101
|
Zhou H, Zhang H, Ye R, Yan C, Lin J, Huang Y, Jiang X, Yuan S, Chen L, Jiang R, Zheng K, Cheng Z, Zhang Z, Dong M, Jin W. Pantothenate protects against obesity via brown adipose tissue activation. Am J Physiol Endocrinol Metab 2022; 323:E69-E79. [PMID: 35575231 DOI: 10.1152/ajpendo.00293.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Brown adipose tissue (BAT) is the primary site of adaptive thermogenesis, which is involved in energy expenditure and has received much attention in the field of obesity treatment. By screening a small-molecule compound library of drugs approved by the Food and Drug Administration, pantothenic acid was identified as being able to significantly upregulate the expression of uncoupling protein 1 (UCP1), a key thermogenic protein found in BAT. Pantothenate (PA) treatment decreased adiposity, reversed hepatic steatosis, and improved glucose homeostasis by increasing energy expenditure in C57BL/6J mice fed a high-fat diet. PA also significantly increased BAT activity and induced beige adipocytes formation. Mechanistically, the beneficial effects were mediated by UCP1 because PA treatment was unable to ameliorate obesity in UCP1 knockout mice. In conclusion, we identified PA as an effective BAT activator that can prevent obesity and may represent a promising strategy for the clinical treatment of obesity and related metabolic diseases.NEW & NOTEWORTHY PA treatment effectively and safely protected against obesity via the BAT-UCP1 axis. PA has therapeutic potential for treating obesity and type II diabetes.
Collapse
Affiliation(s)
- Huiqiao Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hanlin Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Rongcai Ye
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chunlong Yan
- College of Agriculture, Yanbian University, Yanji, China
| | - Jun Lin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Huang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shouli Yuan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Li Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Rui Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Kexin Zheng
- Institutes of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ziyu Cheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhi Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Meng Dong
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
102
|
Ye R, Yan C, Zhou H, Zhang C, Huang Y, Dong M, Zhang H, Lin J, Jiang X, Yuan S, Chen L, Jiang R, Cheng Z, Zheng K, Yu A, Zhang Q, Quan LH, Jin W. Brown adipose tissue activation by ginsenoside compound K treatment ameliorates polycystic ovary syndrome. Br J Pharmacol 2022; 179:4563-4574. [PMID: 35751868 DOI: 10.1111/bph.15909] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Polycystic ovary syndrome (PCOS) is a common metabolic and endocrine disease affecting women of reproductive age. Due to its complex etiology, there is no effective cure for PCOS currently. Brown adipose tissue (BAT) activity is significantly decreased in PCOS patients and BAT activation has beneficial effects on PCOS animal models. Here, we investigated the therapeutic effect of ginsenoside compound K (CK) on an animal model of PCOS and its mechanism of BAT activation EXPERIMENTAL APPROACH: Primary brown adipocyte, Db/Db mice and dehydroepiandrosterone (DHEA)-induced PCOS rats were used. The core body temperature, oxygen consumption, energy metabolism related gene and protein expression were assessed to identify the function of CK on energy metabolism. Estrous cycle, serum sex hormone, ovarian steroidogenic enzyme gene expression and ovarian morphology were evaluated following CK treatment. KEY RESULTS Our results indicated that CK treatment could significantly protect against body weight gain in Db/Db mice via BAT activation. Furthermore, we found that CK treatment could normalize hyperandrogenism, estrous cyclicity, normalize steroidogenic enzyme expression and decrease the number of cystic follicles in PCOS rats. Interestingly, as a potential endocrine intermediate, C-X-C motif chemokine ligand-14 protein (CXCL14) was significantly upregulated following CK administration. In addition, exogenous CXC14 supplementation was found to reverse DHEA-induced PCOS in a phenotypically similar manner to CK treatment. CONCLUSION AND IMPLICATIONS In summary, CK treatment significantly activates BAT, increases CXCL14 expression and ameliorates PCOS. These findings suggest that CK might be a potential drug candidate for PCOS treatment.
Collapse
Affiliation(s)
- Rongcai Ye
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Chunlong Yan
- College of Agriculture, Yanbian University, Yanji, China
| | - Huiqiao Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Chuanhai Zhang
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Yuanyuan Huang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Meng Dong
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hanlin Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jun Lin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Shouli Yuan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Li Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Rui Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Ziyu Cheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Kexin Zheng
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Anni Yu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Qiaoli Zhang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Lin-Hu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
103
|
Zheng Y, He J, Yang D, Dai F, Yuan M, Liu S, Jia Y, Cheng Y. Irisin reduces the abnormal reproductive and metabolic phenotypes of PCOS by regulating the activity of brown adipose tissue in mice. Biol Reprod 2022; 107:1046-1058. [PMID: 35713297 PMCID: PMC9562123 DOI: 10.1093/biolre/ioac125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/05/2022] [Accepted: 06/08/2022] [Indexed: 11/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women, with clinical manifestations of anovulation and hyperandrogenaemia. The treatment of PCOS mainly focuses on improving clinical symptoms, such as insulin sensitivity or menstrual disorder, through drug treatment. However, due to the pathogenesis diversity of PCOS, there is still a lack of effective treatment in clinics. Metabolic disorder is the key factor in the occurrence of PCOS. Brown adipose tissue (BAT) is a special adipose tissue in the human body that can participate in metabolic balance by improving heat production. BAT has been demonstrated to be an important substance involved in the metabolic disorder of PCOS. Although increasing evidence indicates that BAT transplantation can improve the symptoms of PCOS, it is difficult to achieve BAT transplantation at present due to technical limitations. Stimulation of BAT activation by exogenous substances may be an effective alternative therapy for PCOS. In this study, we investigated the effects of Irisin on dehydroepiandrosterone (DHEA)-induced PCOS in mice and evaluated the effect of Irisin on serum hormone levels and changes in body temperature, body weight and ovarian morphology. In our study, we found that Irisin can enhance the thermogenesis and insulin sensitivity of PCOS mice by activating the function of BAT. In addition, Irisin treatment can correct the menstrual cycle of PCOS mice, improve the serum steroid hormone disorder status, and reduce the formation of ovarian cystic follicles. In conclusion, our results showed that Irisin treatment significantly improved the metabolic disorder of PCOS and may provide a new and alternative therapy for the treatment of this pathology.
Collapse
Affiliation(s)
- Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Juan He
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yifan Jia
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
104
|
Shin J, Li T, Zhu L, Wang Q, Liang X, Li Y, Wang X, Zhao S, Li L, Li Y. Obese Individuals With and Without Phlegm-Dampness Constitution Show Different Gut Microbial Composition Associated With Risk of Metabolic Disorders. Front Cell Infect Microbiol 2022; 12:859708. [PMID: 35719350 PMCID: PMC9199894 DOI: 10.3389/fcimb.2022.859708] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundObesity is conventionally considered a risk factor for multiple metabolic diseases, such as dyslipidemia, type 2 diabetes, hypertension, and cardiovascular disease (CVD). However, not every obese patient will progress to metabolic disease. Phlegm-dampness constitution (PDC), one of the nine TCM constitutions, is considered a high-risk factor for obesity and its complications. Alterations in the gut microbiota have been shown to drive the development and progression of obesity and metabolic disease, however, key microbial changes in obese patients with PDC have a higher risk for metabolic disorders remain elusive.MethodsWe carried out fecal 16S rRNA gene sequencing in the present study, including 30 obese subjects with PDC (PDC), 30 individuals without PDC (non-PDC), and 30 healthy controls with balanced constitution (BC). Metagenomic functional prediction of bacterial taxa was achieved using PICRUSt.ResultsObese individuals with PDC had higher BMI, waist circumference, hip circumference, and altered composition of their gut microbiota compared to non-PDC obese individuals. At the phylum level, the gut microbiota was characterized by increased abundance of Bacteroidetes and decreased levels of Firmicutes and Firmicutes/Bacteroidetes ratio. At the genus level, Faecalibacterium, producing short-chain fatty acid, achieving anti-inflammatory effects and strengthening intestinal barrier functions, was depleted in the PDC group, instead, Prevotella was enriched. Most PDC-associated bacteria had a stronger correlation with clinical indicators of metabolic disorders rather than more severe obesity. The PICRUSt analysis demonstrated 70 significantly different microbiome community functions between the two groups, which were mainly involved in carbohydrate and amino acid metabolism, such as promoting Arachidonic acid metabolism, mineral absorption, and Lipopolysaccharide biosynthesis, reducing Arginine and proline metabolism, flavone and flavonol biosynthesis, Glycolysis/Gluconeogenesis, and primary bile acid biosynthesis. Furthermore, a disease classifier based on microbiota was constructed to accurately discriminate PDC individuals from all obese people.ConclusionOur study shows that obese individuals with PDC can be distinguished from non-PDC obese individuals based on gut microbial characteristics. The composition of the gut microbiome altered in obese with PDC may be responsible for their high risk of metabolic diseases.
Collapse
Affiliation(s)
- Juho Shin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianxing Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linghui Zhu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Liang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Yanan Li
- People’s Medical Publishing House Co., Ltd., Chinese Medicine Center, Beijing, China
| | - Xin Wang
- Sanbo Brain Hospital of Capital Medical University, Beijing, China
| | - Shipeng Zhao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Lingru Li, ; Yingshuai Li,
| | - Yingshuai Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Lingru Li, ; Yingshuai Li,
| |
Collapse
|
105
|
Ma J, Duan Y, Li R, Liang X, Li T, Huang X, Yin Y, Yin J. Gut microbial profiles and the role in lipid metabolism in Shaziling pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:345-356. [PMID: 35600540 PMCID: PMC9111993 DOI: 10.1016/j.aninu.2021.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 04/16/2023]
Abstract
Shaziling pig, a Chinese indigenous breed, has been classified as a fatty pig model. However, the gut microbial development and role in lipid metabolism in Shaziling pigs has been rarely reported. Here, we compared the lipid metabolic and microbial profiles at 30, 60, 90, 150, 210, and 300 d of age between Shaziling and Yorkshire pigs. Predictably, there were marked differences in the liver lipids (i.e., cholesterol, glucose, and low-density lipoprotein) and the lipid related expressions (i.e., SREBP1/2, LXRα/β, DGAT1/2, and FABP1-3) between Shaziling and Yorkshire pigs. Bacteria sequencing in the ileal digesta and mucosa showed that Shaziling pigs had a higher α-diversity and higher abundances of probiotics, such as Lactobacillus johnsonii, Lactobacillus amylovorus, and Clostridium butyricum. Thirty-five differentiated metabolites were further identified in the mucosa between Shaziling and Yorkshire pigs, which were enriched in the carbohydrate, protein, glucose and amino acid metabolism and bile acid biosynthesis. Furthermore, 7 differentiated microbial species were markedly correlated with metabolites, indicating the role of gut microbiota in the host metabolism. Next, the role of differentiated L. johnsonii in lipid metabolism was validated in Duroc × Landrace × Yorkshire (DLY) pigs and the results showed that L. johnsonii mono-colonization promoted lipid deposition and metabolism by altering gut microbiota (i.e., Megasphaera elsdenii and L. johnsonii) and DGAT1/DGAT2/CD 36-PPAR γ gene expressions. In conclusion, Shaziling pigs exhibited different metabolic and microbial profiles compared with Yorkshire pigs, which might have contributed to the diverse metabolic phenotypes, and the significant enrichment of L. johnsonii in Shaziling pigs promoted lipid metabolism and obesity of DLY pigs, which provided a novel idea to improve the fat content of lean pigs.
Collapse
Affiliation(s)
- Jie Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yehui Duan
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Rui Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Xiaoxiao Liang
- Henan Ground Biological Science & Technology Co., Ltd., China
| | - Tiejun Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Xingguo Huang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Jie Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- Corresponding author.
| |
Collapse
|
106
|
Jiang L, Hong Y, Xiao P, Wang X, Zhang J, Liu E, Li H, Cai Z. The Role of Fecal Microbiota in Liver Toxicity Induced by Perfluorooctane Sulfonate in Male and Female Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:67009. [PMID: 35759388 PMCID: PMC9236209 DOI: 10.1289/ehp10281] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant that can cause hepatotoxicity. The underlying toxicological mechanism remains to be investigated. Given the critical role of fecal microbiota in liver function, it is possible that fecal microbiota may contribute to the liver toxicity induced by PFOS. OBJECTIVES We aimed to investigate the role of liver-fecal microbiota axis in modulating PFOS-induced liver injury in mice. METHODS Male and female mice were exposed to PFOS or vehicle for 14 d. In this investigation, 16S rDNA sequencing and metabolomic profiling were performed to identify the perturbed fecal microbiota and altered metabolites with PFOS exposure. In addition, antibiotic treatment, fecal microbiota transplantation, and bacterial administration were conducted to validate the causal role of fecal microbiota in mediating PFOS-induced liver injury and explore the potential underlying mechanisms. RESULTS Both male and female mice exposed to PFOS exhibited liver inflammation and steatosis, which were accompanied by fecal microbiota dysbiosis and the disturbance of amino acid metabolism in comparison with control groups. The hepatic lesions were fecal microbiota-dependent, as supported by antibiotic treatment and fecal microbiota transplantation. Mice with altered fecal microbiota in antibiotic treatment or fecal microbiota transplantation experiments exhibited altered arginine concentrations in the liver and feces. Notably, we observed sex-specific lower levels of key microbiota, including Lactobacillus, Enterococcus, and Akkermansia. Mice treated with specific bacteria showed lower arginine levels and lower expression of the phosphorylated mTOR and P70S6K, suggesting lower activity of the related pathway and mitigation of the pathological differences observed in PFOS-exposed mice. CONCLUSIONS Our study demonstrated the critical role of the fecal microbiota in PFOS-induced liver injury in mice. We also identified several critical bacteria that could protect against liver injury induced by PFOS in male and female mice. Our present research provided novel insights into the mechanism of PFOS-induced liver injury in mice. https://doi.org/10.1289/EHP10281.
Collapse
Affiliation(s)
- Lilong Jiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
- Hong Kong Baptist University Institute for Research and Continuing Education, Shenzhen, China
| | - Yanjun Hong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
- Hong Kong Baptist University Institute for Research and Continuing Education, Shenzhen, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Pingting Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiaoxiao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jinghui Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ehu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Huijun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
107
|
Yao D, Su R, Zhang Y, Wang B, Hou Y, Luo Y, Sun L, Guo Y, Jin Y. Impact of dietary Lactobacillus supplementation on intramuscular fat deposition and meat quality of Sunit sheep. J Food Biochem 2022; 46:e14207. [PMID: 35502134 DOI: 10.1111/jfbc.14207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/01/2022]
Abstract
To investigate the impacts of dietary Lactobacillus supplementation on meat quality such as edible quality and nutritional value of Sunit sheep, a 90-day feeding experiment (Lactobacillus dietary group, R group; non-Lactobacillus dietary group, C group) using twelve 3-month-old Sunit sheep was conducted. The deposition of intramuscular fat (IMF) was increased (p < .05) while the share force and cooking loss were decreased (p < .05) in the R group compared with the C group. The proportions of seven kinds of fatty acids (FAs) have changed significantly (p < .05), especially with higher functional FAs and lower trans-FA in the R group. Metabonomics analysis showed that the metabolites and pathway-related lipid syntheses, such as carnitine cycle, tricarboxylic acid cycle, and glycerophosphocholine metabolic pathway, have significantly changed in the R group. The Lactobacillus dietary supplements impacted the variation of IMF deposition and FAs composition by altering the lipid metabolism pathways of Sunit sheep and then changed the edible quality and nutritional value. PRACTICAL APPLICATIONS: It is well known that the intramuscular fat (IMF) and fatty acids composition in livestock is positively correlated with various aspects of meat quality such as edible quality and nutritional value, which are related to consumer preference. The present study analyzed the effects of Lactobacillus supplement on the intramuscular fat deposition and meat quality of Sunit sheep, which resulted in the increase of IMF, and the differences of fatty acids composition, especially the functional fatty acids. It was explored the mechanism of Lactobacillus affect the variation of lipid metabolism pathways and key metabolites in sheep, which suggested that altering the feeding regimen could improve the meat quality of agri-animals.
Collapse
Affiliation(s)
- Duo Yao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Institute of Quality and Standardization, Inner Mongolia Administration for Market Regulation, Hohhot, China
| | - Rina Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yue Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Bohui Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanru Hou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yulong Luo
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lina Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yueying Guo
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
108
|
Development of a non-target metabolomics-based screening method for elucidating metabolic and probiotic potential of bifidobacteria. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
109
|
Wu GD, Pan A, Zhang X, Cai YY, Wang Q, Huang FQ, Alolga RN, Li J, Qi LW, Liu Q. Cordyceps Improves Obesity and its Related Inflammation via Modulation of Enterococcus cecorum Abundance and Bile Acid Metabolism. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:817-838. [PMID: 35282803 DOI: 10.1142/s0192415x22500343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dysbiotic gut microbiota has been identified as a primary mediator of inherent inflammation that underlies the pathogenesis of obesity. Cordyceps comprises the larval body and the stroma of Cordyceps sinensis (BerK.) Sacc. parasiting on Hepialidae larvae of moths (H. pialusoberthur) with potent metabolic regulation functions. The underlying anti-obesity mechanisms, however, remain largely unknown. Here, we demonstrate that the water extract of Cordyceps attenuates glucose and lipid metabolism disorders and its associated inflammation in high-fat diet (HFD)-fed mice. 16S rRNA gene sequencing and microbiomic analysis showed that Cordyceps reduced the amounts of Enterococcus cecorum, a bile-salt hydrolase-producing microbe to regulate the metabolism of bile acids in the gut. Importantly, E. cecorum transplantation or liver-specific knockdown of farnesoid X receptor (FXR), a bile acid receptor, diminished the protective effect of Cordyceps against HFD-induced obesity. Together, our results shed light on the mechanisms that underlie the glucose- and lipid-lowering effects of Cordyceps and suggest that targeting intestinalE. cecorum or hepatic FXR are potential anti-obesity and anti-inflammation therapeutic avenues.
Collapse
Affiliation(s)
- Guo-Dong Wu
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - An Pan
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Xu Zhang
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Yuan-Yuan Cai
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Qi Wang
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Feng-Qing Huang
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Jing Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China.,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Qun Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China.,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
110
|
Che Q, Luo T, Shi J, He Y, Xu DL. Mechanisms by Which Traditional Chinese Medicines Influence the Intestinal Flora and Intestinal Barrier. Front Cell Infect Microbiol 2022; 12:863779. [PMID: 35573786 PMCID: PMC9097517 DOI: 10.3389/fcimb.2022.863779;pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/06/2022] [Indexed: 08/20/2024] Open
Abstract
The effect of a drug on the intestinal flora and the intestinal barrier is an important evaluation index for drug safety and efficacy. Chemical synthetic drugs are widely used due to their advantages of fast efficacy and low doses, but they are prone to cause drug resistance and inhibit proton pumps, which may harm intestinal health. Traditional Chinese medicine (TCM) has been applied clinically for thousands of years, and how TCMs regulate intestinal health to achieve their effects of disease treatment has become a hot research topic that needs to be resolved. This paper reviews the recent research on the effects of TCMs on intestinal microorganisms and the intestinal mucosal barrier after entering the intestine, discusses the interaction mechanisms between TCMs and intestinal flora, and details the repair effect of TCMs on the intestinal mucosal barrier to provide a reference for the development, utilization, and modernization of TCM.
Collapse
Affiliation(s)
- Qingya Che
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Tingting Luo
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Junhua Shi
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihuai He
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - De-Lin Xu
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
111
|
Che Q, Luo T, Shi J, He Y, Xu DL. Mechanisms by Which Traditional Chinese Medicines Influence the Intestinal Flora and Intestinal Barrier. Front Cell Infect Microbiol 2022; 12:863779. [PMID: 35573786 PMCID: PMC9097517 DOI: 10.3389/fcimb.2022.863779] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/06/2022] [Indexed: 01/14/2023] Open
Abstract
The effect of a drug on the intestinal flora and the intestinal barrier is an important evaluation index for drug safety and efficacy. Chemical synthetic drugs are widely used due to their advantages of fast efficacy and low doses, but they are prone to cause drug resistance and inhibit proton pumps, which may harm intestinal health. Traditional Chinese medicine (TCM) has been applied clinically for thousands of years, and how TCMs regulate intestinal health to achieve their effects of disease treatment has become a hot research topic that needs to be resolved. This paper reviews the recent research on the effects of TCMs on intestinal microorganisms and the intestinal mucosal barrier after entering the intestine, discusses the interaction mechanisms between TCMs and intestinal flora, and details the repair effect of TCMs on the intestinal mucosal barrier to provide a reference for the development, utilization, and modernization of TCM.
Collapse
Affiliation(s)
- Qingya Che
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Tingting Luo
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| | - Junhua Shi
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihuai He
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - De-Lin Xu
- Department of Medical Cell Biology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
112
|
Shen Y, Bai X, Zhang Y, Gao Q, Bu X, Xu Y, Guo N. Evaluation of the Potential Probiotic Yeast Characteristics with Anti-MRSA Abilities. Probiotics Antimicrob Proteins 2022; 14:727-740. [PMID: 35484324 DOI: 10.1007/s12602-022-09942-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a disreputable pathogenic bacterium that has been proven to colonize the intestinal tract. The goal of this study is to find anti-MRSA probiotic yeast from food and evaluate its probiotic characteristics and safety. Finally, 15 strains were isolated from fruit peel with anti-MRSA ability. Using DNA sequence analysis, they were identified as the genus Hanseniaspora (7 strains) and Starmerella (8 strains). Starmerella bacillaris CC-PT4 (CGMCC No. 23573) that was isolated from the grape peel has good auto-aggregation ability and hydrophobicity, and can tolerate 0.3% bile, pH 2, simulated gastric fluid (SGF), and simulated intestinal fluid (SIF). Strikingly, Starmerella bacillaris CC-PT4, like commercial probiotic Saccharomyces boulardii CNCM I-745 (Florastor ®), can adapt to the temperature of the human body (37 ℃). After safety assessment, this strain is sensitive to amphotericin B and cannot produced β-hemolytic activities. Overall, this study provides a new candidate for probiotic yeast with anti-MRSA ability.
Collapse
Affiliation(s)
- Yong Shen
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Xue Bai
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Yan Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Qian Gao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Xiujuan Bu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
113
|
Chen Z, Zhang Z, Liu J, Qi H, Li J, Chen J, Huang Q, Liu Q, Mi J, Li X. Gut Microbiota: Therapeutic Targets of Ginseng Against Multiple Disorders and Ginsenoside Transformation. Front Cell Infect Microbiol 2022; 12:853981. [PMID: 35548468 PMCID: PMC9084182 DOI: 10.3389/fcimb.2022.853981] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022] Open
Abstract
Panax ginseng, as the king of Chinese herb, has significant therapeutic effects on obesity, type 2 diabetes mellitus, fatty liver disease, colitis, diarrhea, and many other diseases. This review systematically summarized recent findings, which show that ginseng plays its role by regulating gut microbiota diversity, and gut microbiota could also regulate the transformation of ginsenosides. We conclude the characteristics of ginseng in regulating gut microbiota, as the potential targets to prevent and treat metabolic diseases, colitis, neurological diseases, cancer, and other diseases. Ginseng treatment can increase some probiotics such as Bifidobacterium, Bacteroides, Verrucomicrobia, Akkermansia, and reduce pathogenic bacteria such as Deferribacters, Lactobacillus, Helicobacter against various diseases. Meanwhile, Bacteroides, Eubacterium, and Bifidobacterium were found to be the key bacteria for ginsenoside transformation in vivo. Overall, ginseng can regulate gut microbiome diversity, further affect the synthesis of secondary metabolites, as well as promote the transformation of ginsenosides for improving the absorptivity of ginsenosides. This review can provide better insight into the interaction of ginseng with gut microbiota in multiple disorders and ginsenoside transformation.
Collapse
Affiliation(s)
- Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Qing Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jia Mi
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Jia Mi, ; Xiangyan Li,
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Jia Mi, ; Xiangyan Li,
| |
Collapse
|
114
|
Zou H, Zhang M, Zhu X, Zhu L, Chen S, Luo M, Xie Q, Chen Y, Zhang K, Bu Q, Wei Y, Ye T, Li Q, Yan X, Zhou Z, Yang C, Li Y, Zhou H, Zhang C, You X, Zheng G, Zhao G. Ginsenoside Rb1 Improves Metabolic Disorder in High-Fat Diet-Induced Obese Mice Associated With Modulation of Gut Microbiota. Front Microbiol 2022; 13:826487. [PMID: 35516426 PMCID: PMC9062662 DOI: 10.3389/fmicb.2022.826487] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota plays an important role in metabolic homeostasis. Previous studies demonstrated that ginsenoside Rb1 might improve obesity-induced metabolic disorders through regulating glucose and lipid metabolism in the liver and adipose tissues. Due to low bioavailability and enrichment in the intestinal tract of Rb1, we hypothesized that modulation of the gut microbiota might account for its pharmacological effects as well. Here, we show that oral administration of Rb1 significantly decreased serum LDL-c, TG, insulin, and insulin resistance index (HOMA-IR) in mice with a high-fat diet (HFD). Dynamic profiling of the gut microbiota showed that this metabolic improvement was accompanied by restoring of relative abundance of some key bacterial genera. In addition, the free fatty acids profiles in feces were significantly different between the HFD-fed mice with or without Rb1. The content of eight long-chain fatty acids (LCFAs) was significantly increased in mice with Rb1, which was positively correlated with the increase of Akkermansia and Parasuttereller, and negatively correlated with the decrease of Oscillibacter and Intestinimonas. Among these eight increased LCFAs, eicosapentaenoic acid (EPA), octadecenoic acids, and myristic acid were positively correlated with metabolic improvement. Furthermore, the colonic expression of the free fatty acid receptors 4 (Ffar4) gene was significantly upregulated after Rb1 treatment, in response to a notable increase of LCFA in feces. These findings suggested that Rb1 likely modulated the gut microbiota and intestinal free fatty acids profiles, which should be beneficial for the improvement of metabolic disorders in HFD-fed mice. This study provides a novel mechanism of Rb1 for the treatment of metabolic disorders induced by obesity, which may provide a therapeutic avenue for the development of new nutraceutical-based remedies for treating metabolic diseases, such as hyperlipidemia, insulin resistance, and type 2 diabetes.
Collapse
Affiliation(s)
- Hong Zou
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Man Zhang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaoting Zhu
- Zhejiang Hongguan Bio-Pharma Co., Ltd., Jiaxing, China
| | - Liyan Zhu
- Zhejiang Hongguan Bio-Pharma Co., Ltd., Jiaxing, China
| | - Shuo Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mingjing Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qinglian Xie
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yue Chen
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Kangxi Zhang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qingyun Bu
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuchen Wei
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Ye
- Zhejiang Hongguan Bio-Pharma Co., Ltd., Jiaxing, China
| | - Qiang Li
- Suzhou BiomeMatch Therapeutics Co., Ltd., Shanghai, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Haokui Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Haokui Zhou,
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Chenhong Zhang,
| | - Xiaoyan You
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Xiaoyan You,
| | - Guangyong Zheng
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Guangyong Zheng,
| | - Guoping Zhao
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
- Suzhou BiomeMatch Therapeutics Co., Ltd., Shanghai, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Guoping Zhao,
| |
Collapse
|
115
|
Huang J, Liu D, Wang Y, Liu L, Li J, Yuan J, Jiang Z, Jiang Z, Hsiao WW, Liu H, Khan I, Xie Y, Wu J, Xie Y, Zhang Y, Fu Y, Liao J, Wang W, Lai H, Shi A, Cai J, Luo L, Li R, Yao X, Fan X, Wu Q, Liu Z, Yan P, Lu J, Yang M, Wang L, Cao Y, Wei H, Leung ELH. Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy. Gut 2022; 71:734-745. [PMID: 34006584 PMCID: PMC8921579 DOI: 10.1136/gutjnl-2020-321031] [Citation(s) in RCA: 267] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/05/2021] [Accepted: 05/04/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Programmed death 1 and its ligand 1 (PD-1/PD-L1) immunotherapy is promising for late-stage lung cancer treatment, however, the response rate needs to be improved. Gut microbiota plays a crucial role in immunotherapy sensitisation and Panax ginseng has been shown to possess immunomodulatory potential. In this study, we aimed to investigate whether the combination treatment of ginseng polysaccharides (GPs) and αPD-1 monoclonal antibody (mAb) could sensitise the response by modulating gut microbiota. DESIGN Syngeneic mouse models were administered GPs and αPD-1 mAb, the sensitising antitumour effects of the combination therapy on gut microbiota were assessed by faecal microbiota transplantation (FMT) and 16S PacBio single-molecule real-time (SMRT) sequencing. To assess the immune-related metabolites, metabolomics analysis of the plasma samples was performed. RESULTS We found GPs increased the antitumour response to αPD-1 mAb by increasing the microbial metabolites valeric acid and decreasing L-kynurenine, as well as the ratio of Kyn/Trp, which contributed to the suppression of regulatory T cells and induction of Teff cells after combination treatment. Besides, the microbial analysis indicated that the abundance of Parabacteroides distasonis and Bacteroides vulgatus was higher in responders to anti-PD-1 blockade than non-responders in the clinic. Furthermore, the combination therapy sensitised the response to PD-1 inhibitor in the mice receiving microbes by FMT from six non-responders by reshaping the gut microbiota from non-responders towards that of responders. CONCLUSION Our results demonstrate that GPs combined with αPD-1 mAb may be a new strategy to sensitise non-small cell lung cancer patients to anti-PD-1 immunotherapy. The gut microbiota can be used as a novel biomarker to predict the response to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Jumin Huang
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Di Liu
- Computational Virology Group, Center for Bacteria and Virus Resources and Application, Wuhan Institute of Virology Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yuwei Wang
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Liang Liu
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Jian Li
- Precision Medicine Institute, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Chaoyang District, Beijing, China
| | - Zhihong Jiang
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Zebo Jiang
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Wl Wendy Hsiao
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Haizhou Liu
- Computational Virology Group, Center for Bacteria and Virus Resources and Application, Wuhan Institute of Virology Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Imran Khan
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Ying Xie
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Jianlin Wu
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Yajia Xie
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Yizhong Zhang
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Yu Fu
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Junyi Liao
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Wenjun Wang
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Huanling Lai
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Axi Shi
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Jun Cai
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Runze Li
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Xiaojun Yao
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Xingxing Fan
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Qibiao Wu
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Peiyu Yan
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Jingguang Lu
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Mingrong Yang
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Lin Wang
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Yabing Cao
- Department of Oncology, Kiang Wu Hospital, Macau, Macau, China
| | - Hong Wei
- Precision Medicine Institute, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Elaine Lai-Han Leung
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
116
|
Wang B, Xu J, Jiang S, Wang Y, Zhu J, Zhang Y. Combined Analysis of Gut Microbiota and Plasma Metabolites Reveals the Effect of Red-Fleshed Apple Anthocyanin Extract on Dysfunction of Mice Reproductive System Induced by Busulfan. Front Nutr 2022; 8:802352. [PMID: 35096946 PMCID: PMC8789878 DOI: 10.3389/fnut.2021.802352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 12/28/2022] Open
Abstract
Busulfan is currently an indispensable anti-cancer drug, but the side effects on male reproductive system are so serious. Meanwhile, red-fleshed apples are natural products with high anthocyanin content. In this research, we analyzed the effect of red-fleshed apple anthocyanin extract (RAAE) on busulfan-treated mice. Compared with the busulfan group, main plasma biochemical indicators were significantly improved after RAAE treatment. Compared with BA0 (busulfan without RAAE) group, total antioxidant capacity(T-AOC) and the activity of superoxide dismutase (SOD) and glutathione catalase (GSH-Px) in RAAE treatment groups were obviously increased, while the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly decreased. Malondialdehyde (MDA) was significantly decreased in the RAAE groups. In addition, we found RAAE alleviated busulfan-disrupted spermatogenesis through improving genes expression which are important for spermatogenesis, such as DDX4, PGK2, and TP1. Furthermore, we found that RAAE increased beneficial bacteria Akkermansia and Lactobacillaceae, and significantly depleted harmful bacteria Erysipelotrichia. The correlation studies indicated that RAAE ameliorated busulfan-induced rise in LysoPC levels through regulating gut microbial community and their associated metabolites. In conclusion, this study extends our understanding of the alleviated effect of RAAE on busulfan-induced male reproductive dysfunction through regulating the relationships between gut microbiota and metabolites.
Collapse
Affiliation(s)
- Bin Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China.,College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jihua Xu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China.,College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shenhui Jiang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yanbo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jun Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yugang Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China.,College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
117
|
Anti-obesity natural products and gut microbiota. Food Res Int 2022; 151:110819. [PMID: 34980371 DOI: 10.1016/j.foodres.2021.110819] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/15/2021] [Accepted: 11/21/2021] [Indexed: 12/18/2022]
Abstract
The link between gut microbiota and obesity or other metabolic syndromes is growing increasingly clear. Natural products are appreciated for their beneficial health effects in humans. Increasing investigations demonstrated that the anti-obesity bioactivities of many natural products are gut microbiota dependent. In this review, we summarized the current knowledge on anti-obesity natural products acting through gut microbiota according to their chemical structures and signaling metabolites. Manipulation of the gut microbiota by natural products may serve as a potential therapeutic strategy to prevent obesity.
Collapse
|
118
|
Sun RX, Huang WJ, Xiao Y, Wang DD, Mu GH, Nan H, Ni BR, Huang XQ, Wang HC, Liu YF, Fu Q, Zhao JX. Shenlian (SL) Decoction, a Traditional Chinese Medicine Compound, May Ameliorate Blood Glucose via Mediating the Gut Microbiota in db/db Mice. J Diabetes Res 2022; 2022:7802107. [PMID: 35187178 PMCID: PMC8855168 DOI: 10.1155/2022/7802107] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Shenlian (SL) decoction is a herbal formula composed of Coptis and ginseng, of which berberine and ginsenoside are the main constituents. Even though SL decoction is widely used in treating diabetes in China, the mechanism of its antidiabetes function still needs further study. Gut microbiota disorder is one of the important factors that cause diabetes. To explore the effect of SL decoction on intestinal microbiota, gut microbiota of mice was analyzed by sequencing the gut bacterial 16S rRNA V3+V4 region and metagenomics. In this study, results demonstrated that SL decoction had a better hypoglycemic effect and β cell protection effect than either ginseng or Coptis chinensis. Alpha diversity analysis showed that all interventions with ginseng, Coptis, and SL decoction could reverse the increased diversity and richness of gut microbiota in db/db mice. PCoA analysis showed oral SL decoction significantly alters gut microbiota composition in db/db mice. 395 OTUs showed significant differences after SL treatment, of which 37 OTUs enriched by SL decoction showed a significant negative correlation with FBG, and 204 OTUs decreased by SL decoction showed a significant positive correlation with FBG. Results of KEGG analysis and metagenomic sequencing showed that SL decoction could reduce the Prevotellaceae, Rikenellaceae, and Helicobacteraceae, which were related to lipopolysaccharide biosynthesis, riboflavin metabolism, and peroxisome, respectively. It could also upregulate the abundance of Bacteroidaceae, which contributed to the metabolism of starch and sucrose as well as pentose-glucuronate interconversions. In the species level, SL decoction significantly upregulates the relative abundance of Bacteroides_acidifaciens which showed a significant negative correlation with FBG and was reported to be a potential agent for modulating metabolic disorders such as diabetes and obesity. In conclusion, SL decoction was effective in hypoglycemia and its mechanism may be related to regulating gut microbiota via upregulating Bacteroides_acidifaciens.
Collapse
Affiliation(s)
- Rui-xi Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Wei-jun Huang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yao Xiao
- Nephropathy Department, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dou-dou Wang
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guo-hua Mu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - He Nan
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-ran Ni
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-qiang Huang
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hsuan-chuan Wang
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi-fan Liu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiang Fu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jin-xi Zhao
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
119
|
Zhang Q, Ye R, Zhang YY, Fan CC, Wang J, Wang S, Chen S, Liu X. Brown Adipose Tissue and Novel Management Strategies for Polycystic Ovary Syndrome Therapy. Front Endocrinol (Lausanne) 2022; 13:847249. [PMID: 35663310 PMCID: PMC9160465 DOI: 10.3389/fendo.2022.847249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Brown adipose tissue (BAT), a unique tissue, plays a key role in metabolism and energy expenditure through adaptive nonshivering thermogenesis. It has recently become a therapeutic target in the treatment of obesity and metabolic diseases. The thermogenic effect of BAT occurs through uncoupling protein-1 by uncoupling adenosine triphosphate (ATP) synthesis from energy substrate oxidation. The review discusses the recent developments and progress associated with the biology, function, and activation of BAT, with a focus on its therapeutic potential for the treatment of polycystic ovary syndrome (PCOS). The endocrine activity of brown adipocytes affects the energy balance and homeostasis of glucose and lipids, thereby affecting the association of BAT activity and the metabolic profile. PCOS is a complex reproductive and metabolic disorder of reproductive-age women. Functional abnormalities of adipose tissue (AT) have been reported in patients with PCOS. Numerous studies have shown that BAT could regulate the features of PCOS and that increases in BAT mass or activity were effective in the treatment of PCOS through approaches including cold stimulation, BAT transplantation and compound activation in various animal models. Therefore, BAT may be used as a novel management strategy for the patients with PCOS to improve women's health clinically. It is highly important to identify key brown adipokines for the discovery and development of novel candidates to establish an efficacious therapeutic strategy for patients with PCOS in the future.
Collapse
Affiliation(s)
- Qiaoli Zhang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Rongcai Ye
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Zhang
- Department of Reproductive Regulation (Family Planning), Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Chen-Chen Fan
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Jun Wang
- Department of Reproductive Regulation (Family Planning), Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Shuyu Wang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
- *Correspondence: Suwen Chen, ; Xiaowei Liu, ; Shuyu Wang,
| | - Suwen Chen
- Department of Reproductive Regulation (Family Planning), Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
- *Correspondence: Suwen Chen, ; Xiaowei Liu, ; Shuyu Wang,
| | - Xiaowei Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
- *Correspondence: Suwen Chen, ; Xiaowei Liu, ; Shuyu Wang,
| |
Collapse
|
120
|
Liu X, Zhang Z, Song Y, Xie H, Dong M. An update on brown adipose tissue and obesity intervention: Function, regulation and therapeutic implications. Front Endocrinol (Lausanne) 2022; 13:1065263. [PMID: 36714578 PMCID: PMC9874101 DOI: 10.3389/fendo.2022.1065263] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Overweight and obesity have become a world-wide problem. However, effective intervention approaches are limited. Brown adipose tissue, which helps maintain body temperature and contributes to thermogenesis, is dependent on uncoupling protein1. Over the last decade, an in-creasing number of studies have found that activating brown adipose tissue and browning of white adipose tissue can protect against obesity and obesity-related metabolic disease. Brown adipose tissue has gradually become an appealing therapeutic target for the prevention and re-versal of obesity. However, some important issues remain unresolved. It is not certain whether increasing brown adipose tissue activity is the cause or effect of body weight loss or what the risks might be for sympathetic nervous system-dependent non-shivering thermogenesis. In this review, we comprehensively summarize approaches to activating brown adipose tissue and/or browning white adipose tissue, such as cold exposure, exercise, and small-molecule treatment. We highlight the functional mechanisms of small-molecule treatment and brown adipose tissue transplantation using batokine, sympathetic nervous system and/or gut microbiome. Finally, we discuss the causality between body weight loss induced by bariatric surgery, exercise, and brown adipose tissue activity.
Collapse
Affiliation(s)
- Xiaomeng Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhi Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yajie Song
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Hengchang Xie
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- *Correspondence: Meng Dong, ; Hengchang Xie,
| | - Meng Dong
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Meng Dong, ; Hengchang Xie,
| |
Collapse
|
121
|
Sun X, Wang D, Wei L, Ding L, Guo Y, Wang Z, Kong Y, Yang J, Sun L, Sun L. Gut Microbiota and SCFAs Play Key Roles in QingFei Yin Recipe Anti- Streptococcal Pneumonia Effects. Front Cell Infect Microbiol 2021; 11:791466. [PMID: 34950611 PMCID: PMC8688933 DOI: 10.3389/fcimb.2021.791466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence has revealed the presence in animals of a bidirectional regulatory “lung-gut axis” that provides resistance to respiratory infections. Clues to the existence of this system stem from observations that respiratory infections are often accompanied by gastrointestinal symptoms, whereby intestinal microbiota appear to play pivotal roles in combating pathogenic infections. Importantly, short-chain fatty acids (SCFAs) produced by the gut microbiota appear to serve as the biological link between host immune defenses and gut flora. Streptococcus pneumoniae (S.pn), the main cause of lower respiratory tract infections, is involved in more than 1.189 million deaths per year. QingFei Yin (QFY) is known for its excellent therapeutic efficacy in combating bacterial lung infections. In this study, effects of S.pn infection on gut homeostasis were assessed using 16S RNA-based microbiota community profiling analysis. In addition, potential mechanisms underlying QFY recipe beneficial therapeutic effects against bacterial pneumonia were explored using S.pn-infected gut microbiota-depleted mice. Results of data analysis indicated that QFY treatment alleviated lung infection-associated pathogenic processes, while also promoting repair of disordered gut flora and counteracting S.pn infection-associated decreases in levels of SCFAs, particularly of acetate and butyrate. Mechanistically, QFY treatment suppressed inflammatory lung injury through inhibition of the host NF-κB-NLRP3 pathway. These results inspired us to identify precise QFY targets and mechanisms underlying QFY anti-inflammatory effects. In addition, we conducted an in-depth evaluation of QFY as a potential treatment for bacterial pneumonia.
Collapse
Affiliation(s)
- Xiaozhou Sun
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China., Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Lina Wei
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Center of Children's Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Lizhong Ding
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Center of Children's Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yinan Guo
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Center of Children's Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Zhongtian Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yibu Kong
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Center of Children's Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jingjing Yang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Center of Children's Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Liwei Sun
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China., Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Liping Sun
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Center of Children's Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
122
|
Yue Q, Cai M, Xiao B, Zhan Q, Zeng C. A High-Tryptophan Diet Reduces Seizure-Induced Respiratory Arrest and Alters the Gut Microbiota in DBA/1 Mice. Front Neurol 2021; 12:762323. [PMID: 34887831 PMCID: PMC8650499 DOI: 10.3389/fneur.2021.762323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
Background and Aims: Central 5-hydroxytryptamine (5-HT) defects are responsible for the occurrence of sudden unexpected death in epilepsy (SUDEP). The DBA/1 mouse is an animal model of SUDEP since the mouse exhibits audiogenic seizure-induced respiratory arrest (S-IRA). The synthesis of central 5-HT is closely related to the gut microbiota. Moreover, emerging studies suggest a possible role for the microbiota in mitigating seizure likelihood. Based on this, we aimed to explore the effect of a high-tryptophan diet (HTD) on SUDEP as well as the synthesis and metabolism of central 5-HT. Furthermore, we investigated the involvement of the gut microbiota in this process. Methods: All DBA/1 mice were subjected to acoustic stimulation to induce seizures. Only those mice that exhibited S-IRA were randomly assigned to the normal diet (ND) group (n = 39) or HTD group (n = 53). After 1 month of dietary intervention, (1) S-IRA rates were evaluated, (2) the concentrations of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the plasma and brain were determined by ultra-high-pressure liquid chromatography, and (3) the fecal flora biodiversity and species composition were analyzed by 16S rDNA microbiota profiling. Results: The S-IRA rate in DBA/1 mice was significantly reduced in the HTD group compared with that in the control group. HTD increased the levels of 5-HT and 5-HIAA in both the telencephalon and midbrain. HTD significantly elevated the species richness and diversity of the gut microbiota. Moreover, there was a significant difference in the gut microbiota composition between the two groups, and the intestinal flora was dominated by Proteobacteria and Actinobacteria after HTD. Conclusions: HTD is efficient in lowering S-IRA rates and elevating the central 5-HT level in DBA/1 mice. The gut microbiota was altered after HTD intervention. The significant increase in Proteobacteria and Actinobacteria may be related to the SUDEP-protective effect of HTD. Our findings shed light on a candidate choice of dietary prevention for SUDEP.
Collapse
Affiliation(s)
- Qiang Yue
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mingfei Cai
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Zhan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang Zeng
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
123
|
Li L, Zhang Y, Speakman JR, Hu S, Song Y, Qin S. The gut microbiota and its products: Establishing causal relationships with obesity related outcomes. Obes Rev 2021; 22:e13341. [PMID: 34490704 DOI: 10.1111/obr.13341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Gut microorganisms not only participate in the metabolism of carbohydrate, lipids, protein, and polypeptides in the intestine but also directly affect the metabolic phenotypes of the host. Although many studies have described the apparent effects of gut microbiota on human health, the development of metagenomics and culturomics in the past decade has generated a large amount of evidence suggesting a causal relationship between gut microbiota and obesity. The interaction between the gut microbiota and host is realized by microbial metabolites with multiple biological functions. We concentrated here on several representative beneficial species connected with obesity as well as the mechanisms, with particular emphasis on microbiota-dependent metabolites. Finally, we consider the potential clinical significance of these relationships to fuel the conception and realization of novel therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yubing Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Life Sciences, Yantai University, Yantai, China
| | - John Roger Speakman
- Shenzhen Key Laboratory for Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shanliang Hu
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Yipeng Song
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
124
|
Cheng L, Wang J, Dai H, Duan Y, An Y, Shi L, Lv Y, Li H, Wang C, Ma Q, Li Y, Li P, Du H, Zhao B. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte 2021; 10:48-65. [PMID: 33403891 PMCID: PMC7801117 DOI: 10.1080/21623945.2020.1870060] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mammalian adipose tissue can be divided into two major types, namely, white adipose tissue (WAT) and brown adipose tissue (BAT). According to classical view, the main function of WAT is to store excess energy in the form of triglycerides, while BAT is a thermogenic tissue that acts a pivotal part in maintaining the core body temperature. White adipocytes display high plasticity and can transdifferentiate into beige adipocytes which have many similar morphological and functional properties with brown adipocytes under the stimulations of exercise, cold exposure and other factors. This phenomenon is also known as 'browning of WAT'. In addition to transdifferentiation, beige adipocytes can also come from de novo differentiation from tissue-resident progenitors. Activating BAT and inducing browning of WAT can accelerate the intake of glycolipids and reduce the insulin secretion requirement, which may be a new strategy to improve glycolipids metabolism and insulin resistance of obese and type 2 diabetes mellitus (T2DM) patients. This review mainly discusses the significance of brown and beige adipose tissues in the treatment of obesity and T2DM, and focuses on the effect of the browning agent on obesity and T2DM, which provides a brand-new theoretical reference for the prevention and treatment of obesity and T2DM.
Collapse
Affiliation(s)
- Long Cheng
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Jingkang Wang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Hongyu Dai
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yuhui Duan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yongcheng An
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Shi
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yinglan Lv
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Huimin Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Chen Wang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Quantao Ma
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yaqi Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Pengfei Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Haifeng Du
- The Third Municipal Hospital of Chengde, Chengde, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing China
| |
Collapse
|
125
|
Zhang L, Jing J, Han L, Wang J, Zhang W, Liu Z, Gao A. Characterization of gut microbiota, metabolism and cytokines in benzene-induced hematopoietic damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112956. [PMID: 34781132 DOI: 10.1016/j.ecoenv.2021.112956] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Benzene exposure leads to hematopoietic dysfunction and is characterized clinically by a decrease in blood cells, but the underlying mechanisms remain elusive. Disturbed gut microbiota may induce host metabolic, immune disorders and the onset of disease. However, the characterization of gut microbiota, metabolism, cytokines and their association with benzene-induced hematopoietic toxicity lacks systematic evidence. Here, the microbiomics, metabolomics and cytokine network were applied to find out the critical characteristics of gut microbiota, metabolism and cytokines in mice involved in the benzene-induced hematopoietic toxicity. We found that the decline in hematopoietic stem cells was earlier than the hematological changes in the 5 mg/kg and 25 mg/kg benzene exposure groups. While 125 mg/kg benzene exposure resulted in a significant decline in whole blood cells. High-throughput sequencing results showed that benzene exposure disrupted homeostasis of gut microbiota, metabolism and cytokine in mice. 6 bacteria, 12 plasma metabolites and 6 cytokines were associated with benzene-induced hematopoietic damage. Notably, IL-5 was significantly increased in benzene exposure group in a dose-dependent manner, and a significant negative correlation was found between IL-5 and hematopoietic damage. We further found that increased Family_XIII_AD3011_group at the genus level and decreased Anaerotruncus_sp at the species level in benzene-exposed group were strongly associated with hematopoietic toxicity and IL-5. Furthermore, the abundance of Family_XIII_AD3011_group and Anaerotruncus_sp were negatively correlated with Adipic acid and 4-Hydroxyproline, respectively. Our findings indicated that altered flora structure of gut microbiota affects the metabolic phenotype which acts as messengers for the gut microbes, affecting host inflammation. This preliminary study provides new insight into the potential mechanisms of benzene-induced hematopoietic toxicity, further exploration by functional studies is required in the future.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
126
|
Tong Y, Xu S, Huang L, Chen C. Obesity and insulin resistance: Pathophysiology and treatment. Drug Discov Today 2021; 27:822-830. [PMID: 34767960 DOI: 10.1016/j.drudis.2021.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022]
Abstract
The prevalence of obesity is a major cause of many chronic metabolic disorders, including type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), and cancer. Insulin resistance is often associated with metabolic unhealthy obesity (MUO). Therapeutic approaches aiming to improve insulin sensitivity are believed to be central for the prevention and treatment of MUO. However, current antiobesity drugs are reported as multitargeted and their insulin-sensitizing effects remain unclear. In this review, we discuss current understanding of the mechanisms of insulin resistance from the aspects of endocrine disturbance, inflammation, oxidative, and endoplasmic reticulum stress (ERS). We then summarize the antiobesity drugs, focusing on their effects on insulin sensitivity. Finally, we discuss strategies for obesity treatment.
Collapse
Affiliation(s)
- Yue Tong
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Sai Xu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
127
|
De Spiegeleer M, De Paepe E, Van Meulebroek L, Gies I, De Schepper J, Vanhaecke L. Paediatric obesity: a systematic review and pathway mapping of metabolic alterations underlying early disease processes. Mol Med 2021; 27:145. [PMID: 34742239 PMCID: PMC8571978 DOI: 10.1186/s10020-021-00394-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The alarming trend of paediatric obesity deserves our greatest awareness to hinder the early onset of metabolic complications impacting growth and functionality. Presently, insight into molecular mechanisms of childhood obesity and associated metabolic comorbidities is limited. This systematic review aimed at scrutinising what has been reported on putative metabolites distinctive for metabolic abnormalities manifesting at young age by searching three literature databases (Web of Science, Pubmed and EMBASE) during the last 6 years (January 2015-January 2021). Global metabolomic profiling of paediatric obesity was performed (multiple biological matrices: blood, urine, saliva and adipose tissue) to enable overarching pathway analysis and network mapping. Among 2792 screened Q1 articles, 40 met the eligibility criteria and were included to build a database on metabolite markers involved in the spectrum of childhood obesity. Differential alterations in multiple pathways linked to lipid, carbohydrate and amino acid metabolisms were observed. High levels of lactate, pyruvate, alanine and acetate marked a pronounced shift towards hypoxic conditions in children with obesity, and, together with distinct alterations in lipid metabolism, pointed towards dysbiosis and immunometabolism occurring early in life. Additionally, aberrant levels of several amino acids, most notably belonging to tryptophan metabolism including the kynurenine pathway and its relation to histidine, phenylalanine and purine metabolism were displayed. Moreover, branched-chain amino acids were linked to lipid, carbohydrate, amino acid and microbial metabolism, inferring a key role in obesity-associated insulin resistance. CONCLUSIONS This systematic review revealed that the main metabolites at the crossroad of dysregulated metabolic pathways underlying childhood obesity could be tracked down to one central disturbance, i.e. impending insulin resistance for which reference values and standardised measures still are lacking. In essence, glycolytic metabolism was evinced as driving energy source, coupled to impaired Krebs cycle flux and ß-oxidation. Applying metabolomics enabled to retrieve distinct metabolite alterations in childhood obesity(-related insulin resistance) and associated pathways at early age and thus could provide a timely indication of risk by elucidating early-stage biomarkers as hallmarks of future metabolically unhealthy phenotypes.
Collapse
Affiliation(s)
- Margot De Spiegeleer
- Laboratory of Chemical Analysis, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Ellen De Paepe
- Laboratory of Chemical Analysis, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Lieven Van Meulebroek
- Laboratory of Chemical Analysis, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Inge Gies
- KidZ Health Castle, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Jean De Schepper
- KidZ Health Castle, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussel, Belgium.,Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium. .,Institute for Global Food Security, School of Biological Sciences, Queen's University, University Road, Belfast, BT7 1NN, UK.
| |
Collapse
|
128
|
Xu S, Lyu L, Zhu H, Huang X, Xu W, Xu W, Feng Y, Fan Y. Serum Metabolome Mediates the Antiobesity Effect of Celastrol-Induced Gut Microbial Alterations. J Proteome Res 2021; 20:4840-4851. [PMID: 34530620 DOI: 10.1021/acs.jproteome.1c00513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The antiobesity effect of celastrol has been reported in numerous studies, but the underlying mechanism remains unclear. It is widely accepted that gut dysbiosis is closely related to obesity. The potential effect of celastrol on microbiota is worth exploring. In this study, the celastrol-induced weight loss was validated in high-fat diet (HFD)-induced obese mice, with the detection of reported phenotypes including a reduction in food intake, augments in dyslipidemia and glucose metabolism, and adipose thermogenesis. The anti-inflammatory effect of celastrol was also proved based on the alterations in serum cytokines. Antibiotic interference showed that gut microbiota contributes to celastrol-induced weight loss. Several key bacteria were identified using shotgun metagenomic sequencing to display the alterations of the intestinal microbiome in obese mice treated with celastrol. Meanwhile, the fecal and serum metabolic profiles were generated by pseudotargeted metabolomics, and changes in some critical metabolites related to appetite and metabolism were detected. Importantly, we applied in silico bidirectional mediation analysis to identify the precise connections among the alterations in gut microbes, serum metabolome, and host phenotypes induced by celastrol treatment for the first time. Therefore, we concluded that the celastrol-induced microbial changes partially contribute to the antiobesity effect via the serum metabolome. The mass spectrometry data are deposited on MetaboLights (ID: MTBLS3278).
Collapse
Affiliation(s)
- Shaohua Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Liwei Lyu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Huaichang Zhu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xiaoqiang Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wei Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Wen Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yaqian Feng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yong Fan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
129
|
Zhuang T, Li W, Yang L, Wang Z, Ding L, Zhou M. Gut Microbiota: Novel Therapeutic Target of Ginsenosides for the Treatment of Obesity and Its Complications. Front Pharmacol 2021; 12:731288. [PMID: 34512356 PMCID: PMC8429618 DOI: 10.3389/fphar.2021.731288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity, generally characterized by excessive lipid accumulation, is a metabolic threat worldwide due to its rapid growth in global prevalence. Ginsenosides are crucial components derived from natural plants that can confer metabolic benefits for obese patients. Considering the low bioavailability and degradable properties of ginsenosides in vivo, it should be admitted that the mechanism of ginsenosides on anti-obesity contribution is still obscure. Recently, studies have indicated that ginsenoside intervention has beneficial metabolic effects on obesity and its complications because it allows for the correction of gut microbiota dysbiosis and regulates the secretion of related endogenous metabolites. In this review, we summarize the role of gut microbiota in the pathogenetic process of obesity, and explore the mechanism of ginsenosides for ameliorating obesity, which can modulate the composition of gut microbiota by improving the metabolism of intestinal endogenous substances and alleviating the level of inflammation. Ginsenosides are expected to become a promising anti-obesity medical intervention in the foreseeable clinical settings.
Collapse
Affiliation(s)
- Tongxi Zhuang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai, China
| | - Mingmei Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
130
|
Jin D, Zhang Y, Zhang Y, Duan L, Zhou R, Duan Y, Sun Y, Lian F, Tong X. Panax Ginseng C.A.Mey. as Medicine: The Potential Use of Panax Ginseng C.A.Mey. as a Remedy for Kidney Protection from a Pharmacological Perspective. Front Pharmacol 2021; 12:734151. [PMID: 34512359 PMCID: PMC8426624 DOI: 10.3389/fphar.2021.734151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Panax ginseng C.A.Mey. has been widely consumed as food/diet supplements from natural sources, and its therapeutic properties have also aroused widespread concern. Therapeutic properties of Panax ginseng C.A.Mey. such as anti-inflammatory, ameliorating chronic inflammation, enhancing the immunity, resisting the oxidation again, and regulating the glucose and lipid metabolism have been widely reported. Recent years, lots of interesting studies have reported the potential use of Panax ginseng C.A.Mey. in the management of DKD. DKD has become the leading cause of end-stage renal disease worldwide, which increases the risk of premature death and poses a serious financial burden. Although DKD is somehow controllable with different drugs such as Angiotensin-Converting Enzyme Inhibitors (ACEI), Angiotensin Receptor Blockers (ARB) and lowering-glucose agents, modern dietary changes associated with DKD have facilitated research to assess the preventive and therapeutic merits of diet supplements from natural sources as medicine including Panax ginseng C.A.Mey. Findings from many scientific evidences have suggested that Panax ginseng C.A.Mey. can relieve the pathological status in cellular and animal models of DKD. Moreover, a few studies showed that alleviation of clinical phenotype such as reducing albuminuria, serum creatinine and renal anemia in DKD patients after application or consumption of Panax ginseng C.A.Mey.. Therefore, this review aims to discuss the effectiveness of Panax ginseng C.A.Mey. as medicine for targeting pathological phenotypes in DKD from a pharmacological perspective. This review will provide new insights into the potential understanding use of Panax ginseng C.A.Mey. in the management of DKD in clinical settings.
Collapse
Affiliation(s)
- De Jin
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqin Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liyun Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rongrong Zhou
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingyin Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
131
|
Sililas P, Huang L, Thonusin C, Luewan S, Chattipakorn N, Chattipakorn S, Tongsong T. Association between Gut Microbiota and Development of Gestational Diabetes Mellitus. Microorganisms 2021; 9:microorganisms9081686. [PMID: 34442765 PMCID: PMC8400162 DOI: 10.3390/microorganisms9081686] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 12/31/2022] Open
Abstract
Background: It is well known that women with gestational diabetes mellitus (GDM) have gut dysbiosis. However, the dynamic alterations of gut microbiota in GDM are unclear. Additionally, the effects of maternal gut microbiota on the gut microbiota of their newborns remains controversial. The primary objective of this study is to determine the association between types and amounts of gut microbiota and development of gestational diabetes mellitus (GDM). Methods: Eighty-eight pregnant women, including 39 non-GDM and 49 GDM, and their 88 offspring were enrolled. Maternal feces were collected at the time of GDM diagnosis (24–28 weeks of gestation) and at before delivery (≥37 weeks of gestation). Meconium and the first feces of their newborns were also obtained. Results: from quantitative polymerase chain reaction (qPCR) showed that maternal Lactobacillales was decreased from baseline to the time before delivery in both non-GDM and GDM. Firmicutes/Bacteroidetes (F/B) ratio at before delivery was higher in the GDM group. However, there was no difference of neonatal gut microbiota between groups. Conclusions: Although we found only few gut microbiota that demonstrated the difference between GDM and non-GDM, gut microbiota may play a more important role in the development of severer GDM. Therefore, a further study comparing the gut microbiota composition among non-GDM, GDM with diet modification only, GDM with insulin therapy, GDM with successful treatment, and GDM with failure of treatment is needed.
Collapse
Affiliation(s)
- Palin Sililas
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (T.T.)
| | - Lingling Huang
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (L.H.); (C.T.); (N.C.)
- Center of Excellence in Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chanisa Thonusin
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (L.H.); (C.T.); (N.C.)
- Center of Excellence in Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suchaya Luewan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (T.T.)
- Correspondence: (S.L.); (S.C.)
| | - Nipon Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (L.H.); (C.T.); (N.C.)
- Center of Excellence in Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (L.H.); (C.T.); (N.C.)
- Center of Excellence in Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (S.L.); (S.C.)
| | - Theera Tongsong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (T.T.)
| |
Collapse
|
132
|
Zhao T, Zhan L, Zhou W, Chen W, Luo J, Zhang L, Weng Z, Zhao C, Liu S. The Effects of Erchen Decoction on Gut Microbiota and Lipid Metabolism Disorders in Zucker Diabetic Fatty Rats. Front Pharmacol 2021; 12:647529. [PMID: 34366839 PMCID: PMC8339961 DOI: 10.3389/fphar.2021.647529] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a chronic metabolic disease caused by genetic and environmental factors that has become a serious global health problem. There is evidence that gut microbiota is closely related to the occurrence and development of obesity. Erchen Decoction (ECD), a traditional Chinese medicine, has been widely used for clinical treatment and basic research of obesity and related metabolic diseases in recent years. It can significantly improve insulin resistance (IR) and lipid metabolism disorders. However, there is no microbiological study on its metabolic regulation. In this study, we investigated the effects of ECD on obesity, especially lipid metabolism and the composition and function of gut microbiota in Zucker diabetic fatty (ZDF) rats, and explored the correlation between the biomarkers of gut microbiota and metabolite and host phenotype. The results showed that ECD could reduce body weight, improve IR and lipid metabolism, and reduce the concentration of free fatty acids (FFA) released from white adipose tissue (WAT) due to excessive lipolysis by interfering with the insulin receptor substrate 1 (IRS1)/protein kinase B (AKT)/protein kinase A (PKA)/hormone-sensitive triglyceride lipase (HSL) signaling pathway in ZDF rats. Additionally, ECD gradually adjusted the overall structure of changed gut microbiota, reversed the relative abundance of six genera, and changed the function of gut microbiota by reducing the content of propionic acid, a metabolite of gut microbiota, in ZDF rats. A potentially close relationship between biomarkers, especially Prevotella, Blautia, and Holdemania, propionic acid and host phenotypes were demonstrated through correlation analysis. The results suggested that the beneficial effects of ECD on obesity, especially lipid metabolism disorders, are related to the regulation of gut microbiota in ZDF rats. This provides a basis for further research on the mechanism and clinical application of ECD to improve obesity via gut microbiota.
Collapse
Affiliation(s)
- Tian Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Libin Zhan
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Zhou
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wanxin Chen
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jintong Luo
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijing Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zebin Weng
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shenlin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
133
|
Zhang B, Zhang CY, Zhang XL, Sun GB, Sun XB. Guan Xin Dan Shen formulation protects db/db mice against diabetic cardiomyopathy via activation of Nrf2 signaling. Mol Med Rep 2021; 24:531. [PMID: 34036388 PMCID: PMC8170264 DOI: 10.3892/mmr.2021.12170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Guan Xin Dan Shen formulation (GXDSF) is a widely used treatment for the management of coronary heart disease in China and is composed of three primary components: Dalbergiae odoriferae Lignum, Salviae miltiorrhizae Radix et Rhizoma and Panax notoginseng Radix et Rhizoma. However, the potential use of GXDSF for the management of diabetic cardiomyopathy (DCM) has not been previously assessed. The present study aimed to assess the effects of GXDSF on DCM, as well as the underlying mechanism. In the present study, db/db mice were used. Following treatment with GXDSF for 10 weeks, fasting blood glucose, insulin sensitivity, serum lipid levels and cardiac enzyme levels were detected. Cardiac pathological alterations and cardiac function were assessed by performing hematoxylin and eosin staining and echocardiograms, respectively. TUNEL assays were conducted to assess cardiomyocyte apoptosis. Additionally, reverse transcription‑quantitative PCR and western blotting were performed to evaluate the expression of apoptosis‑associated genes and proteins, respectively. In the model group, the db/db mice displayed obesity, hyperlipidemia and hyperglycemia, accompanied by noticeable myocardial hypertrophy and diastolic dysfunction. Following treatment with GXDSF for 10 weeks, serum triglyceride levels were lower and insulin sensitivity was enhanced in db/db mice compared with the model group, which indicated improvement in condition. Cardiac hypertrophy and dysfunction were also improved in db/db mice following treatment with GXDSF, resulting in significantly increased left ventricular ejection fraction and fractional shortening compared with the model group. Following treatment with metformin or GXDSF, model‑induced increases in levels of myocardial enzymes were decreased in the moderate and high dose groups. Moreover, the results indicated that, compared with the model group, GXDSF significantly inhibited cardiomyocyte apoptosis in diabetic heart tissues by increasing Bcl‑2 expression and decreasing the expression levels of Bax, cleaved caspase‑3 and cleaved caspase‑9. Mechanistically, GXDSF enhanced Akt phosphorylation, which upregulated antioxidant enzymes mediated by nuclear factor erythroid 2‑related factor 2 (Nrf2) signaling. Collectively, the results of the present study indicated that GXDSF attenuated cardiac dysfunction and inhibited cardiomyocyte apoptosis in diabetic mice via activation of Akt/Nrf2 signaling. Therefore, GXDSF may serve as a potential therapeutic agent for the management of DCM.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| | - Chen-Yang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| | - Xue-Lian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| | - Gui-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| | - Xiao-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China
| |
Collapse
|
134
|
Zhang Y, Li J, Wang HH, Li J, Yu Y, Li B, Huang L, Wu C, Liu X. Phytohemagglutinin ameliorates HFD-induced obesity by increasing energy expenditure. J Mol Endocrinol 2021; 67:1-14. [PMID: 33983894 PMCID: PMC8240727 DOI: 10.1530/jme-20-0349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/13/2021] [Indexed: 12/01/2022]
Abstract
Despite all modern advances in medicine, there are few reports of effective and safe drugs to treat obesity. Our objective was to screen anti-obesity natural compounds, and to verify whether they can reduce the body weight gain and investigate their molecular mechanisms. By using drug-screening methods, Phytohemagglutinin (PHA) was found to be the most anti-obesity candidate natural compound. Six-week-old C57BL/6J mice were fed with a high-fat diet (HFD) and intraperitoneally injected with 0.25 mg/kg PHA everyday for 8 weeks. The body weight, glucose homeostasis, oxygen consumption and physical activity were assessed. We also measured the heat intensity, body temperature and the gene expression of key regulators of energy expenditure. Prevention study results showed PHA treatment not only reduced the body weight gain but also maintained glucose homeostasis in HFD-fed mice. Further study indicated energy expenditure and uncoupling protein 1 (UCP-1) expression of brown adipose tissue (BAT) and white adipose tissue (WAT) in HFD-fed mice were significantly improved by PHA. In the therapeutic study, a similar effect was observed. PHA inhibited lipid droplet formation and upregulated mitochondrial-related gene expression during adipogenesis in vitro. UCP-1 KO mice displayed no differences in body weight, glucose homeostasis and core body temperature between PHA and control groups. Our results suggest that PHA prevent and treat obesity by increasing energy expenditure through upregulation of BAT thermogenesis.
Collapse
Affiliation(s)
- Yunxia Zhang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jin Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Hui-hui Wang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jiao Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Yue Yu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Bo Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Li Huang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Changjing Wu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Xiaomeng Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- College of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
135
|
You L, Li F, Sun Y, Luo L, Qin J, Wang T, Liu Y, Lai R, Li R, Guo X, Mai Q, Pan Y, Xu J, Li N. Extract of Acalypha australis L. inhibits lipid accumulation and ameliorates HFD-induced obesity in mice through regulating adipose differentiation by decreasing PPARγ and CEBP/α expression. Food Nutr Res 2021. [PMID: 33776618 DOI: 10.29219/fnr.v65.4246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Obesity is a principal risk factor for the development of type 2 diabetes and cardiovascular diseases. Natural plants and/or foods play an important role in the management of obesity. Acalypha australis L. (AAL) is a kind of potherb popular among Asian populations, and it is also consumed as a food ingredient and traditional herbal medicine. Objective We investigated the effects of water extract from AAL on high-fat-diet (HFD)-induced obese mice and 3T3-L1 adipocytes to develop a new functional food material. Design Nine-week-old male mice were randomly divided into control (chow diet, n = 6) and HFD (n = 30) group. From 12-weeks onward, mice in the HFD group were further separated into model (saline, 6 mL/kg), simvastatin (0.11 mg/mL, 6 mL/kg), and AAL treatment (low, middle, and high dosage: 300, 600, and 900 mg/kg) group, with 6 animals per group, while mice in the control group were treated with saline (6 mL/kg). Food intake, body/fat weight, liver/kidney indexes, and lipid profiles were determined. Tissues were fixed with formalin for pathological examination. Western blotting and PCR were performed to evaluate the protein and mRNA expression in 3T3-L1 adipocytes. Oil Red O staining was used to determine lipid accumulation. Results AAL administration significantly suppressed body weight gain, and reduced fat pad weight and Lee's index in obese mice, but had no effect on liver/kidney index. AAL also reduced serum cholesterol, triglyceride, and LDL-C and increased HDL-C levels. Histological analysis revealed that AAL significantly ameliorated lipid accumulation in the liver and subcutaneous adipose tissue. In vitro, Oil Red O staining showed that AAL inhibited adipose differentiation by down-regulating the gene and protein expression of PPARγ and C/EBPα. AAL also reversed HFD-induced intestinal dysbacteriosis. Conclusion AAL water-soluble extract has a significant anti-adipogenic effect in the HFD-induced obese mice model.
Collapse
Affiliation(s)
- Lang You
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Fengxia Li
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.,Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Sun
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Liang Luo
- Department of Critical Care Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jian Qin
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Tao Wang
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ruogu Lai
- Department of Rheumatology and Immunology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ruohan Li
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaoran Guo
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qiuyan Mai
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yihang Pan
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jianrong Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
136
|
Liao S, Long X, Zou Y, Liu F, Li Q. Mulberry leaf phenolics and fiber exert anti-obesity through the gut microbiota-host metabolism pathway. J Food Sci 2021; 86:1432-1447. [PMID: 33761137 DOI: 10.1111/1750-3841.15679] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
The effect of mulberry leaf powder and components on preventing obesity and regulating lipid metabolism were investigated in the present study. The mechanism of action was explored by examining the gut microbiota and lipid metabolism-related signaling pathways. As evidenced by the nutritional obesity rats model experiments, the middle concentration mulberry leaf powder (MLP) group (0.8 g/kg·d) significantly reduced Lee's index (25.1, compared with model control group [MC] 25.7) and had the strongest lipid metabolism regulation effect. Furthermore, the suppression effects of different mulberry leaf components on nutritional obesity were compared and the mulberry leaf phenolics and fiber mixture (Mulberry leaf mixture [MLM]) group (0.6 g/kg·d) was found to have the strongest efficacy (body weight [BW] reduced 12.4%). Real time PCR (RT-qPCR) and western blot analyses demonstrated that MLP (0.8 g/kg·d) and its components inhibited adipocyte differentiation and triglyceride synthesis through the PPAR-γ- C/EBP-α signaling pathway, resulting in lipid metabolism regulation. Gut microbiota analysis indicated that MLM (0.6 g/kg·d) prevented the reduction in intestinal flora diversity (reach 491 species) caused by high-energy feed, and reduced the Firmicutes/Bacteroidetes ratio (to 7.99%) and the obesity associated flora, Lachnospiraceae (to 19.1%), whereas it improved the content of the beneficial flora, Lactobacilli, Lactobacillus_johnsonii (reach 11.77%). MLM improved the bioaccessibility and bioavailability of the two functional components (phenolics and fiber) and maximized the anti-obesity effect through the gut microbiota-host metabolism pathway. PRACTICAL APPLICATION: The anti-obesity and lipid metabolism regulation effect of mulberry leaf components were evaluated in this study. The fiber and phenolics of this plant have the potential for development of weight-loss functional foods.
Collapse
Affiliation(s)
- Sentai Liao
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Xiaoshan Long
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Yuxiao Zou
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Fan Liu
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| |
Collapse
|
137
|
Liu J, Tan Y, Ao H, Feng W, Peng C. Aqueous extracts of Aconite promote thermogenesis in rats with hypothermia via regulating gut microbiota and bile acid metabolism. Chin Med 2021; 16:29. [PMID: 33741035 PMCID: PMC7980327 DOI: 10.1186/s13020-021-00437-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background Intermittent or prolonged exposure to severe cold stress disturbs energy homeostasis and can lead to hypothermia, heart failure, Alzheimer’s disease, and so on. As the typical “hot” traditional Chinese medicine, Aconite has been widely used to treat cold-associated diseases for thousands of years, but its critical mechanisms for the promotion of thermogenesis are not fully resolved. Gut microbiota and its metabolites play a crucial role in maintaining energy homeostasis. Here, we investigated whether the aqueous extracts of Aconite (AA) can enhance thermogenesis through modulation of the composition and metabolism of gut microbiota in hypothermic rats. Methods The therapeutic effects of AA on body temperature, energy intake, and the histopathology of white adipose tissue and brown adipose tissue of hypothermic rats were assessed. Microbiota analysis based on 16 S rRNA and targeted metabolomics for bile acids (BAs) were used to evaluate the composition of gut microbiota and BAs pool. The antibiotic cocktail treatment was adopted to further confirm the relationship between the gut microbiota and the thermogenesis-promoting effects of AA. Results Our results showed a sharp drop in rectal temperature and body surface temperature in hypothermic rats. Administration of AA can significantly increase core body temperature, surface body temperature, energy intake, browning of white adipose tissue, and thermogenesis of brown adipose tissue. Importantly, these ameliorative effects of AA were accompanied by the shift of the disturbed composition of gut microbiota toward a healthier profile and the increased levels of BAs. In addition, the depletion of gut microbiota and the reduction of BAs caused by antibiotic cocktails reduced the thermogenesis-promoting effect of AA. Conclusions Our results demonstrated that AA promoted thermogenesis in rats with hypothermia via regulating gut microbiota and BAs metabolism. Our findings can also provide a novel solution for the treatment of thermogenesis-associated diseases such as rheumatoid arthritis, obesity, and type 2 diabetes. ![]()
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.,National Key Laboratory Breeding Base of Systematic Research, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Hui Ao
- National Key Laboratory Breeding Base of Systematic Research, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China. .,National Key Laboratory Breeding Base of Systematic Research, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China. .,National Key Laboratory Breeding Base of Systematic Research, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
138
|
Effects of bioactive components of Pu-erh tea on gut microbiomes and health: A review. Food Chem 2021; 353:129439. [PMID: 33743430 DOI: 10.1016/j.foodchem.2021.129439] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/20/2022]
Abstract
Pu-erh tea is a post-fermentation tea with unique flavor and multiple health benefits. Due to the various microorganisms involved in the post-fermentation process, Pu-erh tea contains highly complex components, which have rich interactions with the gut microbiomes (GMs). Because the structure and homeostasis of GMs are closely related to human wellness and the various diseases progress, the beneficial effects of Pu-erh tea on GMs have a great potential for application in health care. However, there is no systematic summary of the bioactive components of Pu-erh tea, and their effects on the GMs. Here, we review the current studies on the effects of Pu-erh tea and its bioactive components on the structure of GMs as well as on health improvement, and further discuss the relevant quality indicators. This "components - function - indicators" clue will hopefully stimulate the standardization of Pu-erh tea fermentation process and the development of its functional products.
Collapse
|
139
|
Choi YK, Kang JI, Hyun JW, Koh YS, Kang JH, Hyun CG, Yoon KS, Lee KS, Lee CM, Kim TY, Yoo ES, Kang HK. Myristoleic Acid Promotes Anagen Signaling by Autophagy through Activating Wnt/β-Catenin and ERK Pathways in Dermal Papilla Cells. Biomol Ther (Seoul) 2021; 29:211-219. [PMID: 33518533 PMCID: PMC7921852 DOI: 10.4062/biomolther.2020.169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Alopecia is a distressing condition caused by the dysregulation of anagen, catagen, and telogen in the hair cycle. Dermal papilla cells (DPCs) regulate the hair cycle and play important roles in hair growth and regeneration. Myristoleic acid (MA) increases Wnt reporter activity in DPCs. However, the action mechanisms of MA on the stimulation of anagen signaling in DPCs is not known. In this study, we evaluated the effects of MA on anagen-activating signaling pathways in DPCs. MA significantly increased DPC proliferation and stimulated the G2/M phase, accompanied by increasing cyclin A, Cdc2, and cyclin B1. To elucidate the mechanism by which MA promotes DPC proliferation, we evaluated the effect of MA on autophagy and intracellular pathways. MA induced autophagosome formation by decreasing the levels of the phospho-mammalian target of rapamycin (phospho-mTOR) and increasing autophagy-related 7 (Atg7) and microtubule-associated protein 1A/1B-light chain 3II (LC3II). MA also increased the phosphorylation levels of Wnt/β-catenin proteins, such as GSK3β (Ser9) and β-catenin (Ser552 and Ser675). Treatment with XAV939, an inhibitor of the Wnt/β-catenin pathway, attenuated the MA-induced increase in β-catenin nuclear translocation. Moreover, XAV939 reduced MA-induced effects on cell cycle progression, autophagy, and DPC proliferation. On the other hand, MA increased the levels of phospho (Thr202/Tyr204)-extracellular signal regulated kinases (ERK). MA-induced ERK phosphorylation led to changes in the expression levels of Cdc2, Atg7 and LC3II, as well as DPC proliferation. Our results suggest that MA promotes anagen signaling via autophagy and cell cycle progression by activating the Wnt/β-catenin and ERK pathways in DPCs.
Collapse
Affiliation(s)
- Youn Kyung Choi
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jung-Il Kang
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Young Sang Koh
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Ji-Hoon Kang
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Chang-Gu Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Department of Chemistry & Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyung-Sup Yoon
- Department of Chemistry & Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Kwang Sik Lee
- DSongpa R&D Center, Coreana Cosmetic Co., Ltd, Cheonan 31041, Republic of Korea
| | - Chun Mong Lee
- DSongpa R&D Center, Coreana Cosmetic Co., Ltd, Cheonan 31041, Republic of Korea
| | - Tae Yang Kim
- DSongpa R&D Center, Coreana Cosmetic Co., Ltd, Cheonan 31041, Republic of Korea
| | - Eun-Sook Yoo
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Hee-Kyoung Kang
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
140
|
You L, Li F, Sun Y, Luo L, Qin J, Wang T, Liu Y, Lai R, Li R, Guo X, Mai Q, Pan Y, Xu J, Li N. Extract of Acalypha australis L. inhibits lipid accumulation and ameliorates HFD-induced obesity in mice through regulating adipose differentiation by decreasing PPARγ and CEBP/α expression. Food Nutr Res 2021; 65:4246. [PMID: 33776618 PMCID: PMC7955518 DOI: 10.29219/fnr.v65.424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 11/06/2020] [Accepted: 12/29/2020] [Indexed: 01/16/2023] Open
Abstract
Background Obesity is a principal risk factor for the development of type 2 diabetes and cardiovascular diseases. Natural plants and/or foods play an important role in the management of obesity. Acalypha australis L. (AAL) is a kind of potherb popular among Asian populations, and it is also consumed as a food ingredient and traditional herbal medicine. Objective We investigated the effects of water extract from AAL on high-fat-diet (HFD)-induced obese mice and 3T3-L1 adipocytes to develop a new functional food material. Design Nine-week-old male mice were randomly divided into control (chow diet, n = 6) and HFD (n = 30) group. From 12-weeks onward, mice in the HFD group were further separated into model (saline, 6 mL/kg), simvastatin (0.11 mg/mL, 6 mL/kg), and AAL treatment (low, middle, and high dosage: 300, 600, and 900 mg/kg) group, with 6 animals per group, while mice in the control group were treated with saline (6 mL/kg). Food intake, body/fat weight, liver/kidney indexes, and lipid profiles were determined. Tissues were fixed with formalin for pathological examination. Western blotting and PCR were performed to evaluate the protein and mRNA expression in 3T3-L1 adipocytes. Oil Red O staining was used to determine lipid accumulation. Results AAL administration significantly suppressed body weight gain, and reduced fat pad weight and Lee’s index in obese mice, but had no effect on liver/kidney index. AAL also reduced serum cholesterol, triglyceride, and LDL-C and increased HDL-C levels. Histological analysis revealed that AAL significantly ameliorated lipid accumulation in the liver and subcutaneous adipose tissue. In vitro, Oil Red O staining showed that AAL inhibited adipose differentiation by down-regulating the gene and protein expression of PPARγ and C/EBPα. AAL also reversed HFD-induced intestinal dysbacteriosis. Conclusion AAL water-soluble extract has a significant anti-adipogenic effect in the HFD-induced obese mice model.
Collapse
Affiliation(s)
- Lang You
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Fengxia Li
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.,Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Sun
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Liang Luo
- Department of Critical Care Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jian Qin
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Tao Wang
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ruogu Lai
- Department of Rheumatology and Immunology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ruohan Li
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaoran Guo
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qiuyan Mai
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yihang Pan
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jianrong Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
141
|
Huang J, Huang J, Yin T, Lv H, Zhang P, Li H. Enterococcus faecium R0026 Combined with Bacillus subtilis R0179 Prevent Obesity-Associated Hyperlipidemia and Modulate Gut Microbiota in C57BL/6 Mice. J Microbiol Biotechnol 2021; 31:181-188. [PMID: 33144552 PMCID: PMC9706029 DOI: 10.4014/jmb.2009.09005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 01/09/2023]
Abstract
Bacillus subtilis and Enterococcus faecium are commonly used probiotics. This study aimed to identify the effect of live combined Bacillus subtilis R0179 and Enterococcus faecium R0026 (LCBE) on obesityassociated hyperlipidemia and gut microbiota in C57BL/6 mice. Forty male C57BL/6 mice were divided into four groups: normal group (N group), model group (M group), low-dose group (L group), and high-dose group (H group). Mice were gavaged with LCBE at 0.023 g/mice/day (L group) or 0.23 g/mice/day (H group) and fed with a high-fat diet for 8 weeks. In vitro E. faecium R0026 showed an ability to lower the low-concentration of cholesterol by 46%, and the ability to lower the highconcentration of cholesterol by 58%. LCBE significantly reduced the body weight gain, Lee index, brown fat index and body mass index of mice on a high-fat diet. Moreover, LCBE markedly improved serum lipids (including serum triglyceride, total cholesterol, low-density lipoprotein and highdensity lipoprotein) while also significantly reducing liver total cholesterol. Serum lipopolysaccharide and total bile acid in L and H groups decreased significantly compared with M group. PCR-DGGE analysis showed that the composition of gut microbiota in the treatment groups was improved. Akkermansia muciniphila was found in H group. The PCA result indicated a similar gut microbiota structure between LCBE treatment groups and normal group while the number of bands and Shannon diversity index increased significantly in the LCBE treatment groups. Finally, qPCR showed Bifidobacterium spp. increased significantly in H group compared with M group, LCBE alleviated liver steatosis and improved brown adipose tissue index.
Collapse
Affiliation(s)
- Jinli Huang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 6044, P.R. China
| | - Juan Huang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 6044, P.R. China
| | - Tianyi Yin
- First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Huiyun Lv
- First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Pengyu Zhang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 6044, P.R. China
| | - Huajun Li
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 6044, P.R. China,Corresponding author Phone: +86-411 86110305 Fax: +86-411-86110282 E-mail:
| |
Collapse
|
142
|
Qi M, Tan B, Wang J, Liao S, Deng Y, Ji P, Song T, Zha A, Yin Y. The microbiota-gut-brain axis: A novel nutritional therapeutic target for growth retardation. Crit Rev Food Sci Nutr 2021; 62:4867-4892. [PMID: 33523720 DOI: 10.1080/10408398.2021.1879004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growth retardation (GR), which commonly occurs in childhood, is a major health concern globally. However, the specific mechanism remains unclear. It has been increasingly recognized that changes in the gut microbiota may lead to GR through affecting the microbiota-gut-brain axis. Microbiota interacts with multiple factors such as birth to affect the growth of individuals. Microbiota communicates with the nerve system through chemical signaling (direct entry into the circulation system or stimulation of enteroendocrine cells) and nervous signaling (interaction with enteric nerve system and vagus nerve), which modulates appetite and immune response. Besides, they may also influence the function of enteric glial cells or lymphocytes and levels of systemic inflammatory cytokines. Environmental stress may cause leaky gut through perturbing the hypothalamic-pituitary-adrenal axis to further result in GR. Nutritional therapies involving probiotics and pre-/postbiotics are being investigated for helping the patients to overcome GR. In this review, we summarize the role of microbiota in GR with human and animal models. Then, existing and potential regulatory mechanisms are reviewed, especially the effect of microbiota-gut-brain axis. Finally, we propose nutritional therapeutic strategies for GR by the intervention of microbiota-gut-brain axis, which may provide novel perspectives for the treatment of GR in humans and animals.
Collapse
Affiliation(s)
- Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuankun Deng
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Peng Ji
- Department of Nutrition, University of California, Davis, California, USA
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Andong Zha
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
143
|
Impacts of gut microbiota on gestational diabetes mellitus: a comprehensive review. Eur J Nutr 2021; 60:2343-2360. [PMID: 33512587 DOI: 10.1007/s00394-021-02483-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a condition that seriously threatens mother and child health. The incidence of GDM has increased worldwide in the past decades. In addition, the complications of GDM such as type 2 diabetes (T2DM) and neonatal malformations could negatively affect the living quality of mothers and their children. AIM It has been widely known that the imbalance of gut microbiota or called 'gut dysbiosis' plays a key role in the development of insulin resistance and chronic low-grade inflammation in T2DM patients. However, the impacts of gut microbiota on GDM remain controversial. Here, we aim to comprehensively review the alterations of gut microbiota in GDM mothers and their offspring. RESULTS The alterations of Firmicutes/Bacteroidetes (F/B) ratio, short-chain fatty acid (SCFA)-producing bacteria, bacteria with probiotics properties and gram-negative lipopolysaccharide (LPS)-producing bacteria play a vital role in the development of GDM. The beneficial roles of gut microbiota modification (probiotics, synbiotics and lifestyle modification) as a treatment of GDM were found in some, but not all studies. CONCLUSION In the near future, gut microbiota modification may be considered as one of the standard treatments for GDM. Moreover, further studies regarding the specific gut microbiota that are associated with the early development of GDM are required. This may contribute to the novel diagnostic markers for early stages of GDM.
Collapse
|
144
|
Lv XC, Chen M, Huang ZR, Guo WL, Ai LZ, Bai WD, Yu XD, Liu YL, Rao PF, Ni L. Potential mechanisms underlying the ameliorative effect of Lactobacillus paracasei FZU103 on the lipid metabolism in hyperlipidemic mice fed a high-fat diet. Food Res Int 2021; 139:109956. [DOI: 10.1016/j.foodres.2020.109956] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
|
145
|
Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, Clément K. Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With Obesity, Lipid Metabolism, and Metabolic Health-Pathophysiology and Therapeutic Strategies. Gastroenterology 2021; 160:573-599. [PMID: 33253685 DOI: 10.1053/j.gastro.2020.10.057] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Changes in the intestinal microbiome have been associated with obesity and type 2 diabetes, in epidemiological studies and studies of the effects of fecal transfer in germ-free mice. We review the mechanisms by which alterations in the intestinal microbiome contribute to development of metabolic diseases, and recent advances, such as the effects of the microbiome on lipid metabolism. Strategies have been developed to modify the intestinal microbiome and reverse metabolic alterations, which might be used as therapies. We discuss approaches that have shown effects in mouse models of obesity and metabolic disorders, and how these might be translated to humans to improve metabolic health.
Collapse
Affiliation(s)
- Judith Aron-Wisnewsky
- Nutrition and Obesities: Systemic Approaches Research Unit (Nutriomics), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Paris, France; Nutrition Department, Assistante Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Centres de Recherche en Nutrition Humaine Ile de France, Paris, France; Department of Vascular Medicine, Amsterdam Universitair Medische Centra, location Academisch Medisch Centrum, and VUMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Moritz V Warmbrunn
- Department of Vascular Medicine, Amsterdam Universitair Medische Centra, location Academisch Medisch Centrum, and VUMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam Universitair Medische Centra, location Academisch Medisch Centrum, and VUMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches Research Unit (Nutriomics), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Paris, France; Nutrition Department, Assistante Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Centres de Recherche en Nutrition Humaine Ile de France, Paris, France.
| |
Collapse
|
146
|
High-coverage lipidomics for functional lipid and pathway analyses. Anal Chim Acta 2020; 1147:199-210. [PMID: 33485579 DOI: 10.1016/j.aca.2020.11.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Rapid advances in front-end separation approaches and analytical technologies have accelerated the development of lipidomics, particularly in terms of increasing analytical coverage to encompass an expanding repertoire of lipids within a single analytical approach. Developments in lipid pathway analysis, however, have somewhat lingered behind, primarily due to (1) the lack of coherent alignment between lipid identifiers in common databases versus that generated from experiments, owing to the differing structural resolution of lipids at molecular level that is specific to the analytical approaches adopted by various laboratories; (2) the immense complexity of lipid metabolic relationships that may entail head group changes, fatty acyls modifications of various forms (e.g. elongation, desaturation, oxidation), as well as active remodeling that demands a multidimensional, panoramic view to take into account all possibilities in lipid pathway analyses. Herein, we discuss current efforts undertaken to address these challenges, as well as alternative form of "pathway analyses" that may be particularly useful for uncovering functional lipid interactions under different biological contexts. Consolidating lipid pathway analyses will be indispensable in facilitating the transition of lipidomics from its prior role of phenotype validation to a hypothesis-generating tool that uncovers novel molecular targets to drive downstream mechanistic pursuits under biomedical settings.
Collapse
|
147
|
Li Y, Zhu Y, Wei H, Chen Y, Shang H. Study on the Diversity and Function of Gut Microbiota in Pigs Following Long-Term Antibiotic and Antibiotic-Free Breeding. Curr Microbiol 2020; 77:4114-4128. [PMID: 33067706 DOI: 10.1007/s00284-020-02240-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
In-feed antibiotics can influence intestinal microbial structures in born and early-life within a period. However, the impact of antibiotics on gut microbiota during long-term antibiotic-free and antibiotic breeding at porcine-fattening phase have not been studied extensively so far. Here, we conducted a systematic 16S rRNA gene sequencing-based study combined with metagenomic analysis to reveal the variation of diversity and function of gut microbiota between antibiotic-free (treatment group, TG) and antibiotic (a mixture of flavomycin and enramycin, control group, CG) breeding at various stages of fattening pigs. In the present study, Bacteroidetes, Firmicutes, and Proteobacteria phyla were the core microbiomes in fattening pig gut microbiota. The ratio between Firmicutes and Bacteroidetes significantly increased with age (P = 0.03). TG showed significantly higher relative abundance of Proteobacteria and Fibrobacteres phyla than CG. The microbial community can be divided into several notably clustered blocks based on cooperative and competitive correlations. These blocks centered on numerous special genera, which play essential roles in body development and disease prevention. TG showed obviously higher proportions of metabolic pathways related to metabolism, endocrine system, nervous system and excretory system, but pathways included carbohydrate metabolism and immune system diseases in CG. Collectively, this study has comprehensively demonstrated microbial diversities, differences and correlations among gut microbiota, microbial metabolism and gene functions during long-term antibiotic-free breeding. This work provides a novel resource and information with positive implications for pig husbandry production and disease prevention.
Collapse
Affiliation(s)
- Yao Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
- Shenzhen Kingsino Technology Co., Ltd, Shenzhen, 518107, Guangdong, China
| | - Yuhua Zhu
- Shenzhen Kingsino Technology Co., Ltd, Shenzhen, 518107, Guangdong, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hong Wei
- Shenzhen Kingsino Technology Co., Ltd, Shenzhen, 518107, Guangdong, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Haitao Shang
- Shenzhen Kingsino Technology Co., Ltd, Shenzhen, 518107, Guangdong, China.
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
148
|
Monascus purpureus-fermented common buckwheat protects against dyslipidemia and non-alcoholic fatty liver disease through the regulation of liver metabolome and intestinal microbiome. Food Res Int 2020; 136:109511. [DOI: 10.1016/j.foodres.2020.109511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
|
149
|
Lin TL, Lu CC, Lai WF, Wu TS, Lu JJ, Chen YM, Tzeng CM, Liu HT, Wei H, Lai HC. Role of gut microbiota in identification of novel TCM-derived active metabolites. Protein Cell 2020; 12:394-410. [PMID: 32929698 PMCID: PMC8106560 DOI: 10.1007/s13238-020-00784-w] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has been extensively used to ameliorate diseases in Asia for over thousands of years. However, owing to a lack of formal scientific validation, the absence of information regarding the mechanisms underlying TCMs restricts their application. After oral administration, TCM herbal ingredients frequently are not directly absorbed by the host, but rather enter the intestine to be transformed by gut microbiota. The gut microbiota is a microbial community living in animal intestines, and functions to maintain host homeostasis and health. Increasing evidences indicate that TCM herbs closely affect gut microbiota composition, which is associated with the conversion of herbal components into active metabolites. These may significantly affect the therapeutic activity of TCMs. Microbiota analyses, in conjunction with modern multiomics platforms, can together identify novel functional metabolites and form the basis of future TCM research.
Collapse
Affiliation(s)
- Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan, China
| | - Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City, 24205, Taiwan, China.,Department of Chest Medicine, Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, 24205, Taiwan, China
| | - Wei-Fan Lai
- Department of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan, China
| | - Ting-Shu Wu
- Department of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan, China.,Department of Laboratory Medicine and Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan, China.,Central Research Laboratory, Xiamen Chang Gung Hospital, Xiamen, 361026, China
| | - Jang-Jih Lu
- Department of Laboratory Medicine and Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan, China.,Central Research Laboratory, Xiamen Chang Gung Hospital, Xiamen, 361026, China
| | - Young-Mao Chen
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan, China
| | - Chi-Meng Tzeng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, China
| | - Hong-Tao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Hong Wei
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200435, China
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan, China. .,Department of Laboratory Medicine and Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan, China. .,Central Research Laboratory, Xiamen Chang Gung Hospital, Xiamen, 361026, China. .,Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan, 33302, Taiwan, China. .,Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Gueishan, Taoyuan, 33303, Taiwan, China.
| |
Collapse
|
150
|
Xu Y, Wang N, Tan HY, Li S, Zhang C, Zhang Z, Feng Y. Panax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKα/STAT3 signaling in diet-induced obesity. Theranostics 2020; 10:11302-11323. [PMID: 33042284 PMCID: PMC7532683 DOI: 10.7150/thno.47746] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Activation of the thermogenic program in white and brown adipocytes presents a promising avenue for increasing energy expenditure during the treatment of obesity. The endogenous mechanism for promoting thermogenesis in brown adipocytes or browning in white adipocytes has indicated that the gut microbiota is a crucial regulator of the host energy balance. However, whether the effects of the therapeutic intervention-induced modulation of the gut microbiota on adipocyte browning involved the regulation of leptin remains unclear. Method: The adipose features were analyzed by body composition analysis, infrared camera observations, transmission electron microscopy and H&E staining. The gene and protein expression in adipose tissue were detected by qRT-PCR, immunoblotting, immunohistochemistry and immunofluorescence staining. The gut microbiome signature was identified by 16S rRNA gene amplicon sequencing, and both mice with high-fat diet-induced obesity (DIO) and mice with antibiotics-induced microbiome depletion were subjected to fecal microbiota transplantation. Results: Treatment with Panax notoginseng saponins (PNS) shaped the murine gut microbiome by increasing the abundances of Akkermansia muciniphila and Parabacteroides distasonis, and as a result, DIO mice harbored a distal gut microbiota with a significantly increased capacity to reduce host adiposity. The PNS-induced modulation of the gut microbiota in DIO mice could increase brown adipose tissue (BAT) thermogenesis and beige adipocyte reconstruction by activating the leptin-AMPK/STAT3 signaling pathway, which results in the promotion of energy expenditure. Leptin has an essential influence on the anti-obesity effects of PNS. In cases of leptin deficiency, the PNS-induced modulation of the gut microbiota exerts negative effects on thermogenesis and browning in white adipose tissue (WAT), which indicates that PNS fail to reduce obesity in leptin gene-deficient mice. The PNS-induced modulation of the gut microbiota exerted a minimal effect on DIO mice with antibiotic-induced microbiome depletion, which confirmed the correlation between altered gut microbiota and the remodeling of adipose tissues in DIO mice. The direct influence of leptin on browning via the AMPKα/STAT3 signaling pathway in C3H101/2 cells supported our in vivo results that signalling through the leptin-AMPK/STAT3 pathway induced by the PNS-modulated gut microbiota was involved in beige adipocyte reconstruction. Conclusion: Our results revealed that leptin signaling is critical for alterations in microbiota-fat crosstalk and provide promising avenues for therapeutic intervention in the treatment of obesity.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Adipocytes, Beige/drug effects
- Adipocytes, Beige/metabolism
- Adipose Tissue, White/cytology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Akkermansia/genetics
- Akkermansia/isolation & purification
- Animals
- Bacteroidetes/genetics
- Bacteroidetes/isolation & purification
- Body Composition
- DNA, Bacterial/isolation & purification
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Energy Metabolism/drug effects
- Gastrointestinal Microbiome/drug effects
- Gastrointestinal Microbiome/physiology
- Humans
- Leptin/metabolism
- Male
- Mice
- Mice, Obese
- Obesity/drug therapy
- Obesity/etiology
- Obesity/pathology
- Panax notoginseng/chemistry
- RNA, Ribosomal, 16S/genetics
- STAT3 Transcription Factor/metabolism
- Saponins/administration & dosage
- Signal Transduction/drug effects
- Thermogenesis/drug effects
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong
| |
Collapse
|