101
|
Preisner EC, Fichot EB, Norman RS. Microbial Mat Compositional and Functional Sensitivity to Environmental Disturbance. Front Microbiol 2016; 7:1632. [PMID: 27799927 PMCID: PMC5066559 DOI: 10.3389/fmicb.2016.01632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/30/2016] [Indexed: 11/13/2022] Open
Abstract
The ability of ecosystems to adapt to environmental perturbations depends on the duration and intensity of change and the overall biological diversity of the system. While studies have indicated that rare microbial taxa may provide a biological reservoir that supports long-term ecosystem stability, how this dynamic population is influenced by environmental parameters remains unclear. In this study, a microbial mat ecosystem located on San Salvador Island, The Bahamas was used as a model to examine how environmental disturbance affects the protein synthesis potential (PSP) of rare and abundant archaeal and bacterial communities and how these changes impact potential biogeochemical processes. This ecosystem experienced a large shift in salinity (230 to 65 g kg-1) during 2011-2012 following the landfall of Hurricane Irene on San Salvador Island. High throughput sequencing and analysis of 16S rRNA and rRNA genes from samples before and after the pulse disturbance showed significant changes in the diversity and PSP of abundant and rare taxa, suggesting overall compositional and functional sensitivity to environmental change. In both archaeal and bacterial communities, while the majority of taxa showed low PSP across conditions, the overall community PSP increased post-disturbance, with significant shifts occurring among abundant and rare taxa across and within phyla. Broadly, following the post-disturbance reduction in salinity, taxa within Halobacteria decreased while those within Crenarchaeota, Thaumarchaeota, Thermoplasmata, Cyanobacteria, and Proteobacteria, increased in abundance and PSP. Quantitative PCR of genes and transcripts involved in nitrogen and sulfur cycling showed concomitant shifts in biogeochemical cycling potential. Post-disturbance conditions increased the expression of genes involved in N-fixation, nitrification, denitrification, and sulfate reduction. Together, our findings show complex community adaptation to environmental change and help elucidate factors connecting disturbance, biodiversity, and ecosystem function that may enhance ecosystem models.
Collapse
Affiliation(s)
| | | | - Robert S. Norman
- Department of Environmental Health Sciences, University of South Carolina, ColumbiaSC, USA
| |
Collapse
|
102
|
Yao XF, Zhang JM, Tian L, Guo JH. The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay, China. Braz J Microbiol 2016; 48:71-78. [PMID: 27751665 PMCID: PMC5220637 DOI: 10.1016/j.bjm.2016.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 07/14/2016] [Indexed: 11/24/2022] Open
Abstract
In this study, determination of heavy metal parameters and microbiological characterization of marine sediments obtained from two heavily polluted sites and one low-grade contaminated reference station at Jiaozhou Bay in China were carried out. The microbial communities found in the sampled marine sediments were studied using PCR-DGGE (denaturing gradient gel electrophoresis) fingerprinting profiles in combination with multivariate analysis. Clustering analysis of DGGE and matrix of heavy metals displayed similar occurrence patterns. On this basis, 17 samples were classified into two clusters depending on the presence or absence of the high level contamination. Moreover, the cluster of highly contaminated samples was further classified into two sub-groups based on the stations of their origin. These results showed that the composition of the bacterial community is strongly influenced by heavy metal variables present in the sediments found in the Jiaozhou Bay. This study also suggested that metagenomic techniques such as PCR-DGGE fingerprinting in combination with multivariate analysis is an efficient method to examine the effect of metal contamination on the bacterial community structure.
Collapse
Affiliation(s)
- Xie-Feng Yao
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Jiu-Ming Zhang
- First Institute of Oceanography, State Oceanic Administration, Qingdao, China; Qingdao University of Science & Technology, Qingdao, China
| | - Li Tian
- First Institute of Oceanography, State Oceanic Administration, Qingdao, China; Qingdao University of Science & Technology, Qingdao, China.
| | - Jian-Hua Guo
- Nanjing Agricultural University, College of Plant Protection, Department of Plant Pathology, Nanjing, China.
| |
Collapse
|
103
|
Comparison of archaeal and bacterial communities in two sponge species and seawater from an Indonesian coral reef environment. Mar Genomics 2016; 29:69-80. [DOI: 10.1016/j.margen.2016.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/17/2022]
|
104
|
Fernandez AB, Rasuk MC, Visscher PT, Contreras M, Novoa F, Poire DG, Patterson MM, Ventosa A, Farias ME. Microbial Diversity in Sediment Ecosystems (Evaporites Domes, Microbial Mats, and Crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Front Microbiol 2016; 7:1284. [PMID: 27597845 PMCID: PMC4992683 DOI: 10.3389/fmicb.2016.01284] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/04/2016] [Indexed: 02/01/2023] Open
Abstract
We combined nucleic acid-based molecular methods, biogeochemical measurements, and physicochemical characteristics to investigate microbial sedimentary ecosystems of Laguna Tebenquiche, Atacama Desert, Chile. Molecular diversity, and biogeochemistry of hypersaline microbial mats, rhizome-associated concretions, and an endoevaporite were compared with: The V4 hypervariable region of the 16S rRNA gene was amplified by pyrosequencing to analyze the total microbial diversity (i.e., bacteria and archaea) in bulk samples, and in addition, in detail on a millimeter scale in one microbial mat and in one evaporite. Archaea were more abundant than bacteria. Euryarchaeota was one of the most abundant phyla in all samples, and particularly dominant (97% of total diversity) in the most lithified ecosystem, the evaporite. Most of the euryarchaeal OTUs could be assigned to the class Halobacteria or anaerobic and methanogenic archaea. Planctomycetes potentially also play a key role in mats and rhizome-associated concretions, notably the aerobic organoheterotroph members of the class Phycisphaerae. In addition to cyanobacteria, members of Chromatiales and possibly the candidate family Chlorotrichaceae contributed to photosynthetic carbon fixation. Other abundant uncultured taxa such as the candidate division MSBL1, the uncultured MBGB, and the phylum Acetothermia potentially play an important metabolic role in these ecosystems. Lithifying microbial mats contained calcium carbonate precipitates, whereas endoevoporites consisted of gypsum, and halite. Biogeochemical measurements revealed that based on depth profiles of O2 and sulfide, metabolic activities were much higher in the non-lithifying mat (peaking in the least lithified systems) than in lithifying mats with the lowest activity in endoevaporites. This trend in decreasing microbial activity reflects the increase in salinity, which may play an important role in the biodiversity.
Collapse
Affiliation(s)
- Ana B Fernandez
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales Microbiológicos, Centro Científico Tecnológico, CONICET Tucumán, Argentina
| | - Maria C Rasuk
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales Microbiológicos, Centro Científico Tecnológico, CONICET Tucumán, Argentina
| | - Pieter T Visscher
- Department of Marine Sciences, University of ConnecticutGroton, CT, USA; Australian Centre for Astrobiology, University of New South WalesSydney, NSW, Australia
| | | | | | - Daniel G Poire
- Centro de Investigaciones Geológicas, Universidad Nacional de La Plata-Conicet La Plata, Argentina
| | - Molly M Patterson
- Department of Marine Sciences, University of Connecticut Groton, CT, USA
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla Sevilla, Spain
| | - Maria E Farias
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales Microbiológicos, Centro Científico Tecnológico, CONICET Tucumán, Argentina
| |
Collapse
|
105
|
Van Horn DJ, Wolf CR, Colman DR, Jiang X, Kohler TJ, McKnight DM, Stanish LF, Yazzie T, Takacs-Vesbach CD. Patterns of bacterial biodiversity in the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. FEMS Microbiol Ecol 2016; 92:fiw148. [PMID: 27495241 DOI: 10.1093/femsec/fiw148] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2016] [Indexed: 12/26/2022] Open
Abstract
Microbial consortia dominate glacial meltwater streams from polar regions, including the McMurdo Dry Valleys (MDV), where they thrive under physiologically stressful conditions. In this study, we examined microbial mat types and sediments found in 12 hydrologically diverse streams to describe the community diversity and composition within and across sites. Sequencing of the 16S rRNA gene from 129 samples revealed ∼24 000 operational taxonomic units (<97% DNA similarity), making streams the most biodiverse habitat in the MDV. Principal coordinate analyses revealed significant but weak clustering by mat type across all streams (ANOSIM R-statistic = 0.28) but stronger clustering within streams (ANOSIM R-statistic from 0.28 to 0.94). Significant relationships (P < 0.05) were found between bacterial diversity and mat ash-free dry mass, suggesting that diversity is related to the hydrologic regimes of the various streams, which are predictive of mat biomass. However, correlations between stream chemistry and community members were weak, possibly reflecting the importance of internal processes and hydrologic conditions. Collectively, these results suggest that localized conditions dictate bacterial community composition of the same mat types and sediments from different streams, and while MDV streams are hotspots of biodiversity in an otherwise depauperate landscape, controls on community structure are complex and site specific.
Collapse
Affiliation(s)
- David J Van Horn
- Department of Biology, University of New Mexico MSCO3 2020, 1 UNM, Albuquerque, NM 87131, USA
| | - Caitlin R Wolf
- Department of Biology, University of New Mexico MSCO3 2020, 1 UNM, Albuquerque, NM 87131, USA
| | - Daniel R Colman
- Department of Biology, University of New Mexico MSCO3 2020, 1 UNM, Albuquerque, NM 87131, USA
| | - Xiaoben Jiang
- Department of Biology, University of New Mexico MSCO3 2020, 1 UNM, Albuquerque, NM 87131, USA
| | - Tyler J Kohler
- Faculty of Science, Department of Ecology, Charles University in Prague, Viničná 7, 12844 Prague 2, Prague, Czech Republic
| | - Diane M McKnight
- Institute of Arctic and Alpine Research, University of Colorado, 1560 30th Street, Boulder, CO 80303, USA
| | - Lee F Stanish
- National Ecological Observatory Network, 1685 38th Street, Boulder, CO, 80301
| | - Terrill Yazzie
- Department of Biology, University of New Mexico MSCO3 2020, 1 UNM, Albuquerque, NM 87131, USA
| | | |
Collapse
|
106
|
Warden JG, Casaburi G, Omelon CR, Bennett PC, Breecker DO, Foster JS. Characterization of Microbial Mat Microbiomes in the Modern Thrombolite Ecosystem of Lake Clifton, Western Australia Using Shotgun Metagenomics. Front Microbiol 2016; 7:1064. [PMID: 27458453 PMCID: PMC4933708 DOI: 10.3389/fmicb.2016.01064] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/24/2016] [Indexed: 12/02/2022] Open
Abstract
Microbialite-forming communities interact with the environment and influence the precipitation of calcium carbonate through their metabolic activity. The functional genes associated with these metabolic processes and their environmental interactions are therefore critical to microbialite formation. The microbiomes associated with microbialite-forming ecosystems are just now being elucidated and the extent of shared pathways and taxa across different environments is not fully known. In this study, we profiled the microbiome of microbial communities associated with lacustrine thrombolites located in Lake Clifton, Western Australia using metagenomic sequencing and compared it to the non-lithifying mats associated with surrounding sediments to determine whether differences in the mat microbiomes, particularly with respect to metabolic pathways and environmental interactions, may potentially contribute to thrombolite formation. Additionally, we used stable isotope biosignatures to delineate the dominant metabolism associated with calcium carbonate precipitation in the thrombolite build-ups. Results indicated that the microbial community associated with the Lake Clifton thrombolites was predominantly bacterial (98.4%) with Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria comprising the majority of annotated reads. Thrombolite-associated mats were enriched in photoautotrophic taxa and functional genes associated with photosynthesis. Observed δ13C values of thrombolite CaCO3 were enriched by at least 3.5‰ compared to theoretical values in equilibrium with lake water DIC, which is consistent with the occurrence of photoautotrophic activity in thrombolite-associated microbial mats. In contrast, the microbiomes of microbial communities found on the sandy non-lithifying sediments of Lake Clifton represented distinct microbial communities that varied in taxa and functional capability and were enriched in heterotrophic taxa compared to the thrombolite-associated mats. This study provides new insight into the taxa and functional capabilities that differentiate potentially lithifying mats from other non-lithifying types and suggests that thrombolites are actively accreting and growing in limited areas of Lake Clifton.
Collapse
Affiliation(s)
- John G Warden
- Department of Geological Sciences, University of Texas at Austin, AustinTX, USA; Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Merritt IslandFL, USA
| | - Giorgio Casaburi
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Merritt Island FL, USA
| | - Christopher R Omelon
- Department of Geological Sciences, University of Texas at Austin, Austin TX, USA
| | - Philip C Bennett
- Department of Geological Sciences, University of Texas at Austin, Austin TX, USA
| | - Daniel O Breecker
- Department of Geological Sciences, University of Texas at Austin, Austin TX, USA
| | - Jamie S Foster
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Merritt Island FL, USA
| |
Collapse
|
107
|
Dietary whey proteins shield murine cecal microbiota from extensive disarray caused by a high-fat diet. Food Res Int 2016; 85:121-130. [DOI: 10.1016/j.foodres.2016.04.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 01/22/2023]
|
108
|
Quorum Sensing Desynchronization Leads to Bimodality and Patterned Behaviors. PLoS Comput Biol 2016; 12:e1004781. [PMID: 27071007 PMCID: PMC4829230 DOI: 10.1371/journal.pcbi.1004781] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/01/2016] [Indexed: 12/17/2022] Open
Abstract
Quorum Sensing (QS) drives coordinated phenotypic outcomes among bacterial populations. Its role in mediating infectious disease has led to the elucidation of numerous autoinducers and their corresponding QS signaling pathways. Among them, the Lsr (LuxS-regulated) QS system is conserved in scores of bacteria, and its signal molecule, autoinducer-2 (AI-2), is synthesized as a product of 1-carbon metabolism. Lsr signal transduction processes, therefore, may help organize population scale activities in numerous bacterial consortia. Conceptions of how Lsr QS organizes population scale behaviors remain limited, however. Using mathematical simulations, we examined how desynchronized Lsr QS activation, arising from cell-to-cell population heterogeneity, could lead to bimodal Lsr signaling and fractional activation. This has been previously observed experimentally. Governing these processes are an asynchronous AI-2 uptake, where positive intracellular feedback in Lsr expression is combined with negative feedback between cells. The resulting activation patterns differ from that of the more widely studied LuxIR system, the topology of which consists of only positive feedback. To elucidate differences, both QS systems were simulated in 2D, where cell populations grow and signal each other via traditional growth and diffusion equations. Our results demonstrate that the LuxIR QS system produces an ‘outward wave’ of autoinduction, and the Lsr QS system yields dispersed autoinduction from spatially-localized secretion and uptake profiles. In both cases, our simulations mirror previously demonstrated experimental results. As a whole, these models inform QS observations and synthetic biology designs. Bacterial behavior is responsive to a multitude of soluble molecular cues. Among them are self-secreted autoinducers that control quorum sensing (QS) processes. While new quorum sensing systems are constantly being discovered, several systems have been well defined in terms of their molecular and genetic topologies, each influencing a variety of resultant phenotypes. These quorum sensing systems include LuxIR homologs that use an array of species specific autoinducers and Lsr system homologs that share a single autoinducer among numerous species. Here we suggest that the regulatory topology of these two systems mark them as opposites of a sort. Whereas the LuxIR system bears a strong positive intercellular feedback mechanism, the Lsr system bears strong negative intercellular feedback. In our simulations these differences are manifested in distinct patterns of signaling. This was readily visualized in the outward spread of autogenous LuxIR expression in a growing bacterial 2D ‘colony’ whereas a dispersed activity was produced by autogenous Lsr expression in an otherwise identical colony. Here, this dispersed activity is a reflection of bimodal Lsr expression. We show that this bimodality could arise from desynchronized Lsr driven autoinducer import (intercellular negative feedback). This may have consequences on the arrangement of downstream phenotypes.
Collapse
|
109
|
Paul VG, Wronkiewicz DJ, Mormile MR, Foster JS. Mineralogy and Microbial Diversity of the Microbialites in the Hypersaline Storr's Lake, the Bahamas. ASTROBIOLOGY 2016; 16:282-300. [PMID: 27082142 DOI: 10.1089/ast.2015.1326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microbialites found in the low-light-intensity, hypersaline waters of Storr's Lake (SL), San Salvador Island, the Bahamas, were investigated with respect to their morphology, mineralogy, and microbial diversity. Previously described microbialite morphologies, as well as a newly identified "multi-cuspate" morphology, were observed at various depths. Electron microscopy analysis revealed the presence of angular, blocky, and needle-shaped crystals with mineralized cyanobacterial filaments and remains of exopolymeric substances. X-ray diffraction studies confirmed the presence of both Mg-calcite and aragonite in the plateau-mushroom and pinnacle mound microbialites, whereas only Mg-calcite was identified in the other microbialite morphotypes. A comprehensive molecular analysis using barcoded pyrosequencing of five different microbial mat communities identified at least 12 dominant bacterial phyla. Cyanobacteria were generally low in abundance and ranged from ∼0.01% in the deeper pinnacle mounds to ∼3.2% in the shallow calcareous knobs. Other photosynthetic members included green nonsulfur bacteria of the phylum Chloroflexi and purple sulfur bacteria of the class Gammaproteobacteria. All mat types contained significant amounts of sulfate-reducing and dehalogenating bacteria. The low light intensity reaching the deeper microbialites, the lack of dominant cyanobacteria, and the abundance of sulfate reducers and Chloroflexi collectively suggest that sulfate reduction and anoxygenic photosynthetic processes influence the carbonate biomineralization process in these systems.
Collapse
Affiliation(s)
- Varun G Paul
- 1 Department of Geological Sciences, Missouri University of Science and Technology , Rolla, Missouri
| | - David J Wronkiewicz
- 1 Department of Geological Sciences, Missouri University of Science and Technology , Rolla, Missouri
| | - Melanie R Mormile
- 2 Department of Biological Sciences, Missouri University of Science and Technology , Rolla, Missouri
| | - Jamie S Foster
- 3 Department of Microbiology and Cell Science, University of Florida , Space Life Science Lab, Merritt Island, Florida
| |
Collapse
|
110
|
Thaler DS. Toward a microbial Neolithic revolution in buildings. MICROBIOME 2016; 4:14. [PMID: 27021307 PMCID: PMC4810507 DOI: 10.1186/s40168-016-0157-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/11/2016] [Indexed: 05/03/2023]
Abstract
The Neolithic revolution--the transition of our species from hunter and gatherer to cultivator--began approximately 14,000 years ago and is essentially complete for macroscopic food. Humans remain largely pre-Neolithic in our relationship with microbes but starting with the gut we continue our hundred-year project of approaching the ability to assess and cultivate benign microbiomes in our bodies. Buildings are analogous to the body and it is time to ask what it means to cultivate benign microbiomes in our built environment. A critical distinction is that we have not found, or invented, niches in buildings where healthful microbial metabolism occurs and/or could be cultivated. Key events affecting the health and healthfulness of buildings such as a hurricane leading to a flood or a burst pipe occur only rarely and unpredictably. The cause may be transient but the effects can be long lasting and, e.g., for moisture damage, cumulative. Non-invasive "building tomography" could find moisture and "sentinel microbes" could record the integral of transient growth. "Seed" microbes are metabolically inert cells able to grow when conditions allow. All microbes and their residue present actinic molecules including immunological epitopes (molecular shapes). The fascinating hygiene and microbial biodiversity hypotheses propose that a healthy immune system requires exposure to a set of microbial epitopes that is rich in diversity. A particular conjecture is that measures of the richness of diversity derived from microbiome next-generation sequencing (NGS) can be mechanistically coupled to--rather than merely correlated with some measures of--human health. These hypotheses and conjectures inspire workers and funders but an alternative is also consequent to the first Neolithic revolution: That the genetic uniformity of contemporary foods may also decrease human exposure to molecular biodiversity in a heath-relevant manner. Understanding the consequences--including the unintended consequences of the first Neolithic revolution--will inform and help us benignly implement the second--the microbial--Neolithic revolution.
Collapse
Affiliation(s)
- David S Thaler
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH - 4056, Basel, Switzerland.
| |
Collapse
|
111
|
Warren LA, Kendra KE, Brady AL, Slater GF. Sulfur Biogeochemistry of an Oil Sands Composite Tailings Deposit. Front Microbiol 2016; 6:1533. [PMID: 26869997 PMCID: PMC4737920 DOI: 10.3389/fmicb.2015.01533] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/21/2015] [Indexed: 11/13/2022] Open
Abstract
Composite tailings (CT), an engineered, alkaline, saline mixture of oil sands tailings (FFT), processed sand and gypsum (CaSO4; 1 kg CaSO4 per m3 FFT) are used as a dry reclamation strategy in the Alberta Oil Sands Region (AOSR). It is estimated that 9.6 × 108 m3 of CT are either in, or awaiting emplacement in surface pits within the AOSR, highlighting their potential global importance in sulfur cycling. Here, in the first CT sulfur biogeochemistry investigation, integrated geochemical, pyrosequencing and lipid analyses identified high aqueous concentrations of ∑H2S (>300 μM) and highly altered sulfur compounds composition; low cell biomass (3.3 × 106– 6.0 × 106 cells g−1) and modest bacterial diversity (H' range between 1.4 and 1.9) across 5 depths spanning 34 m of an in situ CT deposit. Pyrosequence results identified a total of 29,719 bacterial 16S rRNA gene sequences, representing 131 OTUs spanning19 phyla including 7 candidate divisions, not reported in oil sands tailings pond studies to date. Legacy FFT common phyla, notably, gamma and beta Proteobacteria, Firmicutes, Actinobacteria, and Chloroflexi were represented. However, overall CT microbial diversity and PLFA values were low relative to other contexts. The identified known sulfate/sulfur reducing bacteria constituted at most 2% of the abundance; however, over 90% of the 131 OTUs identified are capable of sulfur metabolism. While PCR biases caution against overinterpretation of pyrosequence surveys, bacterial sequence results identified here, align with phospholipid fatty acid (PLFA) and geochemical results. The highest bacterial diversities were associated with the depth of highest porewater [∑H2S] (22–24 m) and joint porewater co-occurrence of Fe2+ and ∑H2S (6–8 m). Three distinct bacterial community structure depths corresponded to CT porewater regions of (1) shallow evident Fe(II) (<6 m), (2) co-occurring Fe(II) and ∑H2S (6–8 m) and (3) extensive ∑H2S (6–34 m) (UniFrac). Candidate divisions GNO2, NKB19 and Spam were present only at 6–8 m associated with co-occurring [Fe(II)] and [∑H2S]. Collectively, results indicate that CT materials are differentiated from other sulfur rich environments by modestly diverse, low abundance, but highly sulfur active and more enigmatic communities (7 candidate divisions present within the 19 phyla identified).
Collapse
Affiliation(s)
- Lesley A Warren
- School of Geography and Earth Sciences, McMaster University Hamilton ON, Canada
| | - Kathryn E Kendra
- School of Geography and Earth Sciences, McMaster University Hamilton ON, Canada
| | - Allyson L Brady
- School of Geography and Earth Sciences, McMaster University Hamilton ON, Canada
| | - Greg F Slater
- School of Geography and Earth Sciences, McMaster University Hamilton ON, Canada
| |
Collapse
|
112
|
Wong HL, Ahmed-Cox A, Burns BP. Molecular Ecology of Hypersaline Microbial Mats: Current Insights and New Directions. Microorganisms 2016; 4:microorganisms4010006. [PMID: 27681900 PMCID: PMC5029511 DOI: 10.3390/microorganisms4010006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022] Open
Abstract
Microbial mats are unique geobiological ecosystems that form as a result of complex communities of microorganisms interacting with each other and their physical environment. Both the microorganisms present and the network of metabolic interactions govern ecosystem function therein. These systems are often found in a range of extreme environments, and those found in elevated salinity have been particularly well studied. The purpose of this review is to briefly describe the molecular ecology of select model hypersaline mat systems (Guerrero Negro, Shark Bay, S’Avall, and Kiritimati Atoll), and any potentially modulating effects caused by salinity to community structure. In addition, we discuss several emerging issues in the field (linking function to newly discovered phyla and microbial dark matter), which illustrate the changing paradigm that is seen as technology has rapidly advanced in the study of these extreme and evolutionally significant ecosystems.
Collapse
Affiliation(s)
- Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
- Australian Centre for Astrobiology, University of New South Wales, Sydney 2052, Australia.
| | - Aria Ahmed-Cox
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
| | - Brendan Paul Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
- Australian Centre for Astrobiology, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
113
|
Beltrán Y, Cerqueda-García D, Taş N, Thomé PE, Iglesias-Prieto R, Falcón LI. Microbial composition of biofilms associated with lithifying rubble of Acropora palmata branches. FEMS Microbiol Ecol 2015; 92:fiv162. [PMID: 26705570 DOI: 10.1093/femsec/fiv162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 11/13/2022] Open
Abstract
Coral reefs are among the most productive ecosystems on the planet, but are rapidly declining due to global-warming-mediated changes in the oceans. Particularly for the Caribbean region, Acropora sp. stony corals have lost ∼80% of their original coverage, resulting in vast extensions of dead coral rubble. We analyzed the microbial composition of biofilms that colonize and lithify dead Acropora palmata rubble in the Mexican Caribbean and identified the microbial assemblages that can persist under scenarios of global change, including high temperature and low pH. Lithifying biofilms have a mineral composition that includes aragonite and magnesium calcite (16 mole% MgCO(3)) and calcite, while the mineral phase corresponding to coral skeleton is basically aragonite. Microbial composition of the lithifying biofilms are different in comparison to surrounding biotopes, including a microbial mat, water column, sediments and live A. palmata microbiome. Significant shifts in biofilm composition were detected in samples incubated in mesocosms. The combined effect of low pH and increased temperature showed a strong effect after two-week incubations for biofilm composition. Findings suggest that lithifying biofilms could remain as a secondary structure on reef rubble possibly impacting the functional role of coral reefs.
Collapse
Affiliation(s)
- Yislem Beltrán
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, UNAM, D.F., México 04510, Mexico
| | - Daniel Cerqueda-García
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, UNAM, D.F., México 04510, Mexico
| | - Neslihan Taş
- Lawrence Berkeley National Laboratory, Ecology Department, Earth & Environmental Sciences, Berkeley, CA 94720, USA
| | - Patricia E Thomé
- Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Instituto de Ciencias del Mar y Limnología, UNAM. Ado. Post. 1152, Cancun, QR, México 77500, Mexico
| | - Roberto Iglesias-Prieto
- Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Instituto de Ciencias del Mar y Limnología, UNAM. Ado. Post. 1152, Cancun, QR, México 77500, Mexico
| | - Luisa I Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, UNAM, D.F., México 04510, Mexico
| |
Collapse
|
114
|
Privatization of cooperative benefits stabilizes mutualistic cross-feeding interactions in spatially structured environments. ISME JOURNAL 2015; 10:1413-23. [PMID: 26623546 DOI: 10.1038/ismej.2015.212] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/27/2015] [Accepted: 10/01/2015] [Indexed: 01/22/2023]
Abstract
Metabolic cross-feeding interactions are ubiquitous in natural microbial communities. However, it remains generally unclear whether the production and exchange of metabolites incurs fitness costs to the producing cells and if so, which ecological mechanisms can facilitate a cooperative exchange of metabolites among unrelated individuals. We hypothesized that positive assortment within structured environments can maintain mutualistic cross-feeding. To test this, we engineered Acinetobacter baylyi and Escherichia coli to reciprocally exchange essential amino acids. Interspecific coculture experiments confirmed that non-cooperating types were selectively favoured in spatially unstructured (liquid culture), yet disfavoured in spatially structured environments (agar plates). Both an individual-based model and experiments with engineered genotypes indicated that a segregation of cross-feeders and non-cooperating auxotrophs stabilized cooperative cross-feeding in spatially structured environments. Chemical imaging confirmed that auxotrophs were spatially excluded from cooperative benefits. Together, these results demonstrate that cooperative cross-feeding between different bacterial species is favoured in structured environments such as bacterial biofilms, suggesting this type of interactions might be common in natural bacterial communities.
Collapse
|
115
|
|
116
|
Wong HL, Smith DL, Visscher PT, Burns BP. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci Rep 2015; 5:15607. [PMID: 26499760 PMCID: PMC4620479 DOI: 10.1038/srep15607] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/28/2015] [Indexed: 02/01/2023] Open
Abstract
Modern microbial mats can provide key insights into early Earth ecosystems, and Shark Bay, Australia, holds one of the best examples of these systems. Identifying the spatial distribution of microorganisms with mat depth facilitates a greater understanding of specific niches and potentially novel microbial interactions. High throughput sequencing coupled with elemental analyses and biogeochemical measurements of two distinct mat types (smooth and pustular) at a millimeter scale were undertaken in the present study. A total of 8,263,982 16S rRNA gene sequences were obtained, which were affiliated to 58 bacterial and candidate phyla. The surface of both mats were dominated by Cyanobacteria, accompanied with known or putative members of Alphaproteobacteria and Bacteroidetes. The deeper anoxic layers of smooth mats were dominated by Chloroflexi, while Alphaproteobacteria dominated the lower layers of pustular mats. In situ microelectrode measurements revealed smooth mats have a steeper profile of O2 and H2S concentrations, as well as higher oxygen production, consumption, and sulfate reduction rates. Specific elements (Mo, Mg, Mn, Fe, V, P) could be correlated with specific mat types and putative phylogenetic groups. Models are proposed for these systems suggesting putative surface anoxic niches, differential nitrogen fixing niches, and those coupled with methane metabolism.
Collapse
Affiliation(s)
- Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
- Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
| | - Daniela-Lee Smith
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
- Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
| | - Pieter T. Visscher
- Department of Marine Sciences, University of Connecticut, USA
- Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
| | - Brendan P. Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
- Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
| |
Collapse
|
117
|
Santini TC, Kerr JL, Warren LA. Microbially-driven strategies for bioremediation of bauxite residue. JOURNAL OF HAZARDOUS MATERIALS 2015; 293:131-157. [PMID: 25867516 DOI: 10.1016/j.jhazmat.2015.03.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
Globally, 3 Gt of bauxite residue is currently in storage, with an additional 120 Mt generated every year. Bauxite residue is an alkaline, saline, sodic, massive, and fine grained material with little organic carbon or plant nutrients. To date, remediation of bauxite residue has focused on the use of chemical and physical amendments to address high pH, high salinity, and poor drainage and aeration. No studies to date have evaluated the potential for microbial communities to contribute to remediation as part of a combined approach integrating chemical, physical, and biological amendments. This review considers natural alkaline, saline environments that present similar challenges for microbial survival and evaluates candidate microorganisms that are both adapted for survival in these environments and have the capacity to carry out beneficial metabolisms in bauxite residue. Fermentation, sulfur oxidation, and extracellular polymeric substance production emerge as promising pathways for bioremediation whether employed individually or in combination. A combination of bioaugmentation (addition of inocula from other alkaline, saline environments) and biostimulation (addition of nutrients to promote microbial growth and activity) of the native community in bauxite residue is recommended as the approach most likely to be successful in promoting bioremediation of bauxite residue.
Collapse
Affiliation(s)
- Talitha C Santini
- Centre for Mined Land Rehabilitation, Sir James Foots Building, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Geography, Planning, and Environmental Management, Steele Building, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Earth and Environment, The University of Western Australia, 35 Stirling Hwy Crawley, WA 6009, Australia.
| | - Janice L Kerr
- Centre for Mined Land Rehabilitation, Sir James Foots Building, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Lesley A Warren
- School of Geography and Earth Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
118
|
A snapshot of microbial communities from the Kutch: one of the largest salt deserts in the World. Extremophiles 2015; 19:973-87. [PMID: 26186976 DOI: 10.1007/s00792-015-0772-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
Here we present the first report on the taxonomic diversity of the microbial communities of the saline desert of the Great Rann of Kutch, Gujarat, India, using a metagenomic approach. Seven samples, differing in salinity levels and covering different seasons, were analysed to investigate the dynamics of microbial communities in relation to salinity and season. Metagenomic data generated using whole metagenome sequencing revealed that despite its very high salinity (4.11-30.79 %), the saline desert's microbiota had a rich microbial diversity that included all major phyla. Notably, 67 archaeal genera, representing more than 60 % of all known archaeal genera, were present in this ecosystem. A strong positive correlation (0.85) was observed between the presence of the extremely halophilic bacterium Salinibacter and salinity level. Taxonomic and functional comparisons of the saline desert metagenome with those of other publicly available metagenomes (i.e. sea, hypersaline lagoon, solar saltern, brine, hot desert) was carried out. The microbial community of the Kutch was found to be unique yet more similar to the sea biomes followed by hypersaline lagoon.
Collapse
|
119
|
Gasc C, Ribière C, Parisot N, Beugnot R, Defois C, Petit-Biderre C, Boucher D, Peyretaillade E, Peyret P. Capturing prokaryotic dark matter genomes. Res Microbiol 2015; 166:814-30. [PMID: 26100932 DOI: 10.1016/j.resmic.2015.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 11/18/2022]
Abstract
Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches.
Collapse
Affiliation(s)
- Cyrielle Gasc
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Céline Ribière
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Nicolas Parisot
- Biologie Fonctionnelle Insectes et Interactions, UMR203 BF2I, INRA, INSA-Lyon, Université de Lyon, Villeurbanne, France.
| | - Réjane Beugnot
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Clémence Defois
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Corinne Petit-Biderre
- Université Blaise Pascal, Laboratoire Microorganismes, Génome et Environnement, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 6023, F-63171 Aubière, France.
| | - Delphine Boucher
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Eric Peyretaillade
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Pierre Peyret
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| |
Collapse
|
120
|
Akyon B, Stachler E, Wei N, Bibby K. Microbial mats as a biological treatment approach for saline wastewaters: the case of produced water from hydraulic fracturing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6172-80. [PMID: 25867284 DOI: 10.1021/es505142t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Treatment of produced water, i.e. wastewater from hydraulic fracturing, for reuse or final disposal is challenged by both high salinity and the presence of organic compounds. Organic compounds in produced water may foul physical-chemical treatment processes or support microbial corrosion, fouling, and sulfide release. Biological approaches have potential applications in produced water treatment, including reducing fouling of physical-chemical treatment processes and decreasing biological activity during produced water holding; however, conventional activated sludge treatments are intolerant of high salinity. In this study, a biofilm treatment approach using constructed microbial mats was evaluated for biodegradation performance, microbial community structure, and metabolic potential in both simulated and real produced water. Results demonstrated that engineered microbial mats are active at total dissolved solids (TDS) concentrations up to at least 100,000 mg/L, and experiments in real produced water showed a biodegradation capacity of 1.45 mg COD/gramwet-day at a TDS concentration of 91,351 mg/L. Additionally, microbial community and metagenomic analyses revealed an adaptive microbial community that shifted based upon the sample being treated and has the metabolic potential to degrade a wide array of contaminants, suggesting the potential of this approach to treat produced waters with varying composition.
Collapse
Affiliation(s)
- Benay Akyon
- †Department of Civil and Environmental Engineering and ‡Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Elyse Stachler
- †Department of Civil and Environmental Engineering and ‡Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Na Wei
- †Department of Civil and Environmental Engineering and ‡Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kyle Bibby
- †Department of Civil and Environmental Engineering and ‡Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
121
|
Microbial Diversity in Engineered Haloalkaline Environments Shaped by Shared Geochemical Drivers Observed in Natural Analogues. Appl Environ Microbiol 2015; 81:5026-36. [PMID: 25979895 DOI: 10.1128/aem.01238-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/12/2015] [Indexed: 01/17/2023] Open
Abstract
Microbial communities in engineered terrestrial haloalkaline environments have been poorly characterized relative to their natural counterparts and are geologically recent in formation, offering opportunities to explore microbial diversity and assembly in dynamic, geochemically comparable contexts. In this study, the microbial community structure and geochemical characteristics of three geographically dispersed bauxite residue environments along a remediation gradient were assessed and subsequently compared with other engineered and natural haloalkaline systems. In bauxite residues, bacterial communities were similar at the phylum level (dominated by Proteobacteria and Firmicutes) to those found in soda lakes, oil sands tailings, and nuclear wastes; however, they differed at lower taxonomic levels, with only 23% of operational taxonomic units (OTUs) shared with other haloalkaline environments. Although being less diverse than natural analogues, bauxite residue harbored substantial novel bacterial taxa, with 90% of OTUs nonmatchable to cultured representative sequences. Fungal communities were dominated by Ascomycota and Basidiomycota, consistent with previous studies of hypersaline environments, and also harbored substantial novel (73% of OTUs) taxa. In bauxite residues, community structure was clearly linked to geochemical and physical environmental parameters, with 84% of variation in bacterial and 73% of variation in fungal community structures explained by environmental parameters. The major driver of bacterial community structure (salinity) was consistent across natural and engineered environments; however, drivers differed for fungal community structure between natural (pH) and engineered (total alkalinity) environments. This study demonstrates that both engineered and natural terrestrial haloalkaline environments host substantial repositories of microbial diversity, which are strongly shaped by geochemical drivers.
Collapse
|
122
|
Farias P, Espírito Santo C, Branco R, Francisco R, Santos S, Hansen L, Sorensen S, Morais PV. Natural hot spots for gain of multiple resistances: arsenic and antibiotic resistances in heterotrophic, aerobic bacteria from marine hydrothermal vent fields. Appl Environ Microbiol 2015; 81:2534-43. [PMID: 25636836 PMCID: PMC4357944 DOI: 10.1128/aem.03240-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/21/2015] [Indexed: 11/20/2022] Open
Abstract
Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite resistance traits in phenotypically resistant strains, in a nonanthropogenically impacted environment. The hydrothermal Lucky Strike field in the Azores archipelago (North Atlantic, between 11°N and 38°N), at the Mid-Atlantic Ridge, protected under the OSPAR Convention, was sampled as a metal-rich pristine environment. A total of 35 strains from 8 different species were isolated in the presence of arsenate, arsenite, and antimonite. ACR3 and arsB genes were amplified from the sediment's total DNA, and 4 isolates also carried ACR3 genes. Phenotypic multiple resistances were found in all strains, and 7 strains had recoverable plasmids. Purified plasmids were sequenced by Illumina and assembled by EDENA V3, and contig annotation was performed using the "Rapid Annotation using the Subsystems Technology" server. Determinants of resistance to copper, zinc, cadmium, cobalt, and chromium as well as to the antibiotics β-lactams and fluoroquinolones were found in the 3 sequenced plasmids. Genes coding for heavy metal resistance and antibiotic resistance in the same mobile element were found, suggesting the possibility of horizontal gene transfer and distribution of theses resistances in the bacterial population.
Collapse
Affiliation(s)
- Pedro Farias
- IMAR-CMA and CEMUC, Coimbra, Portugal Instituto Piaget, Silves, Portugal
| | | | | | | | | | - Lars Hansen
- Department of Biology, Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Soren Sorensen
- Department of Biology, Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Paula V Morais
- IMAR-CMA and CEMUC, Coimbra, Portugal Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
123
|
Eren AM, Morrison HG, Lescault PJ, Reveillaud J, Vineis JH, Sogin ML. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME JOURNAL 2015; 9:968-79. [PMID: 25325381 PMCID: PMC4817710 DOI: 10.1038/ismej.2014.195] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/02/2014] [Accepted: 09/07/2014] [Indexed: 02/06/2023]
Abstract
Molecular microbial ecology investigations often employ large marker gene datasets, for example, ribosomal RNAs, to represent the occurrence of single-cell genomes in microbial communities. Massively parallel DNA sequencing technologies enable extensive surveys of marker gene libraries that sometimes include nearly identical sequences. Computational approaches that rely on pairwise sequence alignments for similarity assessment and de novo clustering with de facto similarity thresholds to partition high-throughput sequencing datasets constrain fine-scale resolution descriptions of microbial communities. Minimum Entropy Decomposition (MED) provides a computationally efficient means to partition marker gene datasets into 'MED nodes', which represent homogeneous operational taxonomic units. By employing Shannon entropy, MED uses only the information-rich nucleotide positions across reads and iteratively partitions large datasets while omitting stochastic variation. When applied to analyses of microbiomes from two deep-sea cryptic sponges Hexadella dedritifera and Hexadella cf. dedritifera, MED resolved a key Gammaproteobacteria cluster into multiple MED nodes that are specific to different sponges, and revealed that these closely related sympatric sponge species maintain distinct microbial communities. MED analysis of a previously published human oral microbiome dataset also revealed that taxa separated by less than 1% sequence variation distributed to distinct niches in the oral cavity. The information theory-guided decomposition process behind the MED algorithm enables sensitive discrimination of closely related organisms in marker gene amplicon datasets without relying on extensive computational heuristics and user supervision.
Collapse
Affiliation(s)
- A Murat Eren
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Hilary G Morrison
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Pamela J Lescault
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Julie Reveillaud
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Joseph H Vineis
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Mitchell L Sogin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
124
|
Hoffmann D, Maldonado J, Wojciechowski MF, Garcia-Pichel F. Hydrogen export from intertidal cyanobacterial mats: sources, fluxes and the influence of community composition. Environ Microbiol 2015; 17:3738-53. [DOI: 10.1111/1462-2920.12769] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 12/23/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Dörte Hoffmann
- School of Life Sciences; Arizona State University; Tempe AZ 85287-4501 USA
| | - Juan Maldonado
- School of Life Sciences; Arizona State University; Tempe AZ 85287-4501 USA
| | | | | |
Collapse
|
125
|
Reigstad CS, Salmonson CE, Rainey JF, Szurszewski JH, Linden DR, Sonnenburg JL, Farrugia G, Kashyap PC. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 2014; 29:1395-403. [PMID: 25550456 DOI: 10.1096/fj.14-259598] [Citation(s) in RCA: 871] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/01/2014] [Indexed: 01/07/2023]
Abstract
Gut microbiota alterations have been described in several diseases with altered gastrointestinal (GI) motility, and awareness is increasing regarding the role of the gut microbiome in modulating GI function. Serotonin [5-hydroxytryptamine (5-HT)] is a key regulator of GI motility and secretion. To determine the relationship among gut microbes, colonic contractility, and host serotonergic gene expression, we evaluated mice that were germ-free (GF) or humanized (HM; ex-GF colonized with human gut microbiota). 5-HT reduced contractile duration in both GF and HM colons. Microbiota from HM and conventionally raised (CR) mice significantly increased colonic mRNAs Tph1 [(tryptophan hydroxylase) 1, rate limiting for mucosal 5-HT synthesis; P < 0.01] and chromogranin A (neuroendocrine secretion; P < 0.01), with no effect on monoamine oxidase A (serotonin catabolism), serotonin receptor 5-HT4, or mouse serotonin transporter. HM and CR mice also had increased colonic Tph1 protein (P < 0.05) and 5-HT concentrations (GF, 17 ± 3 ng/mg; HM, 25 ± 2 ng/mg; and CR, 35 ± 3 ng/mg; P < 0.05). Enterochromaffin (EC) cell numbers (cells producing 5-HT) were unchanged. Short-chain fatty acids (SCFAs) promoted TPH1 transcription in BON cells (human EC cell model). Thus, gut microbiota acting through SCFAs are important determinants of enteric 5-HT production and homeostasis.
Collapse
Affiliation(s)
- Christopher S Reigstad
- *Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA; and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Charles E Salmonson
- *Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA; and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - John F Rainey
- *Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA; and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Joseph H Szurszewski
- *Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA; and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - David R Linden
- *Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA; and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Justin L Sonnenburg
- *Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA; and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Gianrico Farrugia
- *Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA; and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Purna C Kashyap
- *Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA; and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
126
|
Barton HA, Giarrizzo JG, Suarez P, Robertson CE, Broering MJ, Banks ED, Vaishampayan PA, Venkateswaran K. Microbial diversity in a Venezuelan orthoquartzite cave is dominated by the Chloroflexi (Class Ktedonobacterales) and Thaumarchaeota Group I.1c. Front Microbiol 2014; 5:615. [PMID: 25505450 PMCID: PMC4244709 DOI: 10.3389/fmicb.2014.00615] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/28/2014] [Indexed: 01/10/2023] Open
Abstract
The majority of caves are formed within limestone rock and hence our understanding of cave microbiology comes from carbonate-buffered systems. In this paper, we describe the microbial diversity of Roraima Sur Cave (RSC), an orthoquartzite (SiO4) cave within Roraima Tepui, Venezuela. The cave contains a high level of microbial activity when compared with other cave systems, as determined by an ATP-based luminescence assay and cell counting. Molecular phylogenetic analysis of microbial diversity within the cave demonstrates the dominance of Actinomycetales and Alphaproteobacteria in endolithic bacterial communities close to the entrance, while communities from deeper in the cave are dominated (82–84%) by a unique clade of Ktedonobacterales within the Chloroflexi. While members of this phylum are commonly found in caves, this is the first identification of members of the Class Ktedonobacterales. An assessment of archaeal species demonstrates the dominance of phylotypes from the Thaumarchaeota Group I.1c (100%), which have previously been associated with acidic environments. While the Thaumarchaeota have been seen in numerous cave systems, the dominance of Group I.1c in RSC is unique and a departure from the traditional archaeal community structure. Geochemical analysis of the cave environment suggests that water entering the cave, rather than the nutrient-limited orthoquartzite rock, provides the carbon and energy necessary for microbial community growth and subsistence, while the poor buffering capacity of quartzite or the low pH of the environment may be selecting for this unusual community structure. Together these data suggest that pH, imparted by the geochemistry of the host rock, can play as important a role in niche-differentiation in caves as in other environmental systems.
Collapse
Affiliation(s)
- Hazel A Barton
- Department of Biology and Department of Geosciences, University of Akron Akron, OH, USA
| | - Juan G Giarrizzo
- Department of Biological Sciences, Northern Kentucky University, Highland Heights KY, USA
| | - Paula Suarez
- Departamento de Biología de Organismos, Universidad Simón Bolívar Caracas, Venezuela
| | - Charles E Robertson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder CO, USA
| | - Mark J Broering
- Department of Biological Sciences, Northern Kentucky University, Highland Heights KY, USA
| | - Eric D Banks
- Department of Biological Sciences, Northern Kentucky University, Highland Heights KY, USA
| | - Parag A Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA, USA
| | - Kasthisuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA, USA
| |
Collapse
|
127
|
Manzari C, Fosso B, Marzano M, Annese A, Caprioli R, D’Erchia AM, Gissi C, Intranuovo M, Picardi E, Santamaria M, Scorrano S, Sgaramella G, Stabili L, Piraino S, Pesole G. The influence of invasive jellyfish blooms on the aquatic microbiome in a coastal lagoon (Varano, SE Italy) detected by an Illumina-based deep sequencing strategy. Biol Invasions 2014. [DOI: 10.1007/s10530-014-0810-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
128
|
Houghton J, Fike D, Druschel G, Orphan V, Hoehler TM, Des Marais DJ. Spatial variability in photosynthetic and heterotrophic activity drives localized δ13C org fluctuations and carbonate precipitation in hypersaline microbial mats. GEOBIOLOGY 2014; 12:557-574. [PMID: 25312537 DOI: 10.1111/gbi.12113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/30/2014] [Indexed: 06/04/2023]
Abstract
Modern laminated photosynthetic microbial mats are ideal environments to study how microbial activity creates and modifies carbon and sulfur isotopic signatures prior to lithification. Laminated microbial mats from a hypersaline lagoon (Guerrero Negro, Baja California, Mexico) maintained in a flume in a greenhouse at NASA Ames Research Center were sampled for δ(13) C of organic material and carbonate to assess the impact of carbon fixation (e.g., photosynthesis) and decomposition (e.g., bacterial respiration) on δ(13) C signatures. In the photic zone, the δ(13) C org signature records a complex relationship between the activities of cyanobacteria under variable conditions of CO2 limitation with a significant contribution from green sulfur bacteria using the reductive TCA cycle for carbon fixation. Carbonate is present in some layers of the mat, associated with high concentrations of bacteriochlorophyll e (characteristic of green sulfur bacteria) and exhibits δ(13) C signatures similar to DIC in the overlying water column (-2.0‰), with small but variable decreases consistent with localized heterotrophic activity from sulfate-reducing bacteria (SRB). Model results indicate respiration rates in the upper 12 mm of the mat alter in situ pH and HCO3- concentrations to create both phototrophic CO2 limitation and carbonate supersaturation, leading to local precipitation of carbonate minerals. The measured activity of SRB with depth suggests they variably contribute to decomposition in the mat dependent on organic substrate concentrations. Millimeter-scale variability in the δ(13) C org signature beneath the photic zone in the mat is a result of shifting dominance between cyanobacteria and green sulfur bacteria with the aggregate signature overprinted by heterotrophic reworking by SRB and methanogens. These observations highlight the impact of sedimentary microbial processes on δ(13) C org signatures; these processes need to be considered when attempting to relate observed isotopic signatures in ancient sedimentary strata to conditions in the overlying water column at the time of deposition and associated inferences about carbon cycling.
Collapse
Affiliation(s)
- J Houghton
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
129
|
Camanocha A, Dewhirst FE. Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions. J Oral Microbiol 2014; 6:25468. [PMID: 25317252 PMCID: PMC4192840 DOI: 10.3402/jom.v6.25468] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 12/31/2022] Open
Abstract
Background and objective In addition to the well-known phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Spirochaetes, Fusobacteria, Tenericutes, and Chylamydiae, the oral microbiomes of mammals contain species from the lesser-known phyla or candidate divisions, including Synergistetes, TM7, Chlorobi, Chloroflexi, GN02, SR1, and WPS-2. The objectives of this study were to create phyla-selective 16S rDNA PCR primer pairs, create selective 16S rDNA clone libraries, identify novel oral taxa, and update canine and human oral microbiome databases. Design 16S rRNA gene sequences for members of the lesser-known phyla were downloaded from GenBank and Greengenes databases and aligned with sequences in our RNA databases. Primers with potential phylum level selectivity were designed heuristically with the goal of producing nearly full-length 16S rDNA amplicons. The specificity of primer pairs was examined by making clone libraries from PCR amplicons and determining phyla identity by BLASTN analysis. Results Phylum-selective primer pairs were identified that allowed construction of clone libraries with 96–100% specificity for each of the lesser-known phyla. From these clone libraries, seven human and two canine novel oral taxa were identified and added to their respective taxonomic databases. For each phylum, genome sequences closest to human oral taxa were identified and added to the Human Oral Microbiome Database to facilitate metagenomic, transcriptomic, and proteomic studies that involve tiling sequences to the most closely related taxon. While examining ribosomal operons in lesser-known phyla from single-cell genomes and metagenomes, we identified a novel rRNA operon order (23S-5S-16S) in three SR1 genomes and the splitting of the 23S rRNA gene by an I-CeuI-like homing endonuclease in a WPS-2 genome. Conclusions This study developed useful primer pairs for making phylum-selective 16S rRNA clone libraries. Phylum-specific libraries were shown to be useful for identifying previously unrecognized taxa in lesser-known phyla and would be useful for future environmental and host-associated studies.
Collapse
Affiliation(s)
- Anuj Camanocha
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Floyd E Dewhirst
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA ; Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
130
|
Rasuk MC, Kurth D, Flores MR, Contreras M, Novoa F, Poire D, Farias ME. Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama desert. MICROBIAL ECOLOGY 2014; 68:483-494. [PMID: 24859438 DOI: 10.1007/s00248-014-0431-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 05/01/2014] [Indexed: 06/03/2023]
Abstract
The Central Andes in northern Chile contains a large number of closed basins whose central depression is occupied by saline lakes and salt crusts (salars). One of these basins is Salar de Llamara (850 m a.s.l.), where large domed structures of seemingly evaporitic origin forming domes can be found. In this work, we performed a detailed microbial characterization of these domes. Mineralogical studies revealed gypsum (CaSO(4)) as a major component. Microbial communities associated to these structures were analysed by 454 16S rDNA amplicon sequencing and compared between winter and summer seasons. Bacteroidetes Proteobacteria and Planctomycetes remained as the main phylogenetic groups, an increased diversity was found in winter. Comparison of the upper air-exposed part and the lower water-submerged part of the domes in both seasons showed little variation in the upper zone, showing a predominance of Chromatiales (Gammaproteobacteria), Rhodospirillales (Alphaproteobacteria), and Sphingobacteriales (Bacteroidetes). However, the submerged part showed marked differences between seasons, being dominated by Proteobacteria (Alpha and Gamma) and Verrucomicrobia in summer, but with more diverse phyla found in winter. Even though not abundant by sequence, Cyanobacteria were visually identified by scanning electron microscopy (SEM), which also revealed the presence of diatoms. Photosynthetic pigments were detected by high-performance liquid chromatography, being more diverse on the upper photosynthetic layer. Finally, the system was compared with other endoevaporite, mats microbialite and Stromatolites microbial ecosystems, showing higher similitude with evaporitic ecosystems from Atacama and Guerrero Negro. This environment is of special interest for extremophile studies because microbial life develops associated to minerals in the driest desert all over the world. Nevertheless, it is endangered by mining activity associated to copper and lithium extraction; thus, its environmental protection preservation is strongly encouraged.
Collapse
Affiliation(s)
- Maria Cecilia Rasuk
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina
| | | | | | | | | | | | | |
Collapse
|
131
|
Trimethylamine and Organic Matter Additions Reverse Substrate Limitation Effects on the δ13C Values of Methane Produced in Hypersaline Microbial Mats. Appl Environ Microbiol 2014; 80:7316-23. [PMID: 25239903 DOI: 10.1128/aem.02641-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/12/2014] [Indexed: 11/20/2022] Open
Abstract
Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of noncompetitive substrates, such as the methylamines, dimethylsulfide and methanol. Stable isotope measurements of the produced methane have also suggested that the methanogens are operating under conditions of substrate limitation. Here, substrate limitation in gypsum-hosted endoevaporite and soft-mat hypersaline environments was investigated by the addition of trimethylamine, a noncompetitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ(13)C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ(13)C values of the methane produced in the amended vials were statistically lower (by 10 to 71‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more (13)C-depleted methane. Trimethylamine-amended samples produced lower methane δ(13)C values than the mat-amended samples. This difference in the δ(13)C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. It is hypothesized that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis.
Collapse
|
132
|
Ling AL, Robertson CE, Harris JK, Frank DN, Kotter CV, Stevens MJ, Pace NR, Hernandez MT. Carbon dioxide and hydrogen sulfide associations with regional bacterial diversity patterns in microbially induced concrete corrosion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7357-7364. [PMID: 24842376 DOI: 10.1021/es500763e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The microbial communities associated with deteriorating concrete corrosion fronts were characterized in 35 samples taken from wastewater collection and treatment systems in ten utilities. Bacterial communities were described using Illumina MiSeq sequencing of the V1V2 region of the small subunit ribosomal ribonucleic acid (SSU-rRNA) gene recovered from fresh corrosion products. Headspace gas concentrations (hydrogen sulfide, carbon dioxide, and methane), pore water pH, moisture content, and select mineralogy were tested for correlation to community outcomes and corrosion extent using pairwise linear regressions and canonical correspondence analysis. Corroding concrete was most commonly characterized by moisture contents greater than 10%, pore water pH below one, and limited richness (<10 taxa). Bacterial community composition was not correlated to geographic location when considered independently from other environmental factors. Corrosion was most severe in sites with high levels of hydrogen sulfide (>100 ppm) and carbon dioxide (>1%) gases, conditions which also were associated with low diversity biofilms dominated by members of the acidophilic sulfur-oxidizer genus Acidithiobacillus.
Collapse
Affiliation(s)
- Alison L Ling
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Diaz MR, Van Norstrand JD, Eberli GP, Piggot AM, Zhou J, Klaus JS. Functional gene diversity of oolitic sands from Great Bahama Bank. GEOBIOLOGY 2014; 12:231-249. [PMID: 24612324 DOI: 10.1111/gbi.12079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
Despite the importance of oolitic depositional systems as indicators of climate and reservoirs of inorganic C, little is known about the microbial functional diversity, structure, composition, and potential metabolic processes leading to precipitation of carbonates. To fill this gap, we assess the metabolic gene carriage and extracellular polymeric substance (EPS) development in microbial communities associated with oolitic carbonate sediments from the Bahamas Archipelago. Oolitic sediments ranging from high-energy 'active' to lower energy 'non-active' and 'microbially stabilized' environments were examined as they represent contrasting depositional settings, mostly influenced by tidal flows and wave-generated currents. Functional gene analysis, which employed a microarray-based gene technology, detected a total of 12,432 of 95,847 distinct gene probes, including a large number of metabolic processes previously linked to mineral precipitation. Among these, gene-encoding enzymes for denitrification, sulfate reduction, ammonification, and oxygenic/anoxygenic photosynthesis were abundant. In addition, a broad diversity of genes was related to organic carbon degradation, and N2 fixation implying these communities has metabolic plasticity that enables survival under oligotrophic conditions. Differences in functional genes were detected among the environments, with higher diversity associated with non-active and microbially stabilized environments in comparison with the active environment. EPS showed a gradient increase from active to microbially stabilized communities, and when combined with functional gene analysis, which revealed genes encoding EPS-degrading enzymes (chitinases, glucoamylase, amylases), supports a putative role of EPS-mediated microbial calcium carbonate precipitation. We propose that carbonate precipitation in marine oolitic biofilms is spatially and temporally controlled by a complex consortium of microbes with diverse physiologies, including photosynthesizers, heterotrophs, denitrifiers, sulfate reducers, and ammonifiers.
Collapse
Affiliation(s)
- M R Diaz
- Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | | | | | | | | | | |
Collapse
|
134
|
Graham LE, Knack JJ, Piotrowski MJ, Wilcox LW, Cook ME, Wellman CH, Taylor W, Lewis LA, Arancibia-Avila P. Lacustrine Nostoc (Nostocales) and associated microbiome generate a new type of modern clotted microbialite. JOURNAL OF PHYCOLOGY 2014; 50:280-291. [PMID: 26988185 DOI: 10.1111/jpy.12152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/24/2013] [Indexed: 06/05/2023]
Abstract
Microbialites are mineral formations formed by microbial communities that are often dominated by cyanobacteria. Carbonate microbialites, known from Proterozoic times through the present, are recognized for sequestering globally significant amounts of inorganic carbon. Recent ecological work has focused on microbial communities dominated by cyanobacteria that produce microbial mats and laminate microbialites (stromatolites). However, the taxonomic composition and functions of microbial communities that generate distinctive clotted microbialites (thrombolites) are less well understood. Here, microscopy and deep shotgun sequencing were used to characterize the microbiome (microbial taxa and their genomes) associated with a single cyanobacterial host linked by 16S sequences to Nostoc commune Vaucher ex Bornet & Flahault, which dominates abundant littoral clotted microbialites in shallow, subpolar, freshwater Laguna Larga in southern Chile. Microscopy and energy-dispersive X-ray spectroscopy suggested the hypothesis that adherent hollow carbonate spheres typical of the clotted microbialite begin development on the rigid curved outer surfaces of the Nostoc balls. A surface biofilm included >50 nonoxygenic bacterial genera (taxa other than Nostoc) that indicate diverse ecological functions. The Laguna Larga Nostoc microbiome included the sulfate reducers Desulfomicrobium and Sulfospirillum and genes encoding all known proteins specific to sulfate reduction, a process known to facilitate carbonate deposition by increasing pH. Sequences indicating presence of nostocalean and other types of nifH, nostocalean sulfide:ferredoxin oxidoreductase (indicating anoxygenic photosynthesis), and biosynthetic pathways for the secondary products scytonemin, mycosporine, and microviridin toxin were identified. These results allow comparisons with microbiota and microbiomes of other algae and illuminate biogeochemical roles of ancient microbialites.
Collapse
Affiliation(s)
- Linda E Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin, 53606, USA
| | - Jennifer J Knack
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin, 53606, USA
| | - Michael J Piotrowski
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin, 53606, USA
| | - Lee W Wilcox
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin, 53606, USA
| | - Martha E Cook
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61790, USA
| | - Charles H Wellman
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Wilson Taylor
- Department of Biology, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702, USA
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | | |
Collapse
|
135
|
Lee JZ, Burow LC, Woebken D, Everroad RC, Kubo MD, Spormann AM, Weber PK, Pett-Ridge J, Bebout BM, Hoehler TM. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats. Front Microbiol 2014; 5:61. [PMID: 24616716 PMCID: PMC3935151 DOI: 10.3389/fmicb.2014.00061] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/30/2014] [Indexed: 11/17/2022] Open
Abstract
Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB). However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico-permanently submerged Microcoleus microbial mat (GN-S), and intertidal Lyngbya microbial mat (GN-I)-were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of DsrA phylotypes were responsible for H2 consumption. Incubation with (13)C-acetate and NanoSIMS (secondary ion mass-spectrometry) indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen) was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi.
Collapse
Affiliation(s)
- Jackson Z. Lee
- Exobiology Branch, NASA Ames Research CenterMoffett Field, CA, USA
- Bay Area Environmental Research InstituteSonoma, CA, USA
| | - Luke C. Burow
- Exobiology Branch, NASA Ames Research CenterMoffett Field, CA, USA
- Departments of Civil and Environmental Engineering, and Chemical Engineering, Stanford UniversityStanford, CA, USA
| | - Dagmar Woebken
- Exobiology Branch, NASA Ames Research CenterMoffett Field, CA, USA
- Departments of Civil and Environmental Engineering, and Chemical Engineering, Stanford UniversityStanford, CA, USA
| | | | - Mike D. Kubo
- Exobiology Branch, NASA Ames Research CenterMoffett Field, CA, USA
- The SETI InstituteMountain View, CA, USA
| | - Alfred M. Spormann
- Departments of Civil and Environmental Engineering, and Chemical Engineering, Stanford UniversityStanford, CA, USA
| | - Peter K. Weber
- Lawrence Livermore National Lab, Chemical Sciences DivisionLivermore, CA, USA
| | - Jennifer Pett-Ridge
- Lawrence Livermore National Lab, Chemical Sciences DivisionLivermore, CA, USA
| | - Brad M. Bebout
- Exobiology Branch, NASA Ames Research CenterMoffett Field, CA, USA
| | - Tori M. Hoehler
- Exobiology Branch, NASA Ames Research CenterMoffett Field, CA, USA
| |
Collapse
|
136
|
Hydrodynamics and collective behavior of the tethered bacterium Thiovulum majus. Proc Natl Acad Sci U S A 2014; 111:E537-45. [PMID: 24459183 DOI: 10.1073/pnas.1322092111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ecology and dynamics of many microbial systems, particularly in mats and soils, are shaped by how bacteria respond to evolving nutrient gradients and microenvironments. Here we show how the response of the sulfur-oxidizing bacterium Thiovulum majus to changing oxygen gradients causes cells to organize into large-scale fronts. To study this phenomenon, we develop a technique to isolate and enrich these bacteria from the environment. Using this enrichment culture, we observe the formation and dynamics of T. majus fronts in oxygen gradients. We show that these dynamics can be understood as occurring in two steps. First, chemotactic cells moving up the oxygen gradient form a front that propagates with constant velocity. We then show, through observation and mathematical analysis, that this front becomes unstable to changes in cell density. Random perturbations in cell density create oxygen gradients. The response of cells magnifies these gradients and leads to the formation of millimeter-scale fluid flows that actively pull oxygenated water through the front. We argue that this flow results from a nonlinear instability excited by stochastic fluctuations in the density of cells. Finally, we show that the dynamics by which these modes interact can be understood from the chemotactic response of cells. These results provide a mathematically tractable example of how collective phenomena in ecological systems can arise from the individual response of cells to a shared resource.
Collapse
|
137
|
Farías ME, Contreras M, Rasuk MC, Kurth D, Flores MR, Poiré DG, Novoa F, Visscher PT. Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 2014; 18:311-29. [DOI: 10.1007/s00792-013-0617-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/05/2013] [Indexed: 02/01/2023]
|
138
|
Johannesson KH, Telfeyan K, Chevis DA, Rosenheim BE, Leybourne MI. Rare Earth Elements in Stromatolites—1. Evidence that Modern Terrestrial Stromatolites Fractionate Rare Earth Elements During Incorporation from Ambient Waters. MODERN APPROACHES IN SOLID EARTH SCIENCES 2014. [DOI: 10.1007/978-94-007-7615-9_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
139
|
Jahnke LL, Turk-Kubo KA, N Parenteau M, Green SJ, Kubo MDY, Vogel M, Summons RE, Des Marais DJ. Molecular and lipid biomarker analysis of a gypsum-hosted endoevaporitic microbial community. GEOBIOLOGY 2014; 12:62-82. [PMID: 24325308 DOI: 10.1111/gbi.12068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/28/2013] [Indexed: 06/03/2023]
Abstract
Modern evaporitic microbial ecosystems are important analogs for understanding the record of earliest life on Earth. Although mineral-depositing shallow-marine environments were prevalent during the Precambrian, few such environments are now available today for study. We investigated the molecular and lipid biomarker composition of an endoevaporitic gypsarenite microbial mat community in Guerrero Negro, Mexico. The 16S ribosomal RNA gene-based phylogenetic analyses of this mat corroborate prior observations indicating that characteristic layered microbial communities colonize gypsum deposits world-wide despite considerable textural and morphological variability. Membrane fatty acid analysis of the surface tan/orange and lower green mat crust layers indicated cell densities of 1.6 × 10(9) and 4.2 × 10(9) cells cm(-3) , respectively. Several biomarker fatty acids, ∆7,10-hexadecadienoic, iso-heptadecenoic, 10-methylhexadecanoic, and a ∆12-methyloctadecenoic, correlated well with distributions of Euhalothece, Stenotrophomonas, Desulfohalobium, and Rhodobacterales, respectively, revealed by the phylogenetic analyses. Chlorophyll (Chl) a and cyanobacterial phylotypes were present at all depths in the mat. Bacteriochlorophyl (Bchl) a and Bchl c were first detected in the oxic-anoxic transition zone and increased with depth. A series of monomethylalkanes (MMA), 8-methylhexadecane, 8-methylheptadecane, and 9-methyloctadecane were present in the surface crust but increased in abundance in the lower anoxic layers. The MMA structures are similar to those identified previously in cultures of the marine Chloroflexus-like organism 'Candidatus Chlorothrix halophila' gen. nov., sp. nov., and may represent the Bchl c community. Novel 3-methylhopanoids were identified in cultures of marine purple non-sulfur bacteria and serve as a probable biomarker for this group in the lower anoxic purple and olive-black layers. Together microbial culture and environmental analyses support novel sources for lipid biomarkers in gypsum crust mats.
Collapse
Affiliation(s)
- L L Jahnke
- Exobiology Branch, NASA, Ames Research Center, Moffett Field, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Dillon JG, Carlin M, Gutierrez A, Nguyen V, McLain N. Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur, Mexico. Front Microbiol 2013; 4:399. [PMID: 24391633 PMCID: PMC3868825 DOI: 10.3389/fmicb.2013.00399] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/04/2013] [Indexed: 01/28/2023] Open
Abstract
The goal of this study was to use environmental sequencing of 16S rRNA and bop genes to compare the diversity of planktonic bacteria and archaea across ponds with increasing salinity in the Exportadora de Sal (ESSA) evaporative saltern in Guerrero Negro, Baja CA S., Mexico. We hypothesized that diverse communities of heterotrophic bacteria and archaea would be found in the ESSA ponds, but that bacterial diversity would decrease relative to archaea at the highest salinities. Archaeal 16S rRNA diversity was higher in Ponds 11 and 12 (370 and 380 g l(-1) total salts, respectively) compared to Pond 9 (180 g l(-1) total salts). Both Pond 11 and 12 communities had high representation (47 and 45% of clones, respectively) by Haloquadratum walsbyi-like (99% similarity) lineages. The archaeal community in Pond 9 was dominated (79%) by a single uncultured phylotype with 99% similarity to sequences recovered from the Sfax saltern in Tunisia. This pattern was mirrored in bop gene diversity with greater numbers of highly supported phylotypes including many Haloquadratum-like sequences from the two highest salinity ponds. In Pond 9, most bop sequences, were not closely related to sequences in databases. Bacterial 16S rRNA diversity was higher than archaeal in both Pond 9 and Pond 12 samples, but not Pond 11, where a non-Salinibacter lineage within the Bacteroidetes >98% similar to environmental clones recovered from Lake Tuz in Turkey and a saltern in Chula Vista, CA was most abundant (69% of community). This OTU was also the most abundant in Pond 12, but only represented 14% of clones in the more diverse pond. The most abundant OTU in Pond 9 (33% of community) was 99% similar to an uncultured gammaproteobacterial clone from the Salton Sea. Results suggest that the communities of saltern bacteria and archaea vary even in ponds with similar salinity and further investigation into the ecology of diverse, uncultured halophile communities is warranted.
Collapse
Affiliation(s)
- Jesse G Dillon
- Department of Biological Sciences, California State University Long Beach, CA, USA
| | - Mark Carlin
- Department of Biological Sciences, California State University Long Beach, CA, USA
| | - Abraham Gutierrez
- Department of Biological Sciences, California State University Long Beach, CA, USA
| | - Vivian Nguyen
- Department of Biological Sciences, California State University Long Beach, CA, USA
| | - Nathan McLain
- Department of Biological Sciences, California State University Long Beach, CA, USA
| |
Collapse
|
141
|
Pande S, Merker H, Bohl K, Reichelt M, Schuster S, de Figueiredo LF, Kaleta C, Kost C. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME JOURNAL 2013; 8:953-62. [PMID: 24285359 DOI: 10.1038/ismej.2013.211] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/15/2013] [Accepted: 10/18/2013] [Indexed: 01/08/2023]
Abstract
Cross-feeding interactions, in which bacterial cells exchange costly metabolites to the benefit of both interacting partners, are very common in the microbial world. However, it generally remains unclear what maintains this type of interaction in the presence of non-cooperating types. We investigate this problem using synthetic cross-feeding interactions: by simply deleting two metabolic genes from the genome of Escherichia coli, we generated genotypes that require amino acids to grow and release other amino acids into the environment. Surprisingly, in a vast majority of cases, cocultures of two cross-feeding strains showed an increased Darwinian fitness (that is, rate of growth) relative to prototrophic wild type cells--even in direct competition. This unexpected growth advantage was due to a division of metabolic labour: the fitness cost of overproducing amino acids was less than the benefit of not having to produce others when they were provided by their partner. Moreover, frequency-dependent selection maintained cross-feeding consortia and limited exploitation by non-cooperating competitors. Together, our synthetic study approach reveals ecological principles that can help explain the widespread occurrence of obligate metabolic cross-feeding interactions in nature.
Collapse
Affiliation(s)
- Samay Pande
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Holger Merker
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Katrin Bohl
- 1] Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany [2] Department of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany [3] Research Group Theoretical Systems Biology, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
| | - Luís F de Figueiredo
- 1] Department of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany [2] Cheminformatics and Metabolism-team, The EMBL-European Bioinformatics Institute (EBI), Welcome Trust Genome Campus, Cambridge, UK
| | - Christoph Kaleta
- Research Group Theoretical Systems Biology, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Kost
- 1] Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany [2] Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
142
|
Jørgensen SL, Thorseth IH, Pedersen RB, Baumberger T, Schleper C. Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge. Front Microbiol 2013; 4:299. [PMID: 24109477 PMCID: PMC3790079 DOI: 10.3389/fmicb.2013.00299] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/17/2013] [Indexed: 11/17/2022] Open
Abstract
In marine sediments archaea often constitute a considerable part of the microbial community, of which the Deep Sea Archaeal Group (DSAG) is one of the most predominant. Despite their high abundance no members from this archaeal group have so far been characterized and thus their metabolism is unknown. Here we show that the relative abundance of DSAG marker genes can be correlated with geochemical parameters, allowing prediction of both the potential electron donors and acceptors of these organisms. We estimated the abundance of 16S rRNA genes from Archaea, Bacteria, and DSAG in 52 sediment horizons from two cores collected at the slow-spreading Arctic Mid-Ocean Ridge, using qPCR. The results indicate that members of the DSAG make up the entire archaeal population in certain horizons and constitute up to ~50% of the total microbial community. The quantitative data were correlated to 30 different geophysical and geochemical parameters obtained from the same sediment horizons. We observed a significant correlation between the relative abundance of DSAG 16S rRNA genes and the content of organic carbon (p < 0.0001). Further, significant co-variation with iron oxide, and dissolved iron and manganese (all p < 0.0000), indicated a direct or indirect link to iron and manganese cycling. Neither of these parameters correlated with the relative abundance of archaeal or bacterial 16S rRNA genes, nor did any other major electron donor or acceptor measured. Phylogenetic analysis of DSAG 16S rRNA gene sequences reveals three monophyletic lineages with no apparent habitat-specific distribution. In this study we support the hypothesis that members of the DSAG are tightly linked to the content of organic carbon and directly or indirectly involved in the cycling of iron and/or manganese compounds. Further, we provide a molecular tool to assess their abundance in environmental samples and enrichment cultures.
Collapse
Affiliation(s)
- Steffen L Jørgensen
- Department of Biology, Centre for Geobiology, University of Bergen , Bergen, Norway
| | | | | | | | | |
Collapse
|
143
|
Ursell T, Chau RMW, Wisen S, Bhaya D, Huang KC. Motility enhancement through surface modification is sufficient for cyanobacterial community organization during phototaxis. PLoS Comput Biol 2013; 9:e1003205. [PMID: 24039562 PMCID: PMC3763999 DOI: 10.1371/journal.pcbi.1003205] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 07/16/2013] [Indexed: 12/21/2022] Open
Abstract
The emergent behaviors of communities of genotypically identical cells cannot be easily predicted from the behaviors of individual cells. In many cases, it is thought that direct cell-cell communication plays a critical role in the transition from individual to community behaviors. In the unicellular photosynthetic cyanobacterium Synechocystis sp. PCC 6803, individual cells exhibit light-directed motility ("phototaxis") over surfaces, resulting in the emergence of dynamic spatial organization of multicellular communities. To probe this striking community behavior, we carried out time-lapse video microscopy coupled with quantitative analysis of single-cell dynamics under varying light conditions. These analyses suggest that cells secrete an extracellular substance that modifies the physical properties of the substrate, leading to enhanced motility and the ability for groups of cells to passively guide one another. We developed a biophysical model that demonstrates that this form of indirect, surface-based communication is sufficient to create distinct motile groups whose shape, velocity, and dynamics qualitatively match our experimental observations, even in the absence of direct cellular interactions or changes in single-cell behavior. Our computational analysis of the predicted community behavior, across a matrix of cellular concentrations and light biases, demonstrates that spatial patterning follows robust scaling laws and provides a useful resource for the generation of testable hypotheses regarding phototactic behavior. In addition, we predict that degradation of the surface modification may account for the secondary patterns occasionally observed after the initial formation of a community structure. Taken together, our modeling and experiments provide a framework to show that the emergent spatial organization of phototactic communities requires modification of the substrate, and this form of surface-based communication could provide insight into the behavior of a wide array of biological communities.
Collapse
Affiliation(s)
- Tristan Ursell
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Rosanna Man Wah Chau
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Carnegie Institution for Science, Department of Plant Biology, Stanford University, Stanford, California, United States of America
| | - Susanne Wisen
- Carnegie Institution for Science, Department of Plant Biology, Stanford University, Stanford, California, United States of America
| | - Devaki Bhaya
- Carnegie Institution for Science, Department of Plant Biology, Stanford University, Stanford, California, United States of America
- * E-mail: (DB); (KCH)
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (DB); (KCH)
| |
Collapse
|
144
|
Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, Williams KH, Tringe SG, Banfield JF. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. MICROBIOME 2013; 1:22. [PMID: 24450983 PMCID: PMC3971608 DOI: 10.1186/2049-2618-1-22] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/24/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND Sediments are massive reservoirs of carbon compounds and host a large fraction of microbial life. Microorganisms within terrestrial aquifer sediments control buried organic carbon turnover, degrade organic contaminants, and impact drinking water quality. Recent 16S rRNA gene profiling indicates that members of the bacterial phylum Chloroflexi are common in sediment. Only the role of the class Dehalococcoidia, which degrade halogenated solvents, is well understood. Genomic sampling is available for only six of the approximate 30 Chloroflexi classes, so little is known about the phylogenetic distribution of reductive dehalogenation or about the broader metabolic characteristics of Chloroflexi in sediment. RESULTS We used metagenomics to directly evaluate the metabolic potential and diversity of Chloroflexi in aquifer sediments. We sampled genomic sequence from 86 Chloroflexi representing 15 distinct lineages, including members of eight classes previously characterized only by 16S rRNA sequences. Unlike in the Dehalococcoidia, genes for organohalide respiration are rare within the Chloroflexi genomes sampled here. Near-complete genomes were reconstructed for three Chloroflexi. One, a member of an unsequenced lineage in the Anaerolinea, is an aerobe with the potential for respiring diverse carbon compounds. The others represent two genomically unsampled classes sibling to the Dehalococcoidia, and are anaerobes likely involved in sugar and plant-derived-compound degradation to acetate. Both fix CO2 via the Wood-Ljungdahl pathway, a pathway not previously documented in Chloroflexi. The genomes each encode unique traits apparently acquired from Archaea, including mechanisms of motility and ATP synthesis. CONCLUSIONS Chloroflexi in the aquifer sediments are abundant and highly diverse. Genomic analyses provide new evolutionary boundaries for obligate organohalide respiration. We expand the potential roles of Chloroflexi in sediment carbon cycling beyond organohalide respiration to include respiration of sugars, fermentation, CO2 fixation, and acetogenesis with ATP formation by substrate-level phosphorylation.
Collapse
Affiliation(s)
- Laura A Hug
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| | - Cindy J Castelle
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| | - Kelly C Wrighton
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| | - Brian C Thomas
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| | - Itai Sharon
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| | - Kyle R Frischkorn
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| | - Kenneth H Williams
- Geophysics Department, Earth Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Susannah G Tringe
- Metagenome Program, DOE Joint Genome Institute, Walnut Creek, CA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| |
Collapse
|
145
|
Insights into the phylogeny and coding potential of microbial dark matter. Nature 2013; 499:431-7. [PMID: 23851394 DOI: 10.1038/nature12352] [Citation(s) in RCA: 1482] [Impact Index Per Article: 123.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/04/2013] [Indexed: 12/31/2022]
|
146
|
Schneider D, Arp G, Reimer A, Reitner J, Daniel R. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati atoll, Central Pacific. PLoS One 2013; 8:e66662. [PMID: 23762495 PMCID: PMC3677903 DOI: 10.1371/journal.pone.0066662] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/08/2013] [Indexed: 02/01/2023] Open
Abstract
On the Kiritimati atoll, several lakes exhibit microbial mat-formation under different hydrochemical conditions. Some of these lakes trigger microbialite formation such as Lake 21, which is an evaporitic, hypersaline lake (salinity of approximately 170‰). Lake 21 is completely covered with a thick multilayered microbial mat. This mat is associated with the formation of decimeter-thick highly porous microbialites, which are composed of aragonite and gypsum crystals. We assessed the bacterial and archaeal community composition and its alteration along the vertical stratification by large-scale analysis of 16S rRNA gene sequences of the nine different mat layers. The surface layers are dominated by aerobic, phototrophic, and halotolerant microbes. The bacterial community of these layers harbored Cyanobacteria (Halothece cluster), which were accompanied with known phototrophic members of the Bacteroidetes and Alphaproteobacteria. In deeper anaerobic layers more diverse communities than in the upper layers were present. The deeper layers were dominated by Spirochaetes, sulfate-reducing bacteria (Deltaproteobacteria), Chloroflexi (Anaerolineae and Caldilineae), purple non-sulfur bacteria (Alphaproteobacteria), purple sulfur bacteria (Chromatiales), anaerobic Bacteroidetes (Marinilabiacae), Nitrospirae (OPB95), Planctomycetes and several candidate divisions. The archaeal community, including numerous uncultured taxonomic lineages, generally changed from Euryarchaeota (mainly Halobacteria and Thermoplasmata) to uncultured members of the Thaumarchaeota (mainly Marine Benthic Group B) with increasing depth.
Collapse
Affiliation(s)
- Dominik Schneider
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Gernot Arp
- Geoscience Centre, Georg-August University Göttingen, Göttingen, Germany
| | - Andreas Reimer
- Geoscience Centre, Georg-August University Göttingen, Göttingen, Germany
| | - Joachim Reitner
- Geoscience Centre, Georg-August University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
147
|
Richness and diversity of bacteria in the Nansha carbonate platform (Core MD05-2896), South China Sea. World J Microbiol Biotechnol 2013; 29:1895-905. [PMID: 23700125 DOI: 10.1007/s11274-013-1354-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
We explored the bacterial diversity and vertical distribution along a sediment core (MD05-2896) from the coral reefs of the Nansha carbonate platform in the South China Sea. Bacterial diversity is determined by 16S rRNA molecular survey from twelve subsamples A, obtained via cloning, sequencing and phylogenetic analyses. We estimated the species richness by parametric and nonparametric models, which identified 326 ± 40 (SE) bacteria species. The dominant bacterial groups included Planctomycetes, Deltaproteobacteria, and candidate division OP3, which constituting 23.7, 10.4, and 9.5 % of bacterial 16S rRNAclone libraries, respectively. The observed stratification of bacterial communities was correlated with C/N ratio. This study improves our understanding of the species-environment relationship in the sub-sea floor sediment.
Collapse
|
148
|
Cantrell SA, Tkavc R, Gunde-Cimerman N, Zalar P, Acevedo M, Báez-Félix C. Fungal communities of young and mature hypersaline microbial mats. Mycologia 2013; 105:827-36. [PMID: 23709488 DOI: 10.3852/12-288] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Microbial mats are a laminated organic-sedimentary ecosystem, found in a wide range of habitats. Fluctuating diel and seasonal physicochemical gradients characterize these ecosystems, resulting in both strata and microenvironments that harbor specific microbial communities. This study was undertaken to compare two types of microbial mats across seasons to further understand the structure of fungal communities in hypersaline microbial mats and their seasonal dynamics. The structure and diversity of fungal communities was documented in young transient and mature hypersaline microbial mats from a tropical region (Puerto Rico) using one culture-dependent and three culture-independent molecular techniques based on the internal transcribed spacer (ITS) region of ribosomal DNA: terminal restriction fragment length polymorphism (TRFLP), denaturing gradient gel electrophoresis (DGGE) and clone libraries. Two microbial mats (one young and transient, one mature) were sampled in Nov 2007 (wet season), Jan 2008 (intermediate season) and Mar 2008 (dry season) in the Cabo Rojo Solar Salterns on the southwestern coast of Puerto Rico. Traditional and molecular techniques revealed strong spatial and temporal heterogeneities in both microbial mats. Higher abundance of isolates and phylotypes were observed during the wet season, and diversity decreased from the top (oxic) to the bottom (anoxic) layers in both seasons. Some of the species isolated belong to the genera Aspergillus, Cladosporium, Hortaea, Pichia and Wallemia, which often are isolated from hypersaline environments. The most abundant clones belong to Acremonium strictum and Cladosporium halotolerans, which were not isolated in pure culture. The differences observed using culture-based and molecular techniques demonstrates the need of combining methods to study the diversity of fungi in a given substrate.
Collapse
|
149
|
New insights into the archaeal diversity of a hypersaline microbial mat obtained by a metagenomic approach. Syst Appl Microbiol 2013; 36:205-14. [DOI: 10.1016/j.syapm.2012.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/20/2012] [Accepted: 11/20/2012] [Indexed: 11/23/2022]
|
150
|
Wright KE, Williamson C, Grasby SE, Spear JR, Templeton AS. Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass. Front Microbiol 2013; 4:63. [PMID: 23626586 PMCID: PMC3631710 DOI: 10.3389/fmicb.2013.00063] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 03/04/2013] [Indexed: 02/01/2023] Open
Abstract
We combined free enenergy calculations and metagenomic analyses of an elemental sulfur (S0) deposit on the surface of Borup Fiord Pass Glacier in the Canadian High Arctic to investigate whether the energy available from different redox reactions in an environment predicts microbial metabolism. Many S, C, Fe, As, Mn, and NH4+ oxidation reactions were predicted to be energetically feasible in the deposit, and aerobic oxidation of S0 was the most abundant chemical energy source. Small subunit ribosomal RNA (SSU rRNA) gene sequence data showed that the dominant phylotypes were Sulfurovum and Sulfuricurvum, both Epsilonproteobacteria known to be capable of sulfur lithotrophy. Sulfur redox genes were abundant in the metagenome, but sox genes were significantly more abundant than reverse dsr (dissimilatory sulfite reductase)genes. Interestingly, there appeared to be habitable niches that were unoccupied at the depth of genome coverage obtained. Photosynthesis and NH4+ oxidation should both be energetically favorable, but we found few or no functional genes for oxygenic or anoxygenic photosynthesis, or for NH4+ oxidation by either oxygen (nitrification) or nitrite (anammox). The free energy, SSU rRNA gene and quantitative functional gene data are all consistent with the hypothesis that sulfur-based chemolithoautotrophy by Epsilonproteobacteria (Sulfurovum and Sulfuricurvum) is the main form of primary productivity at this site, instead of photosynthesis. This is despite the presence of 24-h sunlight, and the fact that photosynthesis is not known to be inhibited by any of the environmental conditions present. This is the first time that Sulfurovum and Sulfuricurvum have been shown to dominate a sub-aerial environment, rather than anoxic or sulfidic settings. We also found that Flavobacteria dominate the surface of the sulfur deposits. We hypothesize that this aerobic heterotroph uses enough oxygen to create a microoxic environment in the sulfur below, where the Epsilonproteobacteria can flourish.
Collapse
Affiliation(s)
- Katherine E Wright
- Department of Geological Sciences, University of Colorado at Boulder Boulder, CO, USA
| | | | | | | | | |
Collapse
|