101
|
Maselli KM, Gee K, Isani M, Fode A, Schall KA, Grikscheit TC. Broad-spectrum antibiotics alter the microbiome, increase intestinal fxr, and decrease hepatic steatosis in zebrafish short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2020; 319:G212-G226. [PMID: 32597709 DOI: 10.1152/ajpgi.00119.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Short bowel syndrome (SBS) is associated with changes in the intestinal microbiome and marked local and systemic inflammation. There is also a late complication of SBS, intestinal failure associated liver disease (IFALD) in which hepatic steatosis progresses to cirrhosis. Most patients with SBS arrive at massive intestinal resection after a contaminating intraabdominal catastrophe and have a history of exposure to broad-spectrum antibiotics. We therefore investigated whether the administration of broad-spectrum antibiotics in conjunction with SBS in zebrafish (ZF) would replicate these systemic effects observed in humans to identify potentially druggable targets to aid in the management of SBS and resulting IFALD. In zebrafish with SBS, broad-spectrum antibiotics altered the microbiome, decreased inflammation, and reduced the development of hepatic steatosis. After two weeks of broad-spectrum antibiotics, these fish exhibited decreased alpha diversity, with less variation in microbial community composition between SBS and sham fish. Additionally, administration of broad-spectrum antibiotics was associated with decreased expression of intestinal toll-like receptor 4 (tlr4), increased expression of the intestinal gene encoding the Farnesoid X receptor (fxr), decreased expression of downstream hepatic cyp7a1, and decreased development of hepatic steatosis. SBS in zebrafish reproducibly results in increased epithelial surface area as occurs in human patients who demonstrate intestinal adaptation, but antibiotic administration in zebrafish with SBS reduced these gains with increased cell death in the intervillus pocket that contains stem/progenitor cells. These alternate states in SBS zebrafish might direct the development of future human therapies.NEW & NOTEWORTHY In a zebrafish model that replicates a common clinical scenario, systemic effects of the administration of broad-spectrum antibiotics in a zebrafish model of SBS identified two alternate states that led to the establishment of fat accumulation in the liver or its absence. Broad-spectrum antibiotics given to zebrafish with SBS over 2 wk altered the intestinal microbiome, decreased intestinal and hepatic inflammation, and decreased hepatic steatosis.
Collapse
Affiliation(s)
- Kathryn M Maselli
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| | - Kristin Gee
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| | - Mubina Isani
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| | - Alexa Fode
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| | - Kathy A Schall
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| | - Tracy C Grikscheit
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California.,Department of Surgery, Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, California.,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
102
|
Woods Acevedo MA, Pfeiffer JK. Microbiota-independent antiviral effects of antibiotics on poliovirus and coxsackievirus. Virology 2020; 546:20-24. [PMID: 32452414 PMCID: PMC7253499 DOI: 10.1016/j.virol.2020.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 01/14/2023]
Abstract
Coxsackieviruses primarily infect the gastrointestinal tract of humans, but they can disseminate systemically and cause severe disease. Using antibiotic treatment regimens to deplete intestinal microbes in mice, several groups have shown that bacteria promote oral infection with a variety of enteric viruses. However, it is unknown whether antibiotics have microbiota-independent antiviral effects for enteric viruses or whether antibiotics influence extra-intestinal, systemic infection. Here, we examined the effects of antibiotics on systemic enteric virus infection by performing intraperitoneal injections of either coxsackievirus B3 (CVB3) or poliovirus followed by quantification of viral titers. We found that antibiotic treatment reduced systemic infection for both viruses. Interestingly, antibiotics reduced CVB3 titers in germ-free mice, suggesting that antibiotic treatment alters CVB3 infection through a microbiota-independent mechanism. Overall, these data provide further evidence that antibiotics can have noncanonical effects on viral infection.
Collapse
Affiliation(s)
- Mikal A Woods Acevedo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Julie K Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
103
|
Katayama I, Nakaminami H, Yamada T, Ikoshi H, Noguchi N. Kampo medicines suppress the production of exfoliative toxins causing impetigo in
Staphylococcus aureus. J Dermatol 2020; 47:714-719. [DOI: 10.1111/1346-8138.15385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/13/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Ibu Katayama
- Departments of Department of MicrobiologySchool of PharmacyTokyo University of Pharmacy and Life SciencesTokyo Japan
| | - Hidemasa Nakaminami
- Departments of Department of MicrobiologySchool of PharmacyTokyo University of Pharmacy and Life SciencesTokyo Japan
| | - Tetsuya Yamada
- Department of Traditional Chinese Medicine School of Pharmacy Tokyo University of Pharmacy and Life Sciences Tokyo Japan
| | - Hideaki Ikoshi
- Department of Traditional Chinese Medicine School of Pharmacy Tokyo University of Pharmacy and Life Sciences Tokyo Japan
| | - Norihisa Noguchi
- Departments of Department of MicrobiologySchool of PharmacyTokyo University of Pharmacy and Life SciencesTokyo Japan
| |
Collapse
|
104
|
Wei X, Zhang L, Zhang R, Koci M, Si D, Ahmad B, Cheng J, Wang J, Aihemaiti M, Zhang M. A Novel Cecropin-LL37 Hybrid Peptide Protects Mice Against EHEC Infection-Mediated Changes in Gut Microbiota, Intestinal Inflammation, and Impairment of Mucosal Barrier Functions. Front Immunol 2020; 11:1361. [PMID: 32695115 PMCID: PMC7338479 DOI: 10.3389/fimmu.2020.01361] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Intestinal inflammation can cause impaired epithelial barrier function and disrupt immune homeostasis, which increases the risks of developing many highly fatal diseases. Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes intestinal infections worldwide and is a major pathogen that induces intestinal inflammation. Various antibacterial peptides have been described as having the potential to suppress and treat pathogen-induced intestinal inflammation. Cecropin A (1–8)-LL37 (17–30) (C-L), a novel hybrid peptide designed in our laboratory that combines the active center of C with the core functional region of L, shows superior antibacterial properties and minimized cytotoxicity compared to its parental peptides. Herein, to examine whether C-L could inhibit pathogen-induced intestinal inflammation, we investigated the anti-inflammatory effects of C-L in EHEC O157:H7-infected mice. C-L treatment improved the microbiota composition and microbial community balance in mouse intestines. The hybrid peptide exhibited improved anti-inflammatory effects than did the antibiotic, enrofloxacin. Hybrid peptide treated infected mice demonstrated reduced clinical signs of inflammation, reduced weight loss, reduced expression of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interferon-gamma (IFN-γ)], reduced apoptosis, and reduced markers of jejunal epithelial barrier function. The peptide also affected the MyD88–nuclear factor κB signaling pathway, thereby modulating inflammatory responses upon EHEC stimulation. Collectively, these findings suggest that the novel hybrid peptide C-L could be developed into a new anti-inflammatory agent for use in animals or humans.
Collapse
Affiliation(s)
- Xubiao Wei
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lulu Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Matthew Koci
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Dayong Si
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Baseer Ahmad
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junhao Cheng
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junyong Wang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Maierhaba Aihemaiti
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Manyi Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
105
|
Li M, Li C, Wu X, Chen T, Ren L, Xu B, Cao J. Microbiota-driven interleukin-17 production provides immune protection against invasive candidiasis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:268. [PMID: 32460890 PMCID: PMC7251893 DOI: 10.1186/s13054-020-02977-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
Background The intestinal microbiota plays a crucial role in human health, which could affect host immunity and the susceptibility to infectious diseases. However, the role of intestinal microbiota in the immunopathology of invasive candidiasis remains unknown. Methods In this work, an antibiotic cocktail was used to eliminate the intestinal microbiota of conventional-housed (CNV) C57/BL6 mice, and then both antibiotic-treated (ABX) mice and CNV mice were intravenously infected with Candida albicans to investigate their differential responses to infection. Furthermore, fecal microbiota transplantation (FMT) was applied to ABX mice in order to assess its effects on host immunity against invasive candidiasis after restoring the intestinal microbiota, and 16S ribosomal RNA gene sequencing was conducted on fecal samples from both uninfected ABX and CNV group of mice to analyze their microbiomes. Results We found that ABX mice displayed significantly increased weight loss, mortality, and organ damage during invasive candidiasis when compared with CNV mice, which could be alleviated by FMT. In addition, the level of IL-17A in ABX mice was significantly lower than that in the CNV group during invasive candidiasis. Treatment with recombinant IL-17A could improve the survival of ABX mice during invasive candidiasis. Besides, the microbial diversity of ABX mice was significantly reduced, and the intestinal microbiota structure of ABX mice was significantly deviated from the CNV mice. Conclusions Our data revealed that intestinal microbiota plays a protective role in invasive candidiasis by enhancing IL-17A production in our model system.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China
| | - Congya Li
- Department of Laboratory Medicine, the Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), No.1 Shuanghu Branch Road, Yubei District, Chongqing, 401120, China
| | - Xianan Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China
| | - Tangtian Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China
| | - Lei Ren
- Medical Examination Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Ju Cao
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
106
|
Synergistic depletion of gut microbial consortia, but not individual antibiotics, reduces amyloidosis in APPPS1-21 Alzheimer's transgenic mice. Sci Rep 2020; 10:8183. [PMID: 32424118 PMCID: PMC7235236 DOI: 10.1038/s41598-020-64797-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/16/2020] [Indexed: 01/11/2023] Open
Abstract
In preceding efforts, we demonstrated that antibiotic (ABX) cocktail-mediated perturbations of the gut microbiome in two independent transgenic lines, termed APPSWE/PS1ΔE9 and APPPS1-21, leads to a reduction in Aβ deposition in male mice. To determine whether these observed reductions of cerebral Aβ amyloidosis are specific to any individual antibiotic or require the synergistic effects of several antibiotics, we treated male APPPS1-21 transgenic mice with either individual ABX or an ABX cocktail and assessed amyloid deposition. Specifically, mice were subject to oral gavage with high dose kanamycin, gentamicin, colistin, metronidazole, vancomycin, individually or in a combination (ABX cocktail) from postnatal days (PND) 14 to 21, followed by ad libitum, low-dose individual ABX or ABX cocktail in the drinking water until the time of sacrifice. A control group was subject to gavage with water from PND 14 to 21 and received drinking water till the time of sacrifice. At the time of sacrifice, all groups showed distinct cecal microbiota profiles with the highest differences between control and ABX cocktail-treated animals. Surprisingly, only the ABX cocktail significantly reduced brain Aβ amyloidosis compared to vehicle-treated animals. In parallel studies, and to assess the potential exposure of ABX to the brain, we quantified the levels of each ABX in the brain by liquid chromatography-mass spectrometry (LC-MS) at PND 22 or at 7 weeks of age. With the exception of metronidazole (which was observed at less than 3% relative to the spiked control brains), we were unable to detect the other individual ABX in brain homogenates. Our findings suggest that synergistic alterations of gut microbial consortia, rather than individual antimicrobial agents, underlie the observed reductions in brain amyloidosis.
Collapse
|
107
|
Okada K, Matsushima Y, Mizutani K, Yamanaka K. The Role of Gut Microbiome in Psoriasis: Oral Administration of Staphylococcus aureus and Streptococcus danieliae Exacerbates Skin Inflammation of Imiquimod-Induced Psoriasis-Like Dermatitis. Int J Mol Sci 2020; 21:E3303. [PMID: 32392785 PMCID: PMC7246652 DOI: 10.3390/ijms21093303] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 01/11/2023] Open
Abstract
Psoriasis is one of the common chronic inflammatory skin diseases in which inflammatory cytokines such as IL-17 and TNF-α play critical roles. Skin microbiome of psoriasis patients is reported to have elevated Staphylococcus and Streptococcus genus. There are controversial reports about gut microbiome of psoriasis patients, and whether the diversity of bacteria in genus level is decreased or not is still unclear. Moreover, it is not yet known if these gut bacteria would be the cause of the inflammation or the result of the inflammation. We analyzed the gut microbiome of the inflammatory skin model mouse (keratinocyte-specific caspase-1 transgenic (Kcasp1Tg) mouse), by analyzing the 16S rRNA gene. Staphylocuccus aureus and Streptococcus danieliae were abundant in Kcasp1Tg mouse fecal microbiome. These dominant bacteria as well as recessive control bacteria were orally administrated to antibiotic-treated wild type mice, and set up imiquimod-induced psoriasis-like skin inflammation model. The skin inflammation including ear thickness and histopathological findings was analyzed. The exacerbated skin lesions with the elevated levels of TNF-α, IL-17A, IL-17F, and IL-22 were observed in Staphylocuccus aureus and Streptococcus danieliae administrated groups. Our finding suggests that there is affinity between skin inflammation severity and certain gut bacteria leading to a vicious cycle: skin inflammation populates certain gut bacteria which itself worsens the skin inflammation. This is the first report on Staphylocuccus aureus and Streptococcuus danieliae effects in vivo. Not only treating the skin lesion but also treating the gut microbiome could be the future key treatment for inflammatory skin disease such as psoriasis.
Collapse
Affiliation(s)
| | | | | | - Keiichi Yamanaka
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; (K.O.); (Y.M.); (K.M.)
| |
Collapse
|
108
|
Dos Santos LM, Commodaro AG, Vasquez ARR, Kohlhoff M, de Paula Guerra DA, Coimbra RS, Martins-Filho OA, Teixeira-Carvalho A, Rizzo LV, Vieira LQ, Serra HM. Intestinal microbiota regulates tryptophan metabolism following oral infection with Toxoplasma gondii. Parasite Immunol 2020; 42:e12720. [PMID: 32275066 DOI: 10.1111/pim.12720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/24/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The intestinal microbiota plays an important role in modulating host immune responses. Oral Toxoplasma gondii infection can promote intestinal inflammation in certain mice strains. The IDO-AhR axis may control tryptophan (Trp) metabolism constituting an important immune regulatory mechanism in inflammatory settings. AIMS In the present study, we investigated the role of the intestinal microbiota on Trp metabolism during oral infection with T gondii. METHODS AND RESULTS Mice were treated with antibiotics for four weeks and then infected with T gondii by gavage. Histopathology and immune responses were evaluated 8 days after infection. We found that depletion of intestinal microbiota by antibiotics contributed to resistance against T gondii infection and led to reduced expression of AhR on dendritic and Treg cells. Mice depleted of Gram-negative bacteria presented higher levels of systemic Trp, downregulation of AhR expression and increased resistance to infection whereas depletion of Gram-positive bacteria did not affect susceptibility or expression of AhR on immune cells. CONCLUSION Our findings indicate that the intestinal microbiota can control Trp availability and provide a link between the AhR pathway and host-microbiota interaction in acute infection with T gondii.
Collapse
Affiliation(s)
- Liliane M Dos Santos
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Alessandra G Commodaro
- Departmento de Oftalmologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Alicia R R Vasquez
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Markus Kohlhoff
- Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| | | | - Roney S Coimbra
- Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| | | | | | - Luiz V Rizzo
- Instituto Israelita de Pesquisa e Ensino, São Paulo, Brazil
| | - Leda Q Vieira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Horacio M Serra
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| |
Collapse
|
109
|
Tao C, Zhang Q, Zeng W, Liu G, Shao H. The effect of antibiotic cocktails on host immune status is dynamic and does not always correspond to changes in gut microbiota. Appl Microbiol Biotechnol 2020; 104:4995-5009. [PMID: 32303819 DOI: 10.1007/s00253-020-10611-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/29/2020] [Accepted: 04/05/2020] [Indexed: 12/22/2022]
Abstract
The disruption of the gut microbiota by treatment with an antibiotic cocktail (ABx) can trigger an imbalance in immune homeostasis. However, whether the changes in the intestinal microbiota always correspond to the changes in the physiology and immune homeostasis of the host remains unclear. Here, we analyzed the effects of ABx on immune homeostasis by analyzing the colonic transcriptome with 16S rRNA analysis of the gut microbiota on the 7th and 21st days of continuous treatment with ABx. Our results showed that the composition profile of the gut microbiota was similar after 7 and 21 days of ABx treatment. However, after 21 days of ABx treatment, the intestinal inflammation did not deteriorate further. Instead, the inflammation of the host was relieved, and half of the differentially expressed genes in the colon were restored compared with the 7 days of ABx treatment. Furthermore, the enrichment and network analysis of these restored genes indicated that expression of regenerating islet-derived protein 3β (Reg3b) and expression of regenerating islet-derived protein 3γ (Reg3g), especially Reg3b, may participate in the regulation of the inflammatory response and affect the changes in host immune homeostasis during continuous ABx treatment. Finally, Spearman's correlation analysis showed that the expression of Reg3b is correlated with the growth of Escherichia-Shigella. Our data demonstrated that even though the disruption of the gut microbiota profile induced by ABx treatment is similar, the host response and immune status will be different at different times.Key Points• Host immune status can change in different ABx treatment times.• Gut microbiota showed same exhaustion state in different ABx treatment times.• Host tried to revert to a certain extent after long-term ABx treatment.• Reg3b may affect the changes in host immune homeostasis during continuous ABx treatment.• The expression of Reg3b correlated with the growth of Escherichia-Shigella.
Collapse
Affiliation(s)
- Changli Tao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Qin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wenjing Zeng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gongliang Liu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hongwei Shao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
110
|
Kester JC, Brubaker DK, Velazquez J, Wright C, Lauffenburger DA, Griffith LG. Clostridioides difficile-Associated Antibiotics Alter Human Mucosal Barrier Functions by Microbiome-Independent Mechanisms. Antimicrob Agents Chemother 2020; 64:e01404-19. [PMID: 31988098 PMCID: PMC7179307 DOI: 10.1128/aac.01404-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/04/2020] [Indexed: 12/16/2022] Open
Abstract
A clinically relevant risk factor for Clostridioides difficile-associated disease (CDAD) is recent antibiotic treatment. Although broad-spectrum antibiotics have been shown to disrupt the structure of the gut microbiota, some antibiotics appear to increase CDAD risk without being highly active against intestinal anaerobes, suggesting direct nonantimicrobial effects. We examined cell biological effects of antibiotic exposure that may be involved in bacterial pathogenesis using an in vitro germfree human colon epithelial culture model. We found a marked loss of mucosal barrier and immune function with exposure to the CDAD-associated antibiotics clindamycin and ciprofloxacin, distinct from the results of pretreatment with an antibiotic unassociated with CDAD, tigecycline, which did not reduce innate immune or mucosal barrier functions. Importantly, pretreatment with CDAD-associated antibiotics sensitized mucosal barriers to C. difficile toxin activity in primary cell-derived enteroid monolayers. These data implicate commensal-independent gut mucosal barrier changes in the increased risk of CDAD with specific antibiotics and warrant further studies in in vivo systems. We anticipate this work to suggest potential avenues of research for host-directed treatment and preventive therapies for CDAD.
Collapse
Affiliation(s)
- Jemila C Kester
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Douglas K Brubaker
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jason Velazquez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Charles Wright
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
111
|
Wen J, Rawls JF. Feeling the Burn: Intestinal Epithelial Cells Modify Their Lipid Metabolism in Response to Bacterial Fermentation Products. Cell Host Microbe 2020; 27:314-316. [PMID: 32164841 DOI: 10.1016/j.chom.2020.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intestinal epithelial absorption of dietary lipids is a major determinant of animal energy balance and metabolic health. Recent studies uncovered significant roles for intestinal microbiota in this process, but underlying mechanisms remain unresolved. Araújo et al. (2020) identify two end-products of bacterial fermentation that regulate intestinal lipid absorption and metabolism.
Collapse
Affiliation(s)
- Jia Wen
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
112
|
Kang B, Alvarado LJ, Kim T, Lehmann ML, Cho H, He J, Li P, Kim BH, Larochelle A, Kelsall BL. Commensal microbiota drive the functional diversification of colon macrophages. Mucosal Immunol 2020; 13:216-229. [PMID: 31772323 PMCID: PMC7039809 DOI: 10.1038/s41385-019-0228-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/01/2019] [Accepted: 10/24/2019] [Indexed: 02/04/2023]
Abstract
Mononuclear phagocytes are a heterogeneous population of leukocytes essential for immune homeostasis that develop tissue-specific functions due to unique transcriptional programs driven by local microenvironmental cues. Single cell RNA sequencing (scRNA-seq) of colonic myeloid cells from specific pathogen free (SPF) and germ-free (GF) C57BL/6 mice revealed extensive heterogeneity of both colon macrophages (MPs) and dendritic cells (DCs). Modeling of developmental pathways combined with inference of gene regulatory networks indicate two major trajectories from common CCR2+ precursors resulting in colon MP populations with unique transcription factors and downstream target genes. Compared to SPF mice, GF mice had decreased numbers of total colon MPs, as well as selective proportional decreases of two major CD11c+CD206intCD121b+ and CD11c-CD206hiCD121b- colon MP populations, whereas DC numbers and proportions were not different. Importantly, these two major colon MP populations were clearly distinct from other colon MP populations regarding their gene expression profile, localization within the lamina propria (LP) and ability to phagocytose macromolecules from the blood. These data uncover the diversity of intestinal myeloid cell populations at the molecular level and highlight the importance of microbiota on the unique developmental as well as anatomical and functional fates of colon MPs.
Collapse
Affiliation(s)
- Byunghyun Kang
- National Institute of Allergy and Infectious Diseases, Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Luigi J Alvarado
- National Heart, Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Teayong Kim
- San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | | | - Hyeseon Cho
- National Institute of Allergy and Infectious Diseases, Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Jianping He
- National Institute of Allergy and Infectious Diseases, Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Peng Li
- National Heart, Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Bong-Hyun Kim
- National Laboratory of Cancer Research, NIH, Frederick, MD, 21702, USA
| | - Andre Larochelle
- National Heart, Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Brian L Kelsall
- National Institute of Allergy and Infectious Diseases, Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
113
|
Flux MC, Lowry CA. Finding intestinal fortitude: Integrating the microbiome into a holistic view of depression mechanisms, treatment, and resilience. Neurobiol Dis 2020; 135:104578. [PMID: 31454550 PMCID: PMC6995775 DOI: 10.1016/j.nbd.2019.104578] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/27/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Depression affects at least 322 million people globally, or approximately 4.4% of the world's population. While the earnestness of researchers and clinicians to understand and treat depression is not waning, the number of individuals suffering from depression continues to increase over and above the rate of global population growth. There is a sincere need for a paradigm shift. Research in the past decade is beginning to take a more holistic approach to understanding depression etiology and treatment, integrating multiple body systems into whole-body conceptualizations of this mental health affliction. Evidence supports the hypothesis that the gut microbiome, or the collective trillions of microbes inhabiting the gastrointestinal tract, is an important factor determining both the risk of development of depression and persistence of depressive symptoms. This review discusses recent advances in both rodent and human research that explore bidirectional communication between the gut microbiome and the immune, endocrine, and central nervous systems implicated in the etiology and pathophysiology of depression. Through interactions with circulating inflammatory markers and hormones, afferent and efferent neural systems, and other, more niche, pathways, the gut microbiome can affect behavior to facilitate the development of depression, exacerbate current symptoms, or contribute to treatment and resilience. While the challenge of depression may be the direst mental health crisis of our age, new discoveries in the gut microbiome, when integrated into a holistic perspective, hold great promise for the future of positive mental health.
Collapse
Affiliation(s)
- M C Flux
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA; Senior Fellow, VIVO Planetary Health, Worldwide Universities Network (WUN), West New York, NJ 07093, USA.
| |
Collapse
|
114
|
Buetti-Dinh A, Herold M, Christel S, El Hajjami M, Delogu F, Ilie O, Bellenberg S, Wilmes P, Poetsch A, Sand W, Vera M, Pivkin IV, Friedman R, Dopson M. Reverse engineering directed gene regulatory networks from transcriptomics and proteomics data of biomining bacterial communities with approximate Bayesian computation and steady-state signalling simulations. BMC Bioinformatics 2020; 21:23. [PMID: 31964336 PMCID: PMC6975020 DOI: 10.1186/s12859-019-3337-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Network inference is an important aim of systems biology. It enables the transformation of OMICs datasets into biological knowledge. It consists of reverse engineering gene regulatory networks from OMICs data, such as RNAseq or mass spectrometry-based proteomics data, through computational methods. This approach allows to identify signalling pathways involved in specific biological functions. The ability to infer causality in gene regulatory networks, in addition to correlation, is crucial for several modelling approaches and allows targeted control in biotechnology applications. METHODS We performed simulations according to the approximate Bayesian computation method, where the core model consisted of a steady-state simulation algorithm used to study gene regulatory networks in systems for which a limited level of details is available. The simulations outcome was compared to experimentally measured transcriptomics and proteomics data through approximate Bayesian computation. RESULTS The structure of small gene regulatory networks responsible for the regulation of biological functions involved in biomining were inferred from multi OMICs data of mixed bacterial cultures. Several causal inter- and intraspecies interactions were inferred between genes coding for proteins involved in the biomining process, such as heavy metal transport, DNA damage, replication and repair, and membrane biogenesis. The method also provided indications for the role of several uncharacterized proteins by the inferred connection in their network context. CONCLUSIONS The combination of fast algorithms with high-performance computing allowed the simulation of a multitude of gene regulatory networks and their comparison to experimentally measured OMICs data through approximate Bayesian computation, enabling the probabilistic inference of causality in gene regulatory networks of a multispecies bacterial system involved in biomining without need of single-cell or multiple perturbation experiments. This information can be used to influence biological functions and control specific processes in biotechnology applications.
Collapse
Affiliation(s)
- Antoine Buetti-Dinh
- Institute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana, Via Giuseppe Buffi 13, Lugano, CH-6900 Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge – Batiment Genopode, Lausanne, CH-1015 Switzerland
- Department of Chemistry and Biomedical Sciences, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
- Linnæus University Centre for Biomaterials Chemistry, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
- Centre for Ecology and Evolution in Microbial Model Systems, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
| | - Malte Herold
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Stephan Christel
- Centre for Ecology and Evolution in Microbial Model Systems, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
| | | | - Francesco Delogu
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Oslo, Norway
| | - Olga Ilie
- Institute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana, Via Giuseppe Buffi 13, Lugano, CH-6900 Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge – Batiment Genopode, Lausanne, CH-1015 Switzerland
| | - Sören Bellenberg
- Centre for Ecology and Evolution in Microbial Model Systems, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Ansgar Poetsch
- Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
- Center for Marine and Molecular Biotechnology, QNLM, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wolfgang Sand
- Faculty of Chemistry, Essen, Germany
- College of Environmental Science and Engineering, Donghua University, Shanghai, People’s Republic of China
- Mining Academy and Technical University Freiberg, Freiberg, Germany
| | - Mario Vera
- Institute for Biological and Medical Engineering. Schools of Engineering, Medicine & Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Hydraulic & Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Igor V. Pivkin
- Institute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana, Via Giuseppe Buffi 13, Lugano, CH-6900 Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge – Batiment Genopode, Lausanne, CH-1015 Switzerland
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
- Linnæus University Centre for Biomaterials Chemistry, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnæus University, Hus Vita, Kalmar, SE-391 82 Sweden
| |
Collapse
|
115
|
Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, Shulzhenko N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020; 51:102590. [PMID: 31901868 PMCID: PMC6948163 DOI: 10.1016/j.ebiom.2019.11.051] [Citation(s) in RCA: 1024] [Impact Index Per Article: 204.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/14/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
A substantial body of literature has provided evidence for the role of gut microbiota in metabolic diseases including type 2 diabetes. However, reports vary regarding the association of particular taxonomic groups with disease. In this systematic review, we focused on the potential role of different bacterial taxa affecting diabetes. We have summarized evidence from 42 human studies reporting microbial associations with disease, and have identified supporting preclinical studies or clinical trials using treatments with probiotics. Among the commonly reported findings, the genera of Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia and Roseburia were negatively associated with T2D, while the genera of Ruminococcus, Fusobacterium, and Blautia were positively associated with T2D. We also discussed potential molecular mechanisms of microbiota effects in the onset and progression of T2D.
Collapse
Affiliation(s)
- Manoj Gurung
- Colleges of Veterinary Medicine, Oregon State University, 700 SW 30th street, Corvallis, OR, 97331, USA
| | - Zhipeng Li
- Colleges of Veterinary Medicine, Oregon State University, 700 SW 30th street, Corvallis, OR, 97331, USA
| | - Hannah You
- Colleges of Veterinary Medicine, Oregon State University, 700 SW 30th street, Corvallis, OR, 97331, USA
| | - Richard Rodrigues
- Colleges of Pharmacy, Oregon State University, 160 SW 26th street, Corvallis, OR 97331, USA
| | - Donald B Jump
- Colleges of Public Health, Oregon State University, 160 SW 26th street, Corvallis, OR 97331, USA
| | - Andrey Morgun
- Colleges of Pharmacy, Oregon State University, 160 SW 26th street, Corvallis, OR 97331, USA.
| | - Natalia Shulzhenko
- Colleges of Veterinary Medicine, Oregon State University, 700 SW 30th street, Corvallis, OR, 97331, USA.
| |
Collapse
|
116
|
Wu M, Liu J, Li F, Huang S, He J, Xue Y, Fu T, Feng S, Li Z. Antibiotic-induced dysbiosis of gut microbiota impairs corneal development in postnatal mice by affecting CCR2 negative macrophage distribution. Mucosal Immunol 2020; 13:47-63. [PMID: 31434991 PMCID: PMC6914671 DOI: 10.1038/s41385-019-0193-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 06/18/2019] [Accepted: 07/17/2019] [Indexed: 02/04/2023]
Abstract
Antibiotics are extremely useful, but they can cause adverse impacts on host bodies. We found that antibiotic treatment altered the composition of the gut microbiota and the gene expression profile in the corneal tissues of postnatal mice and decreased the corneal size and thickness, the angiogenesis of limbal blood vessels, and the neurogenesis of corneal nerve fibers. The reconstitution of the gut microbiota with fecal transplants in antibiotic-treated mice largely reversed these impairments in corneal development. Furthermore, C-C chemokine receptor type 2 negative (CCR2-) macrophages were confirmed to participate in corneal development, and their distribution in the cornea was regulated by the gut microbiota. We propose that the CCR2- macrophage population is a crucial mediator through which gut microbiota affect corneal development in postnatal mice. In addition, probiotics were shown to have the potential effect of restoring corneal development in antibiotic-treated mice. Abx-induced gut dysbiosis has significant, long-term effects on the development of the cornea, and reversal of these suppressive effects takes a long time.
Collapse
Affiliation(s)
- Mingjuan Wu
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Jun Liu
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Fanying Li
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China ,0000 0004 1790 3548grid.258164.cDepartment of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Shuoya Huang
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China ,0000 0004 1760 3828grid.412601.0Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jingxin He
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China ,0000 0004 1760 3828grid.412601.0Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunxia Xue
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ting Fu
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Shanshan Feng
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Zhijie Li
- 0000 0004 1790 3548grid.258164.cInternational Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China ,0000 0004 1760 3828grid.412601.0Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China ,grid.414011.1Department of Ophthalmology, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
117
|
Rosado D, Xavier R, Severino R, Tavares F, Cable J, Pérez-Losada M. Effects of disease, antibiotic treatment and recovery trajectory on the microbiome of farmed seabass (Dicentrarchus labrax). Sci Rep 2019; 9:18946. [PMID: 31831775 PMCID: PMC6908611 DOI: 10.1038/s41598-019-55314-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
The mucosal surfaces of fish harbour microbial communities that can act as the first-line of defense against pathogens. Infectious diseases are one of the main constraints to aquaculture growth leading to huge economic losses. Despite their negative impacts on microbial diversity and overall fish health, antibiotics are still the method of choice to treat many such diseases. Here, we use 16 rRNA V4 metataxonomics to study over a 6 week period the dynamics of the gill and skin microbiomes of farmed seabass before, during and after a natural disease outbreak and subsequent antibiotic treatment with oxytetracycline. Photobacterium damselae was identified as the most probable causative agent of disease. Both infection and antibiotic treatment caused significant, although asymmetrical, changes in the microbiome composition of the gills and skin. The most dramatic changes in microbial taxonomic abundance occurred between healthy and diseased fish. Disease led to a decrease in the bacterial core diversity in the skin, whereas in the gills there was both an increase and a shift in core diversity. Oxytetracycline caused a decrease in core diversity in the gill and an increase in the skin. Severe loss of core diversity in fish mucosae demonstrates the disruptive impact of disease and antibiotic treatment on the microbial communities of healthy fish.
Collapse
Affiliation(s)
- Daniela Rosado
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Raquel Xavier
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
| | - Ricardo Severino
- Piscicultura Vale da Lama, Sapal do Vale da Lama, Odiáxere, 8600-258, Lagos, Portugal
| | - Fernando Tavares
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Faculdade de Ciências, Departmento de Biologia, Universidade do Porto, 4169-007, Porto, Portugal
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Marcos Pérez-Losada
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Computational Biology Institute, Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington DC, 20052, USA
| |
Collapse
|
118
|
Liu D, Huang J, Luo Y, Wen B, Wu W, Zeng H, Zhonghua L. Fuzhuan Brick Tea Attenuates High-Fat Diet-Induced Obesity and Associated Metabolic Disorders by Shaping Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13589-13604. [PMID: 31735025 DOI: 10.1021/acs.jafc.9b05833] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An increasing amount of evidence suggests that the metabolic improvement of high-fat diet (HFD)-induced obese mice by Fuzhuan brick tea (FBT) is associated with gut microbiota. However, the causalities between FBT and gut microbiota have not yet been elucidated and the underlying mechanisms of action remain unclear. To impart direct evidence for the essential role of gut microbiota in the attenuation of obesity by FBT, the effects of FBT on healthy mice and microbiota-depleted mice that were treated with antibiotics were compared in an HFD-induced obesity mouse model. The results showed that FBT dramatically ameliorated obesity, serum lipid parameters, blood glucose homeostasis, hepatic steatosis, adipocyte hypertrophy, and tissue inflammation. However, the microbiota-depleted mice with single bacterium (Escherichia-Shigella) after antibiotic treatment were resistant to FBT-induced antiobesity and metabolic improvement. The beneficial effects of FBT resulted from its shift on gut microbiota composition and structure in mice. HFD-induced increase in the phyla Firmicutes/Bacteroidetes (F/B) ratio was remarkably restored by FBT. Furthermore, FBT-induced increase in abundances of beneficial bacteria Clostridiaceae, Bacteroidales, and Lachnospiraceae and decreases in harmful Ruminococcaceae, Peptococcaceae, Peptostreptococcaceae, and Erysipelotrichaceae were causal antecedents for FBT to reduce obesity and improve metabolic disorders.
Collapse
Affiliation(s)
- Dongmin Liu
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha 410128 , China
- Changsha University of Science & Technology , Changsha 410114 , China
| | - Jianan Huang
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha 410128 , China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients , Changsha 410128 , China
| | - Yong Luo
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha 410128 , China
| | - Beibei Wen
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha 410128 , China
| | - Wenliang Wu
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha 410128 , China
- Tea Research Institute , Hunan Academy of Agricultural Sciences , Changsha 410125 , China
| | - Hongliang Zeng
- Research Institute of Chinese Medicine , Hunan Academy of Chinese Medicine , Changsha , Hunan 410013 , China
| | - Liu Zhonghua
- Key Laboratory of Ministry of Education for Tea Science , Hunan Agricultural University , Changsha 410128 , China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients , Changsha 410128 , China
| |
Collapse
|
119
|
Mertsalmi TH, Pekkonen E, Scheperjans F. Antibiotic Exposure and Risk of Parkinson's Disease in Finland: A Nationwide Case‐Control Study. Mov Disord 2019; 35:431-442. [DOI: 10.1002/mds.27924] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Tuomas H. Mertsalmi
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology)University of Helsinki Helsinki Finland
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology)University of Helsinki Helsinki Finland
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology)University of Helsinki Helsinki Finland
| |
Collapse
|
120
|
Jiang D, Armour CR, Hu C, Mei M, Tian C, Sharpton TJ, Jiang Y. Microbiome Multi-Omics Network Analysis: Statistical Considerations, Limitations, and Opportunities. Front Genet 2019; 10:995. [PMID: 31781153 PMCID: PMC6857202 DOI: 10.3389/fgene.2019.00995] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
The advent of large-scale microbiome studies affords newfound analytical opportunities to understand how these communities of microbes operate and relate to their environment. However, the analytical methodology needed to model microbiome data and integrate them with other data constructs remains nascent. This emergent analytical toolset frequently ports over techniques developed in other multi-omics investigations, especially the growing array of statistical and computational techniques for integrating and representing data through networks. While network analysis has emerged as a powerful approach to modeling microbiome data, oftentimes by integrating these data with other types of omics data to discern their functional linkages, it is not always evident if the statistical details of the approach being applied are consistent with the assumptions of microbiome data or how they impact data interpretation. In this review, we overview some of the most important network methods for integrative analysis, with an emphasis on methods that have been applied or have great potential to be applied to the analysis of multi-omics integration of microbiome data. We compare advantages and disadvantages of various statistical tools, assess their applicability to microbiome data, and discuss their biological interpretability. We also highlight on-going statistical challenges and opportunities for integrative network analysis of microbiome data.
Collapse
Affiliation(s)
- Duo Jiang
- Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Courtney R Armour
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Chenxiao Hu
- Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Meng Mei
- Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Chuan Tian
- Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Thomas J Sharpton
- Department of Statistics, Oregon State University, Corvallis, OR, United States
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
121
|
Rodricks J, Huang Y, Mantus E, Shubat P. Do Interactions Between Environmental Chemicals and the Human Microbiome Need to Be Considered in Risk Assessments? RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2019; 39:2353-2358. [PMID: 31070803 PMCID: PMC6996927 DOI: 10.1111/risa.13316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
One of the most dynamic and fruitful areas of current health-related research concerns the various roles of the human microbiome in disease. Evidence is accumulating that interactions between substances in the environment and the microbiome can affect risks of disease, in both beneficial and adverse ways. Although most of the research has concerned the roles of diet and certain pharmaceutical agents, there is increasing interest in the possible roles of environmental chemicals. Chemical risk assessment has, to date, not included consideration of the influence of the microbiome. We suggest that failure to consider the possible roles of the microbiome could lead to significant error in risk assessment results. Our purpose in this commentary is to summarize some of the evidence supporting our hypothesis and to urge the risk assessment community to begin considering and influencing how results from microbiome-related research could be incorporated into chemical risk assessments. An additional emphasis in our commentary concerns the distinct possibility that research on chemical-microbiome interactions will also reduce some of the significant uncertainties that accompany current risk assessments. Of particular interest is evidence suggesting that the microbiome has an influence on variability in disease risk across populations and (of particular interest to chemical risk) in animal and human responses to chemical exposure. The possible explanatory power of the microbiome regarding sources of variability could reduce what might be the most significant source of uncertainty in chemical risk assessment.
Collapse
Affiliation(s)
| | - Yvonne Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Ann Arbor, Ann Arbor, MI, USA
| | - Ellen Mantus
- Board on Environmental Studies & Toxicology, National Academies of Sciences, Engineering & Medicine, Washington, DC, USA
| | - Pamela Shubat
- Health Risk Assessment, Environmental Health Division, Minnesota Department of Health [retired], St. Paul, MN, USA
| |
Collapse
|
122
|
Abstract
The prevalence of many chronic diseases has increased over the last decades. It has been postulated that dysbiosis driven by environmental factors such as antibiotic use is shifting the microbiome in ways that increase inflammation and the onset of chronic disease. Dysbiosis can be defined through the loss or gain of bacteria that either promote health or disease, respectively. Here we use multiple independent datasets to determine the nature of dysbiosis for a cluster of chronic diseases that includes urinary stone disease (USD), obesity, diabetes, cardiovascular disease, and kidney disease, which often exist as co-morbidities. For all disease states, individuals exhibited a statistically significant association with antibiotics in the last year compared to healthy counterparts. There was also a statistically significant association between antibiotic use and gut microbiota composition. Furthermore, each disease state was associated with a loss of microbial diversity in the gut. Three genera, Bacteroides, Prevotella, and Ruminococcus, were the most common dysbiotic taxa in terms of being enriched or depleted in disease populations and was driven in part by the diversity of operational taxonomic units (OTUs) within these genera. Results of the cross-sectional analysis suggest that antibiotic-driven loss of microbial diversity may increase the risk for chronic disease. However, longitudinal studies are needed to confirm the causative effect of diversity loss for chronic disease risk.
Collapse
|
123
|
Liu J, Wu M, He J, Xiao C, Xue Y, Fu T, Lin C, Dong D, Li Z. Antibiotic-Induced Dysbiosis of Gut Microbiota Impairs Corneal Nerve Regeneration by Affecting CCR2-Negative Macrophage Distribution. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 188:2786-2799. [PMID: 30470496 PMCID: PMC6284554 DOI: 10.1016/j.ajpath.2018.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022]
Abstract
Although antibiotics are useful, they can also bring negative effects. We found that antibiotic-treated mice exhibit an alteration in the gene expression profile of corneal tissues and a decrease in corneal nerve density. During corneal wound healing, antibiotic treatment was found to impair corneal nerve regeneration, an effect that could be largely reversed by reconstitution of the gut microbiota via fecal transplant. Furthermore, CCR2- corneal macrophages were found to participate in the repair of damaged corneal nerves, and a decrease in CCR2- corneal macrophages in antibiotic-treated mice, which could be reversed by fecal transplant, was observed. Adoptive transfer of CCR2- corneal macrophages promoted corneal nerve regeneration in antibiotic-treated mice. The application of probiotics after administration of antibiotics also restored the proportion of CCR2- corneal macrophages and increased the regeneration of corneal nerve fibers after epithelial abrasion. These results suggest that dysbiosis of the gut microbiota induced by antibiotic treatment impairs corneal nerve regeneration by affecting CCR2- macrophage distribution in the cornea. This study also indicates the potential of probiotics as a therapeutic strategy for promoting the regeneration of damaged corneal nerve fibers when the gut microbiota is in dysbiosis.
Collapse
Affiliation(s)
- Jun Liu
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, People's Republic of China; International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Mingjuan Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Jingxin He
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China
| | - Chengju Xiao
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, People's Republic of China
| | - Yunxia Xue
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China
| | - Ting Fu
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China
| | - Cuipei Lin
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China
| | - Dong Dong
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China
| | - Zhijie Li
- International Ocular Surface Research Center and Institute of Ophthalmology, Jinan University Medical School, Guangzhou, People's Republic of China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, People's Republic of China; Department of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China; Section of Leukocyte Biology, Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
124
|
Li H, Li H, Wang J, Guo L, Fan H, Zheng H, Yang Z, Huang X, Chu M, Yang F, He Z, Li N, Yang J, Wu Q, Shi H, Liu L. The altered gut virome community in rhesus monkeys is correlated with the gut bacterial microbiome and associated metabolites. Virol J 2019; 16:105. [PMID: 31426820 PMCID: PMC6700990 DOI: 10.1186/s12985-019-1211-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Background The gut microbiome is closely associated with the health of the host; although the interaction between the bacterial microbiome and the whole virome has rarely been studied, it is likely of medical importance. Examination of the interactions between the gut bacterial microbiome and virome of rhesus monkey would significantly contribute to revealing the gut microbiome composition. Methods Here, we conducted a metagenomic analysis of the gut microbiome of rhesus monkeys in a longitudinal cohort treated with an antibiotic cocktail, and we documented the interactions between the bacterial microbiome and virome. The depletion of viral populations was confirmed at the species level by real-time PCR. We also detected changes in the gut metabolome by GC-MS and LC-MS. Results A majority of bacteria were depleted after treatment with antibiotics, and the Shannon diversity index decreased from 2.95 to 0.22. Furthermore, the abundance-based coverage estimator (ACE) decreased from 104.47 to 33.84, and the abundance of eukaryotic viruses also changed substantially. In the annotation, 6 families of DNA viruses and 1 bacteriophage family were present in the normal monkeys but absent after gut bacterial microbiome depletion. Intriguingly, we discovered that changes in the gut bacterial microbiome composition may promote changes in the gut virome composition, and tryptophan, arginine, and quinone may play roles in the interaction between the bacterial microbiome and virome. Conclusion Our results indicated that the clearly altered composition of the virome was correlated with depletion in the bacterial community and that metabolites produced by bacteria possibly play important roles in the interaction. Electronic supplementary material The online version of this article (10.1186/s12985-019-1211-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heng Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Hongzhe Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Jingjing Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Lei Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Haitao Fan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Huiwen Zheng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Zening Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Xing Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Manman Chu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Nan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Jinxi Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Qiongwen Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Haijing Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China. .,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China.
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China. .,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China.
| |
Collapse
|
125
|
Lavelle A, Hoffmann TW, Pham HP, Langella P, Guédon E, Sokol H. Baseline microbiota composition modulates antibiotic-mediated effects on the gut microbiota and host. MICROBIOME 2019; 7:111. [PMID: 31375137 PMCID: PMC6676565 DOI: 10.1186/s40168-019-0725-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/18/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Normal mammalian development and homeostasis are dependent upon the gut microbiota. Antibiotics, essential for the treatment and prophylaxis of bacterial infections, can have collateral effects on the gut microbiota composition, which can in turn have far-reaching and potentially deleterious consequences for the host. However, the magnitude and duration of such collateral effects appear to vary between individuals. Furthermore, the degree to which such perturbations affect the host response is currently unclear. We aimed to test the hypothesis that different human microbiomes have different responses to a commonly prescribed antibiotic and that these differences may impact the host response. METHODS Germ-free mice (n = 30) humanized with the microbiota of two unrelated donors (A and B) were subjected to a 7-day antibiotic challenge with amoxicillin-clavulanate ("co-amoxiclav"). Microbiome and colonic transcriptome analysis was performed, pre (day 0) and post antibiotics (day 8) and subsequently into recovery (days 11 and 18). RESULTS Unique community profiles were evident depending upon the donor, with donor A recipient mice being dominated by Prevotella and Faecalibacterium and donor B recipient mice dominated by Bacteroides and Parabacteroides. Donor A mice underwent a marked destabilization of their microbiota following antibiotic treatment, while donor B mice maintained a more stable profile. Dramatic and overlapping alterations in the host transcriptome were apparent following antibiotic challenge in both groups. Despite this overlap, donor A mice experienced a more significant alteration in gene expression and uniquely showed correlations between host pathways and key microbial genera. CONCLUSIONS Germ-free mice humanized by different donor microbiotas maintain distinct microbiome profiles, which respond in distinct ways to antibiotic challenge and evince host responses that parallel microbiome disequilibrium. These results suggest that inter-individual variation in the gut microbiota may contribute to personalized host responses following microbiota perturbation.
Collapse
Affiliation(s)
- Aonghus Lavelle
- Sorbonne Université, INSERM, Saint-Antoine Research Center (CRSA), Paris, France
| | | | | | | | - Eric Guédon
- STLO, INRA, Agrocampus Ouest, Rennes, France
| | - Harry Sokol
- Sorbonne Université, INSERM, Saint-Antoine Research Center (CRSA), Paris, France
- INRA, UMR1319 Micalis, AgroParisTech, Jouy-en-Josas, France
- Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique – Hopitaux de Paris, Sorbonne Universités, 184 rue du Faubourg Saint-Antoine, 75571 Paris CEDEX 12, Paris, France
| |
Collapse
|
126
|
Mestre L, Carrillo-Salinas FJ, Mecha M, Feliú A, Espejo C, Álvarez-Cermeño JC, Villar LM, Guaza C. Manipulation of Gut Microbiota Influences Immune Responses, Axon Preservation, and Motor Disability in a Model of Progressive Multiple Sclerosis. Front Immunol 2019; 10:1374. [PMID: 31258540 PMCID: PMC6587398 DOI: 10.3389/fimmu.2019.01374] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota dysbiosis has been implicated in MS and other immune diseases, although it remains unclear how manipulating the gut microbiota may affect the disease course. Using a well-established model of progressive MS triggered by intracranial infection with Theiler's murine encephalomyelitis virus (TMEV), we sought to determine whether dysbiosis induced by oral antibiotics (ABX) administered on pre-symptomatic and symptomatic phases of the disease influences its course. We also addressed the effects of microbiota recolonization after ABX withdrawn in the presence or absence of probiotics. Central and peripheral immunity, plasma acetate and butyrate levels, axon damage and motor disability were evaluated. The cocktail of ABX prevented motor dysfunction and limited axon damage in mice, which had fewer CD4+ and CD8+ T cells in the CNS, while gut microbiota recolonization worsened motor function and axonal integrity. The underlying mechanisms of ABX protective effects seem to involve CD4+CD39+ T cells and CD5+CD1d+ B cells into the CNS. In addition, microglia adopted a round amoeboid morphology associated to an anti-inflammatory gene profile in the spinal cord of TMEV mice administered ABX. The immune changes in the spleen and mesenteric lymph nodes were modest, yet ABX treatment of mice limited IL-17 production ex vivo. Collectively, our results provide evidence of the functional relevance of gut microbiota manipulation on the neurodegenerative state and disease severity in a model of progressive MS and reinforce the role of gut microbiota as target for MS treatment.
Collapse
Affiliation(s)
- Leyre Mestre
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain.,Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| | | | - Miriam Mecha
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain.,Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| | - Ana Feliú
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain.,Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| | - Carmen Espejo
- Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain.,Servei de Neurología-Neuroimmunología, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - José Carlos Álvarez-Cermeño
- Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain.,Immunology Department, Hospital Universitario Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Luisa María Villar
- Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain.,Immunology Department, Hospital Universitario Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Guaza
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain.,Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| |
Collapse
|
127
|
Xia GH, You C, Gao XX, Zeng XL, Zhu JJ, Xu KY, Tan CH, Xu RT, Wu QH, Zhou HW, He Y, Yin J. Stroke Dysbiosis Index (SDI) in Gut Microbiome Are Associated With Brain Injury and Prognosis of Stroke. Front Neurol 2019; 10:397. [PMID: 31068891 PMCID: PMC6491752 DOI: 10.3389/fneur.2019.00397] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Significant dysbiosis occurs in the gut microbiome of stroke patients. Condensing these broad, complex changes into one index would greatly facilitate the clinical usage of gut microbiome data. Here, we formulated a gut microbiota index in patients with acute ischemic stroke based on their gut microbiota dysbiosis patterns and tested whether the index was correlated with brain injury and early outcome. Methods: A total of 104 patients with acute ischemic stroke and 90 healthy individuals were recruited, and their gut microbiotas were compared and to model a Stroke Dysbiosis Index (SDI), which representing stroke-associated dysbiosis patterns overall. Another 83 patients and 70 controls were recruited for validation. The association of SDI with stroke severity (National Institutes of Health Stroke Scale [NIHSS] score) and outcome (modified Rankin scale [mRS] score: favorable, 0–2; unfavorable, >2) at discharge was also assessed. A middle cerebral artery occlusion (MCAO) model was used in human flora-associated (HFA) animals to explore the causal relationship between gut dysbiosis and stroke outcome. Results: Eighteen genera were significantly different between stroke patients and healthy individuals. The SDI formula was devised based on these microbiome differences; SDI was significantly higher in stroke patients than in healthy controls. SDI alone discriminated stroke patients from controls with AUCs of 74.9% in the training cohort and 84.3% in the validation cohort. SDI was significantly and positively correlated with NIHSS score on admission and mRS score at discharge. Logistic regression analysis showed that SDI was an independent predictor of severe stroke (NIHSS ≥8) and early unfavorable outcome (mRS >2). Mice receiving fecal transplants from high-SDI patients developed severe brain injury with elevated IL-17+ γδ T cells in gut compared to mice receiving transplants from low-SDI patients (all P < 0.05). Conclusions: We developed an index to measure gut microbiota dysbiosis in stroke patients; this index was significantly correlated with patients' outcome and was causally related to outcome in a mouse model of stroke. Our model facilitates the potential clinical application of gut microbiota data in stroke and adds quantitative evidence linking the gut microbiota to stroke.
Collapse
Affiliation(s)
- Geng-Hong Xia
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chao You
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurology, The First People's Hospital of Zunyi, Zunyi, China
| | - Xu-Xuan Gao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiu-Li Zeng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Jia Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai-Yu Xu
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chu-Hong Tan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruo-Ting Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi-Heng Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Wei Zhou
- State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yan He
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Yin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
128
|
Maezawa Y, Nakaminami H, Takadama S, Hayashi M, Wajima T, Nakase K, Yamada T, Ikoshi H, Noguchi N. Tokiinshi, a traditional Japanese medicine (Kampo), suppresses Panton-Valentine leukocidin production in the methicillin-resistant Staphylococcus aureus USA300 clone. PLoS One 2019; 14:e0214470. [PMID: 30921402 PMCID: PMC6438529 DOI: 10.1371/journal.pone.0214470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/13/2019] [Indexed: 01/03/2023] Open
Abstract
It is necessary to develop agents other than antimicrobials for the treatment of Staphylococcus aureus infections to prevent the emergence of antimicrobial-resistant strains. Particularly, anti-virulence agents against the Panton-Valentine leukocidin (PVL)-positive methicillin-resistant S. aureus (MRSA), USA300 clone, is desired due to its high pathogenicity. Here, we investigated the potential anti-virulence effect of Tokiinshi, which is a traditional Japanese medicine (Kampo) used for skin diseases, against the USA300 clone. A growth inhibition assay showed that a conventional dose (20 mg/ml) of Tokiinshi has bactericidal effects against the clinical USA300 clones. Notably, the growth inhibition effects of Tokiinshi against S. epidermidis strains, which are the major constituents of the skin microbiome, was a bacteriostatic effect. The data suggested that Tokiinshi is unlikely to affect skin flora of S. epidermidis. Furthermore, PVL production and the expression of its gene were significantly suppressed in the USA300 clone by a lower concentration (5 mg/ml) of Tokiinshi. This did not affect the number of viable bacteria. Moreover, Tokiinshi significantly suppressed the expression of the agrA gene, which regulates PVL gene expression. For the first time, our findings strongly suggest that Tokiinshi has the potential to attenuate the virulence of the USA300 clone by suppressing PVL production via agrA gene suppression.
Collapse
Affiliation(s)
- Yuka Maezawa
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hidemasa Nakaminami
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- * E-mail:
| | - Shunsuke Takadama
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Minami Hayashi
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Takeaki Wajima
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Keisuke Nakase
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Tetsuya Yamada
- Department of Traditional Chinese Medicine, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hideaki Ikoshi
- Department of Traditional Chinese Medicine, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Norihisa Noguchi
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
129
|
Murdoch CC, Espenschied ST, Matty MA, Mueller O, Tobin DM, Rawls JF. Intestinal Serum amyloid A suppresses systemic neutrophil activation and bactericidal activity in response to microbiota colonization. PLoS Pathog 2019; 15:e1007381. [PMID: 30845179 PMCID: PMC6405052 DOI: 10.1371/journal.ppat.1007381] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
The intestinal microbiota influences the development and function of myeloid lineages such as neutrophils, but the underlying molecular mechanisms are unresolved. Using gnotobiotic zebrafish, we identified the immune effector Serum amyloid A (Saa) as one of the most highly induced transcripts in digestive tissues following microbiota colonization. Saa is a conserved secreted protein produced in the intestine and liver with described effects on neutrophils in vitro, however its in vivo functions remain poorly defined. We engineered saa mutant zebrafish to test requirements for Saa on innate immunity in vivo. Zebrafish mutant for saa displayed impaired neutrophil responses to wounding but augmented clearance of pathogenic bacteria. At baseline, saa mutants exhibited moderate neutrophilia and altered neutrophil tissue distribution. Molecular and functional analyses of isolated neutrophils revealed that Saa suppresses expression of pro-inflammatory markers and bactericidal activity. Saa's effects on neutrophils depended on microbiota colonization, suggesting this protein mediates the microbiota's effects on host innate immunity. To test tissue-specific roles of Saa on neutrophil function, we over-expressed saa in the intestine or liver and found that sufficient to partially complement neutrophil phenotypes observed in saa mutants. These results indicate Saa produced by the intestine in response to microbiota serves as a systemic signal to neutrophils to restrict aberrant activation, decreasing inflammatory tone and bacterial killing potential while simultaneously enhancing their ability to migrate to wounds.
Collapse
Affiliation(s)
- Caitlin C. Murdoch
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Scott T. Espenschied
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Molly A. Matty
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Olaf Mueller
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
130
|
Woods Acevedo MA, Erickson AK, Pfeiffer JK. The Antibiotic Neomycin Enhances Coxsackievirus Plaque Formation. mSphere 2019; 4:e00632-18. [PMID: 30787120 PMCID: PMC6382971 DOI: 10.1128/msphere.00632-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/31/2019] [Indexed: 01/06/2023] Open
Abstract
Coxsackievirus typically infects humans via the gastrointestinal tract, which has a large number of microorganisms collectively referred to as the microbiota. To study how the intestinal microbiota influences enteric virus infection, several groups have used an antibiotic regimen in mice to deplete bacteria. These studies have shown that bacteria promote infection with several enteric viruses. However, very little is known about whether antibiotics influence viruses in a microbiota-independent manner. In this study, we sought to determine the effects of antibiotics on coxsackievirus B3 (CVB3) using an in vitro cell culture model in the absence of bacteria. We determined that an aminoglycoside antibiotic, neomycin, enhanced the plaque size of CVB3 strain Nancy. Neomycin treatment did not alter viral attachment, translation, or replication. However, we found that the positive charge of neomycin and other positively charged compounds enhanced viral diffusion by overcoming the negative inhibitory effect of sulfated polysaccharides present in agar overlays. Neomycin and the positively charged compound protamine also enhanced plaque formation of reovirus. Overall, these data provide further evidence that antibiotics can play noncanonical roles in viral infections and that this should be considered when studying enteric virus-microbiota interactions.IMPORTANCE Coxsackieviruses primarily infect the gastrointestinal tract of humans, but they can disseminate systemically and cause severe disease. Using antibiotic treatment regimens to deplete intestinal microbes in mice, several groups have shown the bacteria promote infection with a variety of enteric viruses. However, it is possible that antibiotics have microbiota-independent effects on viruses. Here we show that an aminoglycoside antibiotic, neomycin, can influence quantification of coxsackievirus in cultured cells in the absence of bacteria.
Collapse
Affiliation(s)
- Mikal A Woods Acevedo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrea K Erickson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julie K Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
131
|
Oh HYP, Ellero-Simatos S, Manickam R, Tan NS, Guillou H, Wahli W. Depletion of Gram-Positive Bacteria Impacts Hepatic Biological Functions During the Light Phase. Int J Mol Sci 2019; 20:E812. [PMID: 30769793 PMCID: PMC6412208 DOI: 10.3390/ijms20040812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Living organisms display internal biological rhythms, which are an evolutionarily conserved adaptation to the environment that drives their rhythmic behavioral and physiological activities. The gut microbiota has been proposed, in association with diet, to regulate the intestinal peripheral clock. However, the effect of gut dysbiosis on liver remains elusive, despite that germfree mice show alterations in liver metabolic functions and the hepatic daily rhythm. We analyzed whether the disruption of gut microbial populations with various antibiotics would differentially impact liver functions in mice. Our results support the notion of an impact on the hepatic biological rhythm by gram-positive bacteria. In addition, we provide evidence for differential roles of gut microbiota spectra in xenobiotic metabolism that could protect against the harmful pharmacological effects of drugs. Our results underscore a possible link between liver cell proliferation and gram-positive bacteria.
Collapse
Affiliation(s)
- Hui Yun Penny Oh
- Interdisciplinary Graduate School, NTU Institute for Health Technologies, Nanyang Technological University Singapore, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | | | - Ravikumar Manickam
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Hervé Guillou
- INRA UMR1331, ToxAlim, 180 Chemin de Tournefeuille, 31300 Toulouse, France.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
- INRA UMR1331, ToxAlim, 180 Chemin de Tournefeuille, 31300 Toulouse, France.
- Center for Integrative Genomics, University of Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
132
|
Yeruva T, Lee CH. Regulation of Vaginal Microbiome by Nitric Oxide. Curr Pharm Biotechnol 2019; 20:17-31. [PMID: 30727888 DOI: 10.2174/1389201020666190207092850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/18/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022]
Abstract
In this review, the composition and regulation of vaginal microbiome that displays an apparent microbial diversity and interacts with other microbiota in the body are presented. The role of nitric oxide (NO) in the regulation of vaginal microflora in which lactobacillus species typically dominate has been delineated from the perspective of maintaining gynecologic ecosystem and prevention of onset of bacteriostatic vaginosis (BV) and/or sexually transmitted diseases (STD) including HIV-1 transmission. The interactions between NO and vaginal microbiome and its influence on the levels of Lactobacillus, hormones and other components are described. The recent progress, such as NO drugs, probiotic Lactobacilli and Lactobacillus microbots, that can be explored to alleviate abnormality of vagina microbiome, is also discussed. An identification of Oral-GI-Vagina axis, as well as the relationship between NO and Lactobacillus regulation in the healthy or pathological status of vagina microbiome, surely offers the advanced drug delivery option against BV or STD including AIDS.
Collapse
Affiliation(s)
- Taj Yeruva
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO, 64108, United States
| | - Chi H Lee
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO, 64108, United States
| |
Collapse
|
133
|
Mu J, Chen Q, Zhu L, Wu Y, Liu S, Zhao Y, Ma T. Influence of gut microbiota and intestinal barrier on enterogenic infection after liver transplantation. Curr Med Res Opin 2019; 35:241-248. [PMID: 29701490 DOI: 10.1080/03007995.2018.1470085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liver transplantation is currently a standard therapy for patients with end-stage liver diseases and hepatocellular carcinoma. Given that liver transplantation has undergone a thriving development in these decades, the survival rates after liver transplantation have markedly improved as a result of the critical advancement in surgical techniques, immunosuppressive therapies, and post-operative care. However, infection remains a fatal complication after liver transplantation surgery. In particular, enterogenic infection represents a major complication in liver transplant recipients. This article gives an overview of infection cases after liver transplantation and focuses on the discussion of enterogenic infection in terms of its pathophysiology, risk factor, outcome, and treatment.
Collapse
Affiliation(s)
- Jingzhou Mu
- a College of Basic Medicine , Dalian Medical University , Dalian , Liaoning Province , PR China
| | - Qiuyu Chen
- a College of Basic Medicine , Dalian Medical University , Dalian , Liaoning Province , PR China
| | - Liang Zhu
- a College of Basic Medicine , Dalian Medical University , Dalian , Liaoning Province , PR China
| | - Yunhong Wu
- b College of Public Health , Dalian Medical University , Dalian , Liaoning Province , PR China
| | - Suping Liu
- a College of Basic Medicine , Dalian Medical University , Dalian , Liaoning Province , PR China
| | - Yufei Zhao
- a College of Basic Medicine , Dalian Medical University , Dalian , Liaoning Province , PR China
| | - Tonghui Ma
- a College of Basic Medicine , Dalian Medical University , Dalian , Liaoning Province , PR China
| |
Collapse
|
134
|
Wang Q, Wang K, Wu W, Giannoulatou E, Ho JWK, Li L. Host and microbiome multi-omics integration: applications and methodologies. Biophys Rev 2019; 11:55-65. [PMID: 30627872 PMCID: PMC6381360 DOI: 10.1007/s12551-018-0491-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
The study of the microbial community-the microbiome-associated with a human host is a maturing research field. It is increasingly clear that the composition of the human's microbiome is associated with various diseases such as gastrointestinal diseases, liver diseases and metabolic diseases. Using high-throughput technologies such as next-generation sequencing and mass spectrometry-based metabolomics, we are able to comprehensively sequence the microbiome-the metagenome-and associate these data with the genomic, epigenomics, transcriptomic and metabolic profile of the host. Our review summarises the application of integrating host omics with microbiome as well as the analytical methods and related tools applied in these studies. In addition, potential future directions are discussed.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2010, Australia
| | - Joshua W K Ho
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2010, Australia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
135
|
Miller AW, Orr T, Dearing D, Monga M. Loss of function dysbiosis associated with antibiotics and high fat, high sugar diet. ISME JOURNAL 2019; 13:1379-1390. [PMID: 30700790 DOI: 10.1038/s41396-019-0357-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 02/08/2023]
Abstract
The incidence of urinary stone disease (USD) has increased four-fold in 50 years. Oxalate, which is degraded exclusively by gut bacteria, is an important constituent in 80% of urinary stones. We quantified the effects of antibiotics and a high fat/high sugar (HFHS) diet on the microbial metabolism of oxalate in the gut. High and low oxalate-degrading mouse models were developed by administering fecal transplants from either the wild mammalian rodent Neotoma albigula or Swiss-Webster mice to Swiss-Webster mice, which produces a microbiota with or without the bacteria necessary for persistent oxalate metabolism, respectively. Antibiotics led to an acute loss of both transplant bacteria and associated oxalate metabolism. Transplant bacteria exhibited some recovery over time but oxalate metabolism did not. In contrast, a HFHS diet led to an acute loss of function coupled with a gradual loss of transplant bacteria, indicative of a shift in overall microbial metabolism. Thus, the effects of oral antibiotics on the microbiome form and function were greater than the effects of diet. Results indicate that both antibiotics and diet strongly influence microbial oxalate metabolism.
Collapse
Affiliation(s)
- Aaron W Miller
- Department of Urology, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA. .,Department of Inflammation & Immunity, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA.
| | - Teri Orr
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, USA
| | - Denise Dearing
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, USA
| | - Manoj Monga
- Department of Urology, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| |
Collapse
|
136
|
Le Roy T, Debédat J, Marquet F, Da-Cunha C, Ichou F, Guerre-Millo M, Kapel N, Aron-Wisnewsky J, Clément K. Comparative Evaluation of Microbiota Engraftment Following Fecal Microbiota Transfer in Mice Models: Age, Kinetic and Microbial Status Matter. Front Microbiol 2019; 9:3289. [PMID: 30692975 PMCID: PMC6339881 DOI: 10.3389/fmicb.2018.03289] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
The intestinal microbiota and its functions are intricately interwoven with host physiology. Colonizing rodents with donor microbiota provides insights into host-microbiota interactions characterization and the understanding of disease physiopathology. However, a better assessment of inoculation methods and recipient mouse models is needed. Here, we compare the engraftment at short and long term of genetically obese mice microbiota in germ-free (GF) mice and juvenile and adult specific pathogen free (SPF) mice. We also tested the effects of initial microbiota depletion before microbiota transfer. In the present work, donor microbiota engraftment was better in juvenile SPF mice than in adult SPF mice. In juvenile mice, initial microbiota depletion using laxatives or antibiotics improved donor microbiota engraftment 9 weeks but not 3 weeks after microbiota transfer. Microbiota-depleted juvenile mice performed better than GF mice 3 weeks after the microbiota transfer. However, 9 weeks after transfer, colonized GF mice microbiota had the lowest Unifrac distance to the donor microbiota. Colonized GF mice were also characterized by a chronic alteration in intestinal absorptive function. With these collective results, we show that the use of juvenile mice subjected to initial microbiota depletion constitutes a valid alternative to GF mice in microbiota transfer studies.
Collapse
Affiliation(s)
- Tiphaine Le Roy
- NutriOmics Team, INSERM, ICAN, Sorbonne Université, Paris, France
| | - Jean Debédat
- NutriOmics Team, INSERM, ICAN, Sorbonne Université, Paris, France
| | - Florian Marquet
- NutriOmics Team, INSERM, ICAN, Sorbonne Université, Paris, France
| | - Carla Da-Cunha
- NutriOmics Team, INSERM, ICAN, Sorbonne Université, Paris, France
| | - Farid Ichou
- ICANalytics Facility Core, Institut de Cardiométabolisme et Nutrition (ICAN), Paris, France
| | | | - Nathalie Kapel
- Department of Functional Coprology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Judith Aron-Wisnewsky
- NutriOmics Team, INSERM, ICAN, Sorbonne Université, Paris, France.,Department of Nutrition, CRNH Ile de France, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Karine Clément
- NutriOmics Team, INSERM, ICAN, Sorbonne Université, Paris, France.,Department of Nutrition, CRNH Ile de France, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
137
|
Part III: Minimum Quality Threshold in Preclinical Sepsis Studies (MQTiPSS) for Fluid Resuscitation and Antimicrobial Therapy Endpoints. Shock 2019; 51:33-43. [DOI: 10.1097/shk.0000000000001209] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
138
|
Harrison CA, Laubitz D, Midura-Kiela MT, Jamwal DR, Besselsen DG, Ghishan FK, Kiela PR. Sexual Dimorphism in the Response to Broad-spectrum Antibiotics During T Cell-mediated Colitis. J Crohns Colitis 2019; 13:115-126. [PMID: 30252029 PMCID: PMC6302957 DOI: 10.1093/ecco-jcc/jjy144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Broad-spectrum antibiotics [Abx], including combination therapy with ciprofloxacin and metronidazole, are often prescribed during the treatment of inflammatory bowel disease [IBD] to alleviate symptoms, but with varying success. In this pilot study, we studied the effects of Abx on the course of experimental colitis, with a particular focus on sex as a determinant of the microbial and inflammatory responses. METHODS The effects of Abx were tested on colonic inflammation and microbiome in male and female Rag-/- mice, using adoptive transfer of naïve T cells to induce colitis in a short-term [2-week] and long-term [9-week] study. RESULTS We observed disparities between the sexes in both the response to adoptive T cell transfer and the effects of Abx. At baseline without Abx, female mice displayed a trend toward a more severe colitis than males. In both the short- and the long-term experiments, gut microbiota of some female mice exposed to Abx showed weak, delayed, or negligible shifts. Caecum weight was significantly lower in Abx-treated females. Abx exposure favoured a quick and persistent rise in Enterococcaceae exclusively in females. Males had higher relative abundance of Lactobacillaceae following Abx exposure relative to females. Abx-treated females trended toward higher colitis scores than Abx-treated males, and towards higher levels of IL-17A, NOS2, and IL-22. CONCLUSIONS Although preliminary, our results suggest a differential response to both inflammation and Abx between male and female mice, The findings may be relevant to current practice and also as the basis for further studies on the differential gender effects during long-term antibiotic exposure in IBD.
Collapse
Affiliation(s)
- Christy A Harrison
- Department of Pediatrics, Steele Children’s Research Center, Tucson, AZ, USA
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Daniel Laubitz
- Department of Pediatrics, Steele Children’s Research Center, Tucson, AZ, USA
| | | | - Deepa R Jamwal
- Department of Pediatrics, Steele Children’s Research Center, Tucson, AZ, USA
| | | | - Fayez K Ghishan
- Department of Pediatrics, Steele Children’s Research Center, Tucson, AZ, USA
| | - Pawel R Kiela
- Department of Pediatrics, Steele Children’s Research Center, Tucson, AZ, USA
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
139
|
Koeth RA, Lam-Galvez BR, Kirsop J, Wang Z, Levison BS, Gu X, Copeland MF, Bartlett D, Cody DB, Dai HJ, Culley MK, Li XS, Fu X, Wu Y, Li L, DiDonato JA, Tang WHW, Garcia-Garcia JC, Hazen SL. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J Clin Invest 2018; 129:373-387. [PMID: 30530985 DOI: 10.1172/jci94601] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/30/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND l-Carnitine, an abundant nutrient in red meat, accelerates atherosclerosis in mice via gut microbiota-dependent formation of trimethylamine (TMA) and trimethylamine N-oxide (TMAO) via a multistep pathway involving an atherogenic intermediate, γ-butyrobetaine (γBB). The contribution of γBB in gut microbiota-dependent l-carnitine metabolism in humans is unknown. METHODS Omnivores and vegans/vegetarians ingested deuterium-labeled l-carnitine (d3-l-carnitine) or γBB (d9-γBB), and both plasma metabolites and fecal polymicrobial transformations were examined at baseline, following oral antibiotics, or following chronic (≥2 months) l-carnitine supplementation. Human fecal commensals capable of performing each step of the l-carnitine→γBB→TMA transformation were identified. RESULTS Studies with oral d3-l-carnitine or d9-γBB before versus after antibiotic exposure revealed gut microbiota contribution to the initial 2 steps in a metaorganismal l-carnitine→γBB→TMA→TMAO pathway in subjects. Moreover, a striking increase in d3-TMAO generation was observed in omnivores over vegans/vegetarians (>20-fold; P = 0.001) following oral d3-l-carnitine ingestion, whereas fasting endogenous plasma l-carnitine and γBB levels were similar in vegans/vegetarians (n = 32) versus omnivores (n = 40). Fecal metabolic transformation studies, and oral isotope tracer studies before versus after chronic l-carnitine supplementation, revealed that omnivores and vegans/vegetarians alike rapidly converted carnitine to γBB, whereas the second gut microbial transformation, γBB→TMA, was diet inducible (l-carnitine, omnivorous). Extensive anaerobic subculturing of human feces identified no single commensal capable of l-carnitine→TMA transformation, multiple community members that converted l-carnitine to γBB, and only 1 Clostridiales bacterium, Emergencia timonensis, that converted γBB to TMA. In coculture, E. timonensis promoted the complete l-carnitine→TMA transformation. CONCLUSION In humans, dietary l-carnitine is converted into the atherosclerosis- and thrombosis-promoting metabolite TMAO via 2 sequential gut microbiota-dependent transformations: (a) initial rapid generation of the atherogenic intermediate γBB, followed by (b) transformation into TMA via low-abundance microbiota in omnivores, and to a markedly lower extent, in vegans/vegetarians. Gut microbiota γBB→TMA/TMAO transformation is induced by omnivorous dietary patterns and chronic l-carnitine exposure. TRIAL REGISTRATION ClinicalTrials.gov NCT01731236. FUNDING NIH and Office of Dietary Supplements grants HL103866, HL126827, and DK106000, and the Leducq Foundation.
Collapse
Affiliation(s)
- Robert A Koeth
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and.,Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Jennifer Kirsop
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and
| | - Bruce S Levison
- Department of Cellular and Molecular Medicine, Lerner Research Institute
| | - Xiaodong Gu
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and
| | | | - David Bartlett
- Department of Cellular and Molecular Medicine, Lerner Research Institute
| | | | - Hong J Dai
- Global Biosciences, The Procter & Gamble Company, Cincinnati, Ohio, USA
| | - Miranda K Culley
- Department of Cellular and Molecular Medicine, Lerner Research Institute
| | - Xinmin S Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and
| | - Xiaoming Fu
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and
| | - Yuping Wu
- Department of Mathematics, Cleveland State University, Cleveland, Ohio, USA
| | - Lin Li
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and
| | - Joseph A DiDonato
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and
| | - W H Wilson Tang
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and.,Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Lerner Research Institute.,Center for Microbiome and Human Health, and.,Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
140
|
Mezouar S, Chantran Y, Michel J, Fabre A, Dubus JC, Leone M, Sereme Y, Mège JL, Ranque S, Desnues B, Chanez P, Vitte J. Microbiome and the immune system: From a healthy steady-state to allergy associated disruption. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.humic.2018.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
141
|
Shulzhenko N, Dong X, Vyshenska D, Greer RL, Gurung M, Vasquez-Perez S, Peremyslova E, Sosnovtsev S, Quezado M, Yao M, Montgomery-Recht K, Strober W, Fuss IJ, Morgun A. CVID enteropathy is characterized by exceeding low mucosal IgA levels and interferon-driven inflammation possibly related to the presence of a pathobiont. Clin Immunol 2018; 197:139-153. [PMID: 30240602 PMCID: PMC6289276 DOI: 10.1016/j.clim.2018.09.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/02/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022]
Abstract
Common variable immunodeficiency (CVID), the most common symptomatic primary antibody deficiency, is accompanied in some patients by a duodenal inflammation and malabsorption syndrome known as CVID enteropathy (E-CVID).The goal of this study was to investigate the immunological abnormalities in CVID patients that lead to enteropathy as well as the contribution of intestinal microbiota to this process.We found that, in contrast to noE-CVID patients (without enteropathy), E-CVID patients have exceedingly low levels of IgA in duodenal tissues. In addition, using transkingdom network analysis of the duodenal microbiome, we identified Acinetobacter baumannii as a candidate pathobiont in E-CVID. Finally, we found that E-CVID patients exhibit a pronounced activation of immune genes and down-regulation of epithelial lipid metabolism genes. We conclude that in the virtual absence of mucosal IgA, pathobionts such as A. baumannii, may induce inflammation that re-directs intestinal molecular pathways from lipid metabolism to immune processes responsible for enteropathy.
Collapse
Affiliation(s)
- Natalia Shulzhenko
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States.
| | - Xiaoxi Dong
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Dariia Vyshenska
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Renee L Greer
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Manoj Gurung
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | | | | | | | - Martha Quezado
- Surgical Pathology Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Michael Yao
- Mucosal Immunity Section, NIAID, National Institutes of Health, Bethesda, MD, United States; Washington DC VA Medical Center, Washington DC, United States
| | - Kim Montgomery-Recht
- Mucosal Immunity Section, NIAID, National Institutes of Health, Bethesda, MD, United States; Clinical Research Directorate/Clinical Monitoring Research Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute,United States
| | - Warren Strober
- Mucosal Immunity Section, NIAID, National Institutes of Health, Bethesda, MD, United States
| | - Ivan J Fuss
- Mucosal Immunity Section, NIAID, National Institutes of Health, Bethesda, MD, United States
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
142
|
Kennedy EA, King KY, Baldridge MT. Mouse Microbiota Models: Comparing Germ-Free Mice and Antibiotics Treatment as Tools for Modifying Gut Bacteria. Front Physiol 2018; 9:1534. [PMID: 30429801 PMCID: PMC6220354 DOI: 10.3389/fphys.2018.01534] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022] Open
Abstract
As the intestinal microbiota has become better appreciated as necessary for maintenance of physiologic homeostasis and also as a modulator of disease processes, there has been a corresponding increase in manipulation of the microbiota in mouse models. While germ-free mouse models are generally considered to be the gold standard for studies of the microbiota, many investigators turn to antibiotics treatment models as a rapid, inexpensive, and accessible alternative. Here we describe and compare these two approaches, detailing advantages and disadvantages to both. Further, we detail what is known about the effects of antibiotics treatment on cell populations, cytokines, and organs, and clarify how this compares to germ-free models. Finally, we briefly describe recent findings regarding microbiota regulation of infectious diseases and other immunologic challenges by the microbiota, and highlight important future directions and considerations for the use of antibiotics treatment in manipulation of the microbiota.
Collapse
Affiliation(s)
- Elizabeth A. Kennedy
- Division of Infectious Diseases, Department of Medicine, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Katherine Y. King
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
143
|
Lafouresse F, Groom JR. A Task Force Against Local Inflammation and Cancer: Lymphocyte Trafficking to and Within the Skin. Front Immunol 2018; 9:2454. [PMID: 30405637 PMCID: PMC6207597 DOI: 10.3389/fimmu.2018.02454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/04/2018] [Indexed: 01/08/2023] Open
Abstract
The skin represents a specialized site for immune surveillance consisting of resident, inflammatory and memory populations of lymphocytes. The entry and retention of T cells, B cells, and ILCs is tightly regulated to facilitate detection of pathogens, inflammation and tumors cells. Loss of individual or multiple populations in the skin may break tolerance or increase susceptibility to tumor growth and spread. Studies have significantly advanced our understanding of the role of skin T cells and ILCs at steady state and in inflammatory settings such as viral challenge, atopy, and autoimmune inflammation. The knowledge raised by these studies can benefit to our understanding of immune cell trafficking in primary melanoma, shedding light on the mechanisms of tumor immune surveillance and to improve immunotherapy. This review will focus on the T cells, B cells, and ILCs of the skin at steady state, in inflammatory context and in melanoma. In particular, we will detail the core chemokine and adhesion molecules that regulate cell trafficking to and within the skin, which may provide therapeutic avenues to promote tumor homing for a team of lymphocytes.
Collapse
Affiliation(s)
- Fanny Lafouresse
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Joanna R Groom
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
144
|
Kuo PH, Chung YCE. Moody microbiome: Challenges and chances. J Formos Med Assoc 2018; 118 Suppl 1:S42-S54. [PMID: 30262220 DOI: 10.1016/j.jfma.2018.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/01/2023] Open
Abstract
Growing evidence link gut microbiome to the development and maturation of the central nervous system, which are regulated by microbiota potentially through stress response, neurotransmitter, neuroimmune, and endocrine pathways. The dysfunction of such microbiota-gut-brain axis is implicated in neuropsychiatric disorders, depression, and other stress-related conditions. Using affective disorders as our primary outcomes, we inspect the current evidence of microbiota studies mainly in human clinical samples. Additionally, to restore microbiome equilibrium in bacteria diversity and abundance might represent a novel strategy to prevent or treat mood symptoms. We reviewed findings from clinical trials regarding efficacy of probiotics supplement with or without antidepressant treatment, and adjuvant antimicrobiotics treatment. In microbiota studies, the considerations of host-microbiota interaction and bacteria-bacteria interaction are discussed. In conclusion, the roles of microbiota in depression and mania state are not fully elucidated. One of the challenges is to find reliable targets for functional analyses and experiments. Notwithstanding some inconsistencies and methodological limitations across studies, results from recent clinical trials support for the beneficial effects of probiotics on alleviating depressive symptoms and increasing well-beings. Moreover, modifying the composition of gut microbiota via antibiotics can be a viable adjuvant treatment option for individuals with depressive symptoms.
Collapse
Affiliation(s)
- Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Yu-Chu Ella Chung
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
145
|
Lam KC, Vyshenska D, Hu J, Rodrigues RR, Nilsen A, Zielke RA, Brown NS, Aarnes EK, Sikora AE, Shulzhenko N, Lyng H, Morgun A. Transkingdom network reveals bacterial players associated with cervical cancer gene expression program. PeerJ 2018; 6:e5590. [PMID: 30294508 PMCID: PMC6170155 DOI: 10.7717/peerj.5590] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is the fourth most common cancer in women worldwide with human papillomavirus (HPV) being the main cause the disease. Chromosomal amplifications have been identified as a source of upregulation for cervical cancer driver genes but cannot fully explain increased expression of immune genes in invasive carcinoma. Insight into additional factors that may tip the balance from immune tolerance of HPV to the elimination of the virus may lead to better diagnosis markers. We investigated whether microbiota affect molecular pathways in cervical carcinogenesis by performing microbiome analysis via sequencing 16S rRNA in tumor biopsies from 121 patients. While we detected a large number of intra-tumor taxa (289 operational taxonomic units (OTUs)), we focused on the 38 most abundantly represented microbes. To search for microbes and host genes potentially involved in the interaction, we reconstructed a transkingdom network by integrating a previously discovered cervical cancer gene expression network with our bacterial co-abundance network and employed bipartite betweenness centrality. The top ranked microbes were represented by the families Bacillaceae, Halobacteriaceae, and Prevotellaceae. While we could not define the first two families to the species level, Prevotellaceae was assigned to Prevotella bivia. By co-culturing a cervical cancer cell line with P. bivia, we confirmed that three out of the ten top predicted genes in the transkingdom network (lysosomal associated membrane protein 3 (LAMP3), STAT1, TAP1), all regulators of immunological pathways, were upregulated by this microorganism. Therefore, we propose that intra-tumor microbiota may contribute to cervical carcinogenesis through the induction of immune response drivers, including the well-known cancer gene LAMP3.
Collapse
Affiliation(s)
- Khiem Chi Lam
- College of Pharmacy, Oregon State University, Corvallis, OR, USA.,Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Dariia Vyshenska
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Jialu Hu
- College of Pharmacy, Oregon State University, Corvallis, OR, USA.,School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | | | - Anja Nilsen
- Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ryszard A Zielke
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | | | - Eva-Katrine Aarnes
- Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Natalia Shulzhenko
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Heidi Lyng
- Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
146
|
Suvorov A, Karaseva A, Kotyleva M, Kondratenko Y, Lavrenova N, Korobeynikov A, Kozyrev P, Kramskaya T, Leontieva G, Kudryavtsev I, Guo D, Lapidus A, Ermolenko E. Autoprobiotics as an Approach for Restoration of Personalised Microbiota. Front Microbiol 2018; 9:1869. [PMID: 30258408 PMCID: PMC6144954 DOI: 10.3389/fmicb.2018.01869] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 07/25/2018] [Indexed: 12/17/2022] Open
Abstract
Human microbiota is a complex consortium of microorganisms involved in the proper functioning of almost every system of the organism. Majority of the human diseases are associated with the development of intestinal dysbiosis. Dysbiotic condition or dysbiosis is a key pathogenic condition causing many severe infectious or non-infectious diseases. Rapid return to the original microbiota in many cases leads to the fast recovery from the disease. However, the optimal way of the treatment of dysbiosis is still under the discussion. Recently we have developed a method of autoprobiotics based on using isolated indigenous bacteria for improving of microbiota condition. The method based on feeding the patients with bacterial products grown from their personal, genetically characterised strains have been successfully tested in clinic on patients with IBS or chronic pneumonia. In present study we tried to evaluate technology employing autoprobiotic bacteria belonging to different species employing the rat model of antibiotic induced dysbiosis. Six experimental groups of animals after taking antibiotics were treated with different variants of autoprobiotics (lactobacillus, bifidobacteria, enterococcus, their mixture, fecal microbiota, or anaerobically grown complex of indigenous microbiota) prepared for each of them before the development of dysbiosis. Judging by the multiple parameters including metagenomics analysis of microbiota, immune status and microbiota content of the animals with dysbiosis relatively to control group, the most pronounced positive changes were provided by autoprobiotics based on enterococci, bifidobacteria or the consortium of indigenous bacteria grown under anaerobic conditions. These groups of autoprobiotics were delivering the most effective restoration of the original microbiota content and significant anti-inflammatory reaction of the immune system.
Collapse
Affiliation(s)
- Alexander Suvorov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint-Petersburg, Russia
- Department of Fundamental Medicine and Medical Technologies, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Alena Karaseva
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint-Petersburg, Russia
| | - Marina Kotyleva
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint-Petersburg, Russia
| | - Yulia Kondratenko
- Department of Fundamental Medicine and Medical Technologies, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Nadezhda Lavrenova
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint-Petersburg, Russia
| | - Anton Korobeynikov
- Department of Fundamental Medicine and Medical Technologies, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Petr Kozyrev
- Department of Fundamental Medicine and Medical Technologies, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Tatiana Kramskaya
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint-Petersburg, Russia
| | - Galina Leontieva
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint-Petersburg, Russia
| | - Igor Kudryavtsev
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint-Petersburg, Russia
| | - Danyang Guo
- Institute of Agro-food Science and Technology, SAAS, Shandong, China
| | - Alla Lapidus
- Department of Fundamental Medicine and Medical Technologies, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Elena Ermolenko
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint-Petersburg, Russia
- Department of Fundamental Medicine and Medical Technologies, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
147
|
|
148
|
Metronidazole Causes Skeletal Muscle Atrophy and Modulates Muscle Chronometabolism. Int J Mol Sci 2018; 19:ijms19082418. [PMID: 30115857 PMCID: PMC6121908 DOI: 10.3390/ijms19082418] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 02/04/2023] Open
Abstract
Antibiotics lead to increased susceptibility to colonization by pathogenic organisms, with different effects on the host-microbiota relationship. Here, we show that metronidazole treatment of specific pathogen-free (SPF) mice results in a significant increase of the bacterial phylum Proteobacteria in fecal pellets. Furthermore, metronidazole in SPF mice decreases hind limb muscle weight and results in smaller fibers in the tibialis anterior muscle. In the gastrocnemius muscle, metronidazole causes upregulation of Hdac4, myogenin, MuRF1, and atrogin1, which are implicated in skeletal muscle neurogenic atrophy. Metronidazole in SPF mice also upregulates skeletal muscle FoxO3, described as involved in apoptosis and muscle regeneration. Of note, alteration of the gut microbiota results in increased expression of the muscle core clock and effector genes Cry2, Ror-β, and E4BP4. PPARγ and one of its important target genes, adiponectin, are also upregulated by metronidazole. Metronidazole in germ-free (GF) mice increases the expression of other core clock genes, such as Bmal1 and Per2, as well as the metabolic regulators FoxO1 and Pdk4, suggesting a microbiota-independent pharmacologic effect. In conclusion, metronidazole in SPF mice results in skeletal muscle atrophy and changes the expression of genes involved in the muscle peripheral circadian rhythm machinery and metabolic regulation.
Collapse
|
149
|
Eshraghi RS, Deth RC, Mittal R, Aranke M, Kay SIS, Moshiree B, Eshraghi AA. Early Disruption of the Microbiome Leading to Decreased Antioxidant Capacity and Epigenetic Changes: Implications for the Rise in Autism. Front Cell Neurosci 2018; 12:256. [PMID: 30158857 PMCID: PMC6104136 DOI: 10.3389/fncel.2018.00256] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Currently, 1 out of every 59 children in the United States is diagnosed with autism. While initial research to find the possible causes for autism were mostly focused on the genome, more recent studies indicate a significant role for epigenetic regulation of gene expression and the microbiome. In this review article, we examine the connections between early disruption of the developing microbiome and gastrointestinal tract function, with particular regard to susceptibility to autism. The biological mechanisms that accompany individuals with autism are reviewed in this manuscript including immune system dysregulation, inflammation, oxidative stress, metabolic and methylation abnormalities as well as gastrointestinal distress. We propose that these autism-associated biological mechanisms may be caused and/or sustained by dysbiosis, an alteration to the composition of resident commensal communities relative to the community found in healthy individuals and its redox and epigenetic consequences, changes that in part can be due to early use and over-use of antibiotics across generations. Further studies are warranted to clarify the contribution of oxidative stress and gut microbiome in the pathophysiology of autism. A better understanding of the microbiome and gastrointestinal tract in relation to autism will provide promising new opportunities to develop novel treatment modalities.
Collapse
Affiliation(s)
- Rebecca S. Eshraghi
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Richard C. Deth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Rahul Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Mayank Aranke
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sae-In S. Kay
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Baharak Moshiree
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Adrien A. Eshraghi
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
150
|
Thomas RM, Gharaibeh RZ, Gauthier J, Beveridge M, Pope JL, Guijarro MV, Yu Q, He Z, Ohland C, Newsome R, Trevino J, Hughes SJ, Reinhard M, Winglee K, Fodor AA, Zajac-Kaye M, Jobin C. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis 2018; 39:1068-1078. [PMID: 29846515 PMCID: PMC6067127 DOI: 10.1093/carcin/bgy073] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/12/2018] [Accepted: 05/25/2018] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States yet data are scant regarding host factors influencing pancreatic carcinogenesis. Increasing evidence support the role of the host microbiota in carcinogenesis but its role in PDAC is not well established. Herein, we report that antibiotic-mediated microbial depletion of KrasG12D/PTENlox/+ mice showed a decreased proportion of poorly differentiated tumors compared to microbiota-intact KrasG12D/PTENlox/+ mice. Subsequent 16S rRNA PCR showed that ~50% of KrasG12D/PTENlox/+ mice with PDAC harbored intrapancreatic bacteria. To determine if a similar observation in humans correlates with presence of PDAC, benign and malignant human pancreatic surgical specimens demonstrated a microbiota by 16S bacterial sequencing and culture confirmation. However, the microbial composition did not differentiate PDAC from non-PDAC tissue. Furthermore, murine pancreas did not naturally acquire a pancreatic microbiota, as germ-free mice transferred to specific pathogen-free housing failed to acquire intrapancreatic bacteria over time, which was not augmented by a murine model of colitis. Finally, antibiotic-mediated microbial depletion of Nod-SCID mice, compared to microbiota-intact, showed increased time to PDAC xenograft formation, smaller tumors, and attenuated growth. Interestingly, both xenograft cohorts were devoid of intratumoral bacteria by 16S rRNA PCR, suggesting that intrapancreatic/intratumoral microbiota is not the sole driver of PDAC acceleration. Xenografts from microbiota-intact mice demonstrated innate immune suppression by immunohistochemistry and differential regulation of oncogenic pathways as determined by RNA sequencing. Our work supports a long-distance role of the intestinal microbiota on PDAC progression and opens new research avenues regarding pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Ryan M Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Surgery, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Raad Z Gharaibeh
- Department of Medicine, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Josee Gauthier
- Department of Medicine, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Mark Beveridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jillian L Pope
- Department of Medicine, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Maria V Guijarro
- Department of Anatomy and Cell Biology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Qin Yu
- Department of Medicine, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Zhen He
- Department of Medicine, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Christina Ohland
- Department of Medicine, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Rachel Newsome
- Department of Medicine, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Jose Trevino
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Steven J Hughes
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Mary Reinhard
- Laboratory of Comparative Pathology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Kathryn Winglee
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte College of Computing and Informatics, Charlotte, NC, USA
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte College of Computing and Informatics, Charlotte, NC, USA
| | - Maria Zajac-Kaye
- Department of Anatomy and Cell Biology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Christian Jobin
- Department of Medicine, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
- Department of Anatomy and Cell Biology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
- Department of Infectious Disease and Immunology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|