101
|
Hakkarainen T, Särkioja M, Lehenkari P, Miettinen S, Ylikomi T, Suuronen R, Desmond RA, Kanerva A, Hemminki A. Human mesenchymal stem cells lack tumor tropism but enhance the antitumor activity of oncolytic adenoviruses in orthotopic lung and breast tumors. Hum Gene Ther 2007; 18:627-41. [PMID: 17604566 DOI: 10.1089/hum.2007.034] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Systemic adenoviral delivery into tumors is inefficient because of liver sequestration of intravenously administered virus. One potential solution for improving bioavailability is the use of carrier cells such as human mesenchymal stem cells (MSCs), which have been suggested to have inherent tumor tropism. Here we investigated the capacity of capsid-modified adenoviruses to infect and replicate in MSCs. Further, biodistribution and tumor-killing efficacy of MSCs loaded with oncolytic adenoviruses were evaluated in orthotopic murine models of lung and breast cancer. In vitro, heparan sulfate proteoglycan- and alpha(v)beta integrin-targeted viruses enhanced gene delivery to bone marrow- and adipose tissue-derived MSCs up to 11,000-fold over adenovirus serotype 5 (Ad5). Infectivity-enhanced oncolytic adenoviruses showed notably higher rates of cytolysis of in vitro-passaged MSCs in comparison with wild-type virus. In vivo, intravenously injected MSCs homed primarily to the lungs, and virus was released into advanced orthotopic breast and lung tumors for therapeutic efficacy and increased survival. When the same dose of virus was injected intravenously without MSCs, only transduction of the liver was seen. These results suggest that MSCs loaded with oncolytic adenoviruses might be a useful approach for improving the bioavailability of systemically administered oncolytic adenoviruses.
Collapse
Affiliation(s)
- Tanja Hakkarainen
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Haartman Institute, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Wang H, Liaw YC, Stone D, Kalyuzhniy O, Amiraslanov I, Tuve S, Verlinde CLMJ, Shayakhmetov D, Stehle T, Roffler S, Lieber A. Identification of CD46 binding sites within the adenovirus serotype 35 fiber knob. J Virol 2007; 81:12785-92. [PMID: 17898059 PMCID: PMC2169084 DOI: 10.1128/jvi.01732-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Species B human adenoviruses (Ads) are often associated with fatal illnesses in immunocompromised individuals. Recently, species B Ads, most of which use the ubiquitously expressed complement regulatory protein CD46 as a primary attachment receptor, have gained interest for use as gene therapy vectors. In this study, we focused on species B Ad serotype 35 (Ad35), whose trimeric fiber knob domain binds to three CD46 molecules with a KD (equilibrium dissociation constant) of 15.5 nM. To study the Ad35 knob-CD46 interaction, we generated an expression library of Ad35 knobs with random mutations and screened it for CD46 binding. We identified four critical residues (Phe242, Arg279, Ser282, and Glu302) which, when mutated, ablated Ad35 knob binding to CD46 without affecting knob trimerization. The functional importance of the identified residues was validated in surface plasmon resonance and competition binding studies. To model the Ad35 knob-CD46 interaction, we resolved the Ad35 knob structure at 2-A resolution by X-ray crystallography and overlaid it onto the existing structure for Ad11-CD46 interaction. According to our model, all identified Ad35 residues are in regions that interact with CD46, whereby one CD46 molecule binds between two knob monomers. This mode of interaction might have potential consequences for CD46 signaling and intracellular trafficking of Ad35. Our findings are also fundamental for better characterization of species B Ads and design of antiviral drugs, as well as for application of species B Ads as in vivo and in vitro gene transfer vectors.
Collapse
Affiliation(s)
- Hongjie Wang
- Division of Medical Genetics, University of Washington, Box 357720, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Fleischli C, Sirena D, Lesage G, Havenga MJE, Cattaneo R, Greber UF, Hemmi S. Species B adenovirus serotypes 3, 7, 11 and 35 share similar binding sites on the membrane cofactor protein CD46 receptor. J Gen Virol 2007; 88:2925-2934. [DOI: 10.1099/vir.0.83142-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We recently characterized the domains of the human cofactor protein CD46 involved in binding species B2 adenovirus (Ad) serotype 35. Here, the CD46 binding determinants are mapped for the species B1 Ad serotypes 3 and 7 and for the species B2 Ad11. Ad3, 7 and 11 bound and transduced CD46-positive rodent BHK cells at levels similar to Ad35. By using antibody-blocking experiments, hybrid CD46–CD4 receptor constructs and CD46 single point mutants, it is shown that Ad3, 7 and 11 share many of the Ad35-binding features on CD46. Both CD46 short consensus repeat domains SCR I and SCR II were necessary and sufficient for optimal binding and transgene expression, provided that they were positioned at an appropriate distance from the cell membrane. Similar to Ad35, most of the putative binding residues of Ad3, 7 and 11 were located on the same glycan-free, solvent-exposed face of the SCR I or SCR II domains, largely overlapping with the binding surface of the recently solved fiber knob Ad11–SCR I–II three-dimensional structure. Differences between species B1 and B2 Ads were documented with competition experiments based on anti-CD46 antibodies directed against epitopes flanking the putative Ad-binding sites, and with competition experiments based on soluble CD46 protein. It is concluded that the B1 and B2 species of Ad engage CD46 through similar binding surfaces.
Collapse
Affiliation(s)
- Christoph Fleischli
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Dominique Sirena
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Guillaume Lesage
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | - Roberto Cattaneo
- Molecular Medicine Program and Virology and Gene Therapy Track, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Urs F. Greber
- Institute of Zoology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Silvio Hemmi
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
104
|
Evaluation of twenty-one human adenovirus types and one infectivity-enhanced adenovirus for the treatment of malignant melanoma. J Invest Dermatol 2007; 128:988-98. [PMID: 17960177 DOI: 10.1038/sj.jid.5701131] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Advanced melanoma is associated with poor prognosis warranting the development of new therapeutics, such as oncolytic adenoviruses for immunovirotherapy. Since this approach critically depends on efficient transduction of targeted tumor cells, we screened a panel of 22 different adenovirus types for their internalization efficiency in melanoma cells. We demonstrated that the virions of Ad35, Ad38, and Ad3 have significantly higher internalization efficiency in melanoma cells than Ad5, so far the only adenovirus type used in clinical trials for melanoma. Therefore, we developed a conditionally replication-competent Ad5-based vector with the Ad35 fiber shaft and knob domains (Ad5/35) and compared its therapeutic efficacy with the homologous vector carrying the native Ad5 fiber. To further enhance virotherapy, we combined the oncolytic adenovirus vectors with intratumoral expression of measles virus fusogenic membrane glycoproteins H and F (MV-H/F) and dacarbazine chemotherapy. In a human melanoma xenograft model, established from a short-term culture of primary melanoma cells, we demonstrated that the Ad5/35-based therapy had a significantly greater anti-neoplastic effect than the homologous Ad5-based therapy. Furthermore, the combination of virotherapy, intratumoral expression of MV-H/F, and chemotherapy was clearly superior to single- or double-agent therapy. In conclusion, Ad35-based vectors are promising for the treatment of melanoma.
Collapse
|
105
|
Murakami S, Sakurai F, Kawabata K, Okada N, Fujita T, Yamamoto A, Hayakawa T, Mizuguchi H. Interaction of penton base Arg-Gly-Asp motifs with integrins is crucial for adenovirus serotype 35 vector transduction in human hematopoietic cells. Gene Ther 2007; 14:1525-33. [PMID: 17805302 DOI: 10.1038/sj.gt.3303019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most subgroup B adenoviruses (Ads), including adenovirus (Ad) serotype 35 (Ad35), bind to human CD46 as a receptor; however, the infection processes of subgroup B Ads following attachment to CD46 remain to be elucidated. Subgroup B Ads possess Arg-Gly-Asp (RGD) motifs in the penton base, similarly to subgroup C Ad serotypes 2 and 5. In this study, we examined the role of penton base RGD motifs in Ad35 vector-mediated transduction in human hematopoietic cells. Inhibition of interaction between integrins and the RGD motifs by divalent cation chelation and a synthetic RGD peptide reduced the transduction efficiencies of Ad35 vectors; however, the amounts of cell-associated vector DNA of Ad35 vectors at 4 or 37 degrees C were not decreased by divalent cation chelation or the RGD peptide. Mutation of penton base RGD motifs reduced the transduction efficiencies of Ad35 vectors, although the amounts of cell-associated vector DNA of Ad35 vectors at 4 or 37 degrees C were not altered by mutation of penton base RGD motifs in Ad35 vectors. Furthermore, preincubation with several types of anti-integrin antibodies significantly inhibited Ad35 vector-mediated transduction. These results suggest that interaction between integrins and penton base RGD motifs plays a crucial role in Ad35 vector-mediated transduction in hematopoietic cells, probably in the post-internalization steps.
Collapse
Affiliation(s)
- S Murakami
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Ibaraki City, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Campos SK, Barry MA. Current advances and future challenges in Adenoviral vector biology and targeting. Curr Gene Ther 2007; 7:189-204. [PMID: 17584037 PMCID: PMC2244792 DOI: 10.2174/156652307780859062] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gene delivery vectors based on Adenoviral (Ad) vectors have enormous potential for the treatment of both hereditary and acquired disease. Detailed structural analysis of the Ad virion, combined with functional studies has broadened our knowledge of the structure/function relationships between Ad vectors and host cells/tissues and substantial achievement has been made towards a thorough understanding of the biology of Ad vectors. The widespread use of Ad vectors for clinical gene therapy is compromised by their inherent immunogenicity. The generation of safer and more effective Ad vectors, targeted to the site of disease, has therefore become a great ambition in the field of Ad vector development. This review provides a synopsis of the structure/function relationships between Ad vectors and host systems and summarizes the many innovative approaches towards achieving Ad vector targeting.
Collapse
Affiliation(s)
- Samuel K. Campos
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Michael A. Barry
- Department of Internal Medicine, Department of Immunology, Division of Infectious Diseases, Translational Immunovirology Program, Molecular Medicine Program, Mayo Clinic, Rochester, MN 55902, USA
- *Address correspondence to this author at the Department of Internal Medicine, Department of Immunology, Division of Infectious Diseases, Translational Immunovirology Program, Molecular Medicine Program, Mayo Clinic, Rochester, MN 55902, USA; E-mail:
| |
Collapse
|
107
|
Raki M, Hakkarainen T, Bauerschmitz GJ, Särkioja M, Desmond RA, Kanerva A, Hemminki A. Utility of TK/GCV in the context of highly effective oncolysis mediated by a serotype 3 receptor targeted oncolytic adenovirus. Gene Ther 2007; 14:1380-8. [PMID: 17611584 DOI: 10.1038/sj.gt.3302992] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Arming oncolytic adenoviruses with therapeutic transgenes and enhancing transduction of tumor cells are useful strategies for eradication of advanced tumor masses. Herpes simplex virus thymidine kinase (TK) together with ganciclovir (GCV) has been promising when coupled with viruses featuring low oncolytic potential, but their utility is unknown in the context of highly effective infectivity-enhanced viruses. We constructed Ad5/3-Delta24-TK-GFP, a serotype 3 receptor-targeted, Rb/p16 pathway-selective oncolytic adenovirus, where a fusion gene encoding TK and green fluorescent protein (GFP) was inserted into 6.7K/gp19K-deleted E3 region. Ad5/3-Delta24-TK-GFP killed ovarian cancer cells effectively, which correlated with GFP expression. Delivery of GCV immediately after infection abrogated viral replication, which might have utility as a safety switch. Due to the bystander effect, killing of some cell lines in vitro was enhanced by GCV regardless of timing. In murine models of metastatic ovarian cancer, Ad5/3-Delta24-TK-GFP improved antitumor efficacy over the respective replication-deficient virus with GCV. However, GCV did not further enhance efficacy of Ad5/3-Delta24-TK-GFP in vivo. Simultaneous detection of tumor load and virus replication with bioluminescence and fluorescence imaging provided insight into the in vivo kinetics of oncolysis. In summary, TK/GCV may not add antitumor activity in the context of highly potent oncolysis.
Collapse
Affiliation(s)
- M Raki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
108
|
White K, Nicklin SA, Baker AH. Novel vectors forin vivogene delivery to vascular tissue. Expert Opin Biol Ther 2007; 7:809-21. [PMID: 17555367 DOI: 10.1517/14712598.7.6.809] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although some success has been achieved with gene delivery in animal models of vascular disorders, the results from some clinical trials have been less promising, possibly due, in part, to the use of suboptimal vectors for in vivo gene transfer. Non-viral vectors have a very low transfection efficiency so are largely unsuitable for most in vivo applications, and the relatively broad tropism of many of the commonly used viral vectors can limit efficient gene delivery specifically to target vascular tissues. However, characterisation of novel virus serotypes and advances in techniques that enable vectors to be targeted to the required tissue have led to progress in the development of novel vectors that could be utilised for gene delivery for vascular disorders.
Collapse
Affiliation(s)
- Kathryn White
- University of Glasgow, British Heart Foundation Glasgow Cardiovascular Research Centre, Glasgow, UK
| | | | | |
Collapse
|
109
|
Denby L, Work LM, Seggern DJV, Wu E, McVey JH, Nicklin SA, Baker AH. Development of renal-targeted vectors through combined in vivo phage display and capsid engineering of adenoviral fibers from serotype 19p. Mol Ther 2007; 15:1647-54. [PMID: 17551506 DOI: 10.1038/sj.mt.6300214] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The potential efficacy of gene delivery is dictated by the infectivity profile of existing vectors, which is often restrictive. In order to target cells and organs for which no efficient vector is currently available, a promising approach would be to engineer vectors with novel transduction profiles. Applications that involve injecting adenovirus (Ad) vectors into the bloodstream require that native tropism for the liver be removed, and that targeting moieties be engineered into the capsid. We previously reported that pseudotyping the Ad serotype 5 fiber for that of Ad19p results in reduced hepatic transduction. In this study we show that this may be caused, at least in part, by a reduction in the capacity of the Ad19p-based virus to bind blood coagulation factors. It is therefore a potential candidate for vector retargeting, focusing on the kidney as a therapeutic target. We used in vivo phage display in rats, and identified peptides HTTHREP and HITSLLS that homed to the kidneys following intravenous injection. We engineered the HI loop of Ad19p to accommodate peptide insertions and clones. Intravenous delivery of each peptide-modified virus resulted in selective renal targeting, with HTTHREP and HITSLLS-targeted viruses selectively transducing tubular epithelium and glomeruli, respectively. Our study has important implications for the use of genetic engineering of Ad fibers to produce targeted gene delivery vectors.
Collapse
Affiliation(s)
- Laura Denby
- British Heart Foundation Glasgow, Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
110
|
Quirin C, Mainka A, Hesse A, Nettelbeck DM. Combining adenoviral oncolysis with temozolomide improves cell killing of melanoma cells. Int J Cancer 2007; 121:2801-7. [PMID: 17724714 DOI: 10.1002/ijc.23052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oncolytic adenoviruses are emerging agents for treatment of cancer by tumor-restricted virus replication, cell lysis and virus spread. Clinical studies with first generation oncolytic adenoviruses have revealed that an increased potency is warranted in order to achieve therapeutic efficacy. One approach towards this end is to combine adenoviral oncolysis with chemotherapy. Here, a fundamental requirement is that chemotherapy does not interfere with adenovirus replication in cancer cells. We have previously developed a melanoma-targeted oncolytic adenovirus, Ad5/3.2xTyr, which features tyrosinase promoter regulated replication and enhanced cell entry into melanoma cells. In this study, we investigated a combination treatment of melanoma cells with Ad5/3.2xTyr and temozolomide (TMZ), which produces the same active metabolite as Dacarbazine/DTIC, the standard chemotherapy for advanced melanoma. We report that TMZ does not inhibit adenovirus replication in melanoma cells. Additive or synergistic cell killing of melanoma cells, dependent on the cell line used, was observed. Enhanced cell binding was not responsible for synergism of adenoviral oncolysis and TMZ treatment. We rather observed that higher numbers of virus genomes are produced in TMZ-treated cells, which also showed a cell cycle arrest in the G2 phase. Our results have important implications for the clinical implementation of adenoviral oncolysis for treatment of malignant melanoma. It suggests that such studies are feasible in the presence of TMZ or DTIC chemotherapy and recommends the investigation of a viro-chemo combination therapy.
Collapse
Affiliation(s)
- Christina Quirin
- Virotherapy Lab, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | | | | | | |
Collapse
|