101
|
Bai Z, Harvey LM, McNeil B. Use of the chemiluminescent probe lucigenin to monitor the production of the superoxide anion radical in a recombinant Aspergillus niger (B1-D). Biotechnol Bioeng 2001; 75:204-11. [PMID: 11536143 DOI: 10.1002/bit.1180] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Direct detection of intracellular superoxide anion radical (O(2)(.-)) production is of critical importance for investigating the responses of filamentous fungi to oxidative stress in bioprocesses. The purpose of this study is to establish a reliable method to monitor the O(2)(.-) production within pellets of Aspergillus niger. Addition of pure oxygen and the redox cycling agent paraquat to fungal pellet suspensions resulted in a considerable increase in lucigenin-derived chemiluminescence (LDCL). In the presence of exogenous superoxide dismutase (SOD), the LDCL of a disrupted cell solution was inhibited. In contrast, with addition of diethyldithiocarbamate and sodium azide, respectively, the inhibitors of Cu, Zn-SOD and Mn-SOD, an increased LDCL was observed. Further, as a probe, lucigenin can be absorbed and accumulated in fungal pellet within a few minutes. Various pretreatments of the bioreactor sample for the measurement of LDCL, were also investigated in the present study, and the use of intact pellets was adopted here rather than disrupting cells because the latter treatment led to difficulties in LDCL measurement. These results show that lucigenin may be used as a convenient chemiluminescent probe to monitor intracellular production of O(2)(.-) in filamentous fungi, and thus to follow changes in the level of this stressor within fungi
Collapse
Affiliation(s)
- Z Bai
- Strathclyde Fermentation Centre, Department of Bioscience and Biotechnology, Strathclyde University, 204 George Street, Glasgow G1 1XW, United Kingdom
| | | | | |
Collapse
|
102
|
Agnez-Lima LF, Di Mascio P, Demple B, Menck CF. Singlet molecular oxygen triggers the soxRS regulon of Escherichia coli. Biol Chem 2001; 382:1071-5. [PMID: 11530938 DOI: 10.1515/bc.2001.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The electronically excited molecular oxygen (singlet oxygen, 1O2) can be detrimental to cells in several ways, although recent reports indicate that it may play a role as an intercellular signal in eukaryotes. Here we present evidence that 1O2, generated by thermodissociation of disodium 3,3'-(1,4-naphthylidene) diproprionate endoperoxide, activates transcription of genes of the soxRS regulon, and that this induction is paralleled by induction of a soxS'::lacZ operon fusion. The inductions were dependent on a functional soxR gene. These data imply that protective responses, such as induction of the soxRS regulon, may be triggered by diverse environmental oxidative stresses, and that 1O2 may also function as a signal molecule in prokaryotes.
Collapse
Affiliation(s)
- L F Agnez-Lima
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
103
|
Pan N, Imlay JA. How does oxygen inhibit central metabolism in the obligate anaerobe Bacteroides thetaiotaomicron. Mol Microbiol 2001; 39:1562-71. [PMID: 11260473 DOI: 10.1046/j.1365-2958.2001.02343.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The molecular basis of obligate anaerobiosis is not well established. Bacteroides thetaiotaomicron is an opportunistic pathogen that cannot grow in fully aerobic habitats. Because microbial niches reflect features of energy-producing strategies, we suspected that aeration would interfere with its central metabolism. In anaerobic medium, this bacterium fermented carbohydrates to a mixture of succinate, propionate and acetate. When cultures were exposed to air, the formation of succinate and propionate ceased abruptly. In vitro analysis demonstrated that the fumarase of the succinate-propionate pathway contains an iron-sulphur cluster that is sensitive to superoxide. In vivo, fumarase activity fell to < 5% when cells were aerated; virtually all activity was recovered after extracts were chemically treated to rebuild iron-sulphur clusters. Aeration minimally affected the remainder of this pathway. However, aeration reduced pyruvate:ferredoxin oxidoreductase (PFOR), the first enzyme in the acetate fermentation branch, to 3% of its anaerobic activity. This cluster-containing enzyme was damaged in vitro by molecular oxygen but not by superoxide. Thus, aerobic growth is precluded by the vulnerability of these iron-sulphur cluster enzymes to oxidation. Importantly, both enzymes were maintained in a stable, inactive form for long periods in aerobic cells; they were then rapidly repaired when the bacterium was returned to anaerobic medium. This result explains how this pathogen can easily recover from occasional exposure to oxygen.
Collapse
Affiliation(s)
- N Pan
- Department of Microbiology, University of Illinois, Urbana, IL 61801,USA
| | | |
Collapse
|
104
|
Stephens PJ, Druggan P, Caron GN. Stressed salmonella are exposed to reactive oxygen species from two independent sources during recovery in conventional culture media. Int J Food Microbiol 2000; 60:269-85. [PMID: 11016616 DOI: 10.1016/s0168-1605(00)00345-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously, Stephens et al. [J. Appl. Microbiol. 83 (1997) 445-455] developed a sensitive technique for studying the resuscitation of low levels of stressed Salmonella. Using this technique the influence on recovery performance of the peptone component of buffered peptone water was investigated. Within 12 different peptone types as much as 3.5 log10 cells/ml difference was observed between the best and worst performing formulations. Poor recovery performance was linked to reactive oxygen species (ROS) generation through auto-oxidation of reducing sugars and photo-sensitisation of sensitive components such as riboflavin. Supplementary recovery agents were explored with only Oxyrase, which has both enzymes to degrade ROS and the ability to rapidly turn a medium anaerobic, having any significant effect. It improved the speed of recovery and increased, by up to 100-fold, the number of stressed cells recovered. Stressed cells were further studied by flow cytometry with cell sorting, based on the staining pattern from a novel fluorochrome combination, into good and poor recovery media. It was identified that within a stressed population the removal of all oxygen protected actively respiring cells the most by forcing them to generate energy from anaerobic metabolism thus avoiding any risk from accidental endogenous ROS generation. The recognition of two independent sources of oxidative stress in the routine use of conventional culture media is discussed in relation to pathogen detection and other areas of food microbiology.
Collapse
|
105
|
Srinivasan C, Liba A, Imlay JA, Valentine JS, Gralla EB. Yeast lacking superoxide dismutase(s) show elevated levels of "free iron" as measured by whole cell electron paramagnetic resonance. J Biol Chem 2000; 275:29187-92. [PMID: 10882731 DOI: 10.1074/jbc.m004239200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A current hypothesis explaining the toxicity of superoxide anion in vivo is that it oxidizes exposed [4Fe-4S] clusters in certain vulnerable enzymes causing release of iron and enzyme inactivation. The resulting increased levels of "free iron" catalyze deleterious oxidative reactions in the cell. In this study, we used low temperature Fe(III) electron paramagnetic resonance (EPR) spectroscopy to monitor iron status in whole cells of the unicellular eukaryote, Saccharomyces cerevisiae. The experimental protocol involved treatment of the cells with desferrioxamine, a cell-permeant, Fe(III)-specific chelator, to promote oxidation of all of the "free iron" to the Fe(III) state wherein it is EPR-detectable. Using this method, a small amount of EPR-detectable iron was detected in the wild-type strain, whereas significantly elevated levels were found in strains lacking CuZn-superoxide dismutase (CuZn-SOD) (sod1 delta), Mn-SOD (sod2 delta), or both SODs, throughout their growth but particularly in stationary phase. The accumulation was suppressed by expression of wild-type human CuZn-SOD (in the sod1 delta mutant), by pmr1, a genetic suppressor of the sod delta mutant phenotype (in the sod1 delta sod2 delta double knockout strain), and by anaerobic growth. In wild-type cells, an increase in the EPR-detectable iron pool could be induced by treatment with paraquat, a redox-cycling drug that generates superoxide. Cells that were not pretreated with desferrioxamine had Fe(III) EPR signals that were equally as strong as those from treated cells, indicating that "free iron" accumulated in the ferric form in our strains in vivo. Our results indicate a relationship between superoxide stress and iron handling and support the above hypothesis for superoxide-related oxidative damage.
Collapse
Affiliation(s)
- C Srinivasan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
106
|
Culotta VC. Superoxide dismutase, oxidative stress, and cell metabolism. CURRENT TOPICS IN CELLULAR REGULATION 2000; 36:117-32. [PMID: 10842749 DOI: 10.1016/s0070-2137(01)80005-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- V C Culotta
- Department of Environmental Health Sciences, Johns Hopkins University School of Public Health, Baltimore, Maryland 21205, USA
| |
Collapse
|
107
|
Nebe-von-Caron G, Stephens PJ, Hewitt CJ, Powell JR, Badley RA. Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. J Microbiol Methods 2000; 42:97-114. [PMID: 11000436 DOI: 10.1016/s0167-7012(00)00181-0] [Citation(s) in RCA: 297] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
With the increased awareness of the problems associated with the growth dependent analysis of bacterial populations, direct optical detection methods such as flow cytometry have enjoyed increased popularity over the last few years. Among the analyses discussed here are: (1) Bacterial discrimination from other particles on the basis of nucleic acid staining, using sample disaggregation to provide fast reliable enumeration while minimizing data artefacts due to post sampling growth; (2) Determination of basic cell functions such as reproductive ability, metabolic activity and membrane integrity, to characterise the physiological state or degree of viability of bacteria; and (3) The use of single cell sorting onto agar plates, microscope slides or into multi-well plates to correlate viability as determined by cell growth with fluorescent labelling techniques. Simultaneous staining with different fluorochromes provides an extremely powerful way to demonstrate culture heterogeneity, and also to understand the functional differences revealed by each stain in practical applications. Analysis of bacterial fermentations showed a considerable drop (20%) in membrane potential and integrity during the latter stages of small scale (5L), well mixed fed-batch fermentations. These changes, not found in either batch or continuous culture fermentations, are probably due to the severe, steadily increasing stress associated with glucose limitation during the fed-batch process, suggesting 'on-line' flow cytometry could improve process control. Heat injured cells can already show up to 4 log of differences in recovery in different pre-enrichment media, thus contributing to the problem of viable but non-culturable cells (VBNC's). Cytometric cell sorting demonstrated decreasing recovery with increasing loss of membrane function. However, a new medium protecting the cells from intracellular and extracellular causes of oxidative stress improved recovery considerably. Actively respiring cells showed much higher recovery improvement than the other populations, demonstrating for the first time the contribution of oxidative respiration to intracellular causes of damage as a key part of the VBNC problem. Finally, absolute and relative frequencies of one species in a complex population were determined using immunofluorescent labelling in combination with the analysis of cell function. The detail and precision of multiparameter flow cytometric measurements of cell function at the single cell level now raise questions regarding the validity of classical, growth dependent viability assessment methods.
Collapse
Affiliation(s)
- G Nebe-von-Caron
- Unilever Research Colworth, Bedfordshire, MK44 1LQ, Sharnbrook, UK.
| | | | | | | | | |
Collapse
|
108
|
Abou-Seif MA, Rabia A, Nasr M. Antioxidant status, erythrocyte membrane lipid peroxidation and osmotic fragility in malignant lymphoma patients. Clin Chem Lab Med 2000; 38:737-42. [PMID: 11071066 DOI: 10.1515/cclm.2000.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We studied erythrocyte and leukocyte superoxide dismutase and catalase activities, erythrocyte malondialdehyde (MDA) and osmotic fragility and plasma L-ascorbic acid and L-dehydroascorbic acid levels in adult patients with acute lymphoblastic leukemia (ALL), Hodgkin's disease (HD) and non-Hodgkin's lymphoma (NHL) before and after treatment. SOD activity was elevated in leukocytes of ALL and HD patients before treatment, and borderlike-significantly elevated in leukocytes of the same patients after treatment in comparison to the control subjects. SOD activity was not changed in NHL patients before or after chemotherapy. Erythrocyte superoxide dismutase and catalase activities were elevated in the three groups of lymphomas before and after treatment. MDA level and osmotic fragility of red blood cells of patients with lymphomas were increased before and after treatment in comparison to the control group. Plasma L-ascorbic acid concentrations were decreased, whereas L-dehydroascorbic acid concentrations were increased in ALL, HD and NHL patients before and after treatment. There were also significant differences in the activities of the antioxidant enzymes, concentrations of antioxidants, MDA and osmotic fragility in the most of the malignant lymphoma patients. The present data suggest that hematological complications and autoimmune hemolytic anemia might be attributed to the oxidative stress produced by malignant lymphomas.
Collapse
Affiliation(s)
- M A Abou-Seif
- Biochemistry Department, Faculty of Science, Mansoura University, Egypt.
| | | | | |
Collapse
|
109
|
Schwartz CJ, Djaman O, Imlay JA, Kiley PJ. The cysteine desulfurase, IscS, has a major role in in vivo Fe-S cluster formation in Escherichia coli. Proc Natl Acad Sci U S A 2000; 97:9009-14. [PMID: 10908675 PMCID: PMC16812 DOI: 10.1073/pnas.160261497] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cysteine desulfurase, IscS, provides sulfur for Fe-S cluster synthesis in vitro, but a role for IscS in in vivo Fe-S cluster formation has yet to be established. To study the in vivo function of IscS in Escherichia coli, a strain lacking IscS was constructed and characterized. Using this iscS deletion strain, we have observed decreased specific activities for proteins containing [4Fe-4S] clusters from soluble (aconitase B, 6-phosphogluconate dehydratase, glutamate synthase, fumarase A, and FNR) and membrane-bound proteins (NADH dehydrogenase I and succinate dehydrogenase). A specific role for IscS in in vivo Fe-S cluster assembly was demonstrated by showing that an Fe-S cluster independent mutant of FNR is unaffected by the lack of IscS. These data support the conclusion that, via its cysteine desulfurase activity, IscS provides the sulfur that subsequently becomes incorporated during in vivo Fe-S cluster synthesis. We also have characterized a growth phenotype associated with the loss of IscS. Under aerobic conditions the deletion of IscS caused an auxotrophy for thiamine and nicotinic acid, whereas under anaerobic conditions, only nicotinic acid was required. The lack of IscS also had a general effect on the growth of E. coli because the iscS deletion strain grew at half the rate of wild type in many types of media even when the auxotrophies were satisfied.
Collapse
Affiliation(s)
- C J Schwartz
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
110
|
Abstract
This review will be limited to the expression and roles of the family of metalloenzymes superoxide dismutases in pathogenic bacteria. Only animal pathogens will be described, with particular emphasis on those causing disease in man.
Collapse
Affiliation(s)
- M Lynch
- Council on Scientific Affairs, Division of Science, American Dental Association, Chicago, Illinois 60611, USA
| | | |
Collapse
|
111
|
Landre JP, Gavriel AA, Rust RC, Lamb AJ. The response of Aeromonas hydrophila to oxidative stress induced by exposure to hydrogen peroxide. J Appl Microbiol 2000; 89:145-51. [PMID: 10945791 DOI: 10.1046/j.1365-2672.2000.01090.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aeromonas hydrophila, an opportunist human pathogen of low virulence, was shown to display a high degree of sensitivity upon exposure to hydrogen peroxide. As with other species, Aer. hydrophila is able to develop the capacity to resist loss of viability induced by such oxidative stress. Development of stress resistance follows the archetypal profile where pre-exposure of a population to sub-lethal levels of H2O2 stimulates onset of tolerance to further exposure. Acquisition of tolerance critically requires nascent protein synthesis. Further analysis demonstrated population growth phase influences the degree of sensitivity of the organism. Late stationary phase cultures demonstrate a decreased sensitivity compared with younger populations. Significantly, it was also determined that stock culture age influenced the level of sensitivity of the derived experimental culture, where an increased stock culture age corresponded with enhanced resistance to H2O2. These data show that Aer. hydrophila population phenotype is influenced by the phenotype of the donor stock culture.
Collapse
Affiliation(s)
- J P Landre
- School of Applied Sciences, The Robert Gordon University, Aberdeen, Scotland, UK
| | | | | | | |
Collapse
|
112
|
Angelova MB, Pashova SB, Slokoska LS. Comparison of antioxidant enzyme biosynthesis by free and immobilized Aspergillus niger cells*. Enzyme Microb Technol 2000; 26:544-549. [PMID: 10771058 DOI: 10.1016/s0141-0229(00)00138-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Effect of immobilization on antioxidant enzyme synthesis by growing and non-growing cell culture of Aspergillus niger 26 was studied. Entrapped cells showed a greater than 1.5-fold increase in the superoxide dismutase (SOD) activity and a moderate elevation in catalase activity. The immobilization did not cause changes in the spectrum of SOD isoenzymes. The observed increase in SOD activity required de novo synthesis of this enzyme, because it was suppressed by inhibitors of the transcription and translation. The addition of various viscous substances (agar, Na-alginate and pectin) stimulated the SOD synthesis. Despite these results, it was found that the changes in SOD activity are induced in response to growth in the state of immobilization rather than to presence of alginate. Immobilized A. niger cells exhibited about a 4- to 5-fold higher level of cyanide-resistant respiration. This latter phenomenon might use as an indicator of intracellular oxy-intermediate generation in cell culture growing under stress conditions. The results are discussed relative to association between physiological stress caused by immobilization and oxidative stress.
Collapse
Affiliation(s)
- MB Angelova
- Department of Mycology, Institute of Microbiology, Bulgarian Academy of Sciences, 26 Academician G. Bonchev Str., 1113, Sofia, Bulgaria
| | | | | |
Collapse
|
113
|
Gaudu P, Dubrac S, Touati D. Activation of SoxR by overproduction of desulfoferrodoxin: multiple ways to induce the soxRS regulon. J Bacteriol 2000; 182:1761-3. [PMID: 10692385 PMCID: PMC94477 DOI: 10.1128/jb.182.6.1761-1763.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soxRS response, which protects cells against superoxide toxicity, is triggered by the oxidation of SoxR, a transcription factor. Superoxide excess and NADPH depletion induce the regulon. Unexpectedly, we found that the overproduction of desulfoferrodoxin, a superoxide reductase from sulfate-reducing bacteria, also induced this response. We suggest that desulfoferrodoxin interferes with the reducing pathway that keeps SoxR in its inactive form.
Collapse
Affiliation(s)
- P Gaudu
- Institut Jacques Monod, CNRS-Universités Paris 6 et Paris 7, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
114
|
Lombard M, Fontecave M, Touati D, Nivière V. Reaction of the desulfoferrodoxin from Desulfoarculus baarsii with superoxide anion. Evidence for a superoxide reductase activity. J Biol Chem 2000; 275:115-21. [PMID: 10617593 DOI: 10.1074/jbc.275.1.115] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Desulfoferrodoxin is a small protein found in sulfate-reducing bacteria that contains two independent mononuclear iron centers, one ferric and one ferrous. Expression of desulfoferrodoxin from Desulfoarculus baarsii has been reported to functionally complement a superoxide dismutase deficient Escherichia coli strain. To elucidate by which mechanism desulfoferrodoxin could substitute for superoxide dismutase in E. coli, we have purified the recombinant protein and studied its reactivity toward O-(2). Desulfoferrodoxin exhibited only a weak superoxide dismutase activity (20 units mg(-1)) that could hardly account for its antioxidant properties. UV-visible and electron paramagnetic resonance spectroscopy studies revealed that the ferrous center of desulfoferrodoxin could specifically and efficiently reduce O-(2), with a rate constant of 6-7 x 10(8) M(-1) s(-1). In addition, we showed that membrane and cytoplasmic E. coli protein extracts, using NADH and NADPH as electron donors, could reduce the O-(2) oxidized form of desulfoferrodoxin. Taken together, these results strongly suggest that desulfoferrodoxin behaves as a superoxide reductase enzyme and thus provide new insights into the biological mechanisms designed for protection from oxidative stresses.
Collapse
Affiliation(s)
- M Lombard
- Laboratoire de Chimie et Biochimie des Centres Redox Biologiques, DBMS-CEA/CNRS/Université Joseph Fourier, 17 Avenue des Martyrs, 38054 Grenoble, Cedex 9, France
| | | | | | | |
Collapse
|
115
|
Van Gelder CM, Doherty JM, Shatos MA. Effects of alpha-thrombin on superoxide dismutase levels in human cerebral microvascular endothelial cells. THE JOURNAL OF TRAUMA 1999; 47:885-90. [PMID: 10568717 DOI: 10.1097/00005373-199911000-00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Sequelae of traumatic brain injury include generation of oxygen-free radicals and fibrin deposition, which worsen the initial injury. Superoxide dismutases (SODs) scavenge and bind to the free-radical superoxide anion (O2-), potentially defending against oxidative stress. In the present study, we investigated the production of SOD within human cerebral microvascular endothelial (HCME) cells after exposure to alpha-thrombin, hypothesizing that manganese SOD (MnSOD) expression is increased. Our aims were to determine whether alterations in SOD are observed at the mRNA level, to examine whether a particular species is preferentially expressed, and to determine the requirement of the active site of alpha-thrombin. METHODS HCME cells were characterized and grown to confluence. Control cells and cells exposed to 10 nmol/L alpha-thrombin were harvested for mRNA isolation using reverse transcriptase-polymerase chain reaction. Quantitation of mRNA production determined the levels of copper-zinc SOD and MnSOD. Active site blocked alpha-thrombin was used as a negative control and determined the specificity of the response. RESULTS The cells in culture were identified as endothelial after fulfilling criteria, such as positive immunocytochemical staining for factor VIII/von Willebrand factor antigen and binding of Ulex europaeus agglutinin-1 lectin. Levels of MnSOD mRNA were elevated at all time points in response to alpha-thrombin, whereas the cytosolic form was undetectable. HCME cells that were exposed to active site-blocked alpha-thrombin produced mRNA levels of MnSOD that were increased above those of controls, but this increase was half that of mRNA levels of MnSOD produced by HCME cells that were exposed to alpha-thrombin. CONCLUSION Our study showed for the first time that alpha-thrombin partially modulates SOD in HCME cells, causing a preferential increase in MnSOD. Further investigation into secondary brain injury will provide insights into the role of alpha-thrombin in the mechanism of free radical-induced alterations, potentially improving the outcome of patients with head injury.
Collapse
Affiliation(s)
- C M Van Gelder
- University of Vermont College of Medicine, Department of Biochemistry, Burlington, USA
| | | | | |
Collapse
|
116
|
Chiu ML, Folcher M, Katoh T, Puglia AM, Vohradsky J, Yun BS, Seto H, Thompson CJ. Broad spectrum thiopeptide recognition specificity of the Streptomyces lividans TipAL protein and its role in regulating gene expression. J Biol Chem 1999; 274:20578-86. [PMID: 10400688 DOI: 10.1074/jbc.274.29.20578] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microbial metabolites isolated in screening programs for their ability to activate transcription of the tipA promoter (ptipA) in Streptomyces lividans define a class of cyclic thiopeptide antibiotics having dehydroalanine side chains ("tails"). Here we show that such compounds of heterogeneous primary structure (representatives tested: thiostrepton, nosiheptide, berninamycin, promothiocin) are all recognized by TipAS and TipAL, two in-frame translation products of the tipA gene. The N-terminal helix-turn-helix DNA binding motif of TipAL is homologous to the MerR family of transcriptional activators, while the C terminus forms a novel ligand-binding domain. ptipA inducers formed irreversible complexes in vitro and in vivo (presumably covalent) with TipAS by reacting with the second of the two C-terminal cysteine residues. Promothiocin and thiostrepton derivatives in which the dehydroalanine side chains were removed lost the ability to modify TipAS. They were able to induce expression of ptipA as well as the tipA gene, although with reduced activity. Thus, TipA required the thiopeptide ring structure for recognition, while the tail served either as a dispensable part of the recognition domain and/or locked thiopeptides onto TipA proteins, thus leading to an irreversible transcriptional activation. Construction and analysis of a disruption mutant showed that tipA was autogenously regulated and conferred thiopeptide resistance. Thiostrepton induced the synthesis of other proteins, some of which did not require tipA.
Collapse
Affiliation(s)
- M L Chiu
- Biozentrum, Department of Microbiology, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Maringanti S, Imlay JA. An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. J Bacteriol 1999; 181:3792-802. [PMID: 10368155 PMCID: PMC93858 DOI: 10.1128/jb.181.12.3792-3802.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of Escherichia coli that lack cytoplasmic superoxide dismutase (SOD) exhibit auxotrophies for sulfur-containing, branched-chain, and aromatic amino acids and cannot catabolize nonfermentable carbon sources. A secondary-site mutation substantially relieved all of these growth defects. The requirement for fermentable carbon and the branched-chain auxotrophy occur because superoxide (O2-) leaches iron from the [4Fe-4S] clusters of a family of dehydratases, thereby inactivating them; the suppression of these phenotypes was mediated by the restoration of activity to these dehydratases, evidently without changing the intracellular concentration of O2-. Cloning, complementation, and sequence analysis identified the suppressor mutation to be in dapD, which encodes tetrahydrodipicolinate succinylase, an enzyme involved in diaminopimelate and lysine biosynthesis. A block in dapB, which encodes dihydrodipicolinate reductase in the same pathway, conferred similar protection. Genetic analysis indicated that the protection stems from the intracellular accumulation of tetrahydro- or dihydrodipicolinate. Heterologous expression in the SOD mutants of the dipicolinate synthase of Bacillus subtilis generated dipicolinate and similarly protected them. Dipicolinates are excellent iron chelators, and their accumulation in the cell triggered derepression of the Fur regulon and a large increase in the intracellular pool of free iron, presumably as a dipicolinate chelate. A fur mutation only partially relieved the auxotrophies, indicating that Fur derepression assists but is not sufficient for suppression. It seems plausible that the abundant internal iron permits efficient reactivation of superoxide-damaged iron-sulfur clusters. This result provides circumstantial evidence that the sulfur and aromatic auxotrophies of SOD mutants are also directly or indirectly linked to iron metabolism.
Collapse
Affiliation(s)
- S Maringanti
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
118
|
Qian SY, Buettner GR. Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: an electron paramagnetic resonance spin trapping study. Free Radic Biol Med 1999; 26:1447-56. [PMID: 10401608 DOI: 10.1016/s0891-5849(99)00002-7] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Iron can be a detrimental catalyst in biological free radical oxidations. Because of the high physiological ratio of [O2]/[H2O2] (> or = 10(3)), we hypothesize that the Fenton reaction with pre-existing H2O2 is only a minor initiator of free radical oxidations and that the major initiators of biological free radical oxidations are the oxidizing species formed by the reaction of Fe2+ with dioxygen. We have employed electron paramagnetic resonance spin trapping to examine this hypothesis. Free radical oxidation of: 1) chemical (ethanol, dimethyl sulfoxide); 2) biochemical (glucose, glyceraldehyde); and 3) cellular (L1210 murine leukemia cells) targets were examined when subjected to an aerobic Fenton (Fe2+ + H2O2 + O2) or an aerobic (Fe2+ + O2) system. As anticipated, the Fenton reaction initiates radical formation in all the above targets. Without pre-existing H2O2, however, Fe2+ and O2 also induce substantial target radical formation. Under various experimental ratios of [O2]/[H2O2] (1-100 with [O2] approximately 250 microM), we compared the radical yield from the Fenton reaction vs. the radical yield from Fe2+ + O2 reactions. When [O2]/[H2O2] < 10, the Fenton reaction dominates target molecule radical formation; however, production of target-molecule radicals via the Fenton reaction is minor when [O2]/[H2O2] > or = 100. Interestingly, when L1210 cells are the oxidation targets, Fe2+ + O2 is observed to be responsible for formation of nearly all of the cell-derived radicals detected, no matter the ratio of [O2]/[H2O2]. Our data demonstrate that when [O2]/[H2O2] > or = 100, Fe2+ + O2 chemistry is an important route to initiation of detrimental biological free radical oxidations.
Collapse
Affiliation(s)
- S Y Qian
- Free Radical Research Institute, University of Iowa, Iowa City 52242-1101, USA
| | | |
Collapse
|
119
|
Messner KR, Imlay JA. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J Biol Chem 1999; 274:10119-28. [PMID: 10187794 DOI: 10.1074/jbc.274.15.10119] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fitness of organisms depends upon the rate at which they generate superoxide (O-2) and hydrogen peroxide (H2O2) as toxic by-products of aerobic metabolism. In Escherichia coli these oxidants arise primarily from the autoxidation of components of its respiratory chain. Inverted vesicles that were incubated with NADH generated O-2 and H2O2 at accelerated rates either when treated with cyanide or when devoid of quinones, implicating an NADH dehydrogenase as their source. Null mutations in the gene encoding NADH dehydrogenase II averted autoxidation of vesicles, and its overproduction accelerated it. Thus NADH dehydrogenase II but not NADH dehydrogenase I, respiratory quinones, or cytochrome oxidases formed substantial O-2 and H2O2. NADH dehydrogenase II that was purified from both wild-type and quinone-deficient cells generated approximately 130 H2O2 and 15 O-2 min-1 by autoxidation of its reduced FAD cofactor. Sulfite reductase is a second autoxidizable electron transport chain of E. coli, containing FAD, FMN, [4Fe-4S], and siroheme moieties. Purified flavoprotein that contained only the FAD and FMN cofactors had about the same oxidation turnover number as did the holoenzyme, 7 min-1 FAD-1. Oxidase activity was largely lost upon FMN removal. Thus the autoxidation of sulfite reductase, like that of the respiratory chain, occurs primarily by autoxidation of an exposed flavin cofactor. Great variability in the oxidation turnover numbers of these and other flavoproteins suggests that endogenous oxidants will be predominantly formed by only a few oxidizable enzymes. Thus the degree of oxidative stress in a cell may depend upon the titer of such enzymes and accordingly may vary with growth conditions and among different cell types. Furthermore, the chemical nature of these reactions was manifested by their acceleration at high temperatures and oxygen concentrations. Thus these environmental parameters may also directly affect the O-2 and H2O2 loads that organisms must bear.
Collapse
Affiliation(s)
- K R Messner
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
120
|
Liochev SI, Benov L, Touati D, Fridovich I. Induction of the soxRS regulon of Escherichia coli by superoxide. J Biol Chem 1999; 274:9479-81. [PMID: 10092630 DOI: 10.1074/jbc.274.14.9479] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The soxRS regulon orchestrates a multifaceted defense against oxidative stress, by inducing the transcription of approximately 15 genes. The induction of this regulon by redox agents, known to mediate O-2 production, led to the view that O-2 is one signal to which it responds. However, redox cycling agents deplete cellular reductants while producing O-2, and one may question whether the regulon responds to the depletion of some cytoplasmic reductant or to O-2, or both. We demonstrate that raising [O-2] by mutational deletion of superoxide dismutases and/or by addition of paraquat, both under aerobic conditions, causes induction of a member of the soxRS regulon and that a mutational defect in soxRS eliminates that induction. This establishes that O-2, directly or indirectly, can cause induction of this defensive regulon.
Collapse
Affiliation(s)
- S I Liochev
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
121
|
Humphreys S, Stevenson A, Bacon A, Weinhardt AB, Roberts M. The alternative sigma factor, sigmaE, is critically important for the virulence of Salmonella typhimurium. Infect Immun 1999; 67:1560-8. [PMID: 10084987 PMCID: PMC96497 DOI: 10.1128/iai.67.4.1560-1568.1999] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, extracytoplasmic stress is partially controlled by the alternative sigma factor, RpoE (sigmaE). In response to environmental stress or alteration in the protein content of the cell envelope, sigmaE upregulates the expression of a number of genes, including htrA. It has been shown that htrA is required for intramacrophage survival and virulence in Salmonella typhimurium. To investigate whether sigmaE-regulated genes other than htrA are involved in salmonella virulence, we inactivated the rpoE gene of S. typhimurium SL1344 by allelic exchange and compared the phenotype of the mutant (GVB311) in vitro and in vivo with its parent and an isogenic htrA mutant (BRD915). Unlike E. coli, sigmaE is not required for the growth and survival of S. typhimurium at high temperatures. However, GVB311 did display a defect in its ability to utilize carbon sources other than glucose. GVB311 was more sensitive to hydrogen peroxide, superoxide, and antimicrobial peptides than SL1344 and BRD915. Although able to invade both macrophage and epithelial cell lines normally, the rpoE mutant was defective in its ability to survive and proliferate in both cell lines. The effect of the rpoE mutation on the intracellular behavior of S. typhimurium was greater than that of the htrA mutation. Both GVB311 and BRD915 were highly attenuated in mice. Neither strain was able to kill mice via the oral route, and the 50% lethal dose (LD50) for both strains via the intravenous (i.v.) route was very high. The i.v. LD50s for SL1344, BRD915, and GVB311 were <10, 5.5 x 10(5), and 1.24 x 10(7) CFU, respectively. Growth in murine tissues after oral and i.v. inoculation was impaired for both the htrA and rpoE mutant, with the latter mutant being more severely affected. Neither mutant was able to translocate successfully from the Peyer's patches to other organs after oral infection or to proliferate in the liver and spleen after i.v. inoculation. However, the htrA mutant efficiently colonized the livers and spleens of mice infected i.v., but the rpoE mutant did not. Previous studies have shown that salmonella htrA mutants are excellent live vaccines. In contrast, oral immunization of mice with GVB311 was unable to protect any of the mice from oral challenge with SL1344. Furthermore, i.v. immunization with a large dose ( approximately 10(6) CFU) of GVB311 protected less than half of the orally challenged mice. Thus, our results indicate that genes in the sigmaE regulon other than htrA play a critical role in the virulence and immunogenicity of S. typhimurium.
Collapse
Affiliation(s)
- S Humphreys
- Department of Veterinary Pathology, Glasgow University Veterinary School, Glasgow G61 1QH, United Kingdom
| | | | | | | | | |
Collapse
|
122
|
Abstract
Much has been learnt about oxidative stress from studies of Escherichia coli. Key regulators of the adaptive responses in this organism are the SoxRS and OxyR transcription factors, which induce the expression of antioxidant activities in response to O2*- and H2O2 stress, respectively. Recently, a variety of biochemical assays together with the characterization of strains carrying mutations affecting the antioxidant activities and the regulators have given general insights into the sources of oxidative stress, the damage caused by oxidative stress, defenses against the oxidative stress, and the mechanisms by which the stress is perceived. These studies have also shown that the oxidative stress responses are intimately coupled to other regulatory networks in the cell.
Collapse
Affiliation(s)
- G Storz
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|