101
|
Distribution of serotypes and antimicrobial resistance genes among Streptococcus agalactiae isolates from bovine and human hosts. J Clin Microbiol 2005. [PMID: 16333073 DOI: 10.1128/jcm.43.12.5899–5906.2005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To better understand the emergence and transmission of antibiotic-resistant Streptococcus agalactiae, we compared phenotypic and genotypic characteristics of 52 human and 83 bovine S. agalactiae isolates. Serotypes found among isolates from human hosts included V (48.1%), III (19.2%), Ia and Ib (13.5% each), and II (5.8%). Among isolates from bovine hosts, molecular serotypes III and II were predominant (53 and 14.5%, respectively). Four and 21 different ribotypes were found among human and bovine isolates, respectively. A combination of ribotyping and serotyping showed that two bovine isolates were indistinguishable from human isolates. Resistance to tetracycline and erythromycin was more common among human (84.6% and 26.9%, respectively) than bovine (14.5% and 3.6%, respectively) isolates. tetM was found in all tetracycline-resistant human isolates, while tetO was the predominant resistance gene among bovine isolates. tet genes were found among various ribotypes. ermB, ermTR, and mefA were detected among erythromycin-resistant human isolates, while ermB was the only erythromycin resistance determinant among isolates from bovine hosts. For isolates from human hosts, erythromycin resistance genes appeared to be associated with specific ribotypes. We conclude that (i) human and bovine S. agalactiae isolates represent distinct populations; (ii) human host-associated S. agalactiae subtypes may occasionally be transmitted to bovines; (iii) while emergence of erythromycin and tetracycline resistance appears to largely occur independently among human and bovine isolates, occasional cross-species transfer of resistant strains or transmission of resistance genes between human- and bovine-associated subtypes may occur; and (iv) dissemination of antibiotic-resistant S. agalactiae appears to include both clonal spread of resistant strains as well as horizontal gene transfer.
Collapse
|
102
|
Calbo E, Garau J. Application of Pharmacokinetics and Pharmacodynamics to Antimicrobial Therapy of Community-Acquired Respiratory Tract Infections. Respiration 2005; 72:561-71. [PMID: 16354997 DOI: 10.1159/000089567] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To achieve bacteriologic and clinical success, sufficient concentrations of antimicrobial at the site of infection must be maintained for an adequate period of time. These dynamics are determined by combining drug pharmacokinetic and pharmacodynamic (PK/PD) data with minimum inhibitory concentrations. Bacteriologically confirmed failures have been reported in otitis media and, with a lesser degree of evidence, in pneumococcal pneumonia with a variety of agents that include beta-lactams, macrolides and fluoroquinolones. These failures have been shown to be due to infection by resistant pathogens or suboptimal therapy. However, no clinical failure has been reported during therapy for bacteremic pneumococcal pneumonia with adequate doses of beta-lactams. The failures reported with macrolides or fluoroquinolones have been due to either preexisting resistance to these agents that cannot be overcome by increasing the dose of the antimicrobial or, more rarely, the emergence of resistance during therapy. In this review, we offer an overview of the most important attributes of the main antimicrobials that are currently used in the treatment of community-acquired respiratory tract infections from a PK/PD perspective.
Collapse
Affiliation(s)
- Esther Calbo
- Department of Internal Medicine, Infectious Diseases Unit, Hospital Mútua de Terrassa, University of Barcelona, ES-08221 Barcelona, Spain
| | | |
Collapse
|
103
|
Dobay O, Rozgonyi F, Amyes SGB. Molecular characterisation of Hungarian macrolide-resistant Streptococcus pneumoniae isolates, including three highly resistant strains with the mef gene. Int J Antimicrob Agents 2005; 25:488-95. [PMID: 15878263 DOI: 10.1016/j.ijantimicag.2005.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 02/09/2005] [Indexed: 10/25/2022]
Abstract
The macrolide resistance of 304 Hungarian Streptococcus pneumoniae isolates was investigated. Antibiotic sensitivity testing was performed in air and in 5% CO(2). More erythromycin resistance was noted when growth was in CO(2). A resistance determinant was found in almost all isolates: erm(B) gene (87.4%), mef genes (9.2%) and one strain with the erm(TR) gene. This indicates that screening for carriage of resistance determinants should always be done in the presence of 5% CO(2). We found three isolates with mef(E), which were highly resistant to erythromycin. These contained multiple and some novel, ribosomal mutations. The most prevalent serogroups were 6, 19 and 14. Based on the PFGE pattern, we found identity between the Hungarian isolates and two PMEN clones.
Collapse
Affiliation(s)
- Orsolya Dobay
- Medical Microbiology, Medical School, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland, UK
| | | | | |
Collapse
|
104
|
Rolain JM, Raoult D. Genome Comparison Analysis of Molecular Mechanisms of Resistance to Antibiotics in the Rickettsia Genus. Ann N Y Acad Sci 2005; 1063:222-30. [PMID: 16481518 DOI: 10.1196/annals.1355.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study we describe molecular mechanisms of resistance to several classes of antibiotics within drug targets by in silico genome comparisons for bacteria of the genus Rickettsia. Apart from the mutations in the rpoB gene in naturally rifampin-resistant Rickettsia species previously reported by our team, we found that typhus group (TG) rickettsiae had a triple amino acid difference in the highly conserved region of the L22 ribosomal protein as compared to the spotted fever group rickettsiae (SFG), which could explain the natural resistance of SFG rickettsia to erythromycin. We found also that the genome of R. conorii contains an aminoglycoside 3'-phosphotransferase. Finally, either folA gene (encoding dihydrofolate reductase) and/or folP gene (encoding dihydropteroate synthase) was missing in the genome of rickettsial strains explaining the natural resistance to cotrimoxazole. Finally, multiple genes encoding for pump efflux were found especially in the genome of R. conorii that could be involved in resistance to antibiotics. Five specific ORFs related to antibiotic resistance have been identified in the genome of R. felis including a streptomycin resistance protein homologue, a class C beta-lactamase, a class D beta-lactamase, a penicillin acylase homologue, and an ABC-type multidrug transporter system. For the first time, using this approach, an experimental beta-lactamase activity has been shown for this bacterium. We believe that whole genome sequence analysis may help to predict several phenotypic characters, in particular resistance to antibiotics for obligate intracellular bacteria.
Collapse
Affiliation(s)
- J M Rolain
- Unité des Rickettsies, IFR 48, CNRS UMR 6020, Université de la Méditerranée, Faculté de medicine, 13385 Marseille cedex 5, France
| | | |
Collapse
|
105
|
Abstract
Many clinically useful antibiotics exert their antimicrobial effects by blocking protein synthesis on the bacterial ribosome. The structure of the ribosome has recently been determined by X-ray crystallography, revealing the molecular details of the antibiotic-binding sites. The crystal data explain many earlier biochemical and genetic observations, including how drugs exercise their inhibitory effects, how some drugs in combination enhance or impede each other's binding, and how alterations to ribosomal components confer resistance. The crystal structures also provide insight as to how existing drugs might be derivatized (or novel drugs created) to improve binding and circumvent resistance.
Collapse
Affiliation(s)
- Jacob Poehlsgaard
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|
106
|
Reinert RR, van der Linden M, Al-Lahham A. Molecular characterization of the first telithromycin-resistant Streptococcus pneumoniae isolate in Germany. Antimicrob Agents Chemother 2005; 49:3520-2. [PMID: 16048973 PMCID: PMC1196262 DOI: 10.1128/aac.49.8.3520-3522.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 486 Streptococcus pneumoniae isolates were collected in 2003 and 2004 in Germany and revealed the following resistance rates: penicillin G (7.2%) and erythromycin A (18.9%). Telithromycin exhibited good in vitro activity (MIC at which 90% of the isolates tested were inhibited, 0.125 microg/ml). However, one erm(B)-positive isolate was found to be telithromycin resistant (MIC, 8 microg/ml).
Collapse
Affiliation(s)
- Ralf René Reinert
- Institute for Medical Microbiology, National Reference Center for Streptococci, University Hospital, Pauwelsstrasse 30, D-52057 Aachen, Germany.
| | | | | |
Collapse
|
107
|
Douthwaite S, Jalava J, Jakobsen L. Ketolide resistance inStreptococcus pyogenescorrelates with the degree of rRNA dimethylation by Erm. Mol Microbiol 2005; 58:613-22. [PMID: 16194243 DOI: 10.1111/j.1365-2958.2005.04863.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macrolide and ketolide antibiotics inhibit protein synthesis on the bacterial ribosome. Resistance to these antibiotics is conferred by dimethylation at 23S rRNA nucleotide A2058 within the ribosomal binding site. This form of resistance is encoded by erm dimethyltransferase genes, and is found in many pathogenic bacteria. Clinical isolates of Streptococcus pneumoniae with constitutive erm(B) and Streptococcus pyogenes with constitutive erm(A) subtype (TR) are resistant to macrolides, but remain susceptible to ketolides such as telithromycin. Paradoxically, some strains of S. pyogenes that possess an identical erm(B) gene are clinically resistant to ketolides as well as macrolides. Here we explore the molecular basis for the differences in these streptococcal strains using mass spectrometry to determine the methylation status of their rRNAs. We find a correlation between the levels of A2058-dimethylation and ketolide resistance, and dimethylation is greatest in S. pyogenes strains expressing erm(B). In constitutive erm strains that are ketolide-sensitive, appreciable proportions of the rRNA remain monomethylated. Incubation of these strains with subinhibitory amounts of the macrolide erythromycin increases the proportion of dimethylated A2058 (in a manner comparable with inducible erm strains) and reduces ketolide susceptibility. The designation 'constitutive' should thus be applied with some reservation for most streptococcal erm strains. One strain worthy of the constitutive designation is S. pyogenes isolate KuoR21, which has lost part of the regulatory region upstream of erm(B). In S. pyogenes KuoR21, nucleotide A2058 is fully dimethylated under all growth conditions, and this strain displays the highest resistance to telithromycin (MIC > 64 microg ml-1).
Collapse
Affiliation(s)
- Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | | | |
Collapse
|
108
|
Wolter N, Smith AM, Farrell DJ, Schaffner W, Moore M, Whitney CG, Jorgensen JH, Klugman KP. Novel mechanism of resistance to oxazolidinones, macrolides, and chloramphenicol in ribosomal protein L4 of the pneumococcus. Antimicrob Agents Chemother 2005; 49:3554-7. [PMID: 16048983 PMCID: PMC1196237 DOI: 10.1128/aac.49.8.3554-3557.2005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two clinical Streptococcus pneumoniae isolates, identified as resistant to macrolides and chloramphenicol and nonsusceptible to linezolid, were found to contain 6-bp deletions in the gene encoding riboprotein L4. The gene transformed susceptible strain R6 so that it exhibited such resistance, with the transformants also showing a fitness cost. We demonstrate a novel bacterial mechanism of resistance to chloramphenicol and nonsusceptibility to linezolid.
Collapse
Affiliation(s)
- Nicole Wolter
- Respiratory and Meningeal Pathogens Research Unit, National Institute for Communicable Diseases, P.O. Box 1038, Johannesburg, 2000, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Stakenborg T, Vicca J, Butaye P, Maes D, Minion FC, Peeters J, De Kruif A, Haesebrouck F. Characterization of In Vivo Acquired Resistance of Mycoplasma hyopneumoniae to Macrolides and Lincosamides. Microb Drug Resist 2005; 11:290-4. [PMID: 16201934 DOI: 10.1089/mdr.2005.11.290] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Macrolides and related antibiotics are used to control mycoplasma infections in the pig industry worldwide. Some porcine mycoplasmas, however, survive these treatments by acquiring resistance. The mechanism of acquired resistance to macrolides and lincosamides was studied in more detail for Mycoplasma hyopneumoniae by comparing both the phenotype and genotype of a resistant field isolate to five susceptible isolates. The MICs were significantly higher for the resistant strain for all antibiotics tested. The MICs for the 16-membered macrolide tylosin ranged from 8 to 16 microg for the resistant strain and from 0.03 to 0.125 microg/ml for the five susceptible strains. The MICs for the 15-membered macrolides and lincosamides were higher than 64 microg/ml for the resistant strain while only 0.06 to 0.5 microg/ml for the susceptible strains. Mycoplasma hyopneumoniae strains are intrinsically resistant to the 14-membered macrolides due to a G 2057 A transition (E. coli numbering) in their 23S rDNA. Therefore, high MICs were observed for all strains, although the MICs for the resistant strain were clearly increased. An additional, acquired A 2058 G point mutation was found in the 23S rRNA gene of the resistant strain. No differences linked to resistance were found in the ribosomal proteins L4 and L22. The present study showed that 23S rRNA mutations resulting in resistance to macrolides and lincosamides as described in other Mycoplasma spp. also occur under field conditions in M. hyopneumoniae.
Collapse
Affiliation(s)
- Tim Stakenborg
- Veterinary and Agrochemical Research Centre, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Reinert RR, Al-Lahham A. Time-kill study of the activity of telithromycin against macrolide-resistant Streptococcus pneumoniae Isolates with 23S rRNA mutations and changes in ribosomal proteins L4 and L22. Antimicrob Agents Chemother 2005; 49:3011-3. [PMID: 15980387 PMCID: PMC1168645 DOI: 10.1128/aac.49.7.3011-3013.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By use of a time-kill methodology, the antipneumococcal activity of telithromycin was determined against macrolide-resistant S. pneumoniae isolates having mutations in the 23S rRNA gene and changes in the ribosomal proteins L4 and L22. Telithromycin had MICs ranging between 0.03 and 0.25 microg/ml and was bactericidal against four of seven strains after 24 h at two times the MIC.
Collapse
Affiliation(s)
- Ralf René Reinert
- Institute of Medical Microbiology, National Reference Centre for Streptococci, University of Aachen, Pauwelsstrasse 30, D-52057 Aachen, Germany.
| | | |
Collapse
|
111
|
Davies TA, Bush K, Sahm D, Evangelista A. Predominance of 23S rRNA mutants among non-erm, non-mef macrolide-resistant clinical isolates of Streptococcus pneumoniae collected in the United States in 1999-2000. Antimicrob Agents Chemother 2005; 49:3031-3. [PMID: 15980393 PMCID: PMC1168632 DOI: 10.1128/aac.49.7.3031-3033.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 322 erythromycin-resistant pneumococci from TRUST 3 and TRUST 4 United States surveillance studies (1999-2000) were screened for 23S rRNA, L4, and L22 gene mutations. Nineteen isolates, two with mefA, had mutations at position 2058 or 2059 in 23S rRNA. Two had a 69GTG71-to-TPS substitution in L4; one of these also contained ermA.
Collapse
Affiliation(s)
- Todd A Davies
- Johnson & Johnson Pharmaceutical Research & Development, LLC, Room B225, 1000 Route 202, Raritan, New Jersey 08869.
| | | | | | | |
Collapse
|
112
|
Reinert RR, Reinert S, van der Linden M, Cil MY, Al-Lahham A, Appelbaum P. Antimicrobial susceptibility of Streptococcus pneumoniae in eight European countries from 2001 to 2003. Antimicrob Agents Chemother 2005; 49:2903-13. [PMID: 15980367 PMCID: PMC1168634 DOI: 10.1128/aac.49.7.2903-2913.2005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Susceptibility testing results for Streptococcus pneumoniae isolates (n = 2,279) from eight European countries, examined in the PneumoWorld Study from 2001 to 2003, are presented. Overall, 24.6% of S. pneumoniae isolates were nonsusceptible to penicillin G and 28.0% were resistant to macrolides. The prevalence of resistance varied widely between European countries, with the highest rates of penicillin G and macrolide resistance reported from Spain and France. Serotype 14 was the leading serotype among penicillin G- and macrolide-resistant S. pneumoniae isolates. One strain (PW 158) showed a combination of an efflux type of resistance with a 23S rRNA mutation (A2061G, pneumococcal numbering; A2059G, Escherichia coli numbering). Six strains which showed negative results for mef(A) and erm(B) in repeated PCR assays had mutations in 23S rRNA or alterations in the L4 ribosomal protein (two strains). Fluoroquinolone resistance rates (levofloxacin MIC > or = 4 microg/ml) were low (Austria, 0%; Belgium, 0.7%; France, 0.9%; Germany, 0.4%; Italy, 1.3%; Portugal, 1.2%; Spain, 1.0%; and Switzerland, 0%). Analysis of quinolone resistance-determining regions showed eight strains with a Ser81 alteration in gyrA; 13 of 18 strains showed a Ser79 alteration in parC. The clonal profile, as analyzed by multilocus sequence typing (MLST), showed that the 18 fluoroquinolone-resistant strains were genetically heterogeneous. Seven of the 18 strains belonged to new sequence types not hitherto described in the MLST database. Europe-wide surveillance for monitoring of the further spread of these antibiotic-resistant S. pneumoniae clones is warranted.
Collapse
Affiliation(s)
- Ralf René Reinert
- Institute of Medical Microbiology, National Reference Centre for Streptococci, University of Aachen (RWTH-Aachen), Pauwelsstrasse 30, D-52057 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
113
|
Drago L, De Vecchi E, Nicola L, Legnani D, Prenna M, Ripa S. In vitro selection of resistance to clarithromycin in Streptococcus pneumoniae clinical isolates. J Chemother 2005; 17:161-8. [PMID: 15920900 DOI: 10.1179/joc.2005.17.2.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
In this study the effects of exposure to serum, lung and breakpoint concentrations on Streptococcus pneumoniae susceptibility to clarithromycin, azithromycin, amoxicillin/clavulanate, levofloxacin and moxifloxacin were evaluated. Development of resistance was determined by multi-step and single-step methodologies. In the first experimental set, minimum inhibitory concentrations (MICs) were determined after 10 passages on antibiotic-gradient plates and 10 passages on antibiotic-free plates. Acquisition of resistance was defined as an increase of > or = 4-fold from the starting MIC. In single-step studies, the rate of spontaneous mutations was calculated after a passage on antibiotic-containing agar plates. Azithromycin and levofloxacin gave the highest number of strains with MIC increased of at least 4 times the starting value, followed by moxifloxacin and by clarithromycin which only at the lowest concentration tested selected for resistance in 5 strains. Amoxicillin/clavulanate never displayed > or = 4-fold MIC increase. Frequencies of mutation were lower for clarithromycin and moxifloxacin than for the comparators. At lung concentrations clarithromycin had limited potential to select for resistance.
Collapse
Affiliation(s)
- L Drago
- Laboratory of Clinical Microbiology, Dept of Clinical Sciences, L. Sacco Teaching Hospital, University of Milan.
| | | | | | | | | | | |
Collapse
|
114
|
Littauer P, Sangvik M, Caugant DA, Høiby EA, Simonsen GS, Sundsfjord A. Molecular epidemiology of macrolide-resistant isolates of Streptococcus pneumoniae collected from blood and respiratory specimens in Norway. J Clin Microbiol 2005; 43:2125-32. [PMID: 15872231 PMCID: PMC1153744 DOI: 10.1128/jcm.43.5.2125-2132.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Norway has a low prevalence of antimicrobial resistance, including macrolide-resistant Streptococcus pneumoniae (MRSP). In a nationwide surveillance program, a total of 2,200 S. pneumoniae isolates were collected from blood cultures and respiratory tract specimens. Macrolide resistance was detected in 2.7%. M-type macrolide resistance was found in 60% of resistant isolates, and these were mainly mef(A)-positive, serotype-14 invasive isolates. The erm(B)-encoded macrolide-lincosamide-streptogramin B (MLS(B)) type dominated among the noninvasive isolates. One strain had an A2058G mutation in the 23S rRNA gene. Coresistance to other antibiotics was seen in 96% of the MLS(B)-type isolates, whereas 92% of the M-type isolates were susceptible to other commonly used antimicrobial agents. Serotypes 14, 6B, and 19F accounted for 84% of the macrolide-resistant isolates, with serotype 14 alone accounting for 67% of the invasive isolates. A total of 29 different sequence types (STs) were detected by multilocus sequence typing. Twelve STs were previously reported international resistant clones, and 75% of the macrolide-resistant isolates had STs identical or closely related to these clones. Eleven isolates displayed 10 novel STs, and 7/11 of these "Norwegian strains" coexpressed MLS(B) and tetracycline resistance, indicating the presence of Tn1545. The invasive serotype-14 isolates were all classified as ST9 or single-locus variants of this clone. ST9 is a mef-positive M-type clone, commonly known as England(14)-9, reported from several European countries. These observations suggest that the import of major international MRSP clones and the local spread of Tn1545 are the major mechanisms involved in the evolution and dissemination of MRSP in Norway.
Collapse
Affiliation(s)
- P Littauer
- University Hospital of North Norway (UNN), Department of Microbiology and Virology, Faculty of Medicine, Institute for Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
115
|
Abstract
Community-acquired respiratory tract infections (RTIs) account for a substantial proportion of outpatient antimicrobial drug prescriptions worldwide. Concern over the emergence of multidrug resistance in pneumococci has largely been focused on penicillin-resistant Streptococcus pneumoniae. Macrolide antimicrobial drugs have been widely used to empirically treat community-acquired RTIs because of their efficacy in treating both common and atypical respiratory pathogens, including S. pneumoniae. However, increased macrolide use has been associated with a global increase in pneumococcal resistance, which is leading to concern over the continued clinical efficacy of the macrolides to treat community-acquired RTIs. We provide an overview of macrolide-resistant S. pneumoniae and assess the impact of this resistance on the empiric treatment of community-acquired RTIs.
Collapse
Affiliation(s)
- Keith P Klugman
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
116
|
Wierzbowski AK, Hoban DJ, Hisanaga T, Decorby M, Zhanel GG. The use of macrolides in treatment of upper respiratory tract infections. Curr Infect Dis Rep 2005; 7:175-184. [PMID: 15847719 DOI: 10.1007/s11908-005-0031-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Antimicrobial resistance is a growing problem among upper respiratory tract pathogens. Resistance to beta-lactam drugs among Streptococcus pneumoniae, Haemophilus influenzae, and Streptococcus pyogenes is increasing. As safe and well-tolerated antibiotics, macrolides play a key role in the treatment of community-acquired upper respiratory tract infections (RTIs). Their broad spectrum of activity against gram-positive cocci, such as S. pneumoniae and S. pyogenes, atypical pathogens, H. influenzae (azithromycin and clarithromycin), and Moraxella catarrhalis, has led to the widespread use of macrolides for empiric treatment of upper RTIs and as alternatives for patients allergic to b-lactams. Macrolide resistance is increasing among pneumococci and recently among S. pyogenes, and is associated with increasing use of the newer macrolides, such as azithromycin. Ribosomal target modification mediated by erm(A) and erm(B) genes and active efflux due to mef(A) and mef(E) are the principal mechanisms of resistance in S. pneumoniae and S. pyogenes. Recently, ribosomal protein and RNA mutations have been found responsible for acquired resistance to macrolides in S. pneumoniae, S. pyogenes, and H. influenzae. Although macrolides are only weakly active against macrolide-resistant streptococci species producing an efflux pump (mef) and are inactive against pathogens with ribosomal target modification (erm), treatment failures are uncommon. Therefore, macrolide therapy, for now, remains a good alternative for treatment of upper RTIs; however, continuous monitoring of the local resistance patterns is essential.
Collapse
Affiliation(s)
- Aleksandra K Wierzbowski
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, MS673-Microbiology, Health Sciences Centre, 820 Sherbrook Street, Winnipeg, Manitoba R3A 1R9, Canada.
| | | | | | | | | |
Collapse
|
117
|
Roberts MC. Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol Biotechnol 2005; 28:47-62. [PMID: 15456963 DOI: 10.1385/mb:28:1:47] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Macrolides have enjoyed a resurgence as new derivatives and related compounds have come to market. These newer compounds have become important in the treatment of community-acquired pneumoniae and nontuberculosis-Mycobacterium diseases. In this review, the bacterial mechanisms of resistance to the macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics, the distribution of the various acquired genes that confer resistance, as well as mutations that have been identified in clinical and laboratory strains are examined.
Collapse
Affiliation(s)
- Marilyn C Roberts
- Department of Pathobiology, Box 357238, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
118
|
Affiliation(s)
- Leonard Katz
- Kosan Biosciences, Incorporated, 3832 Bay Center Place, Hayward, California 94545, USA.
| | | |
Collapse
|
119
|
Reinert RR, Ringelstein A, van der Linden M, Cil MY, Al-Lahham A, Schmitz FJ. Molecular epidemiology of macrolide-resistant Streptococcus pneumoniae isolates in Europe. J Clin Microbiol 2005; 43:1294-300. [PMID: 15750098 PMCID: PMC1081259 DOI: 10.1128/jcm.43.3.1294-1300.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many European countries, the level of pneumococcal resistance to macrolides has now passed the level of resistance to penicillin G. A total of 82 erythromycin A-resistant isolates of Streptococcus pneumoniae were collected by 11 laboratories in seven European countries. All of the isolates were tested for antimicrobial susceptibility, analyzed for clonal relatedness by multilocus sequence typing, and characterized for macrolide resistance genotypes. The prevalence of the macrolide resistance genotypes varied substantially between countries. In France (87.5% of all strains), Spain (77.3%), Switzerland (80%), and Poland (100%), strains were predominantly erm(B) positive, whereas higher levels of mef(A)-positive strains were reported from Greece (100%) and Germany (33.3%). Macrolide resistance was caused by the oligoclonal spread of some multilocus sequence types, but significant differences in clonal distribution were noted between France and Spain, countries from which high levels of macrolide resistance have been reported. Overall, sequence type 81 (Spain23F-1 clone) was by far the most widespread. The mainly erm(B)-positive serotype 14 clone (sequence type 143), first reported in Poland in the mid-1990s, is now widespread in France.
Collapse
Affiliation(s)
- Ralf René Reinert
- Institute for Medical Microbiology, National Reference Center for Streptococci, University Hospital, Pauwelsstrasse 30, Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
120
|
Pfister P, Corti N, Hobbie S, Bruell C, Zarivach R, Yonath A, Böttger EC. 23S rRNA base pair 2057-2611 determines ketolide susceptibility and fitness cost of the macrolide resistance mutation 2058A-->G. Proc Natl Acad Sci U S A 2005; 102:5180-5. [PMID: 15795375 PMCID: PMC555689 DOI: 10.1073/pnas.0501598102] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 23S rRNA A2058G alteration mediates macrolide, lincosamide, and streptogramin B resistance in the bacterial domain and determines the selectivity of macrolide antibiotics for eubacterial ribosomes, as opposed to eukaryotic ribosomes. However, this mutation is associated with a disparate resistance phenotype: It confers high-level resistance to ketolides in mycobacteria but only marginally affects ketolide susceptibility in streptococci. We used site-directed mutagenesis of nucleotides within domain V of 23S rRNA to study the molecular basis for this disparity. We show that mutational alteration of the polymorphic 2057-2611 base pair from A-U to G-C in isogenic mutants of Mycobacterium smegmatis significantly affects susceptibility to ketolides but does not influence susceptibility to other macrolide antibiotics. In addition, we provide evidence that the 2057-2611 polymorphism determines the fitness cost of the 23S rRNA A2058G resistance mutation. Supported by structural analysis, our results indicate that polymorphic nucleotides mediate the disparate phenotype of genotypically identical resistance mutations and provide an explanation for the large species differences in the epidemiology of defined drug resistance mutations.
Collapse
Affiliation(s)
- Peter Pfister
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, CH-8006 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
121
|
Stephens DS, Zughaier SM, Whitney CG, Baughman WS, Barker L, Gay K, Jackson D, Orenstein WA, Arnold K, Schuchat A, Farley MM. Incidence of macrolide resistance in Streptococcus pneumoniae after introduction of the pneumococcal conjugate vaccine: population-based assessment. Lancet 2005; 365:855-63. [PMID: 15752529 DOI: 10.1016/s0140-6736(05)71043-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The prevalence of macrolide resistance in Streptococcus pneumoniae has risen in recent years after the introduction of new macrolides and their increased use. We assessed emergence of macrolide-resistant invasive S pneumoniae disease in Atlanta, GA, USA, before and after the licensing, in February 2000, of the heptavalent pneumococcal conjugate vaccine for young children. METHODS Prospective population-based surveillance was used to obtain pneumococcal isolates and demographic data from patients with invasive pneumococcal disease. We calculated cumulative incidence rates for invasive pneumococcal disease for 1994-2002 using population estimates and census data from the US Census Bureau. FINDINGS The incidence of invasive pneumococcal disease in Atlanta fell from 30.2 per 100,000 population (mean annual incidence 1994-99) to 13.1 per 100,000 in 2002 (p<0.0001). Striking reductions were seen in children younger than 2 years (82% decrease) and in those 2-4 years (71% decrease), age-groups targeted to receive pneumococcal conjugate vaccine. Significant declines were also noted in adults aged 20-39 (54%), 40-64 (25%), and 65 years and older (39%). Macrolide resistance in invasive S pneumoniae disease in Atlanta, after increasing steadily from 4.5 per 100,000 in 1994 to 9.3 per 100,000 in 1999, fell to 2.9 per 100,000 by 2002. Reductions in disease caused by mefE-mediated and erm-mediated macrolide-resistant isolates of conjugate-vaccine serotypes 6B, 9V, 19F, and 23F, and the vaccine-associated serotype 6A were also recorded. INTERPRETATION Vaccines can be a powerful strategy for reducing antibiotic resistance in a community.
Collapse
Affiliation(s)
- David S Stephens
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Jalava J, Marttila H. Application of molecular genetic methods in macrolide, lincosamide and streptogramin resistance diagnostics and in detection of drug-resistant Mycobacterium tuberculosis. APMIS 2005; 112:838-55. [PMID: 15638840 DOI: 10.1111/j.1600-0463.2004.apm11211-1209.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimicrobial susceptibility testing has traditionally been based on measurements of minimal inhibitory concentrations of antimicrobials. Molecular genetic studies on antimicrobial resistance have produced a great deal of genetic information which can be used for diagnosis of antimicrobial resistance determinants. Bacteria can acquire resistance to macrolides, lincosamides and streptogramin antibiotics by modification of the target site of the drugs, by active efflux of the drugs, and by inactivation of the drugs. The genetic backgrounds of these resistance mechanisms are well known and several molecular methods for detection of resistance determinants have been developed. Outbreaks of multidrug-resistant tuberculosis have focused international attention on the emergence of Mycobacterium tuberculosis strains that are resistant to antimycobacterial agents. Knowledge of the antimycobacterial resistance genetics and progress in molecular methods has made it possible to develop rapid molecular methods for susceptibility testing. This review presents the genetic background of drug resistance and introduces some methods for genotypic susceptibility testing.
Collapse
Affiliation(s)
- Jari Jalava
- National Public Health Institute, Department of Human Microbial Ecology and Inflammation, Turku University Central Hospital, Turku, Finland.
| | | |
Collapse
|
123
|
Okitsu N, Kaieda S, Yano H, Nakano R, Hosaka Y, Okamoto R, Kobayashi T, Inoue M. Characterization of ermB gene transposition by Tn1545 and Tn917 in macrolide-resistant Streptococcus pneumoniae isolates. J Clin Microbiol 2005; 43:168-73. [PMID: 15634967 PMCID: PMC540176 DOI: 10.1128/jcm.43.1.168-173.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Streptococcus pneumoniae, the ermB gene is carried by transposons, such as Tn917 and Tn1545. This study investigated the relationship between macrolide resistance and the presence of the ermB gene on Tn917 or Tn1545 in 84 Japanese pneumococcal isolates. Macrolide-resistant strains were classified into two groups as follows. Group 1 (19 strains) showed a tendency to high resistance to erythromycin (MIC at which 50% of isolates are inhibited, 4 mg/liter; MIC at which 90% of isolates are inhibited [MIC(90)], 128 mg/liter) but susceptibility to rokitamycin (MIC(90), 1 mg/liter), with the ermB gene located on Tn1545. Group 2 (65 strains) showed a tendency to high resistance to both antibiotics (MIC(90)s for both erythromycin and rokitamycin, >128 mg/liter), with the ermB gene located on Tn917. There were no strains with constitutive macrolide resistance in either group. All of the strains in group 2 had a deletion in the promoter region of ermB and an insertion of the TAAA motif in the leader peptide. The results of pulsed-field gel electrophoresis and serogrouping showed that Tn1545 spread clonally while Tn917 spread both horizontally and clonally. In conclusion, in Japanese macrolide-resistant S. pneumoniae isolates, the ermB gene is carried and spread primarily by Tn917.
Collapse
Affiliation(s)
- Naohiro Okitsu
- Department of Environmental Infectious Disease, Graduate School of Medicine, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Haanperä M, Huovinen P, Jalava J. Detection and quantification of macrolide resistance mutations at positions 2058 and 2059 of the 23S rRNA gene by pyrosequencing. Antimicrob Agents Chemother 2005; 49:457-60. [PMID: 15616336 PMCID: PMC538907 DOI: 10.1128/aac.49.1.457-460.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A pyrosequencing method for detection and quantification of macrolide resistance mutations at positions 2058 and 2059 (Escherichia coli numbering) of the 23S rRNA gene is described. The method was developed and tested for Streptococcus pneumoniae, Streptococcus pyogenes, Mycobacterium avium, Campylobacter jejuni, and Haemophilus influenzae.
Collapse
Affiliation(s)
- Marjo Haanperä
- Human Microbial Ecology Laboratory, National Public Health Institute, Kiinamyllynkatu 13, FI-20520 Turku, Finland.
| | | | | |
Collapse
|
125
|
Karlsson M, Fellström C, Johansson KE, Franklin A. Antimicrobial resistance in Brachyspira pilosicoli with special reference to point mutations in the 23S rRNA gene associated with macrolide and lincosamide resistance. Microb Drug Resist 2005; 10:204-8. [PMID: 15383163 DOI: 10.1089/mdr.2004.10.204] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A point mutation in the 23S rRNA gene causes macrolide and lincosamide resistance in Brachyspira hyodysenteriae. The possible occurrence of a similar mutation in Brachyspira pilosicoli was studied and the MICs of six antimicrobial agents for Swedish field isolates of B. pilosicoli were determined. Of 10 isolates with high MICs of macrolide and lincosamide antibiotics, six had a mutation in nucleotide position 2058 or 2059 in the 23S rRNA gene as compared to the wild type of Escherichia coli, whereas none of 10 tylosin-susceptible isolates were mutated in this region. The mutations found in position 2058 were A --> T transversions, and in position 2059 either A --> G transitions or A --> C transversions. The MICs at which 90% of the B. pilosicoli field isolates were inhibited by tylosin, erythromycin, clindamycin, virginiamycin, tiamulin, and carbadox, were >256, >256, >4, 4, 2, and 0.125 microg/ml, respectively. In conclusion, point mutations in positions 2058 and 2059 of the 23S rRNA gene can cause macrolide and lincosamide resistance in B. pilosicoli. Macrolide resistance is widespread among Swedish field isolates of B. pilosicoli. Notably also a few isolates with elevated MICs of tiamulin were found.
Collapse
Affiliation(s)
- M Karlsson
- Department of Antibiotics, National Veterinary Institute, Uppsala, Sweden.
| | | | | | | |
Collapse
|
126
|
Monaco M, Camilli R, D'Ambrosio F, Del Grosso M, Pantosti A. Evolution of erythromycin resistance in Streptococcus pneumoniae in Italy. J Antimicrob Chemother 2005; 55:256-9. [PMID: 15649990 DOI: 10.1093/jac/dkh551] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To evaluate erythromycin resistance in recent invasive isolates of Streptococcus pneumoniae in Italy, to study the phenotypic and genotypic characteristics of the isolates, and to compare data with those obtained in a previous survey. METHODS Invasive pneumococcal isolates were obtained from 56 laboratories throughout the country, in 2001-2003. Isolates were serotyped and antimicrobial susceptibilities determined by Sensititre panels and Etest. A new PCR was performed to detect erythromycin resistance genes. Typing methods for selected erythromycin-resistant isolates included PFGE and multilocus sequence typing (MLST). RESULTS One hundred and fifty-five isolates out of 444 (34.9%) were resistant to erythromycin: 95 isolates (21.4%) carried erm(B), 56 (12.6%) carried mef(A) and three carried both genes. One isolate, carrying neither erm(B) nor mef(A), showed a point mutation in domain V of the 23S rRNA genes. The mef(A)-positive isolates carried subtype mef(A) (47 isolates), subtype mef(E) (nine isolates), and both subtype mef(E) and erm(B) (three isolates). All subtype mef(A) strains, except two, belonged to serotype 14, appeared to be clonally related by PFGE and related to the England14-9 clone by MLST. The two isolates belonging to other serotypes showed different genetic backgrounds. CONCLUSIONS Erythromycin resistance in S. pneumoniae has increased in the last few years in Italy. erm(B) is still the predominant resistance determinant; however, the increase in erythromycin resistance (34.9% versus 28.8% of the previous years) is mainly due to an increase in the proportion of isolates carrying the efflux pump mef(A), whereas the proportion of isolates carrying erm(B) has not changed.
Collapse
Affiliation(s)
- Monica Monaco
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
127
|
Woodford N. Biological counterstrike: antibiotic resistance mechanisms of Gram-positive cocci. Clin Microbiol Infect 2005; 11 Suppl 3:2-21. [PMID: 15811020 DOI: 10.1111/j.1469-0691.2005.01140.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of antibiotic resistance by bacteria is an evolutionary inevitability, a convincing demonstration of their ability to adapt to adverse environmental conditions. Since the emergence of penicillinase-producing Staphylococcus aureus in the 1940s, staphylococci, enterococci and streptococci have proved themselves adept at developing or acquiring mechanisms that confer resistance to all clinically available antibacterial classes. The increasing problems of methicillin-resistant S. aureus and coagulase-negative staphylococci (MRSA and MRCoNS), glycopeptide-resistant enterococci and penicillin-resistant pneumococci in the 1980s, and recognition of glycopeptide-intermediate S. aureus in the 1990s and, most recently, of fully vancomycin-resistant isolates of S. aureus have emphasised our need for new anti-Gram-positive agents. Antibiotic resistance is one of the major public health concerns for the beginning of the 21st century. The pharmaceutical industry has responded with the development of oxazolidinones, lipopeptides, injectable streptogramins, ketolides, glycylcyclines, second-generation glycopeptides and novel fluoroquinolones. However, clinical use of these novel agents will cause new selective pressures and will continue to drive the development of resistance. This review describes the various antibiotic resistance mechanisms identified in isolates of staphylococci, enterococci and streptococci, including mechanisms of resistance to recently introduced anti-Gram-positive agents.
Collapse
Affiliation(s)
- N Woodford
- Antibiotic Resistance Monitoring and Reference Laboratory, Centre for Infections, Health Protection Agency, London NW9 5HT, UK.
| |
Collapse
|
128
|
Tanz RR, Shulman ST, Shortridge VD, Kabat W, Kabat K, Cederlund E, Rippe J, Beyer J, Doktor S, Beall BW. Community-Based Surveillance in the United States of Macrolide-Resistant Pediatric Pharyngeal Group A Streptococci during 3 Respiratory Disease Seasons. Clin Infect Dis 2004; 39:1794-801. [PMID: 15578402 DOI: 10.1086/426025] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 08/17/2004] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND In 2001, a total of 48% of pharyngeal group A streptococci (GAS) from Pittsburgh children were macrolide resistant. We assessed macrolide resistance, resistance genes, and emm types among GAS in the United States. METHODS In prospective, multicenter, community-based surveillance of pharyngeal GAS recovered from children 3-18 years old during 3 respiratory seasons (the 2000-2001 season, the 2001-2002 season, and the 2002-2003 season), GAS were tested for macrolide resistance and underwent emm gene sequencing. Macrolide-resistant GAS were tested for resistance to clindamycin, and resistance genes were determined. RESULTS Erythromycin resistance was observed in 4.4% of isolates from the 2000-2001 season, 4.3% from the 2001-2002 season, and 3.8% from the 2002-2003 season (P=.80). Clindamycin resistance was found in 1.04% of isolates; annual rates of clindamycin resistance were stable (P=.75). The predominant resistance genotype each year was mef A (65%-76.9%; overall, 70.3%). Resistant isolates included strains representing 8-11 different emm types each year. Heterogeneity of emm subtypes, resistance genes, and clindamycin resistance was evident among resistant isolates within some emm types. Geographic variability in resistance rates was present each year. CONCLUSIONS The macrolide resistance rate among pharyngeal GAS was <5% and was stable over the 3 seasons. However, rates varied among sites each year. There was no evidence of spread of a specific resistant clone, increasing clindamycin resistance, or escalation in median erythromycin MICs.
Collapse
Affiliation(s)
- Robert R Tanz
- Division of General Academic Pediatrics, Children's Memorial Hospital, Chicago, IL 60614, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Zhanel GG, Hisanaga T, Nichol K, Wierzbowski A, Hoban DJ. Ketolides: an emerging treatment for macrolide-resistant respiratory infections, focusing on S. pneumoniae. Expert Opin Emerg Drugs 2004; 8:297-321. [PMID: 14661991 DOI: 10.1517/14728214.8.2.297] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Resistance to antibiotics in community acquired respiratory infections is increasing worldwide. Resistance to the macrolides can be class-specific, as in efflux or ribosomal mutations, or, in the case of erythromycin ribosomal methylase (erm)-mediated resistance, may generate cross-resistance to other related classes. The ketolides are a new subclass of macrolides specifically designed to combat macrolide-resistant respiratory pathogens. X-ray crystallography indicates that ketolides bind to a secondary region in domain II of the 23S rRNA subunit, resulting in an improved structure-activity relationship. Telithromycin and cethromycin (formerly ABT-773) are the two most clinically advanced ketolides, exhibiting greater activity towards both typical and atypical respiratory pathogens. As a subclass of macrolides, ketolides demonstrate potent activity against most macrolide-resistant streptococci, including ermB- and macrolide efflux (mef)A-positive Streptococcus pneumoniae. Their pharmacokinetics display a long half-life as well as extensive tissue distribution and uptake into respiratory tissues and fluids, allowing for once-daily dosing. Clinical trials focusing on respiratory infections indicate bacteriological and clinical cure rates similar to comparators, even in patients infected with macrolide-resistant strains.
Collapse
Affiliation(s)
- George G Zhanel
- MS 673 Microbiology, Department of Clinical Microbiology, Health Sciences Centre, 820 Sherbrook Street, Winnipeg, Manitoba, R3A 1R9, Canada.
| | | | | | | | | |
Collapse
|
130
|
Pfister P, Jenni S, Poehlsgaard J, Thomas A, Douthwaite S, Ban N, Böttger EC. The structural basis of macrolide-ribosome binding assessed using mutagenesis of 23S rRNA positions 2058 and 2059. J Mol Biol 2004; 342:1569-81. [PMID: 15364582 DOI: 10.1016/j.jmb.2004.07.095] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 07/08/2004] [Accepted: 07/22/2004] [Indexed: 11/26/2022]
Abstract
Macrolides are a diverse group of antibiotics that inhibit bacterial growth by binding within the peptide tunnel of the 50S ribosomal subunit. There is good agreement about the architecture of the macrolide site from different crystallography studies of bacterial and archaeal 50S subunits. These structures show plainly that 23S rRNA nucleotides A2058 and A2059 are located accessibly on the surface of the tunnel wall where they act as key contact sites for macrolide binding. However, the molecular details of how macrolides fit into this site remain a matter of contention. Here, we have generated an isogenic set of single and dual substitutions at A2058 and A2059 in Mycobacterium smegmatis to investigate the effects of the rRNA mutations on macrolide binding. Resistances conferred to a comprehensive array of 11 macrolide compounds are used to assess models of macrolide binding predicted from the crystal structures. The data indicate that all macrolides and their derivatives bind at the same site in the tunnel with their C5 amino sugar in a similar orientation. Our data are compatible with the lactone rings of 14-membered and 16-membered macrolides adopting different conformations, enabling the latter compounds to avoid a steric clash with 2058G. This difference, together with interactions conveyed via substituents that are specific to certain ketolide and macrolide sub-classes, influences the binding to the large ribosomal subunit. Our genetic data show no support for a derivatized-macrolide binding site that has been proposed to be located further down the tunnel.
Collapse
Affiliation(s)
- Peter Pfister
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30-32, CH-8028 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
131
|
Rzeszutek M, Wierzbowski A, Hoban DJ, Conly J, Bishai W, Zhanel GG. A review of clinical failures associated with macrolide-resistant Streptococcus pneumoniae. Int J Antimicrob Agents 2004; 24:95-104. [PMID: 15288306 DOI: 10.1016/j.ijantimicag.2004.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The emerging reports of clinical failures using macrolides and their associations with macrolide-resistant Streptococcus pneumoniae prompted us to review the literature describing these cases. Thirty-three cases reporting macrolide treatment failure during treatment of pneumococcal infections were available for review. The most prevalent diagnosis (24/27 or 88.8% of available diagnoses) was community-acquired pneumonia (CAP). Previous medical history included cardiopulmonary disease in eight (24.2%) and immunocompromised states in five (15.1%) patients. The majority, 31/33 (93.9%) of patients received oral macrolide treatment in an outpatient setting. S. pneumoniae was isolated from the blood in 26 (78.8%) of 33 patients, three (9.1%) patients had bacteria present in both blood and cerebrospinal fluid, two (6%) patients grew S. pneumoniae from blood and bronchial washings and two (6%) patients had positive sputum cultures. The MLS(B) phenotype was the most predominant phenotype present in 12 (63.2%) of 19 patients. After failing initial macrolide treatment, 26 (78.8%) of 33 patients received parenteral antibiotic treatment. Of 33 patients admitted to hospital, 29 (87.8%) had their outcome described as 'survived'.
Collapse
Affiliation(s)
- Marek Rzeszutek
- Department of Medical Microbiology, Faculty of Medicine, Health Sciences Centre, University of Manitoba, Winnipeg, Man. R3A 1R9, Canada
| | | | | | | | | | | |
Collapse
|
132
|
Riska PF, Kutlin A, Ajiboye P, Cua A, Roblin PM, Hammerschlag MR. Genetic and culture-based approaches for detecting macrolide resistance in Chlamydia pneumoniae. Antimicrob Agents Chemother 2004; 48:3586-90. [PMID: 15328134 PMCID: PMC514725 DOI: 10.1128/aac.48.9.3586-3590.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three clinical Chlamydia pneumoniae isolates for which the MIC of azithromycin increased after treatment were investigated for genetic evidence of macrolide resistance. Attempts to induce antibiotic resistance in vitro were made. No genetic mechanism was identified for the phenotypic change in these C. pneumoniae isolates. No macrolide resistance was obtained in vitro.
Collapse
Affiliation(s)
- Paul F Riska
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA.
| | | | | | | | | | | |
Collapse
|
133
|
Uzuka R, Kawashima H, Hasegawa D, Ioi H, Amaha M, Kashiwagi Y, Takekuma K, Hoshika A, Chiba K. Rapid diagnosis of bacterial meningitis by using multiplex PCR and real time PCR. Pediatr Int 2004; 46:551-4. [PMID: 15491382 DOI: 10.1111/j.1442-200x.2004.01948.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The purpose of the present study was to improve a method for a rapid identification of bacteria in bacterial meningitis by using multiplex polymerase chain reaction (PCR). METHODS Ten species of bacteria which cause meningitis in children were investigated, and cerebrospinal fluid from patients with purulent meningitis was studied. The ribosomal RNA genes of bacteria are essential, and are highly conserved in the bacterial kingdoms with consensus region. The 23S rRNA region shows a larger variation among species than in the 16S rRNA region. The authors set primers in the universal region and specific region of 23S rRNA, then amplified these regions by multiplex PCR and real-time PCR. RESULTS All species of bacteria showed one band by PCR using universal primer. Haemophilus influenzae and Streptococcus pneumoniae showed two bands by multiplex PCR using a combination of universal primers and specific primers. The authors detected H. influenzae within 15 min by using real-time PCR. CONCLUSION It was possible to identify clinically significant bacterial species in cerebrospinal fluid by multiplex PCR, and to identify H. influenzae by real-time PCR within a short period.
Collapse
Affiliation(s)
- Rina Uzuka
- Department of Pediatrics and Central Clinical Laboratory, Tokyo Medical University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Farrell DJ, Morrissey I, Bakker S, Buckridge S, Felmingham D. In vitro activities of telithromycin, linezolid, and quinupristin-dalfopristin against Streptococcus pneumoniae with macrolide resistance due to ribosomal mutations. Antimicrob Agents Chemother 2004; 48:3169-71. [PMID: 15273142 PMCID: PMC478535 DOI: 10.1128/aac.48.8.3169-3171.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, 86 of 7,746 macrolide-resistant Streptococcus pneumoniae isolates from 1999 to 2002 PROTEKT (Prospective Resistant Organism Tracking and Epidemiology for the Ketolide Telithromycin) surveillance studies were negative for methylase and efflux mechanisms. Mutations in 23S rRNA or the genes encoding riboprotein L4 or L22 were found in 77 of 86 isolates. Six isolates were resistant to quinupristin-dalfopristin and two were resistant to linezolid, while telithromycin demonstrated good activities against all isolates.
Collapse
|
135
|
Marrie TJ. Therapeutic implications of macrolide resistance in pneumococcal community-acquired lower respiratory tract infections. Int J Clin Pract 2004; 58:769-76. [PMID: 15372850 DOI: 10.1111/j.1368-5031.2004.00152.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Macrolide anti-bacterials are widely used for the empirical treatment of lower respiratory tract infections (RTIs) due to their activity against Streptococcus pneumoniae and other common respiratory pathogens and good safety/tolerability profile. However, the prevalence of macrolide resistance, particularly pneumococcal macrolide resistance, is increasing all around the world. The mechanisms underlying macrolide resistance include efflux pump, methylase activity and, less commonly, ribosomal mutation, which produce differing levels of resistance. Growth in macrolide resistance has been linked to the increased use of these agents, and several risk factors for the development of resistance have been identified. There are emerging data to suggest that in vitro macrolide resistance may increase the likelihood of treatment failure in patients with lower RTIs. However, at present, treatment failure is rare and randomised; intervention-based trials investigating the impact of anti-bacterial resistance on clinical outcomes are lacking. Strategies to promote appropriate use of macrolides and other anti-bacterials are needed, both to maximise therapeutic impact and to minimise the development of resistance. Furthermore, there is a need for alternative anti-bacterial agents which have high efficacy against respiratory pathogens (including resistant strains) and a low potential to induce resistance.
Collapse
Affiliation(s)
- T J Marrie
- Department of Medicine, University of Alberta, Walter Mackenzie Health Sciences Center, Edmonton, Canada.
| |
Collapse
|
136
|
Abstract
Antimicrobial resistance is a growing problem among pathogens from respiratory tract infections. b-Lactam resistance rates are escalating among Streptococcus pneumoniae and Haemophilus influenzae. Macrolides are increasingly used for the treatment of respiratory tract infections, but their utility is compromised by intrinsic and acquired resistance. This article analyses macrolide-resistance mechanisms and their worldwide distributions in S pneumoniae, S pyogenes, and H influenzae.
Collapse
Affiliation(s)
- Bülent Bozdogan
- Department of Pathology, Hershey Medical Center, 500 University Drive, Pennsylvania State University, Hershey, PA 17033, USA.
| | | |
Collapse
|
137
|
Abstract
Antimicrobial resistance among respiratory tract pathogens represents a significant health care threat. Identifying the antimicrobial agents that remain effective in the presence of resistance, and knowing why, requires a thorough understanding of the mechanisms of action of the various agents as well as the mechanisms of resistance demonstrated among respiratory tract pathogens. The primary goal of antimicrobial therapy is to eradicate the pathogen, via killing or inhibiting bacteria, from the site of infection; the defenses of the body are required for killing any remaining bacteria. Targeting a cellular process or function specific to bacteria and not to the host limits the toxicity to patients. Currently, there are four general cellular targets to which antimicrobials are targeted: cell wall formation and maintenance, protein synthesis, DNA replication, and folic acid metabolism. Resistance mechanisms among respiratory tract pathogens have been demonstrated for all four targets. In general, the mechanisms of resistance used by these pathogens fall into one of three categories: enzymatic inactivation of the antimicrobial, prevention of intracellular accumulation, and modification of the target site to which agents bind to exert an antimicrobial effect. Resistance to some agents can be overcome by modifying the dosage regimens (e.g., using high-dose therapy) or inhibiting the resistance mechanism (e.g., b-lactamase inhibitors), whereas other mechanisms of resistance can only be overcome by using an agent from a different class. Understanding the mechanisms of action of the various agents and the mechanisms of resistance used by respiratory tract pathogens can help clinicians identify the agents that will increase the likelihood of achieving optimal outcomes.
Collapse
Affiliation(s)
- Michael R Jacobs
- Department of Pathology, Case Western Reserve University School of Medicine, University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, OH 44106, USA. mrj6Qcwru.edu
| | | | | |
Collapse
|
138
|
Zhanel GG, Wierzbowski AK, Hisanaga P, Hoban DJ. The Use of Ketolides in Treatment of Upper Respiratory Tract Infections. Curr Infect Dis Rep 2004; 6:191-199. [PMID: 15142482 DOI: 10.1007/s11908-004-0008-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent surveillance studies suggest that the incidence of resistance to macrolide antibiotics in common community-acquired respiratory tract pathogens, particularly Streptococcus pneumoniae and Streptococcus pyogenes, is increasing and limiting the usefulness of these drugs. The ketolides, of which telithromycin is the first to be available for clinical use (but not yet in the United States), represent a new class of antibacterials developed specifically to combat respiratory tract pathogens that have acquired resistance to macrolides. The ketolides possess innovative structural modifications, a 3-keto group and a large N-substituted C11, C12-carbamate side chain. This novel structure allows ketolides, which are inhibitors of protein synthesis, to exert a more effective interaction with domain II of the 23S rRNA, enhancing binding to bacterial ribosomes and allowing binding to macrolide-lincosamide-streptogramin B-resistant ribosomes. This novel chemical structure also promotes greater stability of telithromycin in acid conditions, providing the potential for greater stability in gastric fluid and at cellular/tissue levels. Early clinical trials support the bacteriologic and clinical efficacy of telithromycin in the treatment of upper respiratory tract infections (RTIs) such as streptococcal pharyngitis and acute sinusitis, including infections caused by macrolide-resistant S. pneumoniae and S. pyogenes. Common adverse side effects associated with telithromycin are predominantly gastrointestinal, usually of mild to moderate severity, and rarely involve withdrawal of the drug. Telithromycin represents an attractive option for the empiric treatment of upper RTIs, especially as resistance to macrolides is likely to continue to increase.
Collapse
Affiliation(s)
- George G. Zhanel
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, MS673-Microbiology, Health Sciences Centre, 820 Sherbrook Street, Winnipeg, Manitoba R3A 1R9, Canada.
| | | | | | | |
Collapse
|
139
|
Misyurina OY, Chipitsyna EV, Finashutina YP, Lazarev VN, Akopian TA, Savicheva AM, Govorun VM. Mutations in a 23S rRNA gene of Chlamydia trachomatis associated with resistance to macrolides. Antimicrob Agents Chemother 2004; 48:1347-9. [PMID: 15047540 PMCID: PMC375314 DOI: 10.1128/aac.48.4.1347-1349.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For six clinical isolates of Chlamydia trachomatis, in vitro susceptibility to erythromycin, azithromycin, and josamycin has been determined. Four isolates were resistant to all the antibiotics and had the mutations A2058C and T2611C (Escherichia coli numbering) in the 23S rRNA gene. All the isolates had mixed populations of bacteria that did and did not carry 23S rRNA gene mutations.
Collapse
Affiliation(s)
- O Y Misyurina
- Research Institute of Physico-Chemical Medicine, Russian Federation Ministry of Health, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
140
|
Reinert RR, Lütticken R, Sutcliffe JA, Tait-Kamradt A, Cil MY, Schorn HM, Bryskier A, Al-Lahham A. Clonal relatedness of erythromycin-resistant Streptococcus pyogenes isolates in Germany. Antimicrob Agents Chemother 2004; 48:1369-73. [PMID: 15047546 PMCID: PMC375310 DOI: 10.1128/aac.48.4.1369-1373.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a nationwide study in Germany, a total of 381 Streptococcus pyogenes were collected. Erythromycin A-resistant strains were characterized for the underlying resistance genotype, showing 55.6% had the efflux type mef(A), 31.5% had erm(A), and 13.0% had erm(B). A total of 23 different multilocus sequence types were observed.
Collapse
Affiliation(s)
- Ralf R Reinert
- Institute for Medical Microbiology, National Reference Center for Streptococci, University Hospital, D-52057 Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Jalava J, Vaara M, Huovinen P. Mutation at the position 2058 of the 23S rRNA as a cause of macrolide resistance in Streptococcus pyogenes. Ann Clin Microbiol Antimicrob 2004; 3:5. [PMID: 15128458 PMCID: PMC420483 DOI: 10.1186/1476-0711-3-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 05/06/2004] [Indexed: 11/21/2022] Open
Abstract
Background In streptococci, three macrolide resistance determinants (erm(B), erm(TR) and mef(A)) have been found. In addition, certain mutations at the ribosomal 23S RNA can cause resistance to macrolides. Mutation at the position 2058 of the 23S rRNA of the Streptococcus pyogenes as a cause of macrolide resistance has not been described before. Methods Antibiotic resistance determinations for the clinical S. pyogenes strain ni4277 were done using the agar dilution technique. Macrolide resistance mechanisms were studied by PCR and sequencing. All six rRNA operons were amplified using operon-specific PCR. The PCR products were partially sequenced in order to resolve the sequences of different 23S rRNA genes. Results One clinical isolate of S. pyogenes carrying an adenine to guanine mutation at the position 2058 of the 23S rRNA in five of the six possible rRNA genes but having no other known macrolide resistance determinants is described. The strain was highly resistant to macrolides and azalides, having erythromycin and azithromycin MICs > 256 microgram/ml. It was resistant to lincosamides (clindamycin MIC 16 microgram/ml) and also MIC values for ketolides were clearly elevated. The MIC for telithromycin was 16 microgram/ml. Conclusion In this clinical S. pyogenes strain, a mutation at the position 2058 was detected. No other macrolide resistance-causing determinants were detected. This mutation is known to cause macrolide resistance in other bacteria. We can conclude that this mutation was the most probable cause of macrolide, lincosamide and ketolide resistance in this strain.
Collapse
Affiliation(s)
- Jari Jalava
- Department of Human Microbial Ecology and Inflammation, National Public Health Institute, Kiinamyllynkatu 13, 20520 Turku, Finland
| | - Martti Vaara
- Martti Vaara – Division of Clinical Microbiology, Helsinki University Central Hospital, Haartmaninkatu 4, 00029 Helsinki, Finland
| | - Pentti Huovinen
- Department of Human Microbial Ecology and Inflammation, National Public Health Institute, Kiinamyllynkatu 13, 20520 Turku, Finland
| |
Collapse
|
142
|
Doktor SZ, Shortridge VD, Beyer JM, Flamm RK. Epidemiology of macrolide and/or lincosamide resistant Streptococcus pneumoniae clinical isolates with ribosomal mutations. Diagn Microbiol Infect Dis 2004; 49:47-52. [PMID: 15135500 DOI: 10.1016/s0732-8893(03)00130-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2003] [Revised: 05/19/2003] [Indexed: 11/19/2022]
Abstract
Twenty macrolide and/or lincosamide resistant Streptococcus pneumoniae clinical isolates from various sources with 50S ribosomal mutations were identified. Mutations were identified in the 23S rDNA with substitutions at A2058, A2059, or C2611 and in L4 or L22 ribosomal protein genes. Fourteen were A2059G substitutions, one was A2058G, two were C2611T, two had an altered L4 and one isolate contained an altered L22 gene. Susceptibility testing with erythromycin, josamycin, clindamycin, and two ketolides including cethromycin was performed. The L4 mutants had the amino acid changes of (69)GTG(71) to (69)TPS(71). The isolate with the L22 mutation contained an 18 base pair tandem duplication/insertion at the 3' end of the gene. 50s ribosomal mutations are the least frequent mechanism of S. pneumoniae resistance, occurring at an extremely low frequency and are identified only by genome sequence data.
Collapse
Affiliation(s)
- Stella Z Doktor
- Infectious Diseases Research, Abbott Laboratories, 200 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | |
Collapse
|
143
|
Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol 2004; 2:4. [PMID: 15059283 PMCID: PMC400760 DOI: 10.1186/1741-7007-2-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Accepted: 04/01/2004] [Indexed: 11/10/2022] Open
Abstract
Background The bacterial ribosome is a primary target of several classes of antibiotics. Investigation of the structure of the ribosomal subunits in complex with different antibiotics can reveal the mode of inhibition of ribosomal protein synthesis. Analysis of the interactions between antibiotics and the ribosome permits investigation of the specific effect of modifications leading to antimicrobial resistances. Streptogramins are unique among the ribosome-targeting antibiotics because they consist of two components, streptogramins A and B, which act synergistically. Each compound alone exhibits a weak bacteriostatic activity, whereas the combination can act bactericidal. The streptogramins A display a prolonged activity that even persists after removal of the drug. However, the mode of activity of the streptogramins has not yet been fully elucidated, despite a plethora of biochemical and structural data. Results The investigation of the crystal structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with the clinically relevant streptogramins quinupristin and dalfopristin reveals their unique inhibitory mechanism. Quinupristin, a streptogramin B compound, binds in the ribosomal exit tunnel in a similar manner and position as the macrolides, suggesting a similar inhibitory mechanism, namely blockage of the ribosomal tunnel. Dalfopristin, the corresponding streptogramin A compound, binds close to quinupristin directly within the peptidyl transferase centre affecting both A- and P-site occupation by tRNA molecules. Conclusions The crystal structure indicates that the synergistic effect derives from direct interaction between both compounds and shared contacts with a single nucleotide, A2062. Upon binding of the streptogramins, the peptidyl transferase centre undergoes a significant conformational transition, which leads to a stable, non-productive orientation of the universally conserved U2585. Mutations of this rRNA base are known to yield dominant lethal phenotypes. It seems, therefore, plausible to conclude that the conformational change within the peptidyl transferase centre is mainly responsible for the bactericidal activity of the streptogramins and the post-antibiotic inhibition of protein synthesis.
Collapse
|
144
|
Pereyre S, Guyot C, Renaudin H, Charron A, Bébéar C, Bébéar CM. In vitro selection and characterization of resistance to macrolides and related antibiotics in Mycoplasma pneumoniae. Antimicrob Agents Chemother 2004; 48:460-5. [PMID: 14742195 PMCID: PMC321523 DOI: 10.1128/aac.48.2.460-465.2004] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrolide-resistant mutants of Mycoplasma pneumoniae were selected in vitro from the susceptible reference strain M129, by 23 to 50 serial passages in subinhibitory concentrations of macrolides and related antibiotics, erythromycin A, azithromycin, josamycin, clindamycin, quinupristin, quinupristin-dalfopristin, pristinamycin, and telithromycin. Mutants for which the MICs are increased could be selected with all antibiotics except the streptogramin B quinupristin. Portions of genes encoding 23S rRNA (domains II and V) and ribosomal proteins L4 and L22 of mutants were amplified by PCR, and their nucleotide sequences were compared to those of the susceptible strain M129. No mutation could be detected in domain II of 23S rRNA. Two point mutations in domain V of 23S rRNA, C2611A and A2062G, were selected in the presence of erythromycin A, azithromycin, josamycin, quinupristin-dalfopristin, and telithromycin. Mutants selected in the presence of clindamycin and telithromycin harbored a single amino acid change (H70R or H70L, respectively) in ribosomal protein L4, whereas insertions of one, two, or three adjacent glycines at position 60 (M. pneumoniae numbering) were selected in the presence of both streptogramin combinations. Telithromycin was the sole antibiotic that selected for substitutions (P112R and A114T) and deletions ((111)IPRA(114)) in ribosomal protein L22. Three sequential mutational events in 23S rRNA and in both ribosomal proteins were required to categorize the strain as resistant to the ketolide. Azithromycin and erythromycin A were the only selector antibiotics that remained active (MICs, 0.06 and 1 micro g/ml, respectively) on their mutants selected after 50 passages.
Collapse
Affiliation(s)
- S Pereyre
- Laboratoire de Bactériologie, Université Victor Segalen Bordeaux 2, 33076 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
145
|
Arrieta A, Arguedas A, Fernandez P, Block SL, Emperanza P, Vargas SL, Erhardt WA, de Caprariis PJ, Rothermel CD. High-dose azithromycin versus high-dose amoxicillin-clavulanate for treatment of children with recurrent or persistent acute otitis media. Antimicrob Agents Chemother 2004; 47:3179-86. [PMID: 14506028 PMCID: PMC201139 DOI: 10.1128/aac.47.10.3179-3186.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infants and young children, especially those in day care, are at risk for recurrent or persistent acute otitis media (AOM). There are no data on oral alternatives to high-dose amoxicillin-clavulanate for treating AOM in these high-risk patients. In this double-blind, double-dummy multicenter clinical trial, we compared a novel, high-dose azithromycin regimen with high-dose amoxicillin-clavulanate for treatment of children with recurrent or persistent AOM. Three hundred four children were randomized; 300 received either high-dose azithromycin (20 mg/kg of body weight once a day for 3 days) or high-dose amoxicillin-clavulanate (90 mg/kg divided twice a day for 10 days). Tympanocentesis was performed at baseline; clinical response was assessed at day 12 to 16 and day 28 to 32. Two-thirds of patients were aged < or =2 years. A history of recurrent, persistent, or recurrent plus persistent AOM was noted in 67, 18, and 14% of patients, respectively. Pathogens were isolated from 163 of 296 intent-to-treat patients (55%). At day 12 to 16, clinical success rates for azithromycin and amoxicillin-clavulanate were comparable for all patients (86 versus 84%, respectively) and for children aged < or =2 years (85 versus 79%, respectively). At day 28 to 32, clinical success rates for azithromycin were superior to those for amoxicillin-clavulanate for all patients (72 versus 61%, respectively; P = 0.047) and for those aged < or =2 years (68 versus 51%, respectively; P = 0.017). Per-pathogen clinical efficacy against Streptococcus pneumoniae and Haemophilus influenzae was comparable between the two regimens. The rates of treatment-related adverse events for azithromycin and amoxicillin-clavulanate were 32 and 42%, respectively (P = 0.095). Corresponding compliance rates were 99 and 93%, respectively (P = 0.018). These data demonstrate the efficacy and safety of high-dose azithromycin for treating recurrent or persistent AOM.
Collapse
Affiliation(s)
- Antonio Arrieta
- Children's Hospital of Orange County, Orange, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Canu A, Abbas A, Malbruny B, Sichel F, Leclercq R. Denaturing high-performance liquid chromatography detection of ribosomal mutations conferring macrolide resistance in gram-positive cocci. Antimicrob Agents Chemother 2004; 48:297-304. [PMID: 14693554 PMCID: PMC310208 DOI: 10.1128/aac.48.1.297-304.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in genes coding for L4 (rplD) or L22 (rplV) ribosomal proteins or in 23S rRNA (rrl gene) are reported as a cause of macrolide resistance in streptococci and staphylococci. This study was aimed at evaluating a denaturing high-performance liquid chromatography (DHPLC) technique as a rapid mutation screening method. Portions of these genes were amplified by PCR from total DNA of 48 strains of Streptococcus pneumoniae (n = 22), Staphylococcus aureus (n = 16), Streptococcus pyogenes (n = 6), Streptococcus oralis (n = 2), and group G streptococcus (n = 2). Thirty-seven of these strains were resistant to macrolides and harbored one or several mutations in one or two of the target genes, and 11 were susceptible. PCR products were analyzed by DHPLC. All mutations were detected, except a point mutation in a pneumococcal rplD gene. The method detected one mutated rrl copy out of six in S. aureus. This automated method is promising for screening of mutations involved in macrolide resistance in gram-positive cocci.
Collapse
Affiliation(s)
- Annie Canu
- UFR des Sciences Pharmaceutiques, Groupe Régional d'Etudes sur le Cancer, Université de Caen/Basse-Normandie, France
| | | | | | | | | |
Collapse
|
147
|
Virulence factors, antibiotic resistance mechanisms and the prevalence of resistance worldwide in Streptococcus pneumoniae. ACTA ACUST UNITED AC 2004. [DOI: 10.1097/01.revmedmi.0000131429.20976.8f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
148
|
Anon JB, Jacobs MR, Poole MD, Ambrose PG, Benninger MS, Hadley JA, Craig WA. Antimicrobial treatment guidelines for acute bacterial rhinosinusitis. Otolaryngol Head Neck Surg 2004; 130:1-45. [PMID: 14726904 PMCID: PMC7118847 DOI: 10.1016/j.otohns.2003.12.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Treatment guidelines developed by the Sinus and Allergy Health Partnership for acute bacterial rhinosinusitis (ABRS) were originally published in 2000. These guidelines were designed to: (1) educate clinicians and patients (or patients’ families) about the differences between viral and bacterial rhinosinusitis; (2) reduce the use of antibiotics for nonbacterial nasal/sinus disease; (3) provide recommendations for the diagnosis and optimal treatment of ABRS; (4) promote the use of appropriate antibiotic therapy when bacterial infection is likely; and (5) describe the current understanding of pharmacokinetic and pharmacodynamics and how they relate to the effectiveness of antimicrobial therapy. The original guidelines are updated here to include the most recent information on management principles, antimicrobial susceptibility patterns, and therapeutic options. Burden of disease An estimated 20 million cases of ABRS occur annually in the United States. According to National Ambulatory Medical Care Survey (NAMCS) data, sinusitis is the fifth most common diagnosis for which an antibiotic is prescribed. Sinusitis accounted for 9% and 21% of all pediatric and adult antibiotic prescriptions, respectively, written in 2002. The primary diagnosis of sinusitis results in expenditures of approximately $3.5 billion per year in the United States. Definition and diagnosis of ABRS ABRS is most often preceded by a viral upper respiratory tract infection (URI). Allergy, trauma, dental infection, or other factors that lead to inflammation of the nose and paranasal sinuses may also predispose individuals to developing ABRS. Patients with a “common cold” (viral URI) usually report some combination of the following symptoms: sneezing, rhinorrhea, nasal congestion, hyposmia/anosmia, facial pressure, postnasal drip, sore throat, cough, ear fullness, fever, and myalgia. A change in the color or the characteristic of the nasal discharge is not a specific sign of a bacterial infection. Bacterial superinfection may occur at any time during the course of a viral URI. The risk that bacterial superinfection has occurred is greater if the illness is still present after 10 days. Because there may be cases that fall out of the “norm” of this typical progression, practicing clinicians need to rely on their clinical judgment when using these guidelines. In general, however, a diagnosis of ABRS may be made in adults or children with symptoms of a viral URI that have not improved after 10 days or worsen after 5 to 7 days. There may be some or all of the following signs and symptoms: nasal drainage, nasal congestion, facial pressure/pain (especially when unilateral and focused in the region of a particular sinus), postnasal drainage, hyposmia/anosmia, fever, cough, fatigue, maxillary dental pain, and ear pressure/fullness. Physical examination provides limited information in the diagnosis of ABRS. While sometimes helpful, plain film radiographs, computed tomography (CT), and magnetic resonance imaging scans are not necessary for cases of ABRS. Microbiology of ABRS The most common bacterial species isolated from the maxillary sinuses of patients with ABRS are Streptococcus pneumoniae , Haemophilus influenzae , and Moraxella catarrhalis , the latter being more common in children. Other streptococcal species, anaerobic bacteria and Staphylococcus aureus cause a small percentage of cases. Bacterial resistance in ABRS The increasing prevalence of penicillin nonsusceptibility and resistance to other drug classes among S pneumoniae has been a problem in the United States, with 15% being penicillin-intermediate and 25% being penicillin-resistant in recent studies. Resistance to macrolides and trimethoprim/sulfamethoxazole (TMP/SMX) is also common in S pneumoniae . The prevalence of β-lactamase-producing isolates of H influenzae is approximately 30%, while essentially all M catarrhalis isolates produce β-lactamases. Resistance of H influenzae to TMP/SMX is also common. Antimicrobial treatment guidelines for ABRS These guidelines apply to both adults and children. When selecting antibiotic therapy for ABRS, the clinician should consider the severity of the disease, the rate of progression of the disease, and recent antibiotic exposure. The guidelines now divide patients with ABRS into two general categories: (1) those with mild symptoms who have not received antibiotics within the past 4 to 6 weeks, and (2) those with mild disease who have received antibiotics within the past 4 to 6 weeks or those with moderate disease regardless of recent antibiotic exposure. The difference in severity of disease does not imply infection with a resistant pathogen. Rather, this terminology indicates the relative degree of acceptance of possible treatment failure and the likelihood of spontaneous resolution of symptoms—patients with more severe symptoms are less likely to resolve their disease spontaneously. The primary goal of antibiotic therapy is to eradicate bacteria from the site of infection, which, in turn, helps (1) return the sinuses back to health; (2) decrease the duration of symptoms to allow patients to resume daily activities more quickly; (3) prevent severe complications such as meningitis and brain abscess; and (4) decrease the development of chronic disease. Severe or life-threatening infections with or without complications are rare, and are not addressed in these guidelines. Prior antibiotic use is a major risk factor associated with the development of infection with antimicrobial-resistant strains. Because recent antimicrobial exposure increases the risk of carriage of and infection due to resistant organisms, antimicrobial therapy should be based upon the patient’s history of recent antibiotic use. The panel’s guidelines, therefore, stratify patients according to antibiotic exposure in the previous 4 to 6 weeks. Lack of response to therapy at ≥72 hours is an arbitrary time established to define treatment failures. Clinicians should monitor the response to antibiotic therapy, which may include instructing the patient to call the office or clinic if symptoms persist or worsen over the next few days. The predicted bacteriologic and clinical efficacy of antibiotics in adults and children has been determined according to mathematical modeling of ABRS developed by Michael Poole, MD, PhD, based on pathogen distribution, resolution rates without treatment, and in vitro microbiologic activity. Antibiotics can be placed into the following relative rank order of predicted clinical efficacy for adults: 90% to 92% = respiratory fluoroquinolones (gatifloxacin, levofloxacin, moxifloxacin), ceftriaxone, high-dose amoxicillin/clavulanate (4 g/250 mg/day), and amoxicillin/clavulanate (1.75 g/250 mg/day); 83% to 88% = high-dose amoxicillin (4 g/day), amoxicillin (1.5 g/day), cefpodoxime proxetil, cefixime (based on H influenzae and M catarrhalis coverage), cefuroxime axetil, cefdinir, and TMP/SMX; 77% to 81% = doxycycline, clindamycin (based on gram-positive coverage only), azithromycin, clarithromycin and erythromycin, and telithromycin; 65% to 66% = cefaclor and loracarbef. The predicted spontaneous resolution rate in patients with a clinical diagnosis of ABRS is 62%. Antibiotics can be placed into the following relative rank order of predicted clinical efficacy in children with ABRS: 91% to 92% = ceftriaxone, high-dose amoxicillin/clavulanate (90 mg/6.4 mg per kg per day) and amoxicillin/clavulanate (45 mg/6.4 mg per kg per day); 82% to 87% = high-dose amoxicillin (90 mg/kg per day), amoxicillin (45 mg/kg per day), cefpodoxime proxetil, cefixime (based on H influenzae and M catarrhalis coverage only), cefuroxime axetil, cefdinir, and TMP/SMX; and 78% to 80% = clindamycin (based on gram-positive coverage only), cefprozil, azithromycin, clarithromycin, and erythromycin; 67% to 68% = cefaclor and loracarbef. The predicted spontaneous resolution rate in untreated children with a presumed diagnosis of ABRS is 63%. Recommendations for initial therapy for adult patients with mild disease (who have not received antibiotics in the previous 4 to 6 weeks) include the following choices: amoxicillin/clavulanate (1.75 to 4 g/250 mg per day), amoxicillin (1.5 to 4 g/day), cefpodoxime proxetil, cefuroxime axetil, or cefdinir. While TMP/SMX, doxycycline, azithromycin, clarithromycin, erythromycin, or telithromycin may be considered for patients with β-lactam allergies, bacteriologic failure rates of 20% to 25% are possible. Failure to respond to antimicrobial therapy after 72 hours should prompt either a switch to alternate antimicrobial therapy or reevaluation of the patient (see Table 4).When a change in antibiotic therapy is made, the clinician should consider the limitations in coverage of the initial agent. Recommendations for initial therapy for adults with mild disease who have received antibiotics in the previous 4 to 6 weeks or adults with moderate disease include the following choices: respiratory fluoroquinolone (eg, gatifloxacin, levofloxacin, moxifloxacin) or high-dose amoxicillin/clavulanate (4 g/250 mg per day). The widespread use of respiratory fluoroquinolones for patients with milder disease may promote resistance of a wide spectrum of organisms to this class of agents. Ceftriaxone (parenteral, 1 to 2 g/day for 5 days) or combination therapy with adequate gram-positive and negative coverage may also be considered. Examples of appropriate regimens of combination therapy include high-dose amoxicillin or clindamycin plus cefixime, or high-dose amoxicillin or clindamycin plus rifampin. While the clinical effectiveness of ceftriaxone and these combinations for ABRS is unproven; the panel considers these reasonable therapeutic options based on the spectrum of activity of these agents and on data extrapolated from acute otitis media studies. Rifampin should not be used as monotherapy, casually, or for longer than 10 to 14 days, as resistance quickly develops to this agent. Rifampin is also a well-known inducer of several cytochrome p450 isoenzymes and therefore has a high potential for drug interactions. Failure of a patient to respond to antimicrobial therapy after 72 hours of therapy should prompt either a switch to alternate antimicrobial therapy or reevaluation of the patient (see Table 4). When a change in antibiotic therapy is made, the clinician should consider the limitations in coverage of the initial agent. Patients who have received effective antibiotic therapy and continue to be symptomatic may need further evaluation. A CT scan, fiberoptic endoscopy or sinus aspiration and culture may be necessary. Recommendations for initial therapy for children with mild disease and who have not received antibiotics in the previous 4 to 6 weeks include the following: high-dose amoxicillin/clavulanate (90 mg/6.4 mg per kg per day), amoxicillin (90 mg/kg per day), cefpodoxime proxetil, cefuroxime axetil, or cefdinir. TMP/SMX, azithromycin, clarithromycin, or erythromycin is recommended if the patient has a history of immediate Type I hypersensitivity reaction to β-lactams. These antibiotics have limited effectiveness against the major pathogens of ABRS and bacterial failure of 20% to 25% is possible. The clinician should differentiate an immediate hypersensitivity reaction from other less dangerous side effects. Children with immediate hypersensitivity reactions to β-lactams may need: desensitization, sinus cultures, or other ancillary procedures and studies. Children with other types of reactions and side effects may tolerate one specific β-lactam, but not another. Failure to respond to antimicrobial therapy after 72 hours should prompt either a switch to alternate antimicrobial therapy or reevaluation of the patient (see Table 5).When a change in antibiotic therapy is made, the clinician should consider the limitations in coverage of the initial agent. The recommended initial therapy for children with mild disease who have received antibiotics in the previous 4 to 6 weeks or children with moderate disease is high-dose amoxicillin/clavulanate (90 mg/6.4 mg per kg per day). Cefpodoxime proxetil, cefuroxime axetil, or cefdinir may be used if there is a penicillin allergy (eg, penicillin rash); in such instances, cefdinir is preferred because of high patient acceptance. TMP/SMX, azithromycin, clarithromycin, or erythromycin is recommended if the patient is β-lactam allergic, but these do not provide optimal coverage. Clindamycin is appropriate if S pneumoniae is identified as a pathogen. Ceftriaxone (parenteral, 50 mg/kg per day for 5 days) or combination therapy with adequate gram-positive and -negative coverage may also be considered. Examples of appropriate regimens of combination therapy include high-dose amoxicillin or clindamycin plus cefixime, or high-dose amoxicillin or clindamycin plus rifampin. The clinical effectiveness of ceftriaxone and these combinations for ABRS is unproven; the panel considers these reasonable therapeutic options based on spectrum of activity and on data extrapolated from acute otitis media studies. Rifampin should not be used as monotherapy, casually, or for longer than 10 to 14 days as resistance quickly develops to this agent. Failure to respond to antimicrobial therapy after 72 hours of therapy should prompt either a switch to alternate antimicrobial therapy or reevaluation of the patient (see Table 5). When a change in antibiotic therapy is made, the clinician should consider the limitations in coverage of the initial agent. Patients who have received effective antibiotic therapy and continue to be symptomatic may need further evaluation. A CT scan, fiberoptic endoscopy or sinus aspiration and culture may be necessary.
Collapse
Affiliation(s)
- Jack B Anon
- University of Pittsburgh, School of Medicine, USA
| | | | | | | | | | | | | |
Collapse
|
149
|
Volokhov D, Chizhikov V, Chumakov K, Rasooly A. Microarray analysis of erythromycin resistance determinants. J Appl Microbiol 2003; 95:787-98. [PMID: 12969293 DOI: 10.1046/j.1365-2672.2003.02046.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To develop a DNA microarray for analysis of genes encoding resistance determinants to erythromycin and the related macrolide, lincosamide and streptogramin B (MLS) compounds. METHODS AND RESULTS We developed an oligonucleotide microarray containing seven oligonucleotide probes (oligoprobes) for each of the six genes (ermA, ermB, ermC, ereA, ereB and msrA/B) that account for more than 98% of MLS resistance in Staphylococcus aureus clinical isolates. The microarray was used to test reference and clinical S. aureus and Streptococcus pyrogenes strains. Target genes from clinical strains were amplified and fluorescently labelled using multiplex PCR target amplification. The microarray assay correctly identified the MLS resistance genes in the reference strains and clinical isolates of S. aureus, and the results were confirmed by direct DNA sequence analysis. Of 18 S. aureus clinical strains tested, 11 isolates carry MLS determinants. One gene (ermC) was found in all 11 clinical isolates tested, and two others, ermA and msrA/B, were found in five or more isolates. Indeed, eight (72%) of 11 clinical isolate strains contained two or three MLS resistance genes, in one of the three combinations (ermA with ermC, ermC with msrA/B, ermA with ermC and msrA/B). CONCLUSIONS Oligonucleotide microarray can detect and identify the six MLS resistance determinants analysed in this study. SIGNIFICANCE AND IMPACT OF THE STUDY Our results suggest that microarray-based detection of microbial antibiotic resistance genes might be a useful tool for identifying antibiotic resistance determinants in a wide range of bacterial strains, given the high homology among microbial MLS resistance genes.
Collapse
Affiliation(s)
- D Volokhov
- FDA Center for Food Safety and Applied Nutrition, College Park, MD 20740-3835, USA
| | | | | | | |
Collapse
|
150
|
Waites KB, Jones KE, Kim KH, Moser SA, Johnson CN, Hollingshead SK, Kang ES, Hong KS, Benjamin WH. Dissemination of macrolide-resistant Streptococcus pneumoniae isolates containing both erm(B) and mef(A) in South Korea. J Clin Microbiol 2003; 41:5787-91. [PMID: 14662984 PMCID: PMC309034 DOI: 10.1128/jcm.41.12.5787-5791.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Revised: 08/20/2003] [Accepted: 09/15/2003] [Indexed: 11/20/2022] Open
Abstract
Macrolide resistance was detected in 64 of 77 (83.1%) Streptococcus pneumoniae isolates from South Korea. Seven (10.9%) isolates contained only mef(A), 32 (50%) contained only erm(B), and 25 (39.1%) contained mef(A) and erm(B). Nineteen isolates containing mef(A) and erm(B) belonged to serotype 19F, and seven isolates were identical to the Taiwan(19F)-14 clone.
Collapse
Affiliation(s)
- Ken B Waites
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35249, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|