031687 PMCID: PMC4451120 DOI: 10.3402/mehd.v26.28480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
134
|
Abstract
Infectious diseases is a broad discipline that is almost unique in contemporary medicine with its ability to cure and prevent disease, to identify specific disease causes (microbes), and to deal with diverse, sometimes massive outbreaks. The value of the infectious disease practitioner is now magnified by the crisis of antibiotic resistance, the expanding consequences of international travel, the introduction of completely new pathogen diagnostics, and healthcare reform with emphasis on infection prevention and cost in dollars and lives. Infectious disease careers have great personal rewards to the practitioner based on these observations. It is unfortunate that we have been so effective in our work, but relatively ineffective in convincing the healthcare system of this value.
Collapse
Affiliation(s)
- John G Bartlett
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
135
|
Wells DK, Chuang Y, Knapp LM, Brockmann D, Kath WL, Leonard JN. Spatial and functional heterogeneities shape collective behavior of tumor-immune networks. PLoS Comput Biol 2015; 11:e1004181. [PMID: 25905470 PMCID: PMC4408028 DOI: 10.1371/journal.pcbi.1004181] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/06/2015] [Indexed: 12/31/2022] Open
Abstract
Tumor growth involves a dynamic interplay between cancer cells and host cells, which collectively form a tumor microenvironmental network that either suppresses or promotes tumor growth under different conditions. The transition from tumor suppression to tumor promotion is mediated by a tumor-induced shift in the local immune state, and despite the clinical challenge this shift poses, little is known about how such dysfunctional immune states are initiated. Clinical and experimental observations have indicated that differences in both the composition and spatial distribution of different cell types and/or signaling molecules within the tumor microenvironment can strongly impact tumor pathogenesis and ultimately patient prognosis. How such “functional” and “spatial” heterogeneities confer such effects, however, is not known. To investigate these phenomena at a level currently inaccessible by direct observation, we developed a computational model of a nascent metastatic tumor capturing salient features of known tumor-immune interactions that faithfully recapitulates key features of existing experimental observations. Surprisingly, over a wide range of model formulations, we observed that heterogeneity in both spatial organization and cell phenotype drove the emergence of immunosuppressive network states. We determined that this observation is general and robust to parameter choice by developing a systems-level sensitivity analysis technique, and we extended this analysis to generate other parameter-independent, experimentally testable hypotheses. Lastly, we leveraged this model as an in silico test bed to evaluate potential strategies for engineering cell-based therapies to overcome tumor associated immune dysfunction and thereby identified modes of immune modulation predicted to be most effective. Collectively, this work establishes a new integrated framework for investigating and modulating tumor-immune networks and provides insights into how such interactions may shape early stages of tumor formation. Over the course of tumor growth, cancer cells interact with normal cells via processes that are difficult to understand by experiment alone. This challenge is particularly pronounced at early stages of tumor formation, when experimental observation is most limited. Elucidating such interactions could inform both understanding of cancer and clinical practice. To address this need we developed a computational model capturing the current understanding of how individual metastatic tumor cells and immune cells sense and contribute to the tumor environment, which in turn enabled us to investigate the complex, collective behavior of these systems. Surprisingly, we discovered that tumor escape from immune control was enhanced by the existence of small differences (or heterogeneities) in the responses of individual immune cells to their environment, as well as by heterogeneities in the way that cells and the molecules they secrete are arranged in space. These conclusions held true over a range of model formulations, suggesting that this is a general feature of these tumor-immune networks. Finally, we used this model as a test bed to evaluate potential strategies for enhancing immunological control of early tumors, ultimately predicting that specifically modulating tumor-associated immune dysfunction may be more effective than simply enhanced tumor killing.
Collapse
Affiliation(s)
- Daniel K. Wells
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
- Northwestern University Physical Sciences-Oncology Center, Evanston, Illinois, United States of America
| | - Yishan Chuang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Louis M. Knapp
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Dirk Brockmann
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
- Northwestern University Physical Sciences-Oncology Center, Evanston, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, United States of America
- Northwestern Institute on Complex Science, Northwestern University, Evanston, Illinois, United States of America
- Institute for Theoretical Biology, Humboldt University Berlin, Berlin, Germany
| | - William L. Kath
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
- Northwestern University Physical Sciences-Oncology Center, Evanston, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, United States of America
- Northwestern Institute on Complex Science, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Joshua N. Leonard
- Northwestern University Physical Sciences-Oncology Center, Evanston, Illinois, United States of America
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
136
|
Shono Y, Docampo MD, Peled JU, Perobelli SM, Jenq RR. Intestinal microbiota-related effects on graft-versus-host disease. Int J Hematol 2015; 101:428-37. [PMID: 25812838 DOI: 10.1007/s12185-015-1781-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 12/18/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an increasingly important treatment for conditions including hematopoietic malignancies and inherited hematopoietic disorders, and is considered to be the most effective form of tumor immunotherapy available to date. However, graft-versus-host disease (GVHD) remains a major source of morbidity and mortality following allo-HSCT, and understanding the mechanisms of GVHD has been highlighted as a key research priority. During development of GVHD, activation of various immune cells, especially donor T cells, leads to damage of target organs including skin, liver, hematopoietic system, and of particular clinical importance, gut. In addition to histocompatibility complex differences between the donor and recipient, pretransplant conditioning with chemotherapy and irradiation also contributes to GVHD by damaging the gut, resulting in systemic exposure to microbial products normally confined to the intestinal lumen. The intestinal microbiota is a modulator of gastrointestinal immune homeostasis. It also promotes the maintenance of epithelial cells. Recent reports provide growing evidence of the impact of intestinal microbiota on GVHD pathophysiology. This review summarizes current knowledge of changes and effects of intestinal microbiota in the setting of allo-HSCT. We will also discuss potential future strategies of intestinal microbiota manipulation that might be advantageous in decreasing allo-HSCT-related morbidity and mortality.
Collapse
Affiliation(s)
- Yusuke Shono
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA,
| | | | | | | | | |
Collapse
|
137
|
Ramakrishnan VR, Hauser LJ, Feazel LM, Ir D, Robertson CE, Frank DN. Sinus microbiota varies among chronic rhinosinusitis phenotypes and predicts surgical outcome. J Allergy Clin Immunol 2015; 136:334-42.e1. [PMID: 25819063 DOI: 10.1016/j.jaci.2015.02.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/30/2015] [Accepted: 02/04/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a prevalent multifactorial disease process in which bacteria are believed to play a role in the propagation of inflammation. Multiple subtypes of CRS have been described based on clinical and pathologic features, but a detailed examination of the sinus microbiota in patients with CRS and its clinical subtypes has yet to be performed. OBJECTIVE We sought to examine the resident microbiota of CRS subtypes and determine whether bacterial diversity is a predictor of disease outcomes. METHODS Sinus swabs from patients with CRS and healthy subjects collected during endoscopic sinus surgery were analyzed by means of molecular phylogenetic analysis of 16S rDNA pyrosequences. RESULTS Fifty-six patients with CRS and 26 control subjects were studied. Biodiversity was similar between the CRS and control groups. Among the CRS subtypes examined, only 2 conditions (presence of purulence and comorbid condition of asthma) were associated with significant alterations in microbial community composition. In 27 patients with CRS who were followed postoperatively, those with better outcomes had more diverse bacterial communities present at the time of surgery, along with higher relative abundances of Actinobacteria. CONCLUSION Analysis of microbiota in a large cohort reveals that particular CRS phenotypes (asthma and purulence) are characterized by distinct compositions of resident bacterial communities. We found that bacterial diversity and composition are predictors of surgical outcome, promoting the concept of community ecology in patients with CRS.
Collapse
Affiliation(s)
- Vijay R Ramakrishnan
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado School of Medicine, Aurora, Colo.
| | - Leah J Hauser
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado School of Medicine, Aurora, Colo
| | - Leah M Feazel
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colo
| | - Diana Ir
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colo
| | - Charles E Robertson
- Microbiome Research Consortium, University of Colorado School of Medicine, Aurora, Colo; Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colo
| | - Daniel N Frank
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colo; Microbiome Research Consortium, University of Colorado School of Medicine, Aurora, Colo
| |
Collapse
|
138
|
Rynkiewicz EC, Pedersen AB, Fenton A. An ecosystem approach to understanding and managing within-host parasite community dynamics. Trends Parasitol 2015; 31:212-21. [PMID: 25814004 DOI: 10.1016/j.pt.2015.02.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
Hosts are typically coinfected by multiple parasite species, resulting in potentially overwhelming levels of complexity. We argue that an individual host can be considered to be an ecosystem in that it is an environment containing a diversity of entities (e.g., parasitic organisms, commensal symbionts, host immune components) that interact with each other, potentially competing for space, energy, and resources, ultimately influencing the condition of the host. Tools and concepts from ecosystem ecology can be applied to better understand the dynamics and responses of within-individual host-parasite ecosystems. Examples from both wildlife and human systems demonstrate how this framework is useful in breaking down complex interactions into components that can be monitored, measured, and managed to inform the design of better disease-management strategies.
Collapse
Affiliation(s)
- Evelyn C Rynkiewicz
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, Kings Buildings, Ashworth Laboratories, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Amy B Pedersen
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, Kings Buildings, Ashworth Laboratories, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Andy Fenton
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
139
|
Alexeev D, Bibikova T, Kovarsky B, Melnikov D, Tyakht A, Govorun V. Bacterial rose garden for metagenomic SNP-based phylogeny visualization. BioData Min 2015; 8:10. [PMID: 25815061 PMCID: PMC4374582 DOI: 10.1186/s13040-015-0045-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/02/2015] [Indexed: 01/27/2023] Open
Abstract
Background One of the most challenging tasks in genomic analysis nowadays is metagenomics. Biomedical applications of metagenomics give rise to datasets containing hundreds and thousands of samples from various body sites for hundreds of patients. Inherently metagenome is by far more complex than a single genome as it varies in time by the amount of bacteria comprising it. Other levels of data complexity include geography of the samples and phylogenetic distance between the genomes of the same operational taxonomic unit (OTU). We have developed the visualization concept for the representation of multilayer metagenomics data – the bacterial rose garden. The approach allows to display the taxonomic distance between the representatives of the same OTU in different samples and use variety of the metadata for display. Results We have developed the principle of visualization allowing for multilayer information representation. We have incorporated data on OTU diversity across metagenomes and origin of the samples. The visual representation we have called “rose” is focused on the phylogenetic distance between the representatives of the same OTU. The visual representation is realized as interactive data chart which allows user to interact with data and explore variables. It is known that classical representation of the taxonomic tree is a reduction of information from original pairwise distance matrix. The visualization presented is a way to save all the information available through projection of distance matrix into single dimensional space of one sample. It could serve as a basis for further more complex information representation. We have used the principle proposed for visualization of 101 bacterial OTUs phylogenetic distances, finally we provide open code for the web page generation. Conclusions Bacterial rose garden is a versatile visualization principle coping with the major difficulties of metagenomic big-data visualization without loss of data. The method proposed is showing the interconnectedness of variables and is realized as user-friendly web page allowing for dynamic data exploration. The concept provided serves as one of the original approaches for metagenomic data representation and sharing. Full functional prototype could be found at http://rosegarden.datalaboratory.ru Electronic supplementary material The online version of this article (doi:10.1186/s13040-015-0045-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dmitry Alexeev
- Research Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia.,Moscow Institute of Physics and Technology, Institutskii Per. 9, Moscow Region Dolgoprudny, 141700 Russia
| | | | - Boris Kovarsky
- Research Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | | | - Alexander Tyakht
- Research Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| | - Vadim Govorun
- Research Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow, 119435 Russia
| |
Collapse
|
140
|
Zinicola M, Lima F, Lima S, Machado V, Gomez M, Döpfer D, Guard C, Bicalho R. Altered microbiomes in bovine digital dermatitis lesions, and the gut as a pathogen reservoir. PLoS One 2015; 10:e0120504. [PMID: 25781328 PMCID: PMC4362943 DOI: 10.1371/journal.pone.0120504] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/23/2015] [Indexed: 12/16/2022] Open
Abstract
Bovine digital dermatitis (DD) is the most important infectious disease associated with lameness in cattle worldwide. Since the disease was first described in 1974, a series of Treponema species concurrent with other microbes have been identified in DD lesions, suggesting a polymicrobial etiology. However, the pathogenesis of DD and the source of the causative microbes remain unclear. Here we characterized the microbiomes of healthy skin and skin lesions in dairy cows affected with different stages of DD and investigated the gut microbiome as a potential reservoir for microbes associated with this disease. Discriminant analysis revealed that the microbiomes of healthy skin, active DD lesions (ulcerative and chronic ulcerative) and inactive DD lesions (healing and chronic proliferative) are completely distinct. Treponema denticola, Treponema maltophilum, Treponema medium, Treponema putidum, Treponema phagedenis and Treponema paraluiscuniculi were all found to be present in greater relative abundance in active DD lesions when compared with healthy skin and inactive DD lesions, and these same Treponema species were nearly ubiquitously present in rumen and fecal microbiomes. The relative abundance of Candidatus Amoebophilus asiaticus, a bacterium not previously reported in DD lesions, was increased in both active and inactive lesions when compared with healthy skin. In conclusion, our data support the concept that DD is a polymicrobial disease, with active DD lesions having a markedly distinct microbiome dominated by T. denticola, T. maltophilum, T. medium, T. putidum, T. phagedenis and T. paraluiscuniculi. Furthermore, these Treponema species are nearly ubiquitously found in rumen and fecal microbiomes, suggesting that the gut is an important reservoir of microbes involved in DD pathogenesis. Additionally, the bacterium Candidatus Amoebophilus asiaticus was highly abundant in active and inactive DD lesions.
Collapse
Affiliation(s)
- Martin Zinicola
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| | - Fabio Lima
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| | - Svetlana Lima
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| | - Vinicius Machado
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| | - Marilia Gomez
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| | - Dörte Döpfer
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Charles Guard
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| | - Rodrigo Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
141
|
Abstract
Animals harbor gut microbiota characteristic of the host and diet of origin. Whether bacteria from diverse nonindigenous origins successfully invade foreign gut habitats is not well known. Now, Seedorf et al. show that microbiota from a variety of disparate habitats can successfully colonize and compete in the mammalian gut environment.
Collapse
|
142
|
Perron GG, Inglis RF, Pennings PS, Cobey S. Fighting microbial drug resistance: a primer on the role of evolutionary biology in public health. Evol Appl 2015; 8:211-22. [PMID: 25861380 PMCID: PMC4380916 DOI: 10.1111/eva.12254] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/18/2015] [Indexed: 01/03/2023] Open
Abstract
Although microbes have been evolving resistance to antimicrobials for millennia, the spread of resistance in pathogen populations calls for the development of new drugs and treatment strategies. We propose that successful, long-term resistance management requires a better understanding of how resistance evolves in the first place. This is an opportunity for evolutionary biologists to engage in public health, a collaboration that has substantial precedent. Resistance evolution has been an important tool for developing and testing evolutionary theory, especially theory related to the genetic basis of new traits and constraints on adaptation. The present era is no exception. The articles in this issue highlight the breadth of current research on resistance evolution and also its challenges. In this introduction, we review the conceptual advances that have been achieved from studying resistance evolution and describe a path forward.
Collapse
Affiliation(s)
- Gabriel G Perron
- Department of Biology, Bard College Annandale-on-Hudson, NY, USA
| | - R Fredrik Inglis
- Department of Biology, Washington University in St. Louis St. Louis, MO, USA
| | - Pleuni S Pennings
- Department of Biology, San Francisco State University San Francisco, CA, USA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago Chicago, IL, USA
| |
Collapse
|
143
|
Docampo MD, Auletta JJ, Jenq RR. Emerging Influence of the Intestinal Microbiota during Allogeneic Hematopoietic Cell Transplantation: Control the Gut and the Body Will Follow. Biol Blood Marrow Transplant 2015; 21:1360-6. [PMID: 25708215 DOI: 10.1016/j.bbmt.2015.02.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota has many critical roles in maintaining gastrointestinal epithelial and gastrointestinal systemic immune homeostasis. This review provides insight into how allogeneic hematopoietic cell transplantation (HCT) and its associated complications and supportive care therapies affect the microbiota. Additionally, the review discusses how preservation and restoration of the microbiota might be advantageous in decreasing HCT-related morbidity and mortality.
Collapse
Affiliation(s)
- Melissa D Docampo
- Department of Immunology, Weill Cornell Graduate School of Medical Sciences, New York, New York.
| | - Jeffery J Auletta
- Host Defense Program, Hematology/Oncology/BMT and Infectious Diseases, Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Robert R Jenq
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| |
Collapse
|
144
|
Mika M, Mack I, Korten I, Qi W, Aebi S, Frey U, Latzin P, Hilty M. Dynamics of the nasal microbiota in infancy: a prospective cohort study. J Allergy Clin Immunol 2015; 135:905-912.e11. [PMID: 25636948 DOI: 10.1016/j.jaci.2014.12.1909] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Understanding the composition and dynamics of the upper respiratory tract microbiota in healthy infants is a prerequisite to investigate the role of the microbiota in patients with respiratory diseases. This is especially true in early life, when the immune system is in development. OBJECTIVE We sought to describe the dynamics of the upper respiratory tract microbiota in healthy infants within the first year of life. METHODS After exclusion of low-quality samples, microbiota characterization was performed by using 16S rDNA pyrosequencing of 872 nasal swabs collected biweekly from 47 unselected infants. RESULTS Bacterial density increased and diversity decreased within the first year of life (R(2) = 0.95 and 0.73, respectively). A distinct profile for the first 3 months of life was found with increased relative abundances of Staphlyococcaceae and Corynebacteriaceae (exponential decay: R(2) = 0.94 and 0.96, respectively). In addition, relative bacterial abundance and composition differed significantly from summer to winter months. The individual composition of the microbiota changed with increasing time intervals between samples and was best modeled by an exponential function (R(2) = 0.97). Within-subject dissimilarity in a 2-week time interval was consistently lower than that between subjects, indicating a personalized microbiota. CONCLUSION This study reveals age and seasonality as major factors driving the composition of the nasal microbiota within the first year of life. A subject's microbiota is personalized but dynamic throughout the first year. These data are indispensable to interpretation of cross-sectional studies and investigation of the role of the microbiota in both healthy subjects and patients with respiratory diseases. They might also serve as a baseline for future intervention studies.
Collapse
Affiliation(s)
- Moana Mika
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ines Mack
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital and University of Bern, Bern, Switzerland; University Children's Hospital (UKBB), Basel, Switzerland
| | - Insa Korten
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Division of Respiratory Medicine, Department of Pediatrics, Inselspital and University of Bern, Bern, Switzerland
| | - Weihong Qi
- Functional Genomics Center, Swiss Federal Institute of Technology Zurich/University of Zurich, Zurich, Switzerland
| | - Suzanne Aebi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Urs Frey
- University Children's Hospital (UKBB), Basel, Switzerland
| | - Philipp Latzin
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital and University of Bern, Bern, Switzerland; University Children's Hospital (UKBB), Basel, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland; Department of Infectious Diseases, University Hospital, Bern, Switzerland.
| |
Collapse
|
145
|
D'Argenio V, Salvatore F. The role of the gut microbiome in the healthy adult status. Clin Chim Acta 2015; 451:97-102. [PMID: 25584460 DOI: 10.1016/j.cca.2015.01.003] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/06/2015] [Indexed: 02/07/2023]
Abstract
The gut microbiome, which hosts up to 1000 bacterial species that encode about 5 million genes, perform many of the functions required for host physiology and survival. Consequently, it is also known as "our forgotten organ". The recent development of next-generation sequencing technologies has greatly improved metagenomic research. In particular, it has increased our knowledge about the microbiome and its mutually beneficial relationships with the human host. Microbial colonization begins immediately at birth. Although influenced by a variety of stimuli, namely, diet, physical activity, travel, illness, hormonal cycles and therapies, the microbiome is practically stable in healthy adults. This suggests that the microbiome plays a role in the maintenance of a healthy state in adulthood. Quantitative and qualitative alterations in the composition of the gut microbiome could lead to pathological dysbiosis, and have been related to an increasing number of intestinal and extra-intestinal diseases. With the increase in knowledge about gut microbiome functions, it is becoming increasingly more possible to develop novel diagnostic, prognostic and, most important, therapeutic strategies based on microbiome manipulation.
Collapse
Affiliation(s)
- Valeria D'Argenio
- CEINGE-Biotecnologie Avanzate, via G. Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate, via G. Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy; IRCCS-Fondazione SDN, 80143 Naples, Italy.
| |
Collapse
|
146
|
De Schryver P, Vadstein O. Ecological theory as a foundation to control pathogenic invasion in aquaculture. THE ISME JOURNAL 2014; 8:2360-8. [PMID: 24892581 PMCID: PMC4260705 DOI: 10.1038/ismej.2014.84] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 03/20/2014] [Accepted: 04/18/2014] [Indexed: 01/02/2023]
Abstract
Detrimental host-pathogen interactions are a normal phenomenon in aquaculture animal production, and have been counteracted by prophylactic use of antibiotics. Especially, the youngest life stages of cultivated aquatic animals are susceptible to pathogen invasion, resulting in disease and mortality. To establish a more sustainable aquatic food production, there is a need for new microbial management strategies that focus on 'join them' and not the traditional 'beat them' approaches. We argue that ecological theory could serve as a foundation for developing sustainable microbial management methods that prevent pathogenic disease in larviculture. Management of the water microbiota in aquaculture systems according to ecological selection principles has been shown to decrease opportunistic pathogen pressure and to result in an improved performance of the cultured animals. We hypothesize that manipulation of the biodiversity of the gut microbiota can increase the host's resistance against pathogenic invasion and infection. However, substantial barriers need to be overcome before active management of the intestinal microbiota can effectively be applied in larviculture.
Collapse
Affiliation(s)
- Peter De Schryver
- Laboratory of Aquaculture and Artemia Reference Center, Ghent University, Ghent, Belgium
| | - Olav Vadstein
- Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
147
|
Ha CWY, Lam YY, Holmes AJ. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World J Gastroenterol 2014; 20:16498-16517. [PMID: 25469018 PMCID: PMC4248193 DOI: 10.3748/wjg.v20.i44.16498] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 06/26/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging.
Collapse
|
148
|
Joice R, Yasuda K, Shafquat A, Morgan XC, Huttenhower C. Determining microbial products and identifying molecular targets in the human microbiome. Cell Metab 2014; 20:731-741. [PMID: 25440055 PMCID: PMC4254638 DOI: 10.1016/j.cmet.2014.10.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human-associated microbes are the source of many bioactive microbial products (proteins and metabolites) that play key functions both in human host pathways and in microbe-microbe interactions. Culture-independent studies now provide an accelerated means of exploring novel bioactives in the human microbiome; however, intriguingly, a substantial fraction of the microbial metagenome cannot be mapped to annotated genes or isolate genomes and is thus of unknown function. Meta'omic approaches, including metagenomic sequencing, metatranscriptomics, metabolomics, and integration of multiple assay types, represent an opportunity to efficiently explore this large pool of potential therapeutics. In combination with appropriate follow-up validation, high-throughput culture-independent assays can be combined with computational approaches to identify and characterize novel and biologically interesting microbial products. Here we briefly review the state of microbial product identification and characterization and discuss possible next steps to catalog and leverage the large uncharted fraction of the microbial metagenome.
Collapse
Affiliation(s)
- Regina Joice
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Koji Yasuda
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Afrah Shafquat
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xochitl C Morgan
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
149
|
Baty V, Mougin B, Dekeuwer C, Carret G. Gut Health in the era of the human gut microbiota: from metaphor to biovalue. MEDICINE, HEALTH CARE, AND PHILOSOPHY 2014; 17:579-597. [PMID: 24610296 DOI: 10.1007/s11019-014-9552-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The human intestinal ecosystem, previously called the gut microflora is now known as the Human Gut Microbiota (HGM). Microbiome research has emphasized the potential role of this ecosystem in human homeostasis, offering unexpected opportunities in therapeutics, far beyond digestive diseases. It has also highlighted ethical, social and commercial concerns related to the gut microbiota. As diet factors are accepted to be the major regulator of the gut microbiota, the modulation of its composition, either by antibiotics or by food intake, should be regarded as a fascinating tool for improving the human health. Scientists, the food industry, consumers and policymakers alike are involved in this new field of nutrition. Defining how knowledge about the HGM is being translated into public perception has never been addressed before. This raises the question of metaphors associated with the HGM, and how they could be used to improve public understanding, and to influence individual decision-making on healthcare policy. This article suggests that a meeting of stakeholders from the social sciences, basic research and the food industry, taking an epistemological approach to the HGM, is needed to foster close, innovative partnerships that will help shape public perception and enable novel behavioural interventions that would benefit public health.
Collapse
Affiliation(s)
- Vincent Baty
- Service de Gastroentérologie, Clinique Mutualiste, 107 rue Trarieux, 69003, Lyon, France,
| | | | | | | |
Collapse
|
150
|
Abstract
Antibiotics have been a cornerstone of innovation in the fields of public health, agriculture, and medicine. However, recent studies have shed new light on the collateral damage they impart on the indigenous host-associated communities. These drugs have been found to alter the taxonomic, genomic, and functional capacity of the human gut microbiota, with effects that are rapid and sometimes persistent. Broad-spectrum antibiotics reduce bacterial diversity while expanding and collapsing membership of specific indigenous taxa. Furthermore, antibiotic treatment selects for resistant bacteria, increases opportunities for horizontal gene transfer, and enables intrusion of pathogenic organisms through depletion of occupied natural niches, with profound implications for the emergence of resistance. Because these pervasive alterations can be viewed as an uncoupling of mutualistic host-microbe relationships, it is valuable to reconsider antimicrobial therapies in the context of an ecological framework. Understanding the biology of competitive exclusion, interspecies protection, and gene flow of adaptive functions in the gut environment may inform the design of new strategies that treat infections while preserving the ecology of our beneficial constituents.
Collapse
|