101
|
Rylev M, Abduljabar AB, Reinholdt J, Ennibi OK, Haubek D, Birkelund S, Kilian M. Proteomic and immunoproteomic analysis of Aggregatibacter actinomycetemcomitans JP2 clone strain HK1651. J Proteomics 2011; 74:2972-85. [PMID: 21867783 DOI: 10.1016/j.jprot.2011.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/06/2011] [Accepted: 07/24/2011] [Indexed: 11/25/2022]
Abstract
The proteome of Aggregatibacter actinomycetemcomitans HK1651 (JP2 clone) and immunoreactive antigens were studied by two-dimensional (2D) gel electrophoresis, matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS), and 2D immunoblotting. The highly leukotoxic JP2 clone of A. actinomycetemcomitans is strongly associated with aggressive periodontitis (AgP) in adolescents of North-West African descent and the pathogenicity of this bacterium is of major interest. Hence, we developed a comprehensive 2D proteome reference map of A. actinomycetemcomitans proteins with 167 identified spots representing 114 different proteins of which 15 were outer membrane proteins. To unravel immunoreactive antigens, we applied 2D-gel and subsequent immunoblotting analyses using sera from five individuals with A. actinomycetemcomitans infections and one healthy control. The analysis revealed 32 immunoreactive proteins. Antibodies to two outer membrane proteins, YaeT (85 kDa) and Omp39 (39 kDa), not previously described as immunoreactive, were found only in subjects with current or previous A. actinomycetemcomitans JP2 infection. Further proteome-based studies of A. actinomycetemcomitans combined with analyses of the humoral immune response and targeted against outer membrane proteins may provide important insight into the host relationship of this important pathogen.
Collapse
Affiliation(s)
- Mette Rylev
- Department of Medical Microbiology and Immunology, School of Dentistry, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
102
|
Fong KP, Tang HY, Brown AC, Kieba IR, Speicher DW, Boesze-Battaglia K, Lally ET. Aggregatibacter actinomycetemcomitans leukotoxin is post-translationally modified by addition of either saturated or hydroxylated fatty acyl chains. Mol Oral Microbiol 2011; 26:262-76. [PMID: 21729247 PMCID: PMC3404814 DOI: 10.1111/j.2041-1014.2011.00617.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aggregatibacter actinomycetemcomitans, a common inhabitant of the human upper aerodigestive tract, produces a repeat in toxin (RTX), leukotoxin (LtxA). The LtxA is transcribed as a 114-kDa inactive protoxin with activation being achieved by attachment of short chain fatty acyl groups to internal lysine residues. Methyl esters of LtxA that were isolated from A. actinomycetemcomitans strains JP2 and HK1651 and subjected to gas chromatography/mass spectrometry contained palmitoyl (C16:0, 27-29%) and palmitolyl (C16:1 cis Δ9, 43-44%) fatty acyl groups with smaller quantities of myristic (C14:0, 14%) and stearic (C18:0, 12-14%) fatty acids. Liquid chromatography/mass spectrometry of tryptic peptides from acylated and unacylated recombinant LtxA confirmed that Lys(562) and Lys(687) are the sites of acyl group attachment. During analysis of recombinant LtxA peptides, we observed peptide spectra that were not observed as part of the RTX acylation schemes of either Escherichia coliα-hemolysin or Bordetella pertussis cyclolysin. Mass calculations of these spectra suggested that LtxA was also modified by the addition of monohydroxylated forms of C14 and C16 acyl groups. Multiple reaction monitoring mass spectrometry identified hydroxymyristic and hydroxypalmitic acids in wild-type LtxA methyl esters. Single or tandem replacement of Lys(562) and Lys(687) with Arg blocks acylation, resulting in a >75% decrease in cytotoxicity when compared with wild-type toxin, suggesting that these post-translational modifications are playing a critical role in LtxA-mediated target cell cytotoxicity.
Collapse
Affiliation(s)
- K P Fong
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Kittichotirat W, Bumgarner RE, Asikainen S, Chen C. Identification of the pangenome and its components in 14 distinct Aggregatibacter actinomycetemcomitans strains by comparative genomic analysis. PLoS One 2011; 6:e22420. [PMID: 21811606 PMCID: PMC3139650 DOI: 10.1371/journal.pone.0022420] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 06/23/2011] [Indexed: 11/23/2022] Open
Abstract
Background Aggregatibacter actinomycetemcomitans is genetically heterogeneous and comprises distinct clonal lineages that may have different virulence potentials. However, limited information of the strain-to-strain genomic variations is available. Methodology/Principal Findings The genome sequences of 11 A. actinomycetemcomitans strains (serotypes a-f) were generated de novo, annotated and combined with three previously sequenced genomes (serotypes a-c) for comparative genomic analysis. Two major groups were identified; serotypes a, d, e, and f, and serotypes b and c. A serotype e strain was found to be distinct from both groups. The size of the pangenome was 3,301 genes, which included 2,034 core genes and 1,267 flexible genes. The number of core genes is estimated to stabilize at 2,060, while the size of the pangenome is estimated to increase by 16 genes with every additional strain sequenced in the future. Within each strain 16.7–29.4% of the genome belonged to the flexible gene pool. Between any two strains 0.4–19.5% of the genomes were different. The genomic differences were occasionally greater for strains of the same serotypes than strains of different serotypes. Furthermore, 171 genomic islands were identified. Cumulatively, 777 strain-specific genes were found on these islands and represented 61% of the flexible gene pool. Conclusions/Significance Substantial genomic differences were detected among A. actinomycetemcomitans strains. Genomic islands account for more than half of the flexible genes. The phenotype and virulence of A. actinomycetemcomitans may not be defined by any single strain. Moreover, the genomic variation within each clonal lineage of A. actinomycetemcomitans (as defined by serotype grouping) may be greater than between clonal lineages. The large genomic data set in this study will be useful to further examine the molecular basis of variable virulence among A. actinomycetemcomitans strains.
Collapse
Affiliation(s)
- Weerayuth Kittichotirat
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Roger E. Bumgarner
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Sirkka Asikainen
- Department of Surgical Sciences, Periodontology, Kuwait University, Kuwait City, Kuwait
| | - Casey Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry of the University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
104
|
Wade WG. Has the use of molecular methods for the characterization of the human oral microbiome changed our understanding of the role of bacteria in the pathogenesis of periodontal disease? J Clin Periodontol 2011; 38 Suppl 11:7-16. [PMID: 21323699 DOI: 10.1111/j.1600-051x.2010.01679.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Only around half of oral bacteria can be grown in the laboratory using conventional culture methods. Molecular methods based on 16S rRNA gene sequence are now available and are being used to characterize the periodontal microbiota in its entirety. AIM This review describes the cultural characterization of the oral and periodontal microbiotas and explores the influence of the additional data now available from culture-independent molecular analyses on current thinking on the role of bacteria in periodontitis. RESULTS Culture-independent molecular analysis of the periodontal microbiota has shown it to be far more diverse than previously thought. A number of species including some that have yet to be cultured are as strongly associated with disease as those organisms traditionally regarded as periodontal pathogens. Sequencing of bacterial genomes has revealed a high degree of intra-specific genetic diversity. CONCLUSIONS The use of molecular methods for the characterization of the periodontal microbiome has greatly expanded the range of bacterial species known to colonize this habitat. Understanding the interactions between the human host and its commensal bacterial community at the functional level is a priority.
Collapse
|
105
|
Johansson A. Aggregatibacter actinomycetemcomitans leukotoxin: a powerful tool with capacity to cause imbalance in the host inflammatory response. Toxins (Basel) 2011; 3:242-59. [PMID: 22069708 PMCID: PMC3202821 DOI: 10.3390/toxins3030242] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/01/2011] [Accepted: 03/08/2011] [Indexed: 11/21/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans has been described as a member of the indigenous oral microbiota of humans, and is involved in the pathology of periodontitis and various non-oral infections. This bacterium selectively kills human leukocytes through expression of leukotoxin, a large pore-forming protein that belongs to the Repeat in Toxin (RTX) family. The specificity of the toxin is related to its prerequisite for a specific target cell receptor, LFA-1, which is solely expressed on leukocytes. The leukotoxin causes death of different leukocyte populations in a variety of ways. It activates a rapid release of lysosomal enzymes and MMPs from neutrophils and causes apoptosis in lymphocytes. In the monocytes/macrophages, the toxin activates caspase-1, a cysteine proteinase, which causes a proinflammatory response by the activation and secretion of IL-1β and IL-18. A specific clone (JP2) of A. actinomycetemcomitans with enhanced leukotoxin expression significantly correlates to disease onset in infected individuals. Taken together, the mechanisms by which this toxin kills leukocytes are closely related to the pathogenic mechanisms of inflammatory disorders, such as periodontitis. Therapeutic strategies targeting the cellular and molecular inflammatory host response in periodontal diseases might be a future treatment alternative.
Collapse
Affiliation(s)
- Anders Johansson
- Department of Odontology, Umea University, SE-901 87 Umea, Sweden.
| |
Collapse
|
106
|
López R, Dahlén G, Retamales C, Baelum V. Clustering of subgingival microbial species in adolescents with’ periodontitis. Eur J Oral Sci 2011; 119:141-50. [DOI: 10.1111/j.1600-0722.2011.00808.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
107
|
Elamin A, Albandar JM, Poulsen K, Ali RW, Bakken V. Prevalence of Aggregatibacter actinomycetemcomitans in Sudanese patients with aggressive periodontitis: a case-control study. J Periodontal Res 2011; 46:285-91. [DOI: 10.1111/j.1600-0765.2010.01337.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
108
|
Effects of Catechin Gallate on Bactericidal Action and Leukotoxic Activity of Aggregatibacter actinomycetemcomitans. ACTA ACUST UNITED AC 2011. [DOI: 10.5466/ijoms.10.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
109
|
Sakellari D, Katsikari A, Slini T, Ioannidis I, Konstantinidis A, Arsenakis M. Prevalence and distribution of Aggregatibacter actinomycetemcomitans serotypes and the JP2 clone in a Greek population. J Clin Periodontol 2010; 38:108-14. [DOI: 10.1111/j.1600-051x.2010.01649.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
110
|
Rylev M, Bek-Thomsen M, Reinholdt J, Ennibi OK, Kilian M. Microbiological and immunological characteristics of young Moroccan patients with aggressive periodontitis with and without detectable Aggregatibacter actinomycetemcomitans JP2 infection. Mol Oral Microbiol 2010; 26:35-51. [PMID: 21214871 DOI: 10.1111/j.2041-1014.2010.00593.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cross-sectional and longitudinal studies identify the JP2 clone of Aggregatibacter actinomycetemcomitans as an aetiological agent of aggressive periodontitis (AgP) in adolescents of northwest African descent. To gain information on why a significant part of Moroccan adolescents show clinical signs of periodontal disease in the absence of this pathogen we performed comprehensive mapping of the subgingival microbiota of eight young Moroccans, four of whom were diagnosed with clinical signs of AgP. The analysis was carried out by sequencing and phylogenetic analysis of a total of 2717 cloned polymerase chain reaction amplicons of the phylogenetically informative 16S ribosomal RNA gene. The analyses revealed a total of 173 bacterial taxa of which 39% were previously undetected. The JP2 clone constituted a minor proportion of the complex subgingival microbiota in patients with active disease. Rather than identifying alternative aetiologies to AgP, the recorded infection history of the subjects combined with remarkably high concentrations of antibodies against the A. actinomycetemcomitans leukotoxin suggest that disease activity was terminated in some patients with AgP as a result of elimination of the JP2 clone. This study provides information on the microbial context of the JP2 clone activity in a JP2-susceptible population and suggests that such individuals may develop immunity to AgP.
Collapse
Affiliation(s)
- M Rylev
- Department of Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
111
|
Claesson R, Lagervall M, Höglund-Aberg C, Johansson A, Haubek D. Detection of the highly leucotoxic JP2 clone of Aggregatibacter actinomycetemcomitans in members of a Caucasian family living in Sweden. J Clin Periodontol 2010; 38:115-21. [DOI: 10.1111/j.1600-051x.2010.01643.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
112
|
HAUBEK DORTE. The highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans: evolutionary aspects, epidemiology and etiological role in aggressive periodontitis. APMIS 2010:1-53. [DOI: 10.1111/j.1600-0463.2010.02665.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
113
|
Kuboniwa M, Inaba H, Amano A. Genotyping to distinguish microbial pathogenicity in periodontitis. Periodontol 2000 2010; 54:136-59. [DOI: 10.1111/j.1600-0757.2010.00352.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
114
|
Henderson B, Ward JM, Ready D. Aggregatibacter (Actinobacillus) actinomycetemcomitans: a triple A* periodontopathogen? Periodontol 2000 2010; 54:78-105. [DOI: 10.1111/j.1600-0757.2009.00331.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
115
|
|
116
|
Novak EA, Shao H, Daep CA, Demuth DR. Autoinducer-2 and QseC control biofilm formation and in vivo virulence of Aggregatibacter actinomycetemcomitans. Infect Immun 2010; 78:2919-26. [PMID: 20404080 PMCID: PMC2897384 DOI: 10.1128/iai.01376-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/08/2010] [Accepted: 04/06/2010] [Indexed: 12/23/2022] Open
Abstract
Biofilm formation by the periodontal pathogen Aggregatibacter actinomycetemcomitans is dependent upon autoinducer-2 (AI-2)-mediated quorum sensing. However, the components that link the detection of the AI-2 signal to downstream gene expression have not been determined. One potential regulator is the QseBC two-component system, which is part of the AI-2-dependent response pathway that controls biofilm formation in Escherichia coli. Here we show that the expression of QseBC in A. actinomycetemcomitans is induced by AI-2 and that induction requires the AI-2 receptors, LsrB and/or RbsB. Additionally, inactivation of qseC resulted in reduced biofilm growth. Since the ability to grow in biofilms is essential for A. actinomycetemcomitans virulence, strains that were deficient in QseC or the AI-2 receptors were examined in an in vivo mouse model of periodontitis. The DeltaqseC mutant induced significantly less alveolar bone resorption than the wild-type strain (P < 0.02). Bone loss in animals infected with the DeltaqseC strain was similar to that in sham-infected animals. The DeltalsrB, DeltarbsB, and DeltalsrB DeltarbsB strains also induced significantly less alveolar bone resorption than the wild type (P < 0.03, P < 0.02, and P < 0.01, respectively). However, bone loss induced by a DeltaluxS strain was indistinguishable from that induced by the wild type, suggesting that AI-2 produced by indigenous microflora in the murine oral cavity may complement the DeltaluxS mutation. Together, these results suggest that the QseBC two-component system is part of the AI-2 regulon and may link the detection of AI-2 to the regulation of downstream cellular processes that are involved in biofilm formation and virulence of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Elizabeth A. Novak
- Research Group in Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, Kentucky
| | - HanJuan Shao
- Research Group in Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Carlo Amorin Daep
- Research Group in Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Donald R. Demuth
- Research Group in Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, Kentucky
| |
Collapse
|
117
|
Takada K, Saito M, Tsuzukibashi O, Kawashima Y, Ishida S, Hirasawa M. Characterization of a new serotype g isolate of Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2010; 25:200-6. [DOI: 10.1111/j.2041-1014.2010.00572.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
118
|
Kim TS, Frank P, Eickholz P, Eick S, Kim CK. Serotypes of Aggregatibacter actinomycetemcomitans in patients with different ethnic backgrounds. J Periodontol 2010; 80:2020-7. [PMID: 19961385 DOI: 10.1902/jop.2009.090241] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The identification of Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) serotypes may add some important information to the understanding of the pathogenetic background of severe periodontal infections. This study compared serotypes of A. actinomycetemcomitans in two groups of periodontal patients with different ethnic backgrounds. METHODS A total of 194 patients (96 Germans and 98 Koreans) with aggressive or severe chronic periodontitis participated in the study. Microbiologic analysis of pooled samples from subgingival plaque was performed by using a real-time polymerase chain reaction (PCR) test for A. actinomycetemcomitans. In patients who tested positive for A. actinomycetemcomitans, serotypes (a through f) were determined by nucleic acid-based methods. RESULTS The prevalence of patients who tested positive for A. actinomycetemcomitans with the real-time PCR was comparable in both groups (Germans: 27.0%; Koreans: 22.2%). In German patients, the serotypes detected most frequently were b (33.3%), c (25.0%), and a (20.8%), whereas in Korean patients, the serotype distribution was different, with serotypes c (61.9%) and d (19.0%) accounting for >80% of the complete serotype spectrum. CONCLUSION Even if the percentage of patients who tested positive for A. actinomycetemcomitans was identical in patients with generalized aggressive and severe chronic periodontitis and different ethnic backgrounds, the distribution of A. actinomycetemcomitans serotypes may exhibit marked differences.
Collapse
Affiliation(s)
- Ti-Sun Kim
- Section of Periodontology, Department of Operative Dentistry, University Hospital Heidelberg, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
119
|
Kachlany SC. Aggregatibacter actinomycetemcomitans leukotoxin: from threat to therapy. J Dent Res 2010; 89:561-70. [PMID: 20200418 DOI: 10.1177/0022034510363682] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium that colonizes the human oral cavity and is the causative agent for localized aggressive periodontitis (LAP), an aggressive form of periodontal disease that occurs in adolescents. A. actinomycetemcomitans secretes a protein toxin, leukotoxin (LtxA), which helps the bacterium evade the host immune response during infection. LtxA is a membrane-active toxin that specifically targets white blood cells (WBCs). In this review, we discuss recent developments in this field, including the identification and characterization of genes and proteins involved in secretion, regulation of LtxA, biosynthesis, newly described activities of LtxA, and how LtxA may be used as a therapy for the treatment of diseases.
Collapse
Affiliation(s)
- S C Kachlany
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, 185 S. Orange Avenue, Medical Science Building C-636, Newark, NJ 07103, USA.
| |
Collapse
|
120
|
Prevalence and distribution of serotype-specific genotypes of Aggregatibacter actinomycetemcomitans in chronic periodontitis Brazilian subjects. Arch Oral Biol 2010; 55:242-8. [DOI: 10.1016/j.archoralbio.2010.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 01/05/2010] [Accepted: 01/25/2010] [Indexed: 11/18/2022]
|
121
|
Glycosylation of the collagen adhesin EmaA of Aggregatibacter actinomycetemcomitans is dependent upon the lipopolysaccharide biosynthetic pathway. J Bacteriol 2010; 192:1395-404. [PMID: 20061477 DOI: 10.1128/jb.01453-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human oropharyngeal pathogen Aggregatibacter actinomycetemcomitans synthesizes multiple adhesins, including the nonfimbrial extracellular matrix protein adhesin A (EmaA). EmaA monomers trimerize to form antennae-like structures on the surface of the bacterium, which are required for collagen binding. Two forms of the protein have been identified, which are suggested to be linked with the type of O-polysaccharide (O-PS) of the lipopolysaccharide (LPS) synthesized (G. Tang et al., Microbiology 153:2447-2457, 2007). This association was investigated by generating individual mutants for a rhamnose sugar biosynthetic enzyme (rmlC; TDP-4-keto-6-deoxy-d-glucose 3,5-epimerase), the ATP binding cassette (ABC) sugar transport protein (wzt), and the O-antigen ligase (waaL). All three mutants produced reduced amounts of O-PS, and the EmaA monomers in these mutants displayed a change in their electrophoretic mobility and aggregation state, as observed in sodium dodecyl sulfate (SDS)-polyacrylamide gels. The modification of EmaA with O-PS sugars was suggested by lectin blots, using the fucose-specific Lens culinaris agglutinin (LCA). Fucose is one of the glycan components of serotype b O-PS. The rmlC mutant strain expressing the modified EmaA protein demonstrated reduced collagen adhesion using an in vitro rabbit heart valve model, suggesting a role for the glycoconjugant in collagen binding. These data provide experimental evidence for the glycosylation of an oligomeric, coiled-coil adhesin and for the dependence of the posttranslational modification of EmaA on the LPS biosynthetic machinery in A. actinomycetemcomitans.
Collapse
|
122
|
Chang LY, Lin JC, Chang CW, Ho WH, Chen YT, Peng JL, Hung SL. Inhibitory effects of safrole on phagocytosis, intracellular reactive oxygen species, and the activity of myeloperoxidase released by human polymorphonuclear leukocytes. J Periodontol 2009; 80:1330-7. [PMID: 19656034 DOI: 10.1902/jop.2009.080202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Safrole, a component of Piper betle inflorescence, inhibits bactericidal activity and the release of superoxide anion (O(2)(-)) by polymorphonuclear leukocytes (PMNs). This in vitro study further investigated the effects of safrole on phagocytic activity, the intracellular production of reactive oxygen species (ROS), and the activity of the lysosomal enzyme myeloperoxidase (MPO), which is released by human PMNs. METHODS The possible effects of safrole on the phagocytic activity of PMNs against Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) were determined using flow cytometry. PMNs were treated with various concentrations of safrole, which was followed by treatment with Hanks balanced salt solution with or without cytochalasin B and fMet-Leu-Phe (CB/fMLP). Intracellular ROS was determined using 2',7'-dichlorofluorescein diacetate and a fluorometer, whereas MPO activity was determined using a substrate assay. RESULTS Safrole significantly inhibited the phagocytic activity of PMNs in a dose-dependent manner. Approximately 50% of the phagocytic activity of PMNs was affected when 10 mM safrole was used. Exposure of the PMNs to safrole (up to 5 mM) did not directly affect the intracellular levels of ROS and the extracellular activity of MPO. However, the ability of CB/fMLP to trigger production of intracellular ROS and the activity of MPO released by human PMNs was significantly suppressed by safrole. CONCLUSIONS Safrole reduced the uptake of A. actinomycetemcomitans by human PMNs. Safrole also impaired the normal activation activity of PMNs. Alterations in the defensive properties of PMNs by safrole might promote bacterial colonization, and this could result in periodontal infection.
Collapse
Affiliation(s)
- Lien-Yu Chang
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
123
|
Kawamoto D, Ando ES, Longo PL, Nunes ACR, Wikström M, Mayer MPA. Genetic diversity and toxic activity ofAggregatibacter actinomycetemcomitansisolates. ACTA ACUST UNITED AC 2009; 24:493-501. [DOI: 10.1111/j.1399-302x.2009.00547.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
124
|
Haubek D, Ennibi OK, Væth M, Poulsen S, Poulsen K. Stability of the JP2 Clone of Aggregatibacter actinomycetemcomitans. J Dent Res 2009; 88:856-60. [DOI: 10.1177/0022034509342190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The JP2 clone of Aggregatibacter actinomycetemcomitans is strongly associated with aggressive periodontitis. To obtain information about colonization dynamics of the JP2 clone, we used PCR to examine its presence in 365 Moroccan juveniles from whom periodontal plaque samples were collected at baseline and after one and two years. Periodontal attachment loss was measured at baseline and at the two-year follow-up. At baseline, 43 (12%) carriers of the JP2 clone were found. Nearly half (44 %) of these were persistently colonized with the clone. The relative risk for the development of aggressive periodontitis, adjusted for the concomitant presence of other genotypes of A. actinomycetemcomitans, was highest for individuals continuously infected by the JP2 clone (RR = 13.9; 95% CI, 9.0 to 21.4), indicating a relationship between infectious dose and disease, which further substantiates the evidence for the JP2 clone as a causal factor in aggressive periodontitis.
Collapse
Affiliation(s)
- D. Haubek
- Department of Pediatric Dentistry, School of Dentistry, Vennelyst Boulevard 9, DK-8000 Aarhus C,
- Department of Medical Microbiology and Immunology, Wilhelm Meyers Allé, DK-8000 Aarhus C, and
- Department of Biostatistics, Vennelyst Boulevard 6, DK-8000 Aarhus C, Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark; and
- Department of Periodontology, Dental Faculty, University of Rabat, BP 6212 Les Institutes Rabat, Morocco
| | - O.-K. Ennibi
- Department of Pediatric Dentistry, School of Dentistry, Vennelyst Boulevard 9, DK-8000 Aarhus C,
- Department of Medical Microbiology and Immunology, Wilhelm Meyers Allé, DK-8000 Aarhus C, and
- Department of Biostatistics, Vennelyst Boulevard 6, DK-8000 Aarhus C, Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark; and
- Department of Periodontology, Dental Faculty, University of Rabat, BP 6212 Les Institutes Rabat, Morocco
| | - M. Væth
- Department of Pediatric Dentistry, School of Dentistry, Vennelyst Boulevard 9, DK-8000 Aarhus C,
- Department of Medical Microbiology and Immunology, Wilhelm Meyers Allé, DK-8000 Aarhus C, and
- Department of Biostatistics, Vennelyst Boulevard 6, DK-8000 Aarhus C, Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark; and
- Department of Periodontology, Dental Faculty, University of Rabat, BP 6212 Les Institutes Rabat, Morocco
| | - S. Poulsen
- Department of Pediatric Dentistry, School of Dentistry, Vennelyst Boulevard 9, DK-8000 Aarhus C,
- Department of Medical Microbiology and Immunology, Wilhelm Meyers Allé, DK-8000 Aarhus C, and
- Department of Biostatistics, Vennelyst Boulevard 6, DK-8000 Aarhus C, Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark; and
- Department of Periodontology, Dental Faculty, University of Rabat, BP 6212 Les Institutes Rabat, Morocco
| | - K. Poulsen
- Department of Pediatric Dentistry, School of Dentistry, Vennelyst Boulevard 9, DK-8000 Aarhus C,
- Department of Medical Microbiology and Immunology, Wilhelm Meyers Allé, DK-8000 Aarhus C, and
- Department of Biostatistics, Vennelyst Boulevard 6, DK-8000 Aarhus C, Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark; and
- Department of Periodontology, Dental Faculty, University of Rabat, BP 6212 Les Institutes Rabat, Morocco
| |
Collapse
|
125
|
Aberg CH, Sjödin B, Lakio L, Pussinen PJ, Johansson A, Claesson R. Presence of Aggregatibacter actinomycetemcomitans in young individuals: a 16-year clinical and microbiological follow-up study. J Clin Periodontol 2009; 36:815-22. [PMID: 19678862 DOI: 10.1111/j.1600-051x.2009.01457.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To look for clinical signs of periodontal disease in young adults who exhibited radiographic bone loss and detectable numbers of Aggregatibacter actinomycetemcomitans in their primary dentition. MATERIAL AND METHODS Periodontal status and radiographic bone loss were examined in each of the subjects 16 years after the baseline observations. Techniques for anaerobic and selective culture, and checkerboard, were used to detect periodontitis-associated bacterial species. The isolated A. actinomycetemcomitans strains were characterized by polymerase chain reaction. RESULTS Signs of localized attachment loss were found in three out of the 13 examined subjects. A. actinomycetemcomitans was recovered from six of these subjects and two of these samples were from sites with deepened probing depths and attachment loss. Among the isolated A. actinomycetemcomitans strains, serotypes a-c and e, but not d or f, were found. None of the isolated strains belonged to the highly leucotoxic JP2 clone, and one strain lacked genes for the cytolethal distending toxin. CONCLUSIONS This study indicates that the presence of A. actinomycetemcomitans and early bone loss in the primary dentition does not necessarily predispose the individual to periodontal attachment loss in the permanent dentition.
Collapse
Affiliation(s)
- Carola Höglund Aberg
- Department of Odontology, Division of Periodontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
126
|
Diminished treatment response of periodontally diseased patients infected with the JP2 clone of Aggregatibacter (Actinobacillus) actinomycetemcomitans. J Clin Microbiol 2009; 47:2018-25. [PMID: 19458180 DOI: 10.1128/jcm.00338-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This longitudinal study evaluated the response to periodontal treatment by subjects infected with either JP2 (n = 25) or non-JP2 (n = 25) Aggregatibacter (Actinobacillus) actinomycetemcomitans. Participants were treated during the first 4 months by receiving (i) scaling and root planing, (ii) systemic antibiotic therapy, and (iii) periodontal surgery. Probing depth (PD), clinical attachment level (CAL), and gingival and plaque indices (GI and PI, respectively) were monitored at baseline and at 12 months, along with DNA-PCR-based subgingival detection of JP2 or non-JP2 A. actinomycetemcomitans. At baseline, PD, CAL, and GI scores were statistically higher in the JP2 strain-positive group than the non-JP2-strain-positive group. At 12 months, PD, CAL, and GI scores had decreased significantly for both groups, but the reduction rates of PD and CAL were higher in the non-JP2-strain-positive group. Among JP2-strain-positive patients in the baseline, patients who remained JP2 strain positive at 12 months showed significantly higher GIs than did the patients who had lost the detectable JP2 clone. Patients who remained JP2 strain positive at 12 months appeared to be more resistant to mechanical-chemical therapy than did those who were still non-JP2 strain positive, while the elimination of JP2 A. actinomycetemcomitans remarkably diminished gingival inflammation. Early identification and elimination of the JP2 clone of A. actinomycetemcomitans will enable practitioners to effectively predict the outcome of treatments applied to periodontal patients.
Collapse
|
127
|
Rylev M, Kilian M. Prevalence and distribution of principal periodontal pathogens worldwide. J Clin Periodontol 2009; 35:346-61. [PMID: 18724862 DOI: 10.1111/j.1600-051x.2008.01280.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Detailed genetic analysis of bacteria has demonstrated an unanticipated genetic diversity within species, which often reveals evolutionary lineages that are disproportionately associated with infection. There is evidence that some evolutionary lineages of bacteria have adapted to particular ethnic groups. AIM This review analyzes to what extent observed differences in periodontal disease prevalence among ethnically or geographically distinct populations may be explained by restricted host adaptation of clones of principal periodontal pathogens. RESULTS Carriage rates of several putative periodontal pathogens and particular subsets of these species vary between ethnic groups. Few of these differences can, with the limited information available, be directly related to differences in periodontal disease prevalence. Asian populations are regularly colonized with Actinobacillus actinomycetemcomitans serotype c with questionable pathogenic potential. Conversely, the JP2 clone of A. actinomycetemcomitans has enhanced virulence and causes significantly higher prevalence of aggressive periodontitis in adolescents whose descent can be traced back to the Mediterranean and Western parts of Africa. Some genetically distinct types of Porphyromonas gingivalis are more associated with disease than others, but additional work is required to relate this to clinical differences. CONCLUSIONS Studies that take into account differences linked to the genetics of both patients and potential pathogens are likely to give better insight into the aetiology of periodontal diseases.
Collapse
Affiliation(s)
- Mette Rylev
- Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark.
| | | |
Collapse
|
128
|
Gorr SU, Sotsky JB, Shelar AP, Demuth DR. Design of bacteria-agglutinating peptides derived from parotid secretory protein, a member of the bactericidal/permeability increasing-like protein family. Peptides 2008; 29:2118-27. [PMID: 18952131 DOI: 10.1016/j.peptides.2008.09.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/16/2008] [Accepted: 09/18/2008] [Indexed: 12/12/2022]
Abstract
Parotid secretory protein (PSP) (SPLUNC2), a potential host-defense protein related to bactericidal/permeability-increasing protein (BPI), was used as a template to design antibacterial peptides. Based on the structure of BPI, new PSP peptides were designed and tested for antibacterial activity. The peptides did not exhibit significant bactericidal activity or inhibit growth but the peptide GL-13 induced bacterial matting, suggesting passive agglutination of bacteria. GL-13 was shown to agglutinate the Gram negative bacteria Pseudomonas aeruginosa and Aggregatibacter (Actinobacillus) actinomycetemcomitans, Gram positive Streptococcus gordonii and uncoated sheep erythrocytes. Bacterial agglutination was time and dose-dependent and involved hydrophobic interactions. Variant forms of GL-13 revealed that agglutination also depended on the number of amine groups on the peptide. GL-13 inhibited the adhesion of bacteria to plastic surfaces and the peptide prevented the spread of P. aeruginosa infection in a lettuce leaf model, suggesting that GL-13 is active in vivo. Moreover, GL-13-induced agglutination enhanced the phagocytosis of P. aeruginosa by RAW 264.7 macrophage cells. These results suggest that GL-13 represents a class of antimicrobial peptides, which do not directly kill bacteria but instead reduce bacterial adhesion and promote agglutination, leading to increased clearance by host phagocytic cells. Such peptides may cause less bacterial resistance than traditional antibiotic peptides.
Collapse
Affiliation(s)
- Sven-Ulrik Gorr
- Oral Health and Systemic Disease Research Group, Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville School of Dentistry, Room 331, 501 S Preston Street, Louisville, Kentucky 40292, USA.
| | | | | | | |
Collapse
|
129
|
Oscarsson J, Karched M, Thay B, Chen C, Asikainen S. Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells. BMC Microbiol 2008; 8:206. [PMID: 19038023 PMCID: PMC2612679 DOI: 10.1186/1471-2180-8-206] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 11/27/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressive forms of periodontitis. Increasing evidence points to a link between periodontitis and cardiovascular diseases, however, the underlying mechanisms are poorly understood. This study investigated the pathogenic potential of free-soluble surface material, released from live planktonic and biofilm A. actinomycetemcomitans cells. RESULTS By employing an ex vivo insert model (filter pore size 20 nm) we demonstrated that the A. actinomycetemcomitans strain D7S and its derivatives, in both planktonic and in biofilm life-form, released free-soluble surface material independent of outer membrane vesicles. This material clearly enhanced the production of several proinflammatory cytokines (IL-1 beta, TNF-alpha, IL-6, IL-8, MIP-1 beta) in human whole blood, as evidenced by using a cytokine antibody array and dissociation-enhanced-lanthanide-fluorescent-immunoassay. In agreement with this, quantitative real-time PCR indicated a concomitant increase in transcription of each of these cytokine genes. Experiments in which the LPS activity was blocked with polymyxin B showed that the stimulatory effect was only partly LPS-dependent, suggesting the involvement of additional free-soluble factors. Consistent with this, MALDI-TOF-MS and immunoblotting revealed release of GroEL-like protein in free-soluble form. Conversely, the immunomodulatory toxins, cytolethal distending toxin and leukotoxin, and peptidoglycan-associated lipoprotein, appeared to be less important, as evidenced by studying strain D7S cdt/ltx double, and pal single mutants. In addition to A. actinomycetemcomitans a non-oral species, Escherichia coli strain IHE3034, tested in the same ex vivo model also released free-soluble surface material with proinflammatory activity. CONCLUSION A. actinomycetemcomitans, grown in biofilm and planktonic form, releases free-soluble surface material independent of outer membrane vesicles, which induces proinflammatory responses in human whole blood. Our findings therefore suggest that release of surface components from live bacterial cells could constitute a mechanism for systemic stimulation and be of particular importance in chronic localized infections, such as periodontitis.
Collapse
Affiliation(s)
- Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, SE-90187 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
130
|
Takashima E, Konishi K. Characterization of a quinol peroxidase mutant in Aggregatibacter actinomycetemcomitans. FEMS Microbiol Lett 2008; 286:66-70. [PMID: 18616592 DOI: 10.1111/j.1574-6968.2008.01253.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is an oral pathogen causing localized aggressive periodontitis (LAP). Recently, we characterized for the first time a quinol peroxidase (QPO) that catalyzes peroxidase activity using quinol in the respiratory chain of A. actinomycetemcomitans for the reduction of hydrogen peroxide. In the present study, we characterized the phenotype of a QPO null mutant. The QPO null mutant shows an oxidative stress phenotype, suggesting that QPO plays a certain role in scavenging endogenously generated reactive oxygen species. Notably, we discovered that the QPO null mutant exhibits a production defect of leukotoxin (LtxA), which is a secreted bacterial toxin and is known to target human leukocytes and erythrocytes. This result suggests that QPO would be considered as a potential drug target to inhibit the expression of LtxA from A. actinomycetemcomitans for the treatment and prevention of LAP.
Collapse
Affiliation(s)
- Eizo Takashima
- Department of Microbiology, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan.
| | | |
Collapse
|
131
|
Inoue T, Fukui K, Ohta H. LEUKOTOXIN PRODUCTION BY ACTINOBACILLUS ACTINOMYCETEMCOMITANS. TOXIN REV 2008. [DOI: 10.1080/15569540500320839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
132
|
Multilevel modeling of gingival bleeding on probing in young adult carriers of non-JP2-like strains of Aggregatibacter actinomycetemcomitans. Clin Oral Investig 2008; 13:171-8. [DOI: 10.1007/s00784-008-0218-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/23/2008] [Accepted: 07/25/2008] [Indexed: 11/30/2022]
|
133
|
Schaeffer LM, Schmidt ML, Demuth DR. Induction of Aggregatibacter actinomycetemcomitans leukotoxin expression by IS1301 and orfA. MICROBIOLOGY-SGM 2008; 154:528-538. [PMID: 18227257 DOI: 10.1099/mic.0.2007/012195-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most Aggregatibacter actinomycetemcomitans strains express relatively low levels of leukotoxin, encoded by the orfA-ltxCABD operon. However, several strains isolated from patients with localized aggressive periodontitis are hyperleukotoxic and transcribe the ltx operon at high levels. These strains possess a copy of IS1301 in the ltx promoter and previous studies have suggested that the presence of the insertion sequence increases ltx transcription by uncoupling a cis-acting negative regulator of ltx expression from the basal elements of the ltx promoter. However, we now report that replacing IS1301 with an equal length of random sequence has little effect on transcriptional activity of the ltx promoter, suggesting that the physical displacement of the negative regulatory element does not contribute to the hyperleukotoxic phenotype of IS1301-containing strains. Instead, we show that a -10-like element upstream of the transposase ORF of IS1301 is required for increased transcriptional activity of the ltx promoter. Site-specific mutation of the -10 sequence, or reversing the orientation of IS1301 relative to the basal ltx promoter elements, reduced transcriptional activity to levels exhibited by the native ltx promoter. However, no increase in transcription was observed when IS1301 was recombinantly inserted into a ltx promoter that contained a truncated copy of orfA, suggesting that an intact orfA may also be required for IS1301-mediated induction of ltxCABD. Therefore, to determine if orfA functions as a regulator of ltx expression, three independent ltx-promoter-lacZ-reporter constructs containing frameshift mutations in orfA were analysed. Each exhibited significantly lower expression of beta-galactosidase than the control reporter with intact orfA. In addition, OrfA protein was shown, by mobility shift electrophoresis, to interact with the ltx promoter at or downstream of the -35 sequence. These results suggest that a potential transposase promoter and the OrfA polypeptide may modulate leukotoxin expression in hyperleukotoxic A. actinomycetemcomitans strains containing IS1301.
Collapse
Affiliation(s)
- Lyndsay M Schaeffer
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| | - M Lee Schmidt
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| | - Donald R Demuth
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| |
Collapse
|
134
|
Haubek D, Ennibi OK, Poulsen K, Vaeth M, Poulsen S, Kilian M. Risk of aggressive periodontitis in adolescent carriers of the JP2 clone of Aggregatibacter (Actinobacillus) actinomycetemcomitans in Morocco: a prospective longitudinal cohort study. Lancet 2008; 371:237-42. [PMID: 18207019 DOI: 10.1016/s0140-6736(08)60135-x] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Periodontitis is a loss of supporting connective tissue and alveolar bone around teeth, and if it occurs in an aggressive form it can lead to tooth loss before the age of 20 years. Although the cause of periodontitis in general remains elusive, a particular clone (JP2) of the gram-negative rod Aggregatibacter (Actinobacillus) actinomycetemcomitans is considered a possible aetiological agent of the aggressive form in adolescents living in or originating from north and west Africa, where the disease is highly prevalent. We did a population-based longitudinal study of adolescents to assess the role of the JP2 clone in the initiation of aggressive periodontitis. METHODS A total of 700 adolescents from public schools in Rabat, Morocco, were enrolled in the study. We used PCR to detect A actinomycetemcomitans in plaque samples (taken from molar and incisor sites) and to differentiate between the JP2 clone and other non-JP2 genotypes of the bacterium. 18 individuals were found to already have periodontitis and were excluded. The 682 periodontally healthy adolescents (mean age 12.5 years; SD 1.0) were classified according to their A actinomycetemcomitans carrier status at baseline. After 2 years, 428 (62.8%) individuals returned for re-examination, which included recording of periodontal attachment loss measured from the cemento-enamel junction to the bottom of the periodontal pockets of all teeth present. FINDINGS Individuals who carried the JP2 clone of A actinomycetemcomitans alone (relative risk 18.0; 95% CI 7.8-41.2, p<0.0001) or together with non-JP2 clones of A actinomycetemcomitans (12.4; 5.2-29.9, p<0.0001) had a significantly increased risk of periodontal attachment loss. A much less pronounced disease risk was found in those carrying non-JP2 clones only (3.0; 1.3-7.1, p=0.012). INTERPRETATION The JP2 clone of A actinomycetemcomitans is likely to be an important aetiological agent in initiation of periodontal attachment loss in children and adolescents. Co-occurrence of non-JP2 clones of A actinomycetemcomitans reduces the risk of development of periodontitis, suggesting competition for the ecological niche between the JP2 and non-JP2 clones of this species.
Collapse
Affiliation(s)
- Dorte Haubek
- Department of Community Oral Health and Pediatric Dentistry, University of Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
135
|
Novel loop-mediated isothermal amplification method for detection of the JP2 clone of Aggregatibacter actinomycetemcomitans in subgingival plaque. J Clin Microbiol 2007; 46:1113-5. [PMID: 18160448 DOI: 10.1128/jcm.02107-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a loop-mediated isothermal amplification method that detects the JP2 clone of Aggregatibacter actinomycetemcomitans, which induces aggressive periodontitis in adolescents of North and West African descents. Being independent of special equipment, this specific and sensitive method offers significant advantages for screening of patients on a population basis and in clinical settings.
Collapse
|
136
|
Mena J, Chen C. Identification of strain-specific DNA of Actinobacillus actinomycetemcomitans by representational difference analysis. ACTA ACUST UNITED AC 2007; 22:429-32. [PMID: 17949347 DOI: 10.1111/j.1399-302x.2007.00371.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A genomic subtraction method, the representational difference analysis (RDA), was tested for its use in identifying strain-specific DNA in Actinobacillus actinomycetemcomitans. Subtraction of strain D7S with strain HK1651 yielded D7S-specific 2.3-kilobase (kb) islet-A and 5.3-kb islet-B. Islet-A contains a 1.5-kb region that is homologous to a region found in the A. actinomycetemcomitans plasmid pVT745. Islet-B contains a 2.1-kb homolog of vgr, a component of a DNA repeat element rhs. The distribution of these islets among A. actinomycetemcomitans strains was further examined by polymerase chain reaction. Islet-A was found in nine serotype a and two serotype b strains but was missing from 34 strains. Islet-B was found in one serotype a strain, four serotype d strains and two serotype e strains, but was missing from 34 strains.
Collapse
Affiliation(s)
- J Mena
- Division of Primary Oral Health Care, School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
137
|
Affiliation(s)
- Denis F Kinane
- Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY, USA
| | | | | | | | | |
Collapse
|
138
|
Kelk P, Claesson R, Chen C, Sjöstedt A, Johansson A. IL-1beta secretion induced by Aggregatibacter (Actinobacillus) actinomycetemcomitans is mainly caused by the leukotoxin. Int J Med Microbiol 2007; 298:529-41. [PMID: 17888725 DOI: 10.1016/j.ijmm.2007.06.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/25/2007] [Accepted: 06/05/2007] [Indexed: 12/01/2022] Open
Abstract
Aggregatibacter (Actinobacillus) actinomycetemcomitans forms a leukotoxin that selectively lyses primate neutrophils, monocytes and triggers apoptosis in promyeloic cells and degranulation of human neutrophils. Recently, we showed that the leukotoxin causes activation of caspase-1 and abundant secretion of bio-active IL-1beta from human macrophages. In this study, we show that high levels of IL-beta correlated with a high proportion of A. actinomycetemcomitans in clinical samples from a patient with aggressive periodontitis. To determine the relative contribution of leukotoxin to the overall bacteria-induced IL-1beta secretion, macrophages were isolated from peripheral blood and exposed to different concentrations of live A. actinomycetemcomitans strains with either no, low or high production of leukotoxin. Cell lysis and levels of IL-1beta, IL-6, TNF-alpha and caspase-1 were measured by ELISA and flow cytometry. Leukotoxin was the predominant cause of IL-1beta secretion from macrophages, even in the A. actinomycetemcomitans strain with low leukotoxin production. Macrophages exposed to non-leukotoxic bacteria accumulated cytosolic pro-IL-1beta, which was secreted by a secondary exposure to leukotoxic bacteria. In conclusion, the present study shows for the first time that A. actinomycetemcomitans-induced IL-1beta secretion from human macrophages in vitro is mainly caused by leukotoxin.
Collapse
Affiliation(s)
- Peyman Kelk
- Division of Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, SE-901 85 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
139
|
Thiha K, Takeuchi Y, Umeda M, Huang Y, Ohnishi M, Ishikawa I. Identification of periodontopathic bacteria in gingival tissue of Japanese periodontitis patients. ACTA ACUST UNITED AC 2007; 22:201-7. [PMID: 17488447 DOI: 10.1111/j.1399-302x.2007.00354.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The identification of invading periodontopathic bacteria in tissues is important to determine their role in the pathogenesis of periodontal disease. The objective of this study was to identify periodontopathic bacteria in diseased gingival tissue of periodontitis patients. METHODS Subgingival plaque and gingival tissue were collected from 32 generalized chronic periodontitis (CP), 16 generalized aggressive periodontitis (GAgP) and eight localized aggressive periodontitis (LAgP) patients. Detection frequencies and quantities of Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans and Tannerella forsythensis were investigated by polymerase chain reaction. The prevalences of Streptococcus oralis and Streptococcus sobrinus were also examined and the distribution of A. actinomycetemcomitans serotypes was observed. RESULTS P. gingivalis and T. forsythensis were detected in approximately 70% of tissue samples and 50% of plaque samples in the three periodontitis groups. Prevalence of A. actinomycetemcomitans in tissue samples was higher in the LAgP (63%) group than in either the CP (16%) or the GAgP (38%) group. A. actinomycetemcomitans serotype c was detected in 50% of LAgP patients. Detection frequencies of S. oralis and S. sobrinus were markedly low in both plaque and tissue samples from all three periodontitis groups. Amounts of P. gingivalis, A. actinomycetemcomitans and T. forsythensis in the tissue samples were not different among the three periodontitis groups. CONCLUSION P. gingivalis, A. actinomycetemcomitans and T. forsythensis can localize in diseased gingival tissue and may be involved in periodontal tissue destruction. Serotype c is the predominant serotype of A. actinomycetemcomitans in Japanese LAgP patients.
Collapse
Affiliation(s)
- K Thiha
- Periodontology, Department of Hard Tissue Engineering, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
140
|
Shao H, James D, Lamont RJ, Demuth DR. Differential interaction of Aggregatibacter (Actinobacillus) actinomycetemcomitans LsrB and RbsB proteins with autoinducer 2. J Bacteriol 2007; 189:5559-65. [PMID: 17526716 PMCID: PMC1951815 DOI: 10.1128/jb.00387-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous studies showed that the Aggregatibacter actinomycetemcomitans RbsB protein interacts with cognate and heterologous autoinducer 2 (AI-2) signals and suggested that the rbsDABCK operon encodes a transporter that may internalize AI-2 (D. James et al., Infect. Immun. 74:4021-4029, 2006.). However, A. actinomycetemcomitans also possesses genes related to the lsr operon of Salmonella enterica serovar Typhimurium which function to import AI-2. Here, we show that A. actinomycetemcomitans LsrB protein competitively inhibits the interaction of the Vibrio harveyi AI-2 receptor (LuxP) with AI-2 from either A. actinomycetemcomitans or V. harveyi. Interestingly, LsrB was a more potent inhibitor of LuxP interaction with AI-2 from V. harveyi whereas RbsB competed more effectively with LuxP for A. actinomycetemcomitans AI-2. Inactivation of lsrB in wild-type A. actinomycetemcomitans or in an isogenic RbsB-deficient strain reduced the rate by which intact bacteria depleted A. actinomycetemcomitans AI-2 from solution. Consistent with the results from the LuxP competition experiments, the LsrB-deficient strain depleted AI-2 to a lesser extent than the RbsB-deficient organism. Inactivation of both lsrB and rbsB virtually eliminated the ability of the organism to remove AI-2 from the extracellular environment. These results suggest that A. actinomycetemcomitans possesses two proteins that differentially interact with AI-2 and may function to inactivate or facilitate internalization of AI-2.
Collapse
Affiliation(s)
- Hanjuan Shao
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville School of Dentistry, 501 South Preston Street, Room 209, Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
141
|
Haubek D, Poulsen K, Kilian M. Microevolution and patterns of dissemination of the JP2 clone of Aggregatibacter (Actinobacillus) actinomycetemcomitans. Infect Immun 2007; 75:3080-8. [PMID: 17353281 PMCID: PMC1932881 DOI: 10.1128/iai.01734-06] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The natural history, microevolution, and patterns of interindividual transmission and global dissemination of the JP2 clone of Aggregatibacter (Actinobacillus) actinomycetemcomitans were studied by population genetic analysis. The JP2 clone is strongly associated with aggressive periodontitis in adolescents of African descent and differs from other clones of the species by several genetic peculiarities, including a 530-bp deletion in the promoter region of the leukotoxin gene operon, which results in increased leukotoxic activity. Multilocus sequence analysis of 82 A. actinomycetemcomitans strains, 66 of which were JP2 clone strains collected over a period of more than 20 years, confirmed that there is a clonal population structure with evolutionary lineages corresponding to serotypes. Although genetically highly conserved, as shown by alignment of sequences of eight housekeeping genes, strains belonging to the JP2 clone had a number of point mutations, particularly in the pseudogenes hbpA and tbpA. Characteristic mutations allowed isolates from individuals from the Mediterranean area and from West Africa, including the Cape Verde Islands, to be distinguished. The patterns of mutations indicate that the JP2 clone initially emerged as a distinct genotype in the Mediterranean part of Africa approximately 2,400 years ago and subsequently spread to West Africa, from which it was transferred to the American continents during the transatlantic slave trade. The sustained exclusive colonization of individuals of African descent despite geographical separation for centuries suggests that the JP2 clone has a distinct host tropism. The colonization of family members by JP2 clone strains with unique point mutations provides strong evidence that there is intrafamilial transmission and suggests that dissemination of the JP2 clone is restricted to close contacts.
Collapse
Affiliation(s)
- Dorte Haubek
- Department of Community Oral Health and Pediatric Dentistry, School of Dentistry, Faculty of Health Science, University of Aarhus, Vennelyst Boulevard 9, DK-8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
142
|
Fong KP, Pacheco CMF, Otis LL, Baranwal S, Kieba IR, Harrison G, Hersh EV, Boesze-Battaglia K, Lally ET. Actinobacillus actinomycetemcomitans leukotoxin requires lipid microdomains for target cell cytotoxicity. Cell Microbiol 2006; 8:1753-67. [PMID: 16827908 PMCID: PMC3404838 DOI: 10.1111/j.1462-5822.2006.00746.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Actinobacillus actinomycetemcomitans produces a leukotoxin (Ltx) that kills leukocyte function-associated antigen-1 (LFA-1)-bearing cells from man, the Great Apes and Old World monkeys. The unique specificity of Ltx for the beta2 integrin, LFA-1, suggests it is capable of providing insight into the pathogenic mechanisms of Ltx and other RTX toxins. Using the Jurkat T cell line and an LFA-1-deficient Jurkat mutant (Jbeta2.7) as models, we found the initial effect of Ltx is to elevate cytosolic Ca2+ [Ca2+]c, an event that is independent of the Ltx/LFA-1 interaction. [Ca2+]c increases initiate a series of events that involve the activation of calpain, talin cleavage, mobilization to, and subsequent clustering of, LFA-1 in cholesterol and sphingolipid-rich regions of the plasma membrane known as lipid rafts. The association of Ltx and LFA-1 within lipid rafts is essential for cell lysis. Jbeta2.7 cells fail to accumulate Ltx in their raft fractions and are not killed, while cholesterol depletion experiments demonstrate the necessity of raft integrity for Ltx function. We propose that toxin-induced Ca2+ fluxes mobilize LFA-1 to lipid rafts where it associates with Ltx. These findings suggest that Ltx utilizes the raft to stimulate an integrin signalling pathway that leads to apoptosis of target cells.
Collapse
Affiliation(s)
- Karen P. Fong
- The Leon Levy Research Center for Oral Biology, University of Pennsylvania, Philadelphia, PA 19104-6002, USA
| | - Cinthia M. F. Pacheco
- The Leon Levy Research Center for Oral Biology, University of Pennsylvania, Philadelphia, PA 19104-6002, USA
| | - Linda L. Otis
- The Leon Levy Research Center for Oral Biology, University of Pennsylvania, Philadelphia, PA 19104-6002, USA
| | - Somesh Baranwal
- The Leon Levy Research Center for Oral Biology, University of Pennsylvania, Philadelphia, PA 19104-6002, USA
| | - Irene R. Kieba
- The Leon Levy Research Center for Oral Biology, University of Pennsylvania, Philadelphia, PA 19104-6002, USA
| | - Gerald Harrison
- The Leon Levy Research Center for Oral Biology, University of Pennsylvania, Philadelphia, PA 19104-6002, USA
| | - Elliot V. Hersh
- The Leon Levy Research Center for Oral Biology, University of Pennsylvania, Philadelphia, PA 19104-6002, USA
| | - Kathleen Boesze-Battaglia
- The Leon Levy Research Center for Oral Biology, University of Pennsylvania, Philadelphia, PA 19104-6002, USA
| | - Edward T. Lally
- The Leon Levy Research Center for Oral Biology, University of Pennsylvania, Philadelphia, PA 19104-6002, USA
| |
Collapse
|
143
|
de Haar SF, Hiemstra PS, van Steenbergen MTJM, Everts V, Beertsen W. Role of polymorphonuclear leukocyte-derived serine proteinases in defense against Actinobacillus actinomycetemcomitans. Infect Immun 2006; 74:5284-91. [PMID: 16926422 PMCID: PMC1594863 DOI: 10.1128/iai.02016-05] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Periodontitis is a chronic destructive infection of the tooth-supportive tissues, which is caused by pathogenic bacteria such as Actinobacillus actinomycetemcomitans. A severe form of periodontitis is found in Papillon-Lefèvre syndrome (PLS), an inheritable disease caused by loss-of-function mutations in the cathepsin C gene. Recently, we demonstrated that these patients lack the activity of the polymorphonuclear leukocyte (PMN)-derived serine proteinases elastase, cathepsin G, and proteinase 3. In the present study we identified possible pathways along which serine proteinases may be involved in the defense against A. actinomycetemcomitans. Serine proteinases are capable to convert the PMN-derived hCAP-18 into LL-37, an antimicrobial peptide with activity against A. actinomycetemcomitans. We found that the PMNs of PLS patients released lower levels of LL-37. Furthermore, because of their deficiency in serine proteases, the PMNs of PLS patients were incapable of neutralizing the leukotoxin produced by this pathogen, which resulted in increased cell damage. Finally, the capacity of PMNs from PLS patients to kill A. actinomycetemcomitans in an anaerobic environment, such as that found in the periodontal pocket, seemed to be reduced. Our report demonstrates a mechanism that suggests a direct link between an inheritable defect in PMN functioning and difficulty in coping with a periodontitis-associated pathogen.
Collapse
Affiliation(s)
- Susanne F de Haar
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Louwesweg 1, 1066 EA Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
144
|
Fine DH, Kaplan JB, Kachlany SC, Schreiner HC. How we got attached to Actinobacillus actinomycetemcomitans: A model for infectious diseases. Periodontol 2000 2006; 42:114-57. [PMID: 16930309 DOI: 10.1111/j.1600-0757.2006.00189.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Daniel H Fine
- Center for Oral Infectious Diseases, Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | | | |
Collapse
|
145
|
Crosby JA, Kachlany SC. TdeA, a TolC-like protein required for toxin and drug export in Aggregatibacter (Actinobacillus) actinomycetemcomitans. Gene 2006; 388:83-92. [PMID: 17116373 PMCID: PMC1831674 DOI: 10.1016/j.gene.2006.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/04/2006] [Accepted: 10/04/2006] [Indexed: 10/24/2022]
Abstract
Aggregatibacter actinomycetemcomitans is an oral bacterium that causes localized aggressive periodontitis (LAP) and extra-oral infections such as sub-acute infective endocarditis. As part of its array of virulence factors, A. actinomycetemcomitans produces leukotoxin (LtxA), a member of the RTX family of toxins. LtxA kills human leukocytes and we have recently shown that the toxin is required for beta-hemolysis by A. actinomycetemcomitans on solid medium. In other RTX toxin-producing bacteria, an outer membrane channel-forming protein, TolC, is required for toxin secretion and drug export. We have identified an ORF in A. actinomycetemcomitans that encodes a putative protein having predicted structural properties similar to TolC. Inactivation of this ORF resulted in a mutant that was no longer beta-hemolytic and did not secrete LtxA. This mutant was significantly more sensitive to antimicrobial agents compared to the wild type strain and was unable to export the antimicrobial agent berberine. Thus, this ORF was named tdeA for "toxin and drug export". Examination of the DNA sequence surrounding tdeA revealed two upstream ORFs that encode proteins similar to the drug efflux proteins, MacA and MacB. Inactivation of macB in A. actinomycetemcomitans did not alter the drug sensitivity profile or the hemolytic activity of the mutant. The genes macA, macB and tdeA are organized as an operon and are constitutively expressed as a single transcript. These results show that A. actinomycetemcomitans indeed requires a TolC-like protein for LtxA secretion and that this protein, TdeA, also functions as part of a drug efflux system.
Collapse
Affiliation(s)
| | - Scott C. Kachlany
- *Correspondence to: Scott C. Kachlany, Department of Oral Biology, University of Medicine and Dentistry of NJ, 185 S. Orange Avenue, Medical Science Building C-636, Newark, NJ 07103, 973.972.3057 (office) 973.972.0045 (fax)
| |
Collapse
|
146
|
Balashova NV, Diaz R, Balashov SV, Crosby JA, Kachlany SC. Regulation of Aggregatibacter (Actinobacillus) actinomycetemcomitans leukotoxin secretion by iron. J Bacteriol 2006; 188:8658-61. [PMID: 17041062 PMCID: PMC1698250 DOI: 10.1128/jb.01253-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-negative oral and systemic pathogen Aggregatibacter (Actinobacillus) actinomycetemcomitans produces a leukotoxin (LtxA) that is a member of the RTX (repeats in toxin) family of secreted bacterial toxins. We have recently shown that LtxA has the ability to lyse erythrocytes, which results in a beta-hemolytic phenotype on Columbia blood agar. To determine if LtxA is regulated by iron, we examined beta-hemolysis under iron-rich and iron-limiting conditions. Beta-hemolysis was suppressed in the presence of FeCl3. In contrast, strong beta-hemolysis occurred in the presence of the iron chelator deferoxamine. We found that secretion of LtxA was completely inhibited by free iron, but expression of ltxA was not regulated by iron. Free chromium, cobalt, and magnesium did not affect LtxA secretion. Other LtxA-associated genes were not regulated by iron. Thus, iron appears to play an important role in the regulation of LtxA secretion in A. actinomycetemcomitans in a manner independent of gene regulation.
Collapse
Affiliation(s)
- Nataliya V Balashova
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey, 185 S. Orange Avenue, Medical Science Building C-636, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
147
|
Kilian M, Frandsen EVG, Haubek D, Poulsen K. The etiology of periodontal disease revisited by population genetic analysis. Periodontol 2000 2006; 42:158-79. [PMID: 16930310 DOI: 10.1111/j.1600-0757.2006.00159.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mogens Kilian
- Department of Bacteriology, Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | | | | | | |
Collapse
|
148
|
Haubek D, Havemose-Poulsen A, Westergaard J. Aggressive periodontitis in a 16-year-old Ghanaian adolescent, the original source of Actinobacillus actinomycetemcomitans strain HK1651 - a 10-year follow up. Int J Paediatr Dent 2006; 16:370-5. [PMID: 16879336 DOI: 10.1111/j.1365-263x.2006.00735.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The highly leukotoxic JP2 clone of Actinobacillus actinomycetemcomitans is strongly associated with periodontitis in adolescents. Availability of the DNA sequence of the complete genome of A. actinomycetemcomitans strain HK1651, a representative strain of the JP2 clone (http://www.genome.ou.edu/act.html), has provided new possibilities in basic research regarding the understanding of the pathogenesis of A. actinomycetemcomitans in periodontitis. This case report describes the periodontal treatment of the original source of A. actinomycetemcomitans HK1651, a 16-year-old Ghanaian adolescent girl with aggressive periodontitis. The bacterial examination involved polymerase chain reaction analysis for presence of JP2 and non-JP2 types of A. actinomycetemcomitans. The treatment, including periodontal surgery supplemented by antibiotics, arrested the progression of periodontitis for more than 10 years. Initially, infection by A. actinomycetemcomitans, including the JP2 clone, was detected at various locations in the oral cavity and was not limited to the periodontal pockets. Post-therapy, the JP2 clone of A. actinomycetemcomitans disappeared, while the non-JP2 types of A. actinomycetemcomitans remained a part of the oral microflora.
Collapse
Affiliation(s)
- D Haubek
- Department of Community Oral Health and Pediatric Dentistry, School of Dentistry University of Aarhus, Denmark.
| | | | | |
Collapse
|
149
|
Orrù G, Marini MF, Ciusa ML, Isola D, Cotti M, Baldoni M, Piras V, Pisano E, Montaldo C. Usefulness of real time PCR for the differentiation and quantification of 652 and JP2 Actinobacillus actinomycetemcomitans genotypes in dental plaque and saliva. BMC Infect Dis 2006; 6:98. [PMID: 16772039 PMCID: PMC1539009 DOI: 10.1186/1471-2334-6-98] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 06/13/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of our study is to describe a fast molecular method, able to distinguish and quantize the two different genotypes (652 and JP2) of an important periodontal pathogen: Actinobacillus actinomycetemcomitans. The two genotypes show differences in the expression of an important pathogenic factor: the leukotoxin (ltx). In order to evidence this, we performed a real time PCR procedure on the ltx operon, able to recognize Aa clinical isolates with different leukotoxic potentials. METHODS The specificity of the method was confirmed in subgingival plaque and saliva specimens collected from eighty-one Italian (Sardinian) subjects with a mean age of 43.9, fifty five (68 %) of whom had various clinical forms of periodontal disease. RESULTS This procedure showed a good sensitivity and a high linear dynamic range of quantization (10(7)-10(2) cells/ml) for all genotypes and a good correlation factor (R2 = 0.97-0.98). Compared with traditional cultural methods, this real time PCR procedure is more sensitive; in fact in two subgingival plaque and two positive saliva specimens Aa was only detected with the molecular method. CONCLUSION A low number of Sardinian patients was found positive for Aa infections in the oral cavity, (just 10 positive periodontal cases out of 81 and two of these were also saliva positive). The highly leukotoxic JP2 strain was the most representative (60 % of the positive specimens); the samples from periodontal pockets and from saliva showed some ltx genotype for the same patient. Our experience suggests that this approach is suitable for a rapid and complete laboratory diagnosis for Aa infection.
Collapse
Affiliation(s)
- Germano Orrù
- O.B.L. (Oral Biotechnology Laboratory), Dipartimento di Chirurgia e Odontostomatologia Università degli Studi di Cagliari, Cagliari, Italy
| | - Mario Francesco Marini
- O.B.L. (Oral Biotechnology Laboratory), Dipartimento di Chirurgia e Odontostomatologia Università degli Studi di Cagliari, Cagliari, Italy
- Universita' degli Studi Milano Bicocca, Dipartimento di Neuroscienze, Dottorato di Ricerca in Parodontologia Sperimentale, Milano, Italy
| | - Maria Laura Ciusa
- O.B.L. (Oral Biotechnology Laboratory), Dipartimento di Chirurgia e Odontostomatologia Università degli Studi di Cagliari, Cagliari, Italy
| | - Daniela Isola
- O.B.L. (Oral Biotechnology Laboratory), Dipartimento di Chirurgia e Odontostomatologia Università degli Studi di Cagliari, Cagliari, Italy
| | - Marina Cotti
- O.B.L. (Oral Biotechnology Laboratory), Dipartimento di Chirurgia e Odontostomatologia Università degli Studi di Cagliari, Cagliari, Italy
| | - Marco Baldoni
- Universita' degli Studi Milano Bicocca, Dipartimento di Neuroscienze, Dottorato di Ricerca in Parodontologia Sperimentale, Milano, Italy
| | - Vincenzo Piras
- O.B.L. (Oral Biotechnology Laboratory), Dipartimento di Chirurgia e Odontostomatologia Università degli Studi di Cagliari, Cagliari, Italy
| | - Elisabetta Pisano
- O.B.L. (Oral Biotechnology Laboratory), Dipartimento di Chirurgia e Odontostomatologia Università degli Studi di Cagliari, Cagliari, Italy
| | - Caterina Montaldo
- O.B.L. (Oral Biotechnology Laboratory), Dipartimento di Chirurgia e Odontostomatologia Università degli Studi di Cagliari, Cagliari, Italy
| |
Collapse
|
150
|
Diaz R, Ghofaily LA, Patel J, Balashova NV, Freitas AC, Labib I, Kachlany SC. Characterization of leukotoxin from a clinical strain of Actinobacillus actinomycetemcomitans. Microb Pathog 2006; 40:48-55. [PMID: 16414241 DOI: 10.1016/j.micpath.2005.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 10/25/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022]
Abstract
Actinobacillus actinomycetemcomitans is a Gram negative pathogen that is the etiologic agent of localized aggressive periodontitis (LAP), a rapidly progressing and severe disease of the oral cavity that affects predominantly adolescents. A. actinomycetemcomitans is also found in extraoral infections including infective endocarditis. As one of its many virulence determinants, A. actinomycetemcomitans produces the RTX (repeats in toxin) exotoxin, leukotoxin (LtxA). LtxA specifically kills leukocytes of humans and Old World Monkeys. All of our current knowledge of A. actinomycetemcomitans LtxA is based on the protein from strain JP2, a nonadherent laboratory isolate. Because laboratory isolates can lose virulence properties, we wished to examine LtxA from a clinical isolate, NJ4500. We show that localization patterns of LtxA do not differ between the strains. Subcellular localization studies with NJ4500 revealed that LtxA localizes to the outer membrane and that the interaction between LtxA and the surface of cells is specific. Surface localized LtxA was not removed with NaCl treatment and protease protection experiments revealed that approximately 10 kDa of LtxA is exposed. We purified secreted LtxA from NJ4500 and found that the specific activity of this toxin was greater than that of secreted LtxA from JP2. For other RTX toxins, fatty acid modification affects toxin activity, and A. actinomycetemcomitans LtxA is predicted to be modified. We show by two-dimensional gel electrophoresis that NJ4500 LtxA is more highly modified than JP2 LtxA, suggesting that the difference in activities could be due to differential modification. Studies of A. actinomycetemcomitans pathogenesis should therefore consider LtxA from clinical isolates.
Collapse
Affiliation(s)
- Roger Diaz
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, 185 S. Orange Avenue, Medical Science Building C-636, Newark, NJ 07103, USA
| | | | | | | | | | | | | |
Collapse
|