101
|
Boby N, Cao X, Ransom A, Pace BT, Mabee C, Shroyer MN, Das A, Didier PJ, Srivastav SK, Porter E, Sha Q, Pahar B. Identification, Characterization, and Transcriptional Reprogramming of Epithelial Stem Cells and Intestinal Enteroids in Simian Immunodeficiency Virus Infected Rhesus Macaques. Front Immunol 2021; 12:769990. [PMID: 34887863 PMCID: PMC8650114 DOI: 10.3389/fimmu.2021.769990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Epithelial cell injury and impaired epithelial regeneration are considered key features in HIV pathogenesis and contribute to HIV-induced generalized immune activation. Understanding the molecular mechanisms underlying the disrupted epithelial regeneration might provide an alternative approach for the treatment of HIV-mediated enteropathy and immune activation. We have observed a significant increased presence of α defensin5+ (HD5) Paneth cells and proliferating Ki67+ epithelial cells as well as decreased expression of E-cadherin expression in epithelial cells during SIV infection. SIV infection did not significantly influence the frequency of LGR5+ stem cells, but the frequency of HD5+ cells was significantly higher compared to uninfected controls in jejunum. Our global transcriptomics analysis of enteroids provided novel information about highly significant changes in several important pathways like metabolic, TCA cycle, and oxidative phosphorylation, where the majority of the differentially expressed genes were downregulated in enteroids grown from chronically SIV-infected macaques compared to the SIV-uninfected controls. Despite the lack of significant reduction in LGR5+ stem cell population, the dysregulation of several intestinal stem cell niche factors including Notch, mTOR, AMPK and Wnt pathways as well as persistence of inflammatory cytokines and chemokines and loss of epithelial barrier function in enteroids further supports that SIV infection impacts on epithelial cell proliferation and intestinal homeostasis.
Collapse
Affiliation(s)
- Nongthombam Boby
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Xuewei Cao
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| | - Alyssa Ransom
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Barcley T Pace
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Christopher Mabee
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Monica N Shroyer
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | - Peter J Didier
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Sudesh K Srivastav
- Department of Biostatistics, Tulane University, New Orleans, LA, United States
| | - Edith Porter
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States.,Department of Tropical Medicine, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, United States
| |
Collapse
|
102
|
Strigli A, Gopalakrishnan S, Zeissig Y, Basic M, Wang J, Schwerd T, Doms S, Peuker K, Hartwig J, Harder J, Hönscheid P, Arnold P, Kurth T, Rost F, Petersen BS, Forster M, Franke A, Kelsen JR, Rohlfs M, Klein C, Muise AM, Warner N, Nambu R, Mayerle J, Török HP, Linkermann A, Muders MH, Baretton GB, Hampe J, Aust DE, Baines JF, Bleich A, Zeissig S. Deficiency in X-linked inhibitor of apoptosis protein promotes susceptibility to microbial triggers of intestinal inflammation. Sci Immunol 2021; 6:eabf7473. [PMID: 34739342 DOI: 10.1126/sciimmunol.abf7473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by inappropriate immune responses to the microbiota in genetically susceptible hosts, but little is known about the pathways that link individual genetic alterations to microbiota-dependent inflammation. Here, we demonstrated that the loss of X-linked inhibitor of apoptosis protein (XIAP), a gene associated with Mendelian IBD, rendered Paneth cells sensitive to microbiota-, tumor necrosis factor (TNF)–, receptor-interacting protein kinase 1 (RIPK1)–, and RIPK3-dependent cell death. This was associated with deficiency in Paneth cell–derived antimicrobial peptides and alterations in the stratification and composition of the microbiota. Loss of XIAP was not sufficient to elicit intestinal inflammation but provided susceptibility to pathobionts able to promote granulomatous ileitis, which could be prevented by administration of a Paneth cell–derived antimicrobial peptide. These data reveal a pathway critical for host-microbial cross-talk, which is required for intestinal homeostasis and the prevention of inflammation and which is amenable to therapeutic targeting.
Collapse
Affiliation(s)
- Anne Strigli
- Center for Regenerative Therapies, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Shreya Gopalakrishnan
- Center for Regenerative Therapies, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Yvonne Zeissig
- Department of General Pediatrics, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Jun Wang
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany.,CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tobias Schwerd
- Department of Pediatrics, Dr von Hauner Children's Hospital, LMU Munich, 80337 Munich, Germany
| | - Shauni Doms
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
| | - Kenneth Peuker
- Center for Regenerative Therapies, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Jelka Hartwig
- Center for Regenerative Therapies, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Jürgen Harder
- Department of Dermatology, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Pia Hönscheid
- Institute of Pathology, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Fabian Rost
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Center for Information Services and High Performance Computing (ZIH), Technische Universität (TU) Dresden, 01602 Dresden, Germany
| | | | - Michael Forster
- Institute for Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | - Andre Franke
- Institute for Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | - Judith R Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meino Rohlfs
- Department of Pediatrics, Dr von Hauner Children's Hospital, LMU Munich, 80337 Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr von Hauner Children's Hospital, LMU Munich, 80337 Munich, Germany
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Department of Pediatrics, Institute of Medical Science and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Center, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Ryusuke Nambu
- SickKids Inflammatory Bowel Disease Center, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, Saitama 330-8777, Japan
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Helga-Paula Török
- Department of Medicine II, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Medicine III, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Michael H Muders
- Institute of Pathology, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Jochen Hampe
- Center for Regenerative Therapies, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Daniela E Aust
- Institute of Pathology, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Tumor and Normal Tissue Bank of the University Cancer Center (UCC), University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Sebastian Zeissig
- Center for Regenerative Therapies, Technische Universität (TU) Dresden, 01307 Dresden, Germany.,Department of Medicine I, University Medical Center Dresden, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| |
Collapse
|
103
|
Kłos P, Dabravolski SA. The Role of Mitochondria Dysfunction in Inflammatory Bowel Diseases and Colorectal Cancer. Int J Mol Sci 2021; 22:11673. [PMID: 34769108 PMCID: PMC8584106 DOI: 10.3390/ijms222111673] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Inflammatory bowel disease (IBD) is one of the leading gut chronic inflammation disorders, especially prevalent in Western countries. Recent research suggests that mitochondria play a crucial role in IBD development and progression to the more severe disease-colorectal cancer (CRC). In this review, we focus on the role of mitochondrial mutations and dysfunctions in IBD and CRC. In addition, main mitochondria-related molecular pathways involved in IBD to CRC transition are discussed. Additionally, recent publications dedicated to mitochondria-targeted therapeutic approaches to cure IBD and prevent CRC progression are discussed.
Collapse
Affiliation(s)
- Patrycja Kłos
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 72 Al. Powstańców Wlkp., 70-111 Szczecin, Poland;
| | - Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Str., 210026 Vitebsk, Belarus
| |
Collapse
|
104
|
Ho GT, Theiss AL. Mitochondria and Inflammatory Bowel Diseases: Toward a Stratified Therapeutic Intervention. Annu Rev Physiol 2021; 84:435-459. [PMID: 34614372 DOI: 10.1146/annurev-physiol-060821-083306] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria serve numerous critical cellular functions, rapidly responding to extracellular stimuli and cellular demands while dynamically communicating with other organelles. Mitochondrial function in the gastrointestinal epithelium plays a critical role in maintaining intestinal health. Emerging studies implicate the involvement of mitochondrial dysfunction in inflammatory bowel disease (IBD). This review presents mitochondrial metabolism, function, and quality control that converge in intestinal epithelial stemness, differentiation programs, barrier integrity, and innate immunity to influence intestinal inflammation. Intestinal and disease characteristics that set the stage for mitochondrial dysfunction being a key factor in IBD, and in turn, pathogenic mitochondrial mechanisms influencing and potentiating the development of IBD, are discussed. These findings establish the basis for potential mitochondrial-targeted interventions for IBD therapy. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gwo-Tzer Ho
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA;
| |
Collapse
|
105
|
Zhang MM, Yang KL, Cui YC, Zhou YS, Zhang HR, Wang Q, Ye YJ, Wang S, Jiang KW. Current Trends and Research Topics Regarding Intestinal Organoids: An Overview Based on Bibliometrics. Front Cell Dev Biol 2021; 9:609452. [PMID: 34414174 PMCID: PMC8369504 DOI: 10.3389/fcell.2021.609452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/08/2021] [Indexed: 01/10/2023] Open
Abstract
Currently, research on intestinal diseases is mainly based on animal models and cell lines in monolayers. However, these models have drawbacks that limit scientific advances in this field. Three-dimensional (3D) culture systems named organoids are emerging as a reliable research tool for recapitulating the human intestinal epithelium and represent a unique platform for patient-specific drug testing. Intestinal organoids (IOs) are crypt–villus structures that can be derived from adult intestinal stem cells (ISCs), embryonic stem cells (ESCs), or induced pluripotent stem cells (iPSCs) and have the potential to serve as a platform for individualized medicine and research. However, this emerging field has not been bibliometric summarized to date. Here, we performed a bibliometric analysis of the Web of Science Core Collection (WoSCC) database to evaluate 5,379 publications concerning the use of organoids; the studies were divided into four clusters associated with the current situation and future directions for the application of IOs. Based on the results of our bibliometric analysis of IO applications, we systematically summarized the latest advances and analyzed the limitations and prospects.
Collapse
Affiliation(s)
- Meng-Meng Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Ke-Lu Yang
- Evidence-Based Nursing Center, School of Nursing, Lanzhou University, Lanzhou, China
| | - Yan-Cheng Cui
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Yu-Shi Zhou
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Hao-Ran Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Quan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Ying-Jiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Ke-Wei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| |
Collapse
|
106
|
Modulation of intestinal stem cell homeostasis by nutrients: a novel therapeutic option for intestinal diseases. Nutr Res Rev 2021; 35:150-158. [PMID: 34100341 DOI: 10.1017/s0954422421000172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Intestinal stem cells, which are capable of both self-renewal and differentiation to mature cell types, are responsible for maintaining intestinal epithelial homeostasis. Recent evidence indicates that these processes are mediated, in part, through nutritional status in response to diet. Diverse dietary patterns including caloric restriction, fasting, high-fat diets, ketogenic diets and high-carbohydrate diets as well as other nutrients control intestinal stem cell self-renewal and differentiation through nutrient-sensing pathways such as mammalian target of rapamycin and AMP-activated kinase. Herein, we summarise the current understanding of how intestinal stem cells contribute to intestinal epithelial homeostasis and diseases. We also discuss the effects of diet and nutrient-sensing pathways on intestinal stem cell self-renewal and differentiation, as well as their potential application in the prevention and treatment of intestinal diseases.
Collapse
|
107
|
Targeting Mitochondrial Damage as a Therapeutic for Ileal Crohn's Disease. Cells 2021; 10:cells10061349. [PMID: 34072441 PMCID: PMC8226558 DOI: 10.3390/cells10061349] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Paneth cell defects in Crohn's disease (CD) patients (called the Type I phenotype) are associated with worse clinical outcomes. Recent studies have implicated mitochondrial dysfunction in Paneth cells as a mediator of ileitis in mice. We hypothesized that CD Paneth cells exhibit impaired mitochondrial health and that mitochondrial-targeted therapeutics may provide a novel strategy for ileal CD. Terminal ileal mucosal biopsies from adult CD and non-IBD patients were characterized for Paneth cell phenotyping and mitochondrial damage. To demonstrate the response of mitochondrial-targeted therapeutics in CD, biopsies were treated with vehicle or Mito-Tempo, a mitochondrial-targeted antioxidant, and RNA transcriptome was analyzed. During active CD inflammation, the epithelium exhibited mitochondrial damage evident in Paneth cells, goblet cells, and enterocytes. Independent of inflammation, Paneth cells in Type I CD patients exhibited mitochondrial damage. Mito-Tempo normalized the expression of interleukin (IL)-17/IL-23, lipid metabolism, and apoptotic gene signatures in CD patients to non-IBD levels. When stratified by Paneth cell phenotype, the global tissue response to Mito-Tempo in Type I patients was associated with innate immune, lipid metabolism, and G protein-coupled receptor (GPCR) gene signatures. Targeting impaired mitochondria as an underlying contributor to inflammation provides a novel treatment approach for CD.
Collapse
|
108
|
Bensemmane L, Squiban C, Demarquay C, Mathieu N, Benderitter M, Le Guen B, Milliat F, Linard C. The stromal vascular fraction mitigates radiation-induced gastrointestinal syndrome in mice. Stem Cell Res Ther 2021; 12:309. [PMID: 34051871 PMCID: PMC8164266 DOI: 10.1186/s13287-021-02373-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/09/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The intestine is particularly sensitive to moderate-high radiation dose and the development of gastrointestinal syndrome (GIS) leads to the rapid loss of intestinal mucosal integrity, resulting in bacterial infiltration, sepsis that comprise patient survival. There is an urgent need for effective and rapid therapeutic countermeasures. The stromal vascular fraction (SVF) derived from adipose tissue is an easily accessible source of cells with angiogenic, anti-inflammatory and regenerative properties. We studied the therapeutic impact of SVF and its action on the intestinal stem cell compartment. METHODS Mice exposed to the abdominal radiation (18 Gy) received a single intravenous injection of stromal vascular fraction (SVF) (2.5 × 106 cells), obtained by enzymatic digestion of inguinal fat tissue, on the day of irradiation. Mortality was evaluated as well as intestinal regeneration by histological analyses and absorption function. RESULTS The SVF treatment limited the weight loss of the mice and inhibited the intestinal permeability and mortality after abdominal irradiation. Histological analyses showed that SVF treatment stimulated the regeneration of the epithelium by promoting numerous enlarged hyperproliferative zones. SVF restored CD24+/lysozyme- and Paneth cell populations in the ISC compartment with the presence of Paneth Ki67+ cells. SVF has an anti-inflammatory effect by repressing pro-inflammatory cytokines, increasing M2 macrophages in the ileum and anti-inflammatory monocyte subtypes CD11b+Ly6clowCX3CR1high in the spleen. CONCLUSIONS Through the pleiotropic effects that contribute to limiting radiation-induced lethality, SVF opens up attractive prospects for the treatment of emergency GIS.
Collapse
Affiliation(s)
- Lydia Bensemmane
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Claire Squiban
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Christelle Demarquay
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Noëlle Mathieu
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | | | - Fabien Milliat
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Christine Linard
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France.
| |
Collapse
|
109
|
van der Lelie D, Oka A, Taghavi S, Umeno J, Fan TJ, Merrell KE, Watson SD, Ouellette L, Liu B, Awoniyi M, Lai Y, Chi L, Lu K, Henry CS, Sartor RB. Rationally designed bacterial consortia to treat chronic immune-mediated colitis and restore intestinal homeostasis. Nat Commun 2021; 12:3105. [PMID: 34050144 PMCID: PMC8163890 DOI: 10.1038/s41467-021-23460-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Environmental factors, mucosal permeability and defective immunoregulation drive overactive immunity to a subset of resident intestinal bacteria that mediate multiple inflammatory conditions. GUT-103 and GUT-108, live biotherapeutic products rationally designed to complement missing or underrepresented functions in the dysbiotic microbiome of IBD patients, address upstream targets, rather than targeting a single cytokine to block downstream inflammation responses. GUT-103, composed of 17 strains that synergistically provide protective and sustained engraftment in the IBD inflammatory environment, prevented and treated chronic immune-mediated colitis. Therapeutic application of GUT-108 reversed established colitis in a humanized chronic T cell-mediated mouse model. It decreased pathobionts while expanding resident protective bacteria; produced metabolites promoting mucosal healing and immunoregulatory responses; decreased inflammatory cytokines and Th-1 and Th-17 cells; and induced interleukin-10-producing colonic regulatory cells, and IL-10-independent homeostatic pathways. We propose GUT-108 for treating and preventing relapse for IBD and other inflammatory conditions characterized by unbalanced microbiota and mucosal permeability.
Collapse
Affiliation(s)
| | - Akihiko Oka
- Departments of Medicine, Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Shimane, Japan
| | | | - Junji Umeno
- Departments of Medicine, Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | | | | | | | | | - Bo Liu
- Departments of Medicine, Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Muyiwa Awoniyi
- Departments of Medicine, Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liang Chi
- Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - R Balfour Sartor
- Departments of Medicine, Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
110
|
Liu TC, Kern JT, Jain U, Sonnek NM, Xiong S, Simpson KF, VanDussen KL, Winkler ES, Haritunians T, Malique A, Lu Q, Sasaki Y, Storer C, Diamond MS, Head RD, McGovern DPB, Stappenbeck TS. Western diet induces Paneth cell defects through microbiome alterations and farnesoid X receptor and type I interferon activation. Cell Host Microbe 2021; 29:988-1001.e6. [PMID: 34010595 DOI: 10.1016/j.chom.2021.04.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Intestinal Paneth cells modulate innate immunity and infection. In Crohn's disease, genetic mutations together with environmental triggers can disable Paneth cell function. Here, we find that a western diet (WD) similarly leads to Paneth cell dysfunction through mechanisms dependent on the microbiome and farnesoid X receptor (FXR) and type I interferon (IFN) signaling. Analysis of multiple human cohorts suggests that obesity is associated with Paneth cell dysfunction. In mouse models, consumption of a WD for as little as 4 weeks led to Paneth cell dysfunction. WD consumption in conjunction with Clostridium spp. increased the secondary bile acid deoxycholic acid levels in the ileum, which in turn inhibited Paneth cell function. The process required excess signaling of both FXR and IFN within intestinal epithelial cells. Our findings provide a mechanistic link between poor diet and inhibition of gut innate immunity and uncover an effect of FXR activation in gut inflammation.
Collapse
Affiliation(s)
- Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Justin T Kern
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Umang Jain
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Naomi M Sonnek
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Shanshan Xiong
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Katherine F Simpson
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kelli L VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Talin Haritunians
- The F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Atika Malique
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Qiuhe Lu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Chad Storer
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Richard D Head
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Dermot P B McGovern
- The F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
111
|
Sun D, Bai R, Zhou W, Yao Z, Liu Y, Tang S, Ge X, Luo L, Luo C, Hu GF, Sheng J, Xu Z. Angiogenin maintains gut microbe homeostasis by balancing α-Proteobacteria and Lachnospiraceae. Gut 2021; 70:666-676. [PMID: 32843357 PMCID: PMC7904960 DOI: 10.1136/gutjnl-2019-320135] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 06/18/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Antimicrobial peptides (AMPs) play essential roles in maintaining gut health and are associated with IBD. This study is to elucidate the effect of angiogenin (ANG), an intestine-secreted AMP, on gut microbiota and its relevance with IBD. DESIGN The effect of ANG on microbiota and its contribution to colitis were evaluated in different colitis models with co-housing and faecal microbiota transplantation. ANG-regulated bacteria were determined by 16S rDNA sequencing and their functions in colitis were analysed by bacterial colonisation. The species-specific antimicrobial activity of ANG and its underlying mechanism were further investigated with microbiological and biochemical methods. ANG level and the key bacteria were characterised in IBD faecal samples. RESULTS ANG regulated microbiota composition and inhibited intestinal inflammation. Specifically, Ang1 deficiency in mice led to a decrease in the protective gut commensal strains of Lachnospiraceae but an increase in the colitogenic strains of α-Proteobacteria. Direct binding of ANG to α-Proteobacteria resulted in lethal disruption of bacterial membrane integrity, and consequently promoted the growth of Lachnospiraceae, which otherwise was antagonised by α-Proteobacteria. Oral administration of ANG1 reversed the dysbiosis and attenuated the severity of colitis in Ang1-deficient mice. The correlation among ANG, the identified bacteria and IBD status was established in patients. CONCLUSION These findings demonstrate a novel role of ANG in shaping gut microbe composition and thus maintaining gut health, suggesting that the ANG-microbiota axis could be developed as a potential preventive and/or therapeutic approach for dysbiosis-related gut diseases.
Collapse
Affiliation(s)
- Desen Sun
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems and Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Rongpan Bai
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengrong Yao
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yaxin Liu
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shasha Tang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaolong Ge
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liang Luo
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chi Luo
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Bioelectromagnetics Laboratory, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Guo-Fu Hu
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Jinghao Sheng
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems and Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
- Bioelectromagnetics Laboratory, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Zhengping Xu
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems and Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
- Bioelectromagnetics Laboratory, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| |
Collapse
|
112
|
Ahmed M, Metwaly A, Haller D. Modeling microbe-host interaction in the pathogenesis of Crohn's disease. Int J Med Microbiol 2021; 311:151489. [PMID: 33676240 DOI: 10.1016/j.ijmm.2021.151489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/19/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Alterations in the gut microbiota structure and function are thought to play an important role in the pathogenesis of Crohn's disease (CD). The rapid advancement of high-throughput sequencing technologies led to the identification of microbiome risk signatures associated with distinct disease phenotypes and progressing disease entities. Functional validation of the identified microbiome signatures is essential to understand the underlying mechanisms of microbe-host interactions. Germfree mouse models are available to study the functional role of disease-conditioning complex gut microbial ecosystems (dysbiosis) or pathobionts (single bacteria) in the pathogenesis of CD-like inflammation. Here, we discuss the clinical and mechanistic relevance and limitations of gnotobiotic mouse models in the context of CD. In addition, we will address the role of diet as an essential external factor modulating microbiome changes, potentially underlying disease initiation and development.
Collapse
Affiliation(s)
- Mohamed Ahmed
- Technical University of Munich, Chair of Nutrition and Immunology, School of Life Sciences, 85354 Freising, Germany
| | - Amira Metwaly
- Technical University of Munich, Chair of Nutrition and Immunology, School of Life Sciences, 85354 Freising, Germany
| | - Dirk Haller
- Technical University of Munich, Chair of Nutrition and Immunology, School of Life Sciences, 85354 Freising, Germany; Technical University of Munich, ZIEL Institute for Food & Health, Germany.
| |
Collapse
|
113
|
Stange EF. Mitochondria in Ulcerative Colitis. Cell Mol Gastroenterol Hepatol 2021; 12:352-353. [PMID: 33684385 PMCID: PMC8257453 DOI: 10.1016/j.jcmgh.2021.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/10/2022]
Affiliation(s)
- Eduard F. Stange
- Correspondence Address correspondence to: Eduard F. Stange, MD, Internal Medicine I, University of Tübingen, Otfried-Müller-Straße 10, 72076 Tübingen, Germany.
| |
Collapse
|
114
|
Wang D, Odle J, Liu Y. Metabolic Regulation of Intestinal Stem Cell Homeostasis. Trends Cell Biol 2021; 31:325-327. [PMID: 33648839 DOI: 10.1016/j.tcb.2021.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/01/2021] [Indexed: 01/12/2023]
Abstract
The balance between self-renewal and differentiation of intestinal stem cells is essential for intestinal epithelial homeostasis, which can be regulated by dietary cues. Recent evidences indicate that metabolic pathways sense changes in nutritional status to control stem cell fate, which may provide new clues for the prevention of intestinal diseases.
Collapse
Affiliation(s)
- Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China.
| |
Collapse
|
115
|
Patergnani S, Bouhamida E, Leo S, Pinton P, Rimessi A. Mitochondrial Oxidative Stress and "Mito-Inflammation": Actors in the Diseases. Biomedicines 2021; 9:biomedicines9020216. [PMID: 33672477 PMCID: PMC7923430 DOI: 10.3390/biomedicines9020216] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
A decline in mitochondrial redox homeostasis has been associated with the development of a wide range of inflammatory-related diseases. Continue discoveries demonstrate that mitochondria are pivotal elements to trigger inflammation and stimulate innate immune signaling cascades to intensify the inflammatory response at front of different stimuli. Here, we review the evidence that an exacerbation in the levels of mitochondrial-derived reactive oxygen species (ROS) contribute to mito-inflammation, a new concept that identifies the compartmentalization of the inflammatory process, in which the mitochondrion acts as central regulator, checkpoint, and arbitrator. In particular, we discuss how ROS contribute to specific aspects of mito-inflammation in different inflammatory-related diseases, such as neurodegenerative disorders, cancer, pulmonary diseases, diabetes, and cardiovascular diseases. Taken together, these observations indicate that mitochondrial ROS influence and regulate a number of key aspects of mito-inflammation and that strategies directed to reduce or neutralize mitochondrial ROS levels might have broad beneficial effects on inflammatory-related diseases.
Collapse
Affiliation(s)
- Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
| | - Esmaa Bouhamida
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
| | - Sara Leo
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
116
|
Redhai S, Boutros M. The Role of Organelles in Intestinal Function, Physiology, and Disease. Trends Cell Biol 2021; 31:485-499. [PMID: 33551307 DOI: 10.1016/j.tcb.2021.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
The intestine maintains homeostasis by coordinating internal biological processes to adjust to fluctuating external conditions. The intestinal epithelium is continuously renewed and comprises multiple cell types, including absorptive cells, secretory cells, and resident stem cells. An important feature of this organ is its ability to coordinate many processes including cell proliferation, differentiation, regeneration, damage/stress response, immune activity, feeding behavior, and age-related changes by using conserved signaling pathways. However, the subcellular spatial organization of these signaling events and the organelles involved has only recently been studied in detail. Here we discuss how organelles of intestinal cells serve to initiate, mediate, and terminate signals, that are vital for homeostasis.
Collapse
Affiliation(s)
- Siamak Redhai
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| |
Collapse
|
117
|
Lee HS, Lobbestael E, Vermeire S, Sabino J, Cleynen I. Inflammatory bowel disease and Parkinson's disease: common pathophysiological links. Gut 2021; 70:408-417. [PMID: 33067333 DOI: 10.1136/gutjnl-2020-322429] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease and Parkinson's disease are chronic progressive disorders that mainly affect different organs: the gut and brain, respectively. Accumulating evidence has suggested a bidirectional link between gastrointestinal inflammation and neurodegeneration, in accordance with the concept of the 'gut-brain axis'. Moreover, recent population-based studies have shown that inflammatory bowel disease might increase the risk of Parkinson's disease. Although the precise mechanisms underlying gut-brain interactions remain elusive, some of the latest findings have begun to explain the link. Several genetic loci are shared between both disorders with a similar direction of effect on the risk of both diseases. The most interesting example is LRRK2 (leucine-rich repeat kinase 2), initially identified as a causal gene in Parkinson's disease, and recently also implicated in Crohn's disease. In this review, we highlight recent findings on the link between these seemingly unrelated diseases with shared genetic susceptibility. We discuss supporting and conflicting data obtained from epidemiological and genetic studies along with remaining questions and concerns. In addition, we discuss possible biological links including the gut-brain axis, microbiota, autoimmunity, mitochondrial function and autophagy.
Collapse
Affiliation(s)
- Ho-Su Lee
- Department of Human Genetics, KU Leuven, Leuven, Belgium.,Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Evy Lobbestael
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - João Sabino
- Department of Chronic diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
118
|
Sünderhauf A, Hicken M, Schlichting H, Skibbe K, Ragab M, Raschdorf A, Hirose M, Schäffler H, Bokemeyer A, Bettenworth D, Savitt AG, Perner S, Ibrahim S, Peerschke EI, Ghebrehiwet B, Derer S, Sina C. Loss of Mucosal p32/gC1qR/HABP1 Triggers Energy Deficiency and Impairs Goblet Cell Differentiation in Ulcerative Colitis. Cell Mol Gastroenterol Hepatol 2021; 12:229-250. [PMID: 33515804 PMCID: PMC8135049 DOI: 10.1016/j.jcmgh.2021.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Cell differentiation in the colonic crypt is driven by a metabolic switch from glycolysis to mitochondrial oxidation. Mitochondrial and goblet cell dysfunction have been attributed to the pathology of ulcerative colitis (UC). We hypothesized that p32/gC1qR/HABP1, which critically maintains oxidative phosphorylation, is involved in goblet cell differentiation and hence in the pathogenesis of UC. METHODS Ex vivo, goblet cell differentiation in relation to p32 expression and mitochondrial function was studied in tissue biopsies from UC patients versus controls. Functional studies were performed in goblet cell-like HT29-MTX cells in vitro. Mitochondrial respiratory chain complex V-deficient, ATP8 mutant mice were utilized as a confirmatory model. Nutritional intervention studies were performed in C57BL/6 mice. RESULTS In UC patients in remission, colonic goblet cell differentiation was significantly decreased compared to controls in a p32-dependent manner. Plasma/serum L-lactate and colonic pAMPK level were increased, pointing at high glycolytic activity and energy deficiency. Consistently, p32 silencing in mucus-secreting HT29-MTX cells abolished butyrate-induced differentiation and induced a shift towards glycolysis. In ATP8 mutant mice, colonic p32 expression correlated with loss of differentiated goblet cells, resulting in a thinner mucus layer. Conversely, feeding mice an isocaloric glucose-free, high-protein diet increased mucosal energy supply that promoted colonic p32 level, goblet cell differentiation and mucus production. CONCLUSION We here describe a new molecular mechanism linking mucosal energy deficiency in UC to impaired, p32-dependent goblet cell differentiation that may be therapeutically prevented by nutritional intervention.
Collapse
Affiliation(s)
- Annika Sünderhauf
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Maren Hicken
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Heidi Schlichting
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Kerstin Skibbe
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Mohab Ragab
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Annika Raschdorf
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Misa Hirose
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Holger Schäffler
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Arne Bokemeyer
- Gastroenterology and Hepatology, Department of Medicine B, University Hospital Münster, Münster, Germany
| | - Dominik Bettenworth
- Gastroenterology and Hepatology, Department of Medicine B, University Hospital Münster, Münster, Germany
| | - Anne G Savitt
- Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, Lübeck, Germany; Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Saleh Ibrahim
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ellinor I Peerschke
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Stefanie Derer
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| | - Christian Sina
- Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; Division of Nutritional Medicine, 1st Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| |
Collapse
|
119
|
Shieh J, Kobayashi S, Yang VW. Aberrant differentiation of intestinal stem cells due to inflammation-induced mitochondrial dysfunction predicts postoperative recurrence of Crohn's disease. ACTA ACUST UNITED AC 2021; 3. [PMID: 33447825 PMCID: PMC7806188 DOI: 10.21037/dmr-2020-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jason Shieh
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Soma Kobayashi
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Vincent W Yang
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
120
|
Urbauer E, Rath E, Haller D. Mitochondrial Metabolism in the Intestinal Stem Cell Niche-Sensing and Signaling in Health and Disease. Front Cell Dev Biol 2021; 8:602814. [PMID: 33469536 PMCID: PMC7813778 DOI: 10.3389/fcell.2020.602814] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial metabolism, dynamics, and stress responses in the intestinal stem cell niche play a pivotal role in regulating intestinal epithelial cell homeostasis, including self-renewal and differentiation. In addition, mitochondria are increasingly recognized for their involvement in sensing the metabolic environment and their capability of integrating host and microbial-derived signals. Gastrointestinal diseases such as inflammatory bowel diseases and colorectal cancer are characterized by alterations of intestinal stemness, the microbial milieu, and mitochondrial metabolism. Thus, mitochondrial function emerges at the interface of determining health and disease, and failure to adapt mitochondrial function to environmental cues potentially results in aberrant tissue responses. A mechanistic understanding of the underlying role of mitochondrial fitness in intestinal pathologies is still in its infancy, and therapies targeting mitochondrial (dys)function are currently lacking. This review discusses mitochondrial signaling and metabolism in intestinal stem cells and Paneth cells as critical junction translating host- and microbe-derived signals into epithelial responses. Consequently, we propose mitochondrial fitness as a hallmark for intestinal epithelial cell plasticity, determining the regenerative capacity of the epithelium.
Collapse
Affiliation(s)
- Elisabeth Urbauer
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany.,ZIEL Institute for Food & Health, Technische Universität München, Munich, Germany
| |
Collapse
|
121
|
Ewe CK, Alok G, Rothman JH. Stressful development: integrating endoderm development, stress, and longevity. Dev Biol 2020; 471:34-48. [PMID: 33307045 DOI: 10.1016/j.ydbio.2020.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
In addition to performing digestion and nutrient absorption, the intestine serves as one of the first barriers to the external environment, crucial for protecting the host from environmental toxins, pathogenic invaders, and other stress inducers. The gene regulatory network (GRN) governing embryonic development of the endoderm and subsequent differentiation and maintenance of the intestine has been well-documented in C. elegans. A key regulatory input that initiates activation of the embryonic GRN for endoderm and mesoderm in this animal is the maternally provided SKN-1 transcription factor, an ortholog of the vertebrate Nrf1 and 2, which, like C. elegans SKN-1, perform conserved regulatory roles in mediating a variety of stress responses across metazoan phylogeny. Other key regulatory factors in early gut development also participate in stress response as well as in innate immunity and aging and longevity. In this review, we discuss the intersection between genetic nodes that mediate endoderm/intestine differentiation and regulation of stress and homeostasis. We also consider how direct signaling from the intestine to the germline, in some cases involving SKN-1, facilitates heritable epigenetic changes, allowing transmission of adaptive stress responses across multiple generations. These connections between regulation of endoderm/intestine development and stress response mechanisms suggest that varying selective pressure exerted on the stress response pathways may influence the architecture of the endoderm GRN, thereby leading to genetic and epigenetic variation in early embryonic GRN regulatory events.
Collapse
Affiliation(s)
- Chee Kiang Ewe
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Geneva Alok
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
122
|
Yang E, Shen J. The roles and functions of Paneth cells in Crohn's disease: A critical review. Cell Prolif 2020; 54:e12958. [PMID: 33174662 PMCID: PMC7791172 DOI: 10.1111/cpr.12958] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/15/2020] [Accepted: 10/24/2020] [Indexed: 12/13/2022] Open
Abstract
Paneth cells (PCs) are located at the base of small intestinal crypts and secrete the α‐defensins, human α‐defensin 5 (HD‐5) and human α‐defensin 6 (HD‐6) in response to bacterial, cholinergic and other stimuli. The α‐defensins are broad‐spectrum microbicides that play critical roles in controlling gut microbiota and maintaining intestinal homeostasis. Inflammatory bowel disease, including ulcerative colitis and Crohn's disease (CD), is a complicated autoimmune disorder. The pathogenesis of CD involves genetic factors, environmental factors and microflora. Surprisingly, with regard to genetic factors, many susceptible genes and pathogenic pathways of CD, including nucleotide‐binding oligomerization domain 2 (NOD2), autophagy‐related 16‐like 1 (ATG16L1), immunity‐related guanosine triphosphatase family M (IRGM), wingless‐related integration site (Wnt), leucine‐rich repeat kinase 2 (LRRK2), histone deacetylases (HDACs), caspase‐8 (Casp8) and X‐box‐binding protein‐1 (XBP1), are relevant to PCs. As the underlying mechanisms are being unravelled, PCs are identified as the central element of CD pathogenesis, integrating factors among microbiota, intestinal epithelial barrier dysfunction and the immune system. In the present review, we demonstrate how these genes and pathways regulate CD pathogenesis via their action on PCs and what treatment modalities can be applied to deal with these PC‐mediated pathogenic processes.
Collapse
Affiliation(s)
- Erpeng Yang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
123
|
Michaudel C, Sokol H. The Gut Microbiota at the Service of Immunometabolism. Cell Metab 2020; 32:514-523. [PMID: 32946809 DOI: 10.1016/j.cmet.2020.09.004] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/10/2020] [Accepted: 08/27/2020] [Indexed: 01/10/2023]
Abstract
The gut microbiota is implicated in immune system functions. Regulation of the metabolic processes occurring in immune cells is crucial for the maintenance of homeostasis and immunopathogenesis. Emerging data demonstrate that the gut microbiota is an actor in immunometabolism, notably through the effect of metabolites such as short-chain fatty acids, bile acids, and tryptophan metabolites. In this Perspective, we discuss the impact of the gut microbiota on the intracellular metabolism of the different subtypes of immune cells, including intestinal epithelial cells. Besides the effects on health, we discuss the potential consequences in infection context and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Chloé Michaudel
- INRA, UMR1319 Micalis and AgroParisTech, Jouy en Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Harry Sokol
- INRA, UMR1319 Micalis and AgroParisTech, Jouy en Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, 75012 Paris, France.
| |
Collapse
|
124
|
Roh TT, Chen Y, Rudolph S, Gee M, Kaplan DL. InVitro Models of Intestine Innate Immunity. Trends Biotechnol 2020; 39:274-285. [PMID: 32854949 DOI: 10.1016/j.tibtech.2020.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Animal models have delivered critical insights into mechanisms underlying the intestinal innate immune system; however, inherent differences exist between human and animal systems. To further understand the intestine innate immune system, there is a growing need for in vitro tissue model systems using human cells. A critical feature of in vitro cell and tissue models is the subepithelial environment, which contains additional cell types and includes 2D, microfluidic, organoid, and 3D tissue models. Where mouse models for the study of intestinal innate immune systems fall short, developments from in vitro models continue to grow in importance to aid efforts to understand this system in the context of disease and potential treatments.
Collapse
Affiliation(s)
- Terrence T Roh
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Sara Rudolph
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Michelle Gee
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
125
|
Mei X, Gu M, Li M. Plasticity of Paneth cells and their ability to regulate intestinal stem cells. Stem Cell Res Ther 2020. [PMID: 32787930 DOI: 10.1186/s13287‐020‐01857‐7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Paneth cells (PCs) are located at the bottom of small intestinal crypts and play an important role in maintaining the stability of the intestinal tract. Previous studies reported on how PCs shape the intestinal microbiota or the response to the immune system. Recent studies have determined that PCs play an important role in the regulation of the homeostasis of intestinal epithelial cells. PCs can regulate the function and homeostasis of intestinal stem cells through several mechanisms. On the one hand, under pathological conditions, PCs can be dedifferentiated into stem cells to promote the repair of intestinal tissues. On the other hand, PCs can regulate stem cell proliferation by secreting a variety of hormones (such as wnt3a) or metabolic intermediates. In addition, we summarise key signalling pathways that affect PC differentiation and mutual effect with intestinal stem cells. In this review, we introduce the diverse functions of PCs in the intestine.
Collapse
Affiliation(s)
- Xianglin Mei
- Department of Pathology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Ming Gu
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
126
|
Mei X, Gu M, Li M. Plasticity of Paneth cells and their ability to regulate intestinal stem cells. Stem Cell Res Ther 2020; 11:349. [PMID: 32787930 PMCID: PMC7425583 DOI: 10.1186/s13287-020-01857-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/05/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Paneth cells (PCs) are located at the bottom of small intestinal crypts and play an important role in maintaining the stability of the intestinal tract. Previous studies reported on how PCs shape the intestinal microbiota or the response to the immune system. Recent studies have determined that PCs play an important role in the regulation of the homeostasis of intestinal epithelial cells. PCs can regulate the function and homeostasis of intestinal stem cells through several mechanisms. On the one hand, under pathological conditions, PCs can be dedifferentiated into stem cells to promote the repair of intestinal tissues. On the other hand, PCs can regulate stem cell proliferation by secreting a variety of hormones (such as wnt3a) or metabolic intermediates. In addition, we summarise key signalling pathways that affect PC differentiation and mutual effect with intestinal stem cells. In this review, we introduce the diverse functions of PCs in the intestine.
Collapse
Affiliation(s)
- Xianglin Mei
- Department of Pathology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Ming Gu
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
127
|
|