101
|
Natural cytotoxicity receptors and their ligands. Immunol Cell Biol 2013; 92:221-9. [PMID: 24366519 DOI: 10.1038/icb.2013.98] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 12/15/2022]
Abstract
Natural killer (NK) cells are innate lymphoid cells (ILCs) that participate to the clearance of pathogen-infected cells and tumour cells. NK cells and subsets of ILCs express the natural cytotoxicity receptors (NCRs) NKp46, NKp44 and NKp30 at their surface. NCRs have been shown to recognize a broad spectrum of ligands ranging from viral-, parasite- and bacterial-derived ligands to cellular ligands; however, the full identification of NCR ligands remains to be performed and will undoubtedly contribute to a better understanding of NK cell and ILC biology.
Collapse
|
102
|
Herrmann J, Berberich H, Hartmann J, Beyer S, Davies K, Koch J. Homo-oligomerization of the activating natural killer cell receptor NKp30 ectodomain increases its binding affinity for cellular ligands. J Biol Chem 2013; 289:765-77. [PMID: 24275655 DOI: 10.1074/jbc.m113.514786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The natural cytotoxicity receptors, comprised of three type I membrane proteins NKp30, NKp44, and NKp46, are a unique set of activating proteins expressed mainly on the surface of natural killer (NK) cells. Among these, NKp30 is a major receptor targeting virus-infected cells, malignantly transformed cells, and immature dendritic cells. To date, only few cellular ligands of NKp30 have been discovered, and the molecular details of ligand recognition by NKp30 are poorly understood. Within the current study, we found that the ectodomain of NKp30 forms functional homo-oligomers that mediate high affinity binding to its corresponding cellular ligand B7-H6. Notably, this homo-oligomerization is strongly promoted by the stalk domain of NKp30. Based on these data, we suggest that homo-oligomerization of NKp30 in the plasma membrane of NK cells, which might be favored by IL-2-dependent up-regulation of NKp30 expression, provides a way to improve recognition and lysis of target cells by NK cells.
Collapse
Affiliation(s)
- Julia Herrmann
- From the NK Cell Biology, Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, D-60596 Frankfurt am Main, Germany and
| | | | | | | | | | | |
Collapse
|
103
|
Prince J, Lundgren A, Stadnisky MD, Nash WT, Beeber A, Turner SD, Brown MG. Multiparametric analysis of host response to murine cytomegalovirus in MHC class I-disparate mice reveals primacy of Dk-licensed Ly49G2+ NK cells in viral control. THE JOURNAL OF IMMUNOLOGY 2013; 191:4709-19. [PMID: 24068668 DOI: 10.4049/jimmunol.1301388] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
MHC class I D(k) and Ly49G2 (G2) inhibitory receptor-expressing NK cells are essential to murine CMV (MCMV) resistance in MA/My mice. Without D(k), G2(+) NK cells in C57L mice fail to protect against MCMV infection. As a cognate ligand of G2, D(k) licenses G2(+) NK cells for effector activity. These data suggested that D(k)-licensed G2(+) NK cells might recognize and control MCMV infection. However, a role for licensed NK cells in viral immunity is uncertain. We combined classical genetics with flow cytometry to visualize the host response to MCMV. Immune cells collected from individuals of a diverse cohort of MA/My × C57L offspring segregating D(k) were examined before infection and postinfection, including Ly49(+) NK subsets, receptor expression features, and other phenotypic traits. To identify critical NK cell features, automated analysis of 110 traits was performed in R using the Pearson correlation, followed with a Bonferroni correction for multiple tests. Hierarchical clustering of trait associations and principal component analyses were used to discern shared immune response and genetic relationships. The results demonstrate that G2 expression on naive blood NK cells was predictive of MCMV resistance. However, rapid G2(+) NK cell expansion following viral exposure occurred selectively in D(k) offspring; this response was more highly correlated with MCMV control than all other immune cell features. We infer that D(k)-licensed G2(+) NK cells efficiently detected missing-self MHC cues on viral targets, which elicited cellular expansion and target cell killing. Therefore, MHC polymorphism regulates licensing and detection of viral targets by distinct subsets of NK cells required in innate viral control.
Collapse
Affiliation(s)
- Jessica Prince
- Division of Nephrology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | | | | | | | | | | | | |
Collapse
|
104
|
Golden-Mason L, Rosen HR. Natural killer cells: multifaceted players with key roles in hepatitis C immunity. Immunol Rev 2013; 255:68-81. [PMID: 23947348 PMCID: PMC3765000 DOI: 10.1111/imr.12090] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/08/2013] [Accepted: 05/14/2013] [Indexed: 12/11/2022]
Abstract
Natural killer cells (NKs) are involved in every stage of hepatitis C viral (HCV) infection, from protection against HCV acquisition and resolution in the acute phase to treatment-induced clearance. In addition to their direct antiviral actions, NKs are involved in the induction and priming of appropriate downstream T-cell responses. In the setting of chronic HCV, overall NK cell levels are decreased, subset distribution is altered, and changes in NK receptor (NKR) expression have been demonstrated, although the contribution of individual NKRs to viral clearance or persistence remains to be clarified. Enhanced NK cell cytotoxicity accompanied by insufficient interferon-γ production may promote liver damage in the setting of chronic infection. Treatment-induced clearance is associated with activation of NK cells, and it will be of interest to monitor NK cell responses to triple therapy. Activated NK cells also have anti-fibrotic properties, and the same hepatic NK cell populations that are actively involved in control of HCV may also be involved in control of HCV-associated liver damage. We still have much to learn, in particular: how do liver-derived NKs influence the outcome of HCV infection? Do NK receptors recognize HCV-specific components? And, are HCV-specific memory NK populations generated?
Collapse
Affiliation(s)
- Lucy Golden-Mason
- Division of Gastroenterology and Hepatology, Hepatitis C Center, Department of Medicine, University of Colorado Denver (UCD), Aurora, CO, USA
| | | |
Collapse
|
105
|
Abstract
With an array of activating and inhibitory receptors, natural killer (NK) cells are involved in the eradication of infected, transformed, and tumor cells. NKp44 is a member of the natural cytotoxicity receptor family, which is exclusively expressed on activated NK cells. Here, we identify natural cytotoxicity receptor NKp44 (NKp44L), a novel isoform of the mixed-lineage leukemia-5 protein, as a cellular ligand for NKp44. Unlike the other MLL family members, NKp44L is excluded from the nucleus, but expressed at the cell-surface level; its subcellular localization is being associated with the presence of a specific C-terminal motif. Strikingly, NKp44L has not been detected on circulating cells isolated from healthy individuals, but it is expressed on a large panel of the tumor and transformed cells. The sharply decreased NK lysis activity induced by anti-NKp44L antibodies directly demonstrates the role of NKp44L in cytotoxicity. Taken together, these results show that NKp44L could be critical for NK cell-mediated innate immunity. The identification and cellular distribution of NKp44L highlight the role of this self-molecule as a danger signal to alert the NK cell network.
Collapse
|
106
|
Song DZ, Liang Y, Xiao Q, Yin J, Gong JL, Lai ZP, Zhang ZF, Gao LX, Fan XH. TRAIL is Involved in the Tumoricidal Activity of Mouse Natural Killer Cells Stimulated by Newcastle Disease Virusin Vitro. Anat Rec (Hoboken) 2013; 296:1552-60. [DOI: 10.1002/ar.22768] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 06/03/2013] [Indexed: 01/26/2023]
Affiliation(s)
- De-Zhi Song
- Department of Microbiology; Guangxi Medical University; 22 Shuangyong Road Nanning 530021 Guangxi China
| | - Ying Liang
- Department of Microbiology; Guangxi Medical University; 22 Shuangyong Road Nanning 530021 Guangxi China
| | - Qing Xiao
- Department of Microbiology; Guangxi Medical University; 22 Shuangyong Road Nanning 530021 Guangxi China
| | - Jun Yin
- Department of Microbiology; Guangxi Medical University; 22 Shuangyong Road Nanning 530021 Guangxi China
| | - Jin-Ling Gong
- Qingdao Municipal Center For Disease Control & Prevention; 175 Shandong Road Qingdao 266033 Shandong China
| | - Zhen-Ping Lai
- Department of Microbiology; Guangxi Medical University; 22 Shuangyong Road Nanning 530021 Guangxi China
| | - Zeng-Feng Zhang
- Department of Microbiology; Guangxi Medical University; 22 Shuangyong Road Nanning 530021 Guangxi China
| | - Ling-Xi Gao
- Department of Microbiology; Guangxi Medical University; 22 Shuangyong Road Nanning 530021 Guangxi China
| | - Xiao-Hui Fan
- Department of Microbiology; Guangxi Medical University; 22 Shuangyong Road Nanning 530021 Guangxi China
| |
Collapse
|
107
|
Fournier P, Schirrmacher V. Oncolytic Newcastle Disease Virus as Cutting Edge between Tumor and Host. BIOLOGY 2013; 2:936-75. [PMID: 24833054 PMCID: PMC3960873 DOI: 10.3390/biology2030936] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 12/17/2022]
Abstract
Oncolytic viruses (OVs) replicate selectively in tumor cells and exert anti-tumor cytotoxic activity. Among them, Newcastle Disease Virus (NDV), a bird RNA virus of the paramyxovirus family, appears outstanding. Its anti-tumor effect is based on: (i) oncolytic activity and (ii) immunostimulation. Together these activities facilitate the induction of post-oncolytic adaptive immunity. We will present milestones during the last 60 years of clinical evaluation of this virus. Two main strategies of clinical application were followed using the virus (i) as a virotherapeutic agent, which is applied systemically or (ii) as an immunostimulatory agent combined with tumor cells for vaccination of cancer patients. More recently, a third strategy evolved. It combines the strategies (i) and (ii) and includes also dendritic cells (DCs). The first step involves systemic application of NDV to condition the patient. The second step involves intradermal application of a special DC vaccine pulsed with viral oncolysate. This strategy, called NDV/DC, combines anti-cancer activity (oncolytic virotherapy) and immune-stimulatory properties (oncolytic immunotherapy) with the high potential of DCs (DC therapy) to prime naive T cells. The aim of such treatment is to first prepare the cancer-bearing host for immunocompetence and then to instruct the patient's immune system with information about tumor-associated antigens (TAAs) of its own tumor together with danger signals derived from virus infection. This multimodal concept should optimize the generation of strong polyclonal T cell reactivity targeted against the patient's TAAs and lead to the establishment of a long-lasting memory T cell repertoire.
Collapse
Affiliation(s)
- Philippe Fournier
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Volker Schirrmacher
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
108
|
Lam RA, Chwee JY, Le Bert N, Sauer M, Pogge von Strandmann E, Gasser S. Regulation of self-ligands for activating natural killer cell receptors. Ann Med 2013; 45:384-94. [PMID: 23701136 DOI: 10.3109/07853890.2013.792495] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells are able to lyse infected and tumor cells while sparing healthy cells. Recognition of diseased cells by NK cells is governed by several activating and inhibitory receptors. We review numerous pathways that have been implicated in the regulation of self-ligands for activating receptors, including NKG2D, DNAM-1, LFA-1, NKp30, NKp44, NKp46, NKp65, and NKp80 found on NK cells and some T cells. Understanding how the regulation of self-encoded ligand expression is regulated may provide novel avenues for future therapeutic approaches to infections and cancer.
Collapse
Affiliation(s)
- Runyi A Lam
- Immunology Programme, Centre for Life Sciences, Department of Microbiology, National University of Singapore 117456, Singapore
| | | | | | | | | | | |
Collapse
|
109
|
Characterization of a novel NKG2D and NKp46 double-mutant mouse reveals subtle variations in the NK cell repertoire. Blood 2013; 121:5025-33. [PMID: 23649470 DOI: 10.1182/blood-2012-12-471607] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The immunoreceptors NKG2D and NKp46 are known for their capacity to activate natural killer (NK) cell cytotoxicity and secretory responses in the contexts of tumors and infections, yet their roles in NK cell education remain unclear. Here, we provide the first characterization of mice deficient for both NKG2D and NKp46 receptors to address the relevance of their concomitant absence during NK cell development and function. Our findings reveal that NK cells develop normally in double-mutant (DKO) mice. Mice lacking NKG2D but not NKp46 showed subtle differences in the percentages of NK cells expressing inhibitory Ly49 receptors and the adhesion molecule DNAM-1. A slightly increased percentage of terminally differentiated NK cells and functional response to in vitro stimuli was observed in some experiments. These alterations were modest and did not affect NK cell function in vivo in response to mouse cytomegalovirus infection. NKp46 deficiency alone, or in combination with NKG2D deficiency, had no effect on frequency or function of NK cells.
Collapse
|
110
|
Ji HF, Chi BR, He DY, Li C, Hu NN, Wang K, Sheng Y, Wang HY, Jin NY. Antitumor effects of Newcastle disease virus hemagglutinin-neuraminidase used as a molecular adjuvant. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-2391-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
111
|
Abstract
Natural killer (NK) cells are key components of innate immune responses, providing surveillance against cells undergoing tumorigenesis or infection, by viruses or internal pathogens. NK cells can directly eliminate compromised cells and regulate downstream responses of the innate and acquired immune systems through the release of immune modulators (cytokines, interferons). The importance of the role NK cells play in immune defense was demonstrated originally in herpes viral infections, usually mild or localized, which become severe and life threatening in NK-deficient patients . NK cell effector functions are governed by balancing opposing signals from a diverse array of activating and inhibitory receptors. Many NK receptors occur in paired activating and inhibitory isoforms and recognize major histocompatibility complex (MHC) class I proteins with varying degrees of peptide specificity. Structural studies have made considerable inroads into understanding the molecular mechanisms employed to broadly recognize multiple MHC ligands or specific pathogen-associated antigens and the strategies employed by viruses to thwart these defenses. Although many details of NK development, signaling, and integration remain mysterious, it is clear that NK receptors are key components of a system exquisitely tuned to sense any dysregulation in MHC class I expression, or the expression of certain viral antigens, resulting in the elimination of affected cells.
Collapse
Affiliation(s)
- Kathryn A Finton
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
112
|
Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends Immunol 2013; 34:182-91. [PMID: 23414611 DOI: 10.1016/j.it.2013.01.003] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 01/08/2023]
Abstract
Natural killer (NK) cells are central players in the vertebrate immune system that rapidly eliminate malignantly transformed or infected cells. The natural cytotoxicity receptors (NCRs) NKp30, NKp44, and NKp46 are important mediators of NK cell cytotoxicity, which trigger an immune response on recognition of cognate cellular and viral ligands. Tumour and viral immune escape strategies targeting these receptor-ligand systems impair NK cell cytotoxicity and promote disease. Therefore, a molecular understanding of the function of the NCRs in immunosurveillance is instrumental to discovering novel access points to combat infections and cancer.
Collapse
|
113
|
Seidel E, Glasner A, Mandelboim O. Virus-mediated inhibition of natural cytotoxicity receptor recognition. Cell Mol Life Sci 2012; 69:3911-20. [PMID: 22547090 PMCID: PMC11115132 DOI: 10.1007/s00018-012-1001-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 12/29/2022]
Abstract
Natural killer (NK) cells are a part of the innate immune system that functions mainly to kill transformed and infected cells. Their activity is controlled by signals derived from a panel of activating and inhibitory receptors. The natural cytotoxicity receptors (NCRs): NKp30, NKp44, and NKp46 (NCR1 in mice) are prominent among the activating NK cell receptors and they are, notably, the only NK-activating receptors that are able to recognize pathogen-derived ligands. In addition, the NCRs also recognize cellular ligands, the identity of which remains largely unknown. In this review, we summarize the current knowledge regarding viruses that are recognized by the NCRs, focusing on the diverse immune-evasion mechanisms employed by viruses to escape this detection. We also discuss the unique role the NCRs have in regulating NK cell activity with particular emphasis on the in vivo function of NKp46/NCR1.
Collapse
Affiliation(s)
- Einat Seidel
- The Department of Immunology and Cancer Research, The Lautenberg Center for General and Tumor Immunology, IMRIC, Hadassah Medical School, The Hebrew University, 91120 Jerusalem, Israel
| | - Ariella Glasner
- The Department of Immunology and Cancer Research, The Lautenberg Center for General and Tumor Immunology, IMRIC, Hadassah Medical School, The Hebrew University, 91120 Jerusalem, Israel
| | - Ofer Mandelboim
- The Department of Immunology and Cancer Research, The Lautenberg Center for General and Tumor Immunology, IMRIC, Hadassah Medical School, The Hebrew University, 91120 Jerusalem, Israel
| |
Collapse
|
114
|
Hartmann J, Tran TV, Kaudeer J, Oberle K, Herrmann J, Quagliano I, Abel T, Cohnen A, Gatterdam V, Jacobs A, Wollscheid B, Tampé R, Watzl C, Diefenbach A, Koch J. The stalk domain and the glycosylation status of the activating natural killer cell receptor NKp30 are important for ligand binding. J Biol Chem 2012; 287:31527-39. [PMID: 22807449 DOI: 10.1074/jbc.m111.304238] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The natural cytotoxicity receptors are a unique set of activating proteins expressed mainly on the surface of natural killer (NK) cells. The human natural cytotoxicity receptor family comprises the three type I membrane proteins NKp30, NKp44, and NKp46. Especially NKp30 is critical for the cytotoxicity of NK cells against different targets including tumor, virus-infected, and immature dendritic cells. Although the crystal structure of NKp30 was recently solved (Li, Y., Wang, Q., and Mariuzza, R. A. (2011) J. Exp. Med. 208, 703-714; Joyce, M. G., Tran, P., Zhuravleva, M. A., Jaw, J., Colonna, M., and Sun, P. D. (2011) Proc. Natl. Acad. Sci. U.S.A. 108, 6223-6228), a key question, how NKp30 recognizes several non-related ligands, remains unclear. Therefore, we investigated the parameters that impact ligand recognition of NKp30. Based on various NKp30-hIgG1-Fc fusion proteins, which were optimized for minimal background binding to cellular Fcγ receptors, we identified the flexible stalk region of NKp30 as an important but so far neglected module for ligand recognition and related signaling of the corresponding full-length receptor proteins. Moreover, we found that the ectodomain of NKp30 is N-linked glycosylated at three different sites. Mutational analyses revealed differential binding affinities and signaling capacities of mono-, di-, or triglycosylated NKp30, suggesting that the degree of glycosylation could provide a switch to modulate the ligand binding properties of NKp30 and NK cell cytotoxicity.
Collapse
Affiliation(s)
- Jessica Hartmann
- Georg-Speyer-Haus, Institute of Biomedical Research, D-60596 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Human herpesviridae methods of natural killer cell evasion. Adv Virol 2012; 2012:359869. [PMID: 22829821 PMCID: PMC3399383 DOI: 10.1155/2012/359869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 04/24/2012] [Indexed: 11/17/2022] Open
Abstract
Human herpesviruses cause diseases of considerable morbidity and mortality, ranging from encephalitis to hematologic malignancies. As evidence emerges about the role of innate immunity and natural killer (NK) cells in the control of herpesvirus infection, evidence of viral methods of innate immune evasion grows as well. These methods include interference with the ligands on infected cell surfaces that bind NK cell activating or inhibitory receptors. This paper summarizes the most extensively studied NK cell receptor/ligand pairs and then describes the methods of NK cell evasion used by all eight herpesviruses through these receptors and ligands. Although great strides have been made in elucidating their mechanisms, there is still a disparity between viruses in the amount of knowledge regarding innate immune evasion. Further research of herpesvirus innate immune evasion can provide insight for circumventing viral mechanisms in future therapies.
Collapse
|
116
|
Brusilovsky M, Rosental B, Shemesh A, Appel MY, Porgador A. Human NK cell recognition of target cells in the prism of natural cytotoxicity receptors and their ligands. J Immunotoxicol 2012; 9:267-74. [PMID: 22524686 DOI: 10.3109/1547691x.2012.675366] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The matter of the pathogen- and cancer-associated ligands recognized by the Natural Cytotoxicity Receptors (NCRs) has been a subject of intense research ever since the identification of the NCRs more than 12 years ago by Alessandro and Lorenzo Moretta: NKp46 in 1997, NKp44 in 1998, and finally NKp30 in 1999. Expression patterns recognized by NCRs include pathogen-derived, pathogen-induced, and cancer-associated cellular 'self' ligands. Pathogen-exposed cells may exhibit both types of pathogen-associated ligands. Transformed cells, in contrast, exhibit only 'self' ligands which are derived from both the intracellular- and membrane-associated milieu of self molecules. These expression patterns allow for NCR-based NK cell discrimination between healthy and affected cells, in the realms of both pathogenic infection and potential tumorigenesis. The focus of this review is on the current knowledge regarding the identities of NCR ligands and the type of target cells expressing these ligands.
Collapse
Affiliation(s)
- Michael Brusilovsky
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | |
Collapse
|
117
|
Safety and clinical usage of newcastle disease virus in cancer therapy. J Biomed Biotechnol 2011; 2011:718710. [PMID: 22131816 PMCID: PMC3205905 DOI: 10.1155/2011/718710] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 12/26/2022] Open
Abstract
Newcastle disease virus (NDV) is an avian virus that causes deadly infection to over 250 species of birds, including domestic and wild-type, thus resulting in substantial losses to the poultry industry worldwide. Many reports have demonstrated the oncolytic effect of NDV towards human tumor cells. The interesting aspect of NDV is its ability to selectively replicate in cancer cells. Some of the studies have undergone human clinical trials, and favorable results were obtained. Therefore, NDV strains can be the potential therapeutic agent in cancer therapy. However, investigation on the therapeutic perspectives of NDV, especially human immunological effects, is still ongoing. This paper provides an overview of the current studies on the cytotoxic and anticancer effect of NDV via direct oncolysis effects or immune stimulation. Safety of NDV strains applied for cancer immunotherapy is also discussed in this paper.
Collapse
|
118
|
Renoux VM, Bisig B, Langers I, Dortu E, Clémenceau B, Thiry M, Deroanne C, Colige A, Boniver J, Delvenne P, Jacobs N. Human papillomavirus entry into NK cells requires CD16 expression and triggers cytotoxic activity and cytokine secretion. Eur J Immunol 2011; 41:3240-52. [PMID: 21830210 DOI: 10.1002/eji.201141693] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/08/2011] [Accepted: 08/03/2011] [Indexed: 12/25/2022]
Abstract
Human papillomavirus (HPV) infections account for more than 50% of infection-linked cancers in women worldwide. The immune system controls, at least partially, viral infection and around 90% of HPV-infected women clear the virus within two years. However, it remains unclear which immune cells are implicated in this process and no study has evaluated the direct interaction between HPVs and NK cells, a key player in host resistance to viruses and tumors. We demonstrated an NK-cell infiltration in HPV-associated preneoplastic cervical lesions. Since HPVs cannot grow in vitro, virus-like particles (VLPs) were used as a model for studying the NK-cell response against the virus. Interestingly, NK cells displayed higher cytotoxic activity and cytokine production (TNF-α and IFN-γ) in the presence of HPV-VLPs. Using flow cytometry and microscopy, we observed that NK-cell stimulation was linked to rapid VLP entry into these cells by macropinocytosis. Using CD16(+) and CD16(-) NK-cell lines and a CD16-blocking antibody, we demonstrated that CD16 is necessary for HPV-VLP internalization, as well as for degranulation and cytokine production. Thus, we show for the first time that NK cells interact with HPVs and can participate in the immune response against HPV-induced lesions.
Collapse
Affiliation(s)
- Virginie M Renoux
- Laboratory of Experimental Pathology, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Natural killer cells, dendritic cells, and the alarmin high-mobility group box 1 protein. Curr Opin HIV AIDS 2011; 6:364-72. [DOI: 10.1097/coh.0b013e328349b089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
120
|
Marcenaro E, Carlomagno S, Pesce S, Chiesa MD, Parolini S, Moretta A, Sivori S. NK cells and their receptors during viral infections. Immunotherapy 2011; 3:1075-86. [DOI: 10.2217/imt.11.99] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence indicates the importance of human natural killer (NK) cells in the immune response against certain viral infections. In the present article, we summarize information on NK cell responses against several viruses and on the nature of NK cell receptor–ligand interactions involved in these responses. Recent studies indicate that NK cells display functional features that are normally attributed exclusively to cells of the adaptive immune system. In this context, experiments both in mice and humans suggest the existence of long-lived NK cells that expand during viral infections and retain a ‘memory’ of previous exposure to a specific antigen. However, further studies are necessary to better define the characteristics of these long-lived NK cell populations and their role in viral infections.
Collapse
Affiliation(s)
- Emanuela Marcenaro
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Via LB Alberti 2, 16132, Italy
- Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, V. le Benedetto XV, 16132 Genova, Italy
| | - Simona Carlomagno
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Via LB Alberti 2, 16132, Italy
| | - Silvia Pesce
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Via LB Alberti 2, 16132, Italy
| | - Mariella Della Chiesa
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Via LB Alberti 2, 16132, Italy
| | - Silvia Parolini
- Dipartimento di Scienze Biomediche e Biotecnologie, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | | | - Simona Sivori
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Via LB Alberti 2, 16132, Italy
- Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, V. le Benedetto XV, 16132 Genova, Italy
| |
Collapse
|
121
|
Modulation of NKp30- and NKp46-mediated natural killer cell responses by poxviral hemagglutinin. PLoS Pathog 2011; 7:e1002195. [PMID: 21901096 PMCID: PMC3161980 DOI: 10.1371/journal.ppat.1002195] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/22/2011] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK) cells are an important element in the immune defense against the orthopox family members vaccinia virus (VV) and ectromelia virus (ECTV). NK cells are regulated through inhibitory and activating signaling receptors, the latter involving NKG2D and the natural cytotoxicity receptors (NCR), NKp46, NKp44 and NKp30. Here we report that VV infection results in an upregulation of ligand structures for NKp30 and NKp46 on infected cells, whereas the binding of NKp44 and NKG2D was not significantly affected. Likewise, infection with ectromelia virus (ECTV), the mousepox agent, enhanced binding of NKp30 and, to a lesser extent, NKp46. The hemagglutinin (HA) molecules from VV and ECTV, which are known virulence factors, were identified as novel ligands for NKp30 and NKp46. Using NK cells with selectively silenced NCR expression and NCR-CD3ζ reporter cells, we observed that HA present on the surface of VV-infected cells, or in the form of recombinant soluble protein, was able to block NKp30-triggered activation, whereas it stimulated the activation through NKp46. The net effect of this complex influence on NK cell activity resulted in a decreased NK lysis susceptibility of infected cells at late time points of VV infection when HA was expression was pronounced. We conclude that poxviral HA represents a conserved ligand of NCR, exerting a novel immune escape mechanism through its blocking effect on NKp30-mediated activation at a late stage of infection.
Collapse
|
122
|
The structural basis of ligand recognition by natural killer cell receptors. J Biomed Biotechnol 2011; 2011:203628. [PMID: 21629745 PMCID: PMC3100565 DOI: 10.1155/2011/203628] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/14/2011] [Indexed: 11/18/2022] Open
Abstract
Natural killer cells are a group of lymphocytes which function as tightly controlled surveillance operatives which identify transformed cells through a discrete balance of activating and inhibitory receptors ultimately leading to the destruction of incongruent cells. The understanding of this finely tuned balancing act has been aided by the high-resolution structure determination of activating and inhibitory receptors both alone and in complex with their ligands. This paper collates these structural studies detailing the aspects which directly relate to the natural killer cell function and serves to inform both the specialized structural biologist reader and a more general immunology audience.
Collapse
|
123
|
Bida AT, Upshaw Neff JL, Dick CJ, Schoon RA, Brickshawana A, Chini CC, Billadeau DD. 2B4 utilizes ITAM-containing receptor complexes to initiate intracellular signaling and cytolysis. Mol Immunol 2011; 48:1149-59. [PMID: 21439641 DOI: 10.1016/j.molimm.2011.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 11/29/2022]
Abstract
2B4 is a member of the SLAM receptor family capable of activating NK cell cytotoxicity in the context of EBV infection. SAP (SLAM Associated Protein) deficiency causes defective signaling downstream of SLAM family receptors and high susceptibility to EBV. 2B4 costimulates natural cytotoxicity receptor (NCR) and TCR initiated signals to induce cellular cytotoxicity and cytokine release. The 2B4-SAP signal transduction pathway is not predicted to overlap with the TCR-ITAM pathway, although SAP is required for some TCR-induced signals. We therefore examined the functional relationship between SLAM family receptor 2B4 and ITAM-containing adaptor complexes. Removal of FcɛRIγ or CD3ζ-containing complexes, using genetically manipulated cell lines or siRNA specific suppression, significantly reduces 2B4-initiated functions in NK and T cells, respectively. Consistent with this relationship, Syk and ZAP-70 are capable of transducing 2B4 signals for calcium mobilization and cytolysis. Furthermore, ITAM-containing molecules constitutively associate with SAP. These results suggest a potential physical association between 2B4 and the ITAM receptor complexes that is required for 2B4-initiated signaling and cell-mediated killing.
Collapse
Affiliation(s)
- Anya T Bida
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | | | | | | | | | | | | |
Collapse
|
124
|
Lech PJ, Russell SJ. Use of attenuated paramyxoviruses for cancer therapy. Expert Rev Vaccines 2011; 9:1275-302. [PMID: 21087107 DOI: 10.1586/erv.10.124] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Paramyxoviruses, measles virus (MV), mumps virus (MuV) and Newcastle disease virus (NDV), are well known for causing measles and mumps in humans and Newcastle disease in birds. These viruses have been tamed (attenuated) and successfully used as vaccines to immunize their hosts. Remarkably, pathogenic MuV and vaccine strains of MuV, MV and NDV efficiently infect and kill cancer cells and are consequently being investigated as novel cancer therapies (oncolytic virotherapy). Phase I/II clinical trials have shown promise but treatment efficacy needs to be enhanced. Technologies being developed to increase treatment efficacy include: virotherapy in combination with immunosuppressive drugs (cyclophosphamide); retargeting of viruses to specific tumor types or tumor vasculature; using infected cell carriers to protect and deliver the virus to tumors; and genetic manipulation of the virus to increase viral spread and/or express transgenes during viral replication. Transgenes have enabled noninvasive imaging or tracking of viral gene expression and enhancement of tumor destruction.
Collapse
Affiliation(s)
- Patrycja J Lech
- Mayo Clinic, Department of Molecular Medicine, 200 1st Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
125
|
Connelley T, Storset AK, Pemberton A, MacHugh N, Brown J, Lund H, Morrison IW. NKp46 defines ovine cells that have characteristics corresponding to NK cells. Vet Res 2011; 42:37. [PMID: 21345198 PMCID: PMC3055825 DOI: 10.1186/1297-9716-42-37] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/23/2011] [Indexed: 01/08/2023] Open
Abstract
Natural killer (NK) cells are well recognized as playing a key role in innate immune defence through cytokine production and cytotoxic activity; additionally recent studies have identified several novel NK cell functions. The ability to study NK cells in the sheep has been restricted due to a lack of specific reagents. We report the generation of a monoclonal antibody specific for ovine NKp46, a receptor which in a number of mammals is expressed exclusively in NK cells. Ovine NKp46+ cells represent a population that is distinct from CD4+ and γδ+ T-cells, B-cells and cells of the monocytic lineage. The NKp46+ cells are heterogenous with respect to expression of CD2 and CD8 and most, but not all, express CD16--characteristics consistent with NK cell populations in other species. We demonstrate that in addition to populations in peripheral blood and secondary lymphoid organs, ovine NKp46+ populations are also situated at the mucosal surfaces of the lung, gastro-intestinal tract and non-gravid uterus. Furthermore, we show that purified ovine NKp46+ populations cultured in IL-2 and IL-15 have cytotoxic activity that could be enhanced by ligation of NKp46 in re-directed lysis assays. Therefore we conclude that ovine NKp46+ cells represent a population that by phenotype, tissue distribution and function correspond to NK cells and that NKp46 is an activating receptor in sheep as in other species.
Collapse
Affiliation(s)
- Timothy Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland, EH25 9RG, UK
| | - Anne K Storset
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O. Box 8146, Dep, N-0033 Oslo, Norway
| | - Alan Pemberton
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland, EH25 9RG, UK
| | - Niall MacHugh
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland, EH25 9RG, UK
| | - Jeremy Brown
- Reproductive Biology, The Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, EH16 4TJ, UK
| | - Hege Lund
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O. Box 8146, Dep, N-0033 Oslo, Norway
| | - Ivan W Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland, EH25 9RG, UK
| |
Collapse
|
126
|
Liu Y, Chen GY, Zheng P. Sialoside-based pattern recognitions discriminating infections from tissue injuries. Curr Opin Immunol 2011; 23:41-5. [PMID: 21208791 PMCID: PMC3042481 DOI: 10.1016/j.coi.2010.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/06/2010] [Indexed: 01/14/2023]
Abstract
Recognition of pathogens-associated molecular patterns (PAMPs) by Toll-like receptors (TLRs), NOD-like receptors (NLRs) and RIG-I-like receptors (RLR) plays a critical role in protecting host against pathogens. In addition, TLR and NLR also recognize danger-associated molecular patterns (DAMPs) to initiate limited innate immune responses. While innate immune response to DAMPs may be important for tissue repairs and wound healing, it is normally well controlled to avoid autoimmune destruction. Recent data support a role for sialoside-based pattern recognition by members of the Siglec family to attenuate innate immunity. In particular, since CD24-Siglec 10/G interaction selectively dampens host response to DAMPs but not PAMPs, this sialoside-based pattern recognition may serve as a foundation to discriminate PAMPs from DAMPs.
Collapse
Affiliation(s)
- Yang Liu
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, United States.
| | | | | |
Collapse
|
127
|
Bhat R, Dempe S, Dinsart C, Rommelaere J. Enhancement of NK cell antitumor responses using an oncolytic parvovirus. Int J Cancer 2011; 128:908-19. [PMID: 20473905 DOI: 10.1002/ijc.25415] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells play a vital role in the rejection of tumors. Pancreatic ductal adenocarcinoma (PDAC), however, remains a poor prognosis malignancy, due to its resistance to radio- and chemotherapy, and low immunogenicity. We demonstrate here that IL-2-activated human NK cells are able to kill PDAC cells. Currently, novel strategies are being pursued to combat PDAC. In this regard, oncolytic viruses, in addition to killing tumor cells, may also have the potential to augment antitumor immune responses. We found that, besides having an intrinsic oncolytic activity, parvovirus H-1PV is able to enhance NK cell-mediated killing of PDAC cells. Our results show that H-1PV infection of Panc-1 cells increases NK cell capacity to release IFN-γ, TNF-α and MIP-1α/β. Multiple activating receptors are involved in the NK cell-mediated killing of Panc-1 cells. Indeed, blocking of the natural cytotoxicity receptors-NKp30, 44 and 46 in combination, and NKG2D and DNAM1 alone inhibit the killing of Panc-1 cells. Interestingly, H-1PV infection of Panc-1 cells overcomes the part of inhibitory effects suggesting that parvovirus may induce additional NK cell ligands on Panc-1 cells. The enhanced sensitivity of H-1PV-infected PDAC cells to NK cell-dependent killing could be traced back to the upregulation of the DNAM-1 ligand, CD155 and to the downregulation of MHC class I expression. Our data suggests that NK cells display antitumor potential against PDAC and that H-1PV-based oncolytic immunotherapy could further boost NK cell-mediated immune responses and help to develop a combinatorial therapeutic approach against PDAC.
Collapse
Affiliation(s)
- Rauf Bhat
- Division of Tumor Virology, F010, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | |
Collapse
|
128
|
Ni J, Galani IE, Cerwenka A, Schirrmacher V, Fournier P. Antitumor vaccination by Newcastle Disease Virus Hemagglutinin-Neuraminidase plasmid DNA application: changes in tumor microenvironment and activation of innate anti-tumor immunity. Vaccine 2010; 29:1185-93. [PMID: 21172381 DOI: 10.1016/j.vaccine.2010.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/29/2010] [Accepted: 12/02/2010] [Indexed: 12/29/2022]
Abstract
A plasmid encoding the Hemagglutinin-Neuraminidase (HN) protein of Newcastle Disease Virus (pHN) was tested for its capacity to stimulate innate anti-tumor activity in tumor-bearing mice. We observed that application of the pHN plasmid at the ear pinna site (i.e.) of mice induces higher levels of systemic interferon-α and reduced tumor growth in the prophylactic mammary carcinoma DA3 tumor model in comparison to application of a control plasmid not encoding the HN protein. Analysis of the tumor microenvironment revealed a significant increase in NK cell infiltration and decrease in infiltration of CD11b(+)Gr-1(high) myeloid cells bearing the myeloid-derived suppressor cell (MDSC) phenotype after vaccination with the pHN DNA compared to a control DNA. Finally, innate immunity and partially type I IFN responses were proved important for the reduction of s.c. RMA-S tumor growth after pHN vaccination, as shown with the use of RAG2(-/-) and RAG2(-/-)IFNAR1(-/-) mice. These data demonstrate that triggering innate immunity by pHN application at the ear pinna of mice modulates the immune cell compartment in the tumor microenvironment and reduces tumor growth. This highlights thus the potential adjuvant activity of the HN gene in tumor therapy.
Collapse
Affiliation(s)
- Jing Ni
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
129
|
Ni J, Schirrmacher V, Fournier P. The hemagglutinin-neuraminidase gene of Newcastle Disease Virus: a powerful molecular adjuvant for DNA anti-tumor vaccination. Vaccine 2010; 28:6891-900. [PMID: 20709006 DOI: 10.1016/j.vaccine.2010.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/07/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
Abstract
Plasmid-encoded DNA vaccine is a novel and potentially powerful tool for cancer therapy. Since the strength of immune responses induced by DNA vaccine is usually rather low, a major goal in DNA vaccine development is to enhance vaccine-induced immunity. In this study, we investigated an approach based on the use of a viral surface protein with pleiotropic function as a potential immune enhancer. To this end, we prepared bicistronic DNA plasmids encoding the hemagglutinin-neuraminidase (HN) protein of Newcastle Disease Virus in addition to a tumor target antigen. We demonstrate a higher tumor antigen-specific T cell-mediated immune response and a lower humoral response upon vaccination with a bicistronic DNA plasmid with incorporated HN gene. In a prophylactic immunization tumor model with the surrogate tumor antigen beta-galactosidase (β-gal) and in a therapeutic immunization tumor model with the xenogeneic tumor antigen human Epithelial Cell Adhesion Molecule (hEpCAM), HN gene incorporation into the DNA vaccine led to better survival and tumor regression in mice. There was also cross protection in the therapeutic tumor model against a second challenge by the parental mouse mammary carcinoma cells in mice vaccinated with the bicistronic plasmids. This is the first report describing the HN protein as an immunomodulator for enhanced antigen-specific T cell responses via DNA plasmids. The results show that co-expression of HN with a tumor target antigen through bicistronic vectors ensures precise temporal and spatial co-delivery to direct anti-tumor immune responses preferentially towards Th1.
Collapse
Affiliation(s)
- Jing Ni
- Tumorimmunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
130
|
Guo H, Kumar P, Malarkannan S. Evasion of natural killer cells by influenza virus. J Leukoc Biol 2010; 89:189-94. [PMID: 20682623 DOI: 10.1189/jlb.0610319] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
NK cells are important innate immune effectors during influenza virus infection. However, the influenza virus seems able to use several tactics to counter NK cell recognition for immune evasion. In this review, we will summarize and discuss recent advances regarding the understanding of NK cell evasion mechanisms manipulated by the influenza virus to facilitate its rapid replication inside the respiratory epithelial cells.
Collapse
Affiliation(s)
- Hailong Guo
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA.
| | | | | |
Collapse
|
131
|
DNA vaccine expressing HIV-1 gp120/immunoglobulin fusion protein enhances cellular immunity. Vaccine 2010; 28:4920-7. [DOI: 10.1016/j.vaccine.2010.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 04/30/2010] [Accepted: 05/16/2010] [Indexed: 11/23/2022]
|
132
|
Abstract
Today, global attention is focused on two influenza virus strains: the current pandemic strain, swine origin influenza virus (H1N1-2009), and the highly pathogenic avian influenza virus, H5N1. At present, the infection caused by the H1N1-2009 is moderate, with mortality rates of less <1%. In contrast, infection with the H5N1 virus resulted in high mortality rates, and ca. 60% of the infected patients succumb to the infection. Thus, one of the world greatest concerns is that the H5N1 virus will evolve to allow an efficient human infection and human-to-human transmission. Natural killer (NK) cells are one of the innate immune components playing an important role in fighting against influenza viruses. One of the major NK activating receptors involved in NK cell cytotoxicity is NKp46. We previously demonstrated that NKp46 recognizes the hemagglutinin proteins of B and A influenza virus strains. Whether NKp46 could also interact with H1N1-2009 virus or with the avian influenza virus is still unknown. We analyzed the immunological properties of both the avian and the H1N1-2009 influenza viruses. We show that NKp46 recognizes the hemagglutinins of H1N1-2009 and H5 and that this recognition leads to virus killing both in vitro and in vivo. However, importantly, while the swine H1-NKp46 interactions lead to the direct killing of the infected cells, the H5-NKp46 interactions were unable to elicit direct killing, probably because the NKp46 binding sites for these two viruses are different.
Collapse
|
133
|
Masilamani M, Peruzzi G, Borrego F, Coligan JE. Endocytosis and intracellular trafficking of human natural killer cell receptors. Traffic 2009; 10:1735-44. [PMID: 19719476 PMCID: PMC2783697 DOI: 10.1111/j.1600-0854.2009.00973.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural killer (NK) cells play a vital role in the defense against viral infections and tumor development. NK cell function is primarily regulated by the sum of signals from a broad array of activation and inhibitory receptors. Key to generating the input level of either activating or inhibitory signals is the maintenance of receptor expression levels on the cell surface. Although the mechanisms of endocytosis and trafficking for some cell surface receptors, such as transferrin receptor and certain immune receptors, are very well known, that is not the situation for receptors expressed by NK cells. Recent studies have uncovered that endocytosis and trafficking routes characteristic for specific activation and inhibitory receptors can regulate the functional responses of NK cells. In this review, we summarize the current knowledge of receptor endocytosis and trafficking, and integrate this with our current understanding of NK cell receptor trafficking.
Collapse
Affiliation(s)
- Madhan Masilamani
- The Jaffe Food Allergy Institute, Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
134
|
Altomonte J, Marozin S, Schmid RM, Ebert O. Engineered newcastle disease virus as an improved oncolytic agent against hepatocellular carcinoma. Mol Ther 2009; 18:275-84. [PMID: 19809404 DOI: 10.1038/mt.2009.231] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Newcastle disease virus (NDV) is an intrinsically tumor-specific virus, which is currently under investigation as a clinical oncolytic agent. Several clinical trials have reported NDV to be a safe and effective agent for cancer therapy; however, there remains a clear need for improvement in therapeutic outcome. The endogenous NDV fusion (F) protein directs membrane fusion, which is required for virus entry and cell-cell fusion. Here, we report a novel NDV vector harboring an L289A mutation within the F gene, which resulted in enhanced fusion and cytotoxicity of hepatocellular carcinoma (HCC) cells in vitro, as compared with the rNDV/F3aa control virus. In vivo administration of the recombinant vector, termed rNDV/F3aa(L289A), via hepatic arterial infusion in immune-competent Buffalo rats bearing multifocal, orthotopic liver tumors resulted in tumor-specific syncytia formation and necrosis, with no evidence of toxicity to the neighboring hepatic parenchyma. Furthermore, the improved oncolysis conferred by the L289A mutation translated to significantly prolonged survival compared with control NDV. Taken together, rNDV/F(L289A) represents a safe, yet more effective vector than wild-type NDV for the treatment of HCC, making it an ideal candidate for clinical application in HCC patients.
Collapse
Affiliation(s)
- Jennifer Altomonte
- II Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | | |
Collapse
|