101
|
Effect of Probiotics on Host-Microbiota in Bacterial Infections. Pathogens 2022; 11:pathogens11090986. [PMID: 36145418 PMCID: PMC9500725 DOI: 10.3390/pathogens11090986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Diseases caused by bacteria cause millions of deaths every year. In addition, the problem of resistance to antibiotics is so serious that it threatens the achievements of modern medicine. This is a very important global problem as some bacteria can also develop persistence. Indeed, the persistence of pathogenic bacteria has evolved as a potent survival strategy to overcome host organisms’ defense mechanisms. Additionally, chronic or persistent infections may be caused by persisters which could facilitate antibiotic resistance. Probiotics are considered good bacteria. It has been described that the modulation of gut microbiota by probiotics could have a great potential to counteract the deleterious impact and/or regulate gut microbiota after bacterial infection. Probiotics might provide health benefits through the inhibition of pathogen growth or the replacement of pathogenic bacteria. Bearing in mind that current strategies to avoid bacterial persistence and prevent antibiotic resistance are not effective, other strategies need to be assessed. We have carried out a comprehensive review, which included the reported literature between 2016 and 2021, highlighting the clinical trials that reported the probiotics’ potential to regulate gut microbiota after bacterial infection and focusing in particular on the context of antibiotic resistance and persister cells.
Collapse
|
102
|
Lai JN, Liao YJ, Lin CL, Chang CS, Peng YC. Impact of Helicobacter pylori eradication timing on the risk of thromboembolism events in patients with peptic ulcer disease: a population-based cohort study. BMJ Open 2022; 12:e060361. [PMID: 36002209 PMCID: PMC9413183 DOI: 10.1136/bmjopen-2021-060361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES To evaluate the impact of Helicobacter pylori eradication on venous thromboembolism (VTE) events, and the differences between early and late treatment timing. DESIGN A population-based cohort study. SETTING Taiwan's National Health Insurance Research Database. PARTICIPANTS A total of 6736 patients who received H. pylori eradication therapy from 2000 to 2010 were identified. We randomly selected 26 944 subjects matching in gender, age and baseline year as comparison cohort. PRIMARY AND SECONDARY OUTCOME MEASURES The incidence rate ratios of VTE in the H. pylori eradication cohorts to that of the control cohort were examined. Multivariable Cox proportional hazard regression analysis was used to estimate the relative HRs and 95% CI of VTE development. RESULTS The total incidence rate of VTE was observed in the late H. pylori eradication cohort, the early H. pylori eradication cohort and the control cohort (15.2, 3.04 and 2.91 per 1000 person-years, respectively). An age-specific trend was found in the late H. pylori eradication cohort, with a greater rate of VTE in the 50-65 years and more than 65 years age groups (adjusted HR 5.44; 95% CI 4.21 to 7.03 and 3.13; 95% CI 2.46 to 3.99). With comorbidities, the late H. pylori eradication cohort seemed to have the highest VTE incidence rate and adjusted HR (4.48, 95% CI 3.78 to 5.30). CONCLUSIONS Late H. pylori eradication was associated with a significantly increased risk of VTE, and there was a significantly greater risk of VTE in patients with female gender, age more than 50 years and with comorbidities.
Collapse
Affiliation(s)
- Jung-Nien Lai
- Department of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Jun Liao
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Chung Hsin University, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Chi-Sen Chang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yen-Chun Peng
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
103
|
Xu W, Xu L, Xu C. Relationship between Helicobacter pylori infection and gastrointestinal microecology. Front Cell Infect Microbiol 2022; 12:938608. [PMID: 36061875 PMCID: PMC9433739 DOI: 10.3389/fcimb.2022.938608] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence of Helicobacter pylori (H. pylori) infection has exceeded 50% worldwide, and it is considered a high-risk factor for chronic gastritis, peptic ulcer, gastric adenocarcinoma, gastroesophageal reflux disease and functional dyspepsia. H. pylori drug resistance is a common problem worldwide. In recent years, the relationship between H. pylori infection and gastrointestinal microecology has received much attention. H. pylori infection changes the structure and composition of gastrointestinal microflora by regulating the gastrointestinal microecological environment, local pH value, cytokines and antimicrobial peptides, and immune response and then plays a crucial role in the occurrence and development of digestive system tumors, liver metabolism and extragastrointestinal diseases. The quadruple strategy of H. pylori eradication can also aggravate gastrointestinal microflora disorder. However, probiotics can reduce intestinal flora changes and imbalances through different mechanisms, thus enhancing the efficacy of H. pylori eradication therapy and reducing adverse reactions caused by eradication therapy. Therefore, this paper reviews the relationship between H. pylori infection and gastrointestinal microecology and its clinical application, providing a basis for clinical treatment.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liming Xu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
104
|
Chen X, Wang N, Wang J, Liao B, Cheng L, Ren B. The interactions between oral-gut axis microbiota and Helicobacter pylori. Front Cell Infect Microbiol 2022; 12:914418. [PMID: 35992177 PMCID: PMC9381925 DOI: 10.3389/fcimb.2022.914418] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
In the human body, each microbial habitat exhibits a different microbial population pattern, and these distinctive microflorae are highly related to the development of diseases. The microbial interactions from host different niches are becoming crucial regulators to shape the microbiota and their physiological or pathological functions. The oral cavity and gut are the most complex and interdependent microbial habitats. Helicobacter pylori is one of the most important pathogens from digestive tract, especially the stomach, due to its direct relationships with many gastric diseases including gastric cancer. H. pylori infections can destroy the normal gastric environment and make the stomach a livable channel to enhance the microbial interactions between oral cavity and gut, thus reshaping the oral and gut microbiomes. H. pylori can be also detected in the oral and gut, while the interaction between the oral-gut axis microbiota and H. pylori plays a major role in H. pylori’s colonization, infection, and pathogenicity. Both the infection and eradication of H. pylori and its interaction with oral-gut axis microbiota can alter the balance of the microecology of the oral-gut axis, which can affect the occurrence and progress of related diseases. The shift of oral-gut axis microbiota and their interactions with H. pylori maybe potential targets for H. pylori infectious diagnosis and treatment.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nanxi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jiannan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Lei Cheng, ; Biao Ren,
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Lei Cheng, ; Biao Ren,
| |
Collapse
|
105
|
Chen B, Li XM, Cai T, Wang F. Short-term and long-term alterations of gastrointestinal microbiota with different H. pylori eradication regimens: A meta-analysis. Front Cell Infect Microbiol 2022. [DOI: 10.3389/fcimb.2022.913384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background and AimsThe impacts of Helicobacter pylori (H. pylori) eradication on the gastrointestinal microbiota are controversial, and whether the short-term and long-term changes in the gastrointestinal microbiota following different eradication regimens are consistent remains inconclusive. This study aimed to examine the effects of various eradication regimens on the gastrointestinal microflora at follow-up evaluations within 7 days, at 1–3 months, and over 6 months changes in the gastrointestinal microbiota.Materials and MethodsStudies reported on the PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrails.gov databases before March 2022 were collected. Data analysis and visualization were conducted using Review Manager 5.4.1. The tool of the Cochrane Collaboration to assess the risk of bias was suitable for randomized controlled trials with the Newcastle–Ottawa scale for nonrandomized controlled trials. In addition, the process was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.ResultsAfter a series of rigorous screenings, a total of 34 articles with 1,204 participants were included for this review analysis. The results showed changes in the gut microflora at the phylum level or the family and genus levels. After metronidazole-containing triple therapy, the number of Enterobacteriaceae increased at 1–3 months follow-up. After Metronidazole-free triple therapy, Actinobacteria decreased significantly, and this trend lasted for more than 6 months. Within 7 days after eradication treatment, the follow-up results showed a decrease in the number of Lactobacillus. After Bismuth-containing quadruple therapy, the changes in Actinobacteria fluctuated with the follow-up time. The changes in Proteobacteria showed a downward trend lasting for 1–3 months after eradication but returned to baseline levels over 6 months after eradication. Subgroup analyses indicated that host age could influence changes in the gut microbiota.ConclusionDifferent eradication regimens had varied effects on the short-term and long-term abundance of the gastrointestinal microbiota, but the decreasing trend of the microbiota diversity was the same for all regimens at the short-term follow-up. This study summarizes the changes of gut microbiota at different stages after different eradication regimens and hope to provide some references for supplementing probiotics, while further studies is needed to support these findings.Systematic Review Registrationhttps://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42021292726
Collapse
|
106
|
Liu D, Zhang R, Chen S, Sun B, Zhang K. Analysis of gastric microbiome reveals three distinctive microbial communities associated with the occurrence of gastric cancer. BMC Microbiol 2022; 22:184. [PMID: 35870901 PMCID: PMC9308235 DOI: 10.1186/s12866-022-02594-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/13/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Gastric microbial dysbiosis were reported to be associated with gastric cancer (GC). This study aimed to explore the variation, diversity, and composition patterns of gastric bacteria in stages of gastric carcinogenesis based on the published datasets. METHODS We conducted a gastric microbial analysis using 10 public datasets based on 16S rRNA sequencing, including 1270 gastric biopsies of 109 health control, 183 superficial gastritis (SG), 135 atrophic gastritis (AG), 124 intestinal metaplasia (IM), 94 intraepithelial neoplasia (IN), 344 GC, and 281 adjacent normal tissues. And QIIME2-pipeline, DESeq2, NetMoss2, vegan, igraph, and RandomForest were used for the data processing and analysis. RESULTS We identified three gastric microbial communities among all the gastric tissues. The first community (designate as GT-H) was featured by the high abundance of Helicobacter. The other two microbial communities, namely GT-F, and GT-P, were featured by the enrichment of phylum Firmicutes and Proteobacteria, respectively. The distribution of GC-associated bacteria, such as Fusobacterium, Peptostreptococcus, Streptococcus, and Veillonella were enriched in tumor tissues, and mainly distributed in GT-F type microbial communities. Compared with SG, AG, and IM, the bacterial diversity in GC was significantly reduced. And the strength of microbial interaction networks was initially increased in IM but gradually decreased from IN to GC. In addition, Randomforest models constructed in in GT-H and GT-F microbial communities showed excellent performance in distinguishing GC from SG and precancerous stages, with varied donated bacteria. CONCLUSIONS This study identified three types of gastric microbiome with different patterns of composition which helps to clarify the potential key bacteria in the development of gastric carcinogenesis.
Collapse
Affiliation(s)
- Dehua Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rutong Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Si Chen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Baolin Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaiguang Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
107
|
Dore MP, Sau R, Niolu C, Abbondio M, Tanca A, Bibbò S, Loria M, Pes GM, Uzzau S. Metagenomic Changes of Gut Microbiota following Treatment of Helicobacter pylori Infection with a Simplified Low-Dose Quadruple Therapy with Bismuth or Lactobacillus reuteri. Nutrients 2022; 14:nu14142789. [PMID: 35889746 PMCID: PMC9316840 DOI: 10.3390/nu14142789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Probiotic supplementation to antibiotic regimens against Helicobacter pylori infection has been proposed to improve eradication rate and to decrease detrimental effects on gut microbiota. Aims: To evaluate microbiota modifications due to a low-dose quadruple therapy with bismuth or Lactobacillus reuteri. Methods: Forty-six patients infected with H. pylori were prospectively enrolled in a single-centre, randomized controlled trial to receive b.i.d. with meals for 10 days low-dose quadruple therapy consisting of rabeprazole 20 mg and bismuth (two capsules of Pylera® plus 250 mg each of tetracycline and metronidazole), or the same dose of rabeprazole and antibiotics plus Gastrus® (L. reuteri), one tablet twice-a-day for 27 days. Stool samples were collected at the enrolment, at the end and 30–40 days after the treatment. Gut microbiota composition was investigated with 16S rRNA gene sequencing. Results: Eradication rate was by ITT 78% in both groups, and by PP analysis 85.7% and 95.5% for Gastrus® and bismuth group, respectively. Alpha and beta diversity decreased at the end of treatment and was associated with a reduction of bacterial genera beneficial for gut homeostasis, which was rescued 30–40 days later in both groups, suggesting a similar impact of the two regimens in challenging bacterial community complexity. Conclusions: Low-dose bismuth quadruple therapy proved to be effective with lower costs and amount of antibiotics and bismuth. Gastrus® might be an option for patients with contraindications to bismuth. L. reuteri was unable to significantly counteract dysbiosis induced by antibiotics. How to administer probiotics to prevent gut microbiota alterations remains an open question.
Collapse
Affiliation(s)
- Maria Pina Dore
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (C.N.); (M.L.); (G.M.P.)
- Correspondence: ; Tel.: +39-079-229886
| | - Rosangela Sau
- Dipartimento di Scienze Biomediche, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (R.S.); (M.A.); (A.T.); (S.U.)
| | - Caterina Niolu
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (C.N.); (M.L.); (G.M.P.)
| | - Marcello Abbondio
- Dipartimento di Scienze Biomediche, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (R.S.); (M.A.); (A.T.); (S.U.)
| | - Alessandro Tanca
- Dipartimento di Scienze Biomediche, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (R.S.); (M.A.); (A.T.); (S.U.)
| | - Stefano Bibbò
- CEMAD Digestive Disease Center—Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Mariafrancesca Loria
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (C.N.); (M.L.); (G.M.P.)
| | - Giovanni Mario Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy; (C.N.); (M.L.); (G.M.P.)
| | - Sergio Uzzau
- Dipartimento di Scienze Biomediche, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; (R.S.); (M.A.); (A.T.); (S.U.)
| |
Collapse
|
108
|
Linolenic Acid-Metronidazole: a Compound Relieving Drug Resistance and Inhibiting Helicobacter pylori. Antimicrob Agents Chemother 2022; 66:e0007322. [PMID: 35758720 PMCID: PMC9295599 DOI: 10.1128/aac.00073-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metronidazole (Met) is the first choice for treating Helicobacter pylori (Hp). However, Hp is easy to resistant, making Met unable to be widely used. How to overcome Hp’s Met resistance is still an issue. In this study, Met was used as the primary raw material with linolenic acid to prepare a novel compound-linolenic acid-metronidazole (Lla-Met). The MIC, minimum bactericidal concentration (MBC), colonization amount of Hp in gastric mucosa, etc., were evaluated, respectively. Lla-Met was successfully prepared by the detection of nuclear magnetic resonance, etc., and its MIC and MBC to Hp were 2~4 μg/mL, 8~16 μg/mL. Moreover, in vivo experiments, Lla-Met significantly reduced the colonization of drug-resistant Hp in gastric mucosa. In the toxicity test, Lla-Met inhibited rate to GES-1 and BGC823 cells were 15% at 128 μg/mL; the mice were administered 10 times treatment Lla-Met treatment (240 mg/kg), have no difference significant injuries were found in their stomach, liver, spleen, kidney, and weight. In addition, Hp G27 continued for 18 days in vitro with sub-Lla-Met concentration, G27 did not show drug resistance to Lla-Met; Lla-Met did not exert an effect on non-Hp species with 128 μg/mL; Compared with a neutral environment, when the acid concentration is 3.0, Lla-Met is not decomposed and has better stability. Conclusion: Lla-Met, a newly prepared compound, has relatively well antibacterial of Met-resistant and sensitive Hp, with a capability of overcoming the metronidazole resistance of Hp.
Collapse
|
109
|
Potapova MV, Broyaka NA, Skvortsov KY, Konobeeva EV. Helicobacter pylori roles in haematology disease pathogenesis. СИБИРСКИЙ НАУЧНЫЙ МЕДИЦИНСКИЙ ЖУРНАЛ 2022; 42:18-35. [DOI: 10.18699/ssmj20220302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- M. V. Potapova
- Saratov State Medical University n.a. V.I. Razumovsky of Minzdrav of Russia
| | - N. A. Broyaka
- Saratov State Medical University n.a. V.I. Razumovsky of Minzdrav of Russia
| | | | - E. V. Konobeeva
- Saratov State Medical University n.a. V.I. Razumovsky of Minzdrav of Russia
| |
Collapse
|
110
|
Liu Y, Baba Y, Ishimoto T, Gu X, Zhang J, Nomoto D, Okadome K, Baba H, Qiu P. Gut microbiome in gastrointestinal cancer: a friend or foe? Int J Biol Sci 2022; 18:4101-4117. [PMID: 35844804 PMCID: PMC9274484 DOI: 10.7150/ijbs.69331] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/04/2022] [Indexed: 12/07/2022] Open
Abstract
The impact of the gut microbiome on host health is becoming increasingly recognized. To date, there is growing evidence that the complex characteristics of the microbial community play key roles as potential biomarkers and predictors of responses in cancer therapy. Many studies have shown that altered commensal bacteria lead to cancer susceptibility and progression in diverse pathways. In this review, we critically assess the data for gut microbiota related to gastrointestinal cancer, including esophageal, gastric, pancreatic, colorectal cancer, hepatocellular carcinoma and cholangiocarcinoma. Importantly, the underlying mechanisms of gut microbiota involved in cancer occurrence, prevention and treatment are elucidated. The purpose of this review is to provide novel insights for applying this understanding to the development of new therapeutic strategies in gastrointestinal cancer by targeting the microbial community.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning province, China
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Next-Generation Surgical Therapy Development, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning province, China
| | - Jun Zhang
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Daichi Nomoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuo Okadome
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| |
Collapse
|
111
|
Meta-analysis of mucosal microbiota reveals universal microbial signatures and dysbiosis in gastric carcinogenesis. Oncogene 2022; 41:3599-3610. [PMID: 35680985 PMCID: PMC9270228 DOI: 10.1038/s41388-022-02377-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 12/17/2022]
Abstract
The consistency of the associations between gastric mucosal microbiome and gastric cancer across studies remained unexamined. We aimed to identify universal microbial signatures in gastric carcinogenesis through a meta-analysis of gastric microbiome from multiple studies. Compositional and ecological profiles of gastric microbes across stages of gastric carcinogenesis were significantly altered. Meta-analysis revealed that opportunistic pathobionts Fusobacterium, Parvimonas, Veillonella, Prevotella and Peptostreptococcus were enriched in GC, while commensals Bifidobacterium, Bacillus and Blautia were depleted in comparison to SG. The co-occurring correlation strengths of GC-enriched bacteria were increased along disease progression while those of GC-depleted bacteria were decreased. Eight bacterial taxa, including Veillonella, Dialister, Granulicatella, Herbaspirillum, Comamonas, Chryseobacterium, Shewanella and Helicobacter, were newly identified by this study as universal biomarkers for robustly discriminating GC from SG, with an area under the curve (AUC) of 0.85. Moreover, H. pylori-positive samples exhibited reduced microbial diversity, altered microbiota community and weaker interactions among gastric microbes. Our meta-analysis demonstrated comprehensive and generalizable gastric mucosa microbial features associated with histological stages of gastric carcinogenesis, including GC associated bacteria, diagnostic biomarkers, bacterial network alteration and H. pylori influence.
Collapse
|
112
|
Lu H, Shen M, Chen T, Yu Y, Chen Y, Yu Q, Chen X, Xie J. Mesona chinensis Benth Polysaccharides Alleviate DSS-Induced Ulcerative Colitis via Inhibiting of TLR4/MAPK/NF-κB Signaling Pathways and Modulating Intestinal Microbiota. Mol Nutr Food Res 2022; 66:e2200047. [PMID: 35661585 DOI: 10.1002/mnfr.202200047] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/12/2022] [Indexed: 12/22/2022]
Abstract
SCOPE Ulcerative colitis (UC) is a severe disease of the intestinal tract. To investigate the role of TLR4/Mitogen-activated protein kinase (MAPK)/Nuclear factor kappa-B(NF-κB) pathways and intestinal flora in UC, and the protective mechanisms of Mesona chinensis Benth polysaccharides (MBP), potential therapeutic agents due to their diabetes-relieving, cancer-suppressing, and immunomodulatory properties. METHODS AND RESULTS A dextran sulfate sodium (DSS)-induced mouse colitis model is used for experiments; the histopathology, immunohistochemistry, and Western blotting's results suggest that MBP can alleviate the colitis symptoms, inhibits the overproduction of TNF-α, IL-1β, promote IL-10, reduces myeloperoxidase activity, and alleviates the inflammatory response probably by inhibiting the activation of TLR4/MAPK/NF-κB pathways. Furthermore, MBP improvs the ratio of Bcl-2/BAX, maintains the intestinal integrity by promoting the levels of zonulin occludin-1 (ZO-1), occluding and mucin mucin-2 (MUC-2), reduces the levels of endotoxin (ET), lipopolysaccharide binding protein (LBP) in serum, and oxidative stress in liver. Moreover, using 16S rRNA Gene Sequencing analysis, MBP regulates gut microbiota by decreasing the abundances of Helicobacter and Prevotella and increasing the abundances of Lactobacillus and Coprococcus, reverses microbiota dysbiosis caused by DSS. CONCLUSION These findings confirm the anti-inflammatory effects of MBP, restoration of the intestinal barrier and intestinal flora, and have therapeutic potential to attenuate the development of UC.
Collapse
Affiliation(s)
- Hanyu Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Ting Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yue Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| |
Collapse
|
113
|
Hu Y, Amir A, Huang X, Li Y, Huang S, Wolfe E, Weiss S, Knight R, Xu ZZ. Diurnal and eating-associated microbial patterns revealed via high-frequency saliva sampling. Genome Res 2022; 32:1112-1123. [PMID: 35688483 DOI: 10.1101/gr.276482.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/18/2022] [Indexed: 11/24/2022]
Abstract
The oral microbiome is linked to oral and systemic health, but its fluctuation under frequent daily activities remains elusive. Here, we sampled saliva at 10- to 60-min intervals to track the high-resolution microbiome dynamics during the course of human activities. This dense time series data showed that eating activity markedly perturbed the salivary microbiota, with tongue-specific Campylobacter concisus and Oribacterium sinus and dental plaque-specific Lautropia mirabilis, Rothia aeria, and Neisseria oralis increased after every meal in a temporal order. The observation was reproducible in multiple subjects and across an 11-mo period. The microbiome composition showed significant diurnal oscillation patterns at different taxonomy levels with Prevotella/Alloprevotella increased at night and Bergeyella HMT 206/Haemophilus slowly increased during the daytime. We also identified microbial co-occurring patterns in saliva that are associated with the intricate biogeography of the oral microbiome. Microbial source tracking analysis showed that the contributions of distinct oral niches to the salivary microbiome were dynamically affected by daily activities, reflecting the role of saliva in exchanging microbes with other oral sites. Collectively, our study provides insights into the temporal microbiome variation in saliva and highlights the need to consider daily activities and diurnal factors in design of oral microbiome studies.
Collapse
Affiliation(s)
- Yichen Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Amnon Amir
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA.,Sheba Medical Center, Ramat Gan 52621, Israel
| | - Xiaochang Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Shi Huang
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Elaine Wolfe
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Sophie Weiss
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, California 92093, USA.,Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, USA.,Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, PR China.,Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen 518001, China.,Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| |
Collapse
|
114
|
Zhou CB, Pan SY, Jin P, Deng JW, Xue JH, Ma XY, Xie YH, Cao H, Liu Q, Xie WF, Zou XP, Sheng JQ, Wang BM, Wang H, Ren JL, Liu SD, Sun YW, Meng XJ, Zhao G, Chen JX, Cui Y, Wang PQ, Guo HM, Yang L, Chen X, Ding J, Yang XN, Wang XK, Qian AH, Hou LD, Wang Z, Chen YX, Fang JY. Fecal Signatures of Streptococcus anginosus and Streptococcus constellatus for Noninvasive Screening and Early Warning of Gastric Cancer. Gastroenterology 2022; 162:1933-1947.e18. [PMID: 35167866 DOI: 10.1053/j.gastro.2022.02.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/25/2022] [Accepted: 02/06/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Most patients with gastric cancer (GCa) are diagnosed at an advanced stage. We aimed to investigate novel fecal signatures for clinical application in early diagnosis of GCa. METHODS This was an observational study that included 1043 patients from 10 hospitals in China. In the discovery cohort, 16S ribosomal RNA gene analysis was performed in paired samples (tissues and feces) from patients with GCa and chronic gastritis (ChG) to determine differential abundant microbes. Their relative abundances were detected using quantitative real-time polymerase chain reaction to test them as bacterial candidates in the training cohort. Their diagnostic efficacy was validated in the validation cohort. RESULTS Significant enrichments of Streptococcus anginosus (Sa) and Streptococcus constellatus (Sc) in GCa tumor tissues (P < .05) and feces (P < .0001) were observed in patients with intraepithelial neoplasia, early and advanced GCa. Either the signature parallel test Sa∪Sc or single signature Sa/Sc demonstrated superior sensitivity (Sa: 75.6% vs 72.1%, P < .05; Sc: 84.4% vs 64.0%, P < .001; and Sa∪Sc: 91.1% vs 81.4%, P < .01) in detecting early GCa compared with advanced GCa (specificity: Sa: 84.0% vs 83.9%, Sc: 70.4% vs 82.3%, and Sa∪Sc: 64.0% vs 73.4%). Fecal signature Sa∪Sc outperformed Sa∪CEA/Sc∪CEA in the discrimination of advanced GCa (sensitivity: 81.4% vs 74.2% and 81.4% vs 72.3%, P < .01; specificity: 73.4% vs 81.0 % and 73.4% vs 81.0%). The performance of Sa∪Sc in the diagnosis of both early and advanced GCa was verified in the validation cohort. CONCLUSION Fecal Sa and Sc are noninvasive, accurate, and sensitive signatures for early warning in GCa. (ClinicalTrials.gov, Number: NCT04638959).
Collapse
Affiliation(s)
- Cheng-Bei Zhou
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Si-Yuan Pan
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Jin
- Department of Gastroenterology, The First Medical Center of Chinese People's Liberation Army General Hospital, The Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jia-Wen Deng
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Hui Xue
- Department of Clinical Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xin-Yue Ma
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan-Hong Xie
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Cao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Ping Zou
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jian-Qiu Sheng
- Department of Gastroenterology, The First Medical Center of Chinese People's Liberation Army General Hospital, The Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hong Wang
- Department of Gastroenterology, Shanghai Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Jian-Lin Ren
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Si-De Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun-Wei Sun
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Jun Meng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Xian Chen
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Cui
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pei-Qin Wang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hui-Min Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lang Yang
- Department of Gastroenterology, The First Medical Center of Chinese People's Liberation Army General Hospital, The Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jia Ding
- Department of Gastroenterology, Shanghai Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Xiao-Ning Yang
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Xin-Ke Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ai-Hua Qian
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Dan Hou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
115
|
Zhu Q, Zai H, Zhang K, Zhang X, Luo N, Li X, Hu Y, Wu Y. L-norvaline affects the proliferation of breast cancer cells based on the microbiome and metabolome analysis. J Appl Microbiol 2022; 133:1014-1026. [PMID: 35543360 DOI: 10.1111/jam.15620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
Abstract
AIMS The altered fecal metabolites and microbiota might be involved in the development of breast cancer. We aimed to investigate the effect of differential metabolites on the proliferative activity of breast cancer cells. METHODS AND RESULTS We collected fecal samples from 14 breast cancer patients and 14 healthy subjects. Untargeted metabolomics analysis, short-chain fatty acid (SCFA) targeted analysis, and 16S rDNA sequencing was performed. The gut metabolite composition of patients changed significantly. Levels of norvaline, glucuronate, and galacturonate were lower in the Cancer group than in the Control (p < 0.05). 4-Methylcatechol and guaiacol increased (p < 0.05). Acetic acid and butyric acid were lower in the Cancer group than in the Control group (p < 0.05). Isobutyric acid and pentanoic acid were higher in the Cancer group than in the Control (p < 0.05). In the genus, the abundance of Rothia and Actinomyces increased in the Cancer group, compared with the Control group (p < 0.05). The differential microbiotas were clearly associated with differential metabolites but weakly with SCFAs. The abundance of Rothia and Actinomyces was markedly positively correlated with 4-methylcatechol and guaiacol (p < 0.05) and negatively correlated with norvaline (p < 0.05). L-norvaline inhibited the content of Arg-1 in a concentration-dependent manner. Compared with the L-norvaline or doxorubicin hydrochloride (DOX) group, the proliferation abilities of 4T1 cells were the lowest in the L-norvaline combined with DOX (p < 0.05). The apoptosis rate increased (p < 0.05). CONCLUSIONS Fecal metabolites and microbiota were significantly altered in breast cancer. Levels of differential metabolites (i.e., Norvaline) were significantly correlated with the abundance of differential microbiota. L-norvaline combined with DOX could clearly inhibit the proliferation activity of breast cancer cells. SIGNIFICANCE AND IMPACT OF STUDY This might provide clues to uncover potential biomarkers for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qin Zhu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyan Zai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Kejing Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Na Luo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center For Breast Cancer In Hunan Province, Changsha, China
| | - Yuhui Wu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center For Breast Cancer In Hunan Province, Changsha, China
| |
Collapse
|
116
|
Anisi Stellati Fructus, a Significant Traditional Chinese Medicine (TCM) Herb and Its Bioactivity against Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4071489. [PMID: 35586683 PMCID: PMC9110155 DOI: 10.1155/2022/4071489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
Anisi stellati fructus (ASF) is the fruit of Illicium verum Hook F. (Chinese star anise), which is native to many countries, and is a significant Chinese medicinal herb. Gastric cancer (GC) is one of the major fatal types of cancers with multiple stages and a poor prognosis. The present review aims to discuss the bioactive properties of ASF and its phytocompounds against GC, with a particular insight into the molecular mechanisms and signaling pathways involved in its anti-GC mechanism. Furthermore, it highlights the potential mechanism of action of major phytocompounds of ASF against GC. Clinical studies (in vitro and in vivo) regarding the action of ASF and its major bioactive compounds such as quercetin, luteolin, kaempferol, d-limonene, and honokiol against GC were reviewed. For this review, search of literature was performed in Science, PubMed, Google Scholar, Web of Science, and Scopus related to ASF and its phytocompounds, from which only relevant studies were chosen. Major bioactive compounds of ASF and their extracts have proven to be effective against GC due to the mechanistic action of these compounds involving signaling pathways that target cancer cell apoptosis, proliferation, and tumor metastasis in GC cells. Existing reports of these compounds and their combinatory effects with other modern anticancer agents have also been reviewed. From its traditional use to its role as an anticancer agent, ASF and its bioactive phytocompounds have been observed to be effective in modern research, specifically against GC. However, further studies are required for the identification of molecular targets and pharmacokinetic potential and for the formulation of anti-GC drugs.
Collapse
|
117
|
Guo Y, Cao XS, Guo GY, Zhou MG, Yu B. Effect of Helicobacter Pylori Eradication on Human Gastric Microbiota: A Systematic Review and Meta-Analysis. Front Cell Infect Microbiol 2022; 12:899248. [PMID: 35601105 PMCID: PMC9114356 DOI: 10.3389/fcimb.2022.899248] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background Helicobacter pylori (H. pylori) infection is a major risk factor for gastric cancer and eradication of H. pylori is recommended as an effective gastric cancer prevention strategy. The infected individuals show microbial dysbiosis of gastric microbiota. In recent years, agrowing number of studies have focused on gastric microbiota changes following H. pylori eradication. In the present study, we aim to evaluate the influence of successful H. pylori eradication on the short-term and long-term alterations of human gastric microbiota using a method of systematic review and meta-analysis. Methods We did a systematic search based on three databases (PubMed, EMBASE, and Web of Science) in November 2021. Additional articles were also identified by reviewing references cited in the included papers. Human studies that reported changes in gastric microbiota following successful H. pylori eradication were enrolled. PROSPERO registration number: CRD42021293796. Results In total, nine studies enrolling 546 participants were included. Regarding quadruple therapy, alpha diversity indexes increased within 1 month after eradication; significant differences in gastric microbial community structure between before and after eradication were also seen within 1 month. The trends of the above-mentioned diversity changes persisted with a follow-up of 6 months. The microbial composition altered significantly after eradication and the relative abundance of H. pylori-related taxa decreased. Accordingly, gastric commonly dominant commensals were enriched. Bioinformatic analyses of microbiota functions showed that bacteria reproduction-related pathways were down-regulated and pathways of gastric acid secretion, etc. were up-regulated. For triple therapy, similar trends of alpha diversity and beta diversity changes were observed in the short-term and long-term follow-up. Also, after eradication, H. pylori was not the gastric dominant bacteria and similar changes in gastric microbial composition were found. For gastric microbial interactions, a decrease in microbial interactions was seen after eradication. Additionally, regarding whether successful H. pylori eradication could restore gastric microbiota to uninfected status, the results remain controversial. Conclusion In conclusion, successful H. pylori eradication could reverse the gastric microbiota dysbiosis and show beneficial effects on gastric microbiota. Our findings may provide new insight for exploring the role of H. pylori and the whole gastric microbiota in gastric carcinogenesis.
Collapse
Affiliation(s)
- Yang Guo
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xue-Shan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Guan-Yi Guo
- Department of Hematology, the Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| | - Meng-Ge Zhou
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Bo Yu
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- *Correspondence: Bo Yu,
| |
Collapse
|
118
|
Wang S, Kuang J, Zhang H, Chen W, Zheng X, Wang J, Huang F, Ge K, Li M, Zhao M, Rajani C, Zhu J, Zhao A, Jia W. Bile Acid-Microbiome Interaction Promotes Gastric Carcinogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200263. [PMID: 35285172 PMCID: PMC9165488 DOI: 10.1002/advs.202200263] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/21/2022] [Indexed: 05/11/2023]
Abstract
Bile reflux gastritis (BRG) is associated with the development of gastric cancer (GC), but the specific mechanism remains elusive. Here, a comprehensive study is conducted to explore the roles of refluxed bile acids (BAs) and microbiome in gastric carcinogenesis. The results show that conjugated BAs, interleukin 6 (IL-6), lipopolysaccharide (LPS), and the relative abundance of LPS-producing bacteria are increased significantly in the gastric juice of both BRG and GC patients. A secondary BA, taurodeoxycholic acid (TDCA), is significantly and positively correlated with the LPS-producing bacteria in the gastric juice of these patients. TDCA promotes the proliferation of normal gastric epithelial cells (GES-1) through activation of the IL-6/JAK1/STAT3 pathway. These results are further verified in two mouse models, one by gavage of TDCA, LPS, and LPS-producing bacteria (Prevotella melaninogenica), respectively, and the other by bile reflux (BR) surgery, mimicking clinical bile refluxing. Moreover, the bile reflux induced gastric precancerous lesions observed in the post BR surgery mice can be prevented by treatment with cryptotanshinone, a plant-derived STAT3 inhibitor. These results reveal an important underlying mechanism by which bile reflux promotes gastric carcinogenesis and provide an alternative strategy for the prevention of GC associated with BRG.
Collapse
Affiliation(s)
- Shouli Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Junliang Kuang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Hongwei Zhang
- Department of Metabolic and Bariatric SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Wenlian Chen
- Cancer Institute, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghai200233China
| | - Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Jieyi Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Fengjie Huang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Kun Ge
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Mengci Li
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Mingliang Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Cynthia Rajani
- Cancer Biology ProgramUniversity of Hawaii Cancer CenterHonoluluHI96813USA
| | - Jinshui Zhu
- Department of GastroenterologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Aihua Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes MellitusShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Cancer Biology ProgramUniversity of Hawaii Cancer CenterHonoluluHI96813USA
- School of Chinese MedicineHong Kong Baptist UniversityKowloon TongHong Kong999077China
| |
Collapse
|
119
|
Chen J, Yang Y, Yu N, Sun W, Yang Y, Zhao M. Relationship between gut microbiome characteristics and the effect of nutritional therapy on glycemic control in pregnant women with gestational diabetes mellitus. PLoS One 2022; 17:e0267045. [PMID: 35427393 PMCID: PMC9012359 DOI: 10.1371/journal.pone.0267045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to explore the relationship between the characteristics of gut microbiome and the effect of medical nutrition therapy (MNT) on glycemic control in pregnant women with gestational diabetes mellitus (GDM). Seventy-four pregnant women newly diagnosed with GDM received MNT for one-week. The effect of glycemic control was evaluated by fasting and 2-hour postprandial blood glucose; and stool samples of pregnant women were collected to detect the gut microbiome before and after MNT. We used a nested case-control study design, with pregnant women with GDM who did not meet glycemic standards after MNT as the ineffective group and those with an age difference of ≤5 years, matched for pre-pregnancy body mass index (BMI) 1:1, and meeting glycemic control criteria as the effective group. Comparison of the gut microbiome characteristics before MNT showed that the ineffective group was enriched in Desulfovibrio, Aeromonadales, Leuconostocaceae, Weissella, Prevotella, Bacillales_Incertae Sedis XI, Gemella and Bacillales, while the effective group was enriched in Roseburia, Clostridium, Bifidobacterium, Bifidobacteriales, Bifidobacteriaceae, Holdemania and Proteus. After treatment, the effective group was enriched in Bifidobacterium and Actinomycete, while the ineffective group was enriched in Holdemania, Proteus, Carnobacteriaceae and Granulicatella. In conclusion, the decrease in the abundance of characteristic gut microbiome positively correlated with blood glucose may be a factor influencing the poor hypoglycemic effect of MNT in pregnant women with GDM. Abundance of more characteristic gut microbiome negatively correlated with blood glucose could help control blood glucose in pregnant women with GDM.
Collapse
Affiliation(s)
- Jing Chen
- School of Nursing, Anhui Medical University, Hefei, Anhui Province, The people’s Republic of China
| | - Yuying Yang
- Division of Life Sciences and Medicine, Department of Nursing, Hefei Ion Medical Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui Province, The people’s Republic of China
| | - Ningning Yu
- School of Nursing, Anhui Medical University, Hefei, Anhui Province, The people’s Republic of China
| | - Wanxiao Sun
- School of Nursing, Anhui Medical University, Hefei, Anhui Province, The people’s Republic of China
| | - Yuanyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, The people’s Republic of China
| | - Mei Zhao
- School of Nursing, Anhui Medical University, Hefei, Anhui Province, The people’s Republic of China
- * E-mail:
| |
Collapse
|
120
|
Zhang Z, Feng Q, Li M, Li Z, Xu Q, Pan X, Chen W. Age-Related Cancer-Associated Microbiota Potentially Promotes Oral Squamous Cell Cancer Tumorigenesis by Distinct Mechanisms. Front Microbiol 2022; 13:852566. [PMID: 35495663 PMCID: PMC9051480 DOI: 10.3389/fmicb.2022.852566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
The oral squamous cell cancer (OSCC) incidence in young patients has increased since the end of the last century; however, the underlying mechanism is still unclear. Oral microbiota dysbiosis was proven to be a tumorigenesis factor, and we propose that there is a distinct bacterial composition in young patients that facilitates the progression of OSCC. Twenty elderly (>60 years old) and 20 young (<50 years old) subjects were included in this study. OSCC tissue was collected during surgery, sent for 16S rDNA sequencing and analyzed by the QIIME 2 pipeline. The results showed that Ralstonia, Prevotella, and Ochrobactrum were significantly enriched in younger OSCC tissue microbiota, while Pedobacter was more abundant in elderly OSCC tissues. Fusobacterium had high relative abundance in both cohorts. At the phylum level, Proteobacteria was the dominant taxon in all samples. The functional study showed that there were significant differences in the taxa abundance from metabolic and signaling pathways. The results indicated that the microbiota of younger OSCC tissues differed from that of elderly OSCC tissues by both taxon composition and function, which partially explains the distinct roles of bacteria during tumorigenesis in these two cohorts. These findings provide insights into different mechanisms of the microbiota-cancer relationship with regard to aging.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Meihui Li
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zhihui Li
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qin Xu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xinhua Pan
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- *Correspondence: Wantao Chen,
| |
Collapse
|
121
|
Liabeuf D, Oshima M, Stange DE, Sigal M. Stem Cells, Helicobacter pylori, and Mutational Landscape: Utility of Preclinical Models to Understand Carcinogenesis and to Direct Management of Gastric Cancer. Gastroenterology 2022; 162:1067-1087. [PMID: 34942172 DOI: 10.1053/j.gastro.2021.12.252] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
Several genetic and environmental factors increase gastric cancer (GC) risk, with Helicobacter pylori being the main environmental agent. GC is thought to emerge through a sequence of morphological changes that have been elucidated on the molecular level. New technologies have shed light onto pathways that are altered in GC, involving mutational and epigenetic changes and altered signaling pathways. Using various new model systems and innovative approaches, the relevance of such alterations for the emergence and progression of GC has been validated. Here, we highlight the key strategies and the resulting achievements. A major step is the characterization of epithelial stem cell behavior in the healthy stomach. These data, obtained through new reporter mouse lines and lineage tracing, enabled insights into the processes that control cellular proliferation, self-renewal, and differentiation of gastric stem cells. It has become evident that these cells and pathways are often deregulated in carcinogenesis. Second, insights into how H pylori colonizes gastric glands, directly interacts with stem cells, and alters cellular and genomic integrity, as well as the characterization of tissue responses to infection, provide a comprehensive picture of how this bacterium contributes to gastric carcinogenesis. Third, the development of stem cell- and tissue-specific reporter mice have driven our understanding of the signals and mutations that promote different types of GC and now also enable the study of more advanced, metastasized stages. Finally, organoids from human tissue have allowed insights into gastric carcinogenesis by validating mutational and signaling alterations in human primary cells and opening a route to predicting responses to personalized treatment.
Collapse
Affiliation(s)
- Dylan Liabeuf
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Daniel E Stange
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Michael Sigal
- Department of Internal Medicine, Division of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
122
|
Wu F, Yang L, Hao Y, Zhou B, Hu J, Yang Y, Bedi S, Sanichar NG, Cheng C, Perez-Perez G, Tseng W, Tseng W, Tseng M, Francois F, Khan AR, Li Y, Blaser MJ, Shu XO, Long J, Li H, Pei Z, Chen Y. Oral and gastric microbiome in relation to gastric intestinal metaplasia. Int J Cancer 2022; 150:928-940. [PMID: 34664721 PMCID: PMC8770574 DOI: 10.1002/ijc.33848] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Evidence suggests that Helicobacter pylori plays a role in gastric cancer (GC) initiation. However, epidemiologic studies on the specific role of other bacteria in the development of GC are lacking. We conducted a case-control study of 89 cases with gastric intestinal metaplasia (IM) and 89 matched controls who underwent upper gastrointestinal endoscopy at three sites affiliated with NYU Langone Health. We performed shotgun metagenomic sequencing using oral wash samples from 89 case-control pairs and antral mucosal brushing samples from 55 case-control pairs. We examined the associations of relative abundances of bacterial taxa and functional pathways with IM using conditional logistic regression with and without elastic-net penalty. Compared with controls, oral species Peptostreptococcus stomatis, Johnsonella ignava, Neisseria elongata and Neisseria flavescens were enriched in cases (odds ratios [ORs] = 1.29-1.50, P = .004-.01) while Lactobacillus gasseri, Streptococcus mutans, S parasanguinis and S sanguinis were under-represented (ORs = 0.66-0.76, P = .006-.042) in cases. Species J ignava and Filifactor alocis in the gastric microbiota were enriched (ORs = 3.27 and 1.43, P = .005 and .035, respectively), while S mutans, S parasanguinis and S sanguinis were under-represented (ORs = 0.61-0.75, P = .024-.046), in cases compared with controls. The lipopolysaccharide and ubiquinol biosynthesis pathways were more abundant in IM, while the sugar degradation pathways were under-represented in IM. The findings suggest potential roles of certain oral and gastric microbiota, which are correlated with regulation of pathways associated with inflammation, in the development of gastric precancerous lesions.
Collapse
Affiliation(s)
- Fen Wu
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Liying Yang
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Yuhan Hao
- Department of Biology, New York University, New York, New York, USA
| | - Boyan Zhou
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Jiyuan Hu
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Yaohua Yang
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sukhleen Bedi
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Navin Ganesh Sanichar
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Charley Cheng
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Guillermo Perez-Perez
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Wenche Tseng
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | | | - Mengkao Tseng
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Fritz Francois
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Abraham R Khan
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Yihong Li
- Department of Microbiology and Immunology, Cornell University Master of Public Health Program, Ithaca, New York, USA
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Xiao-Ou Shu
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jirong Long
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Huilin Li
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Zhiheng Pei
- Department of Medicine, New York University School of Medicine, New York, New York, USA.,Department of Pathology, New York University School of Medicine, New York, New York, USA.,Department of Pathology and Lab Service, Veterans Affairs New York Harbor Healthcare System, New York, New York, USA
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, New York, USA.,Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
123
|
Role of Gastric Microorganisms Other than Helicobacter pylori in the Development and Treatment of Gastric Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6263423. [PMID: 35321071 PMCID: PMC8938066 DOI: 10.1155/2022/6263423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/02/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022]
Abstract
The microenvironment in the stomach is different from other digestive tracts, mainly because of the secretion of gastric acid and digestive enzymes, bile reflux, special mucus barrier, gastric peristalsis, and so on, which all contribute to the formation of antibacterial environment. Microecological disorders can lead to gastric immune disorders or lead to the decrease of dominant bacteria and the increase of the abundance and virulence of pathogenic microorganisms and then promote the occurrence of diseases. The body performs its immune function through innate and adaptive immunity and maintains microbial balance through the mechanism of immune homeostasis. Microecological imbalance can lead to the invasion of pathogenic microorganisms and damage mucosal barrier and immune system. The coexistence of gastric microorganisms (including viruses and fungi) may play a synergistic or antagonistic role in the pathogenesis of gastric diseases. Probiotics have the ability to compete with intestinal pathogens, increase the secretion of immunoglobulin A (IgA), stimulate the production of mucin, bacteriocin, and lactic acid, regulate the expression and secretion of cytokines, and regulate the growth of microbiota, which all have beneficial effects on the host microbial environment. At present, most studies focused on Helicobacter pylori, ignoring other stomach microbes and the overall stomach microecology. So, in this article, we reviewed advances in human gastric microecology, the relationship between gastric microecology and immunity or gastric diseases, and the treatment of probiotics in gastric diseases, in order to explore new area for further study of gastric microorganisms and treatment of gastric diseases.
Collapse
|
124
|
Park CH, Hong C, Lee AR, Sung J, Hwang TH. Multi-omics reveals microbiome, host gene expression, and immune landscape in gastric carcinogenesis. iScience 2022; 25:103956. [PMID: 35265820 PMCID: PMC8898972 DOI: 10.1016/j.isci.2022.103956] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/03/2022] [Accepted: 02/16/2022] [Indexed: 12/17/2022] Open
Abstract
To date, there has been no multi-omic analysis characterizing the intricate relationships between the intragastric microbiome and gastric mucosal gene expression in gastric carcinogenesis. Using multi-omic approaches, we provide a comprehensive view of the connections between the microbiome and host gene expression in distinct stages of gastric carcinogenesis (i.e., healthy, gastritis, cancer). Our integrative analysis uncovers various associations specific to disease states. For example, uniquely in gastritis, Helicobacteraceae is highly correlated with the expression of FAM3D, which has been previously implicated in gastrointestinal inflammation. In addition, in gastric cancer but not in adjacent gastritis, Lachnospiraceae is highly correlated with the expression of UBD, which regulates mitosis and cell cycle time. Furthermore, lower abundances of B cell signatures in gastric cancer compared to gastritis may suggest a previously unidentified immune evasion process in gastric carcinogenesis. Our study provides the most comprehensive description of microbial, host transcriptomic, and immune cell factors of the gastric carcinogenesis pathway. Multi-omics finds genetic, microbial, and immunological links in gastric cancer Helicobacteraceae was highly associated with the expression of inflammation genes Pasteurellaceae and Lachnospiraceae were associated with cancer-related genes B cell infiltration was prominent in gastritis tissues but not in gastric cancer
Collapse
Affiliation(s)
- Chan Hyuk Park
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggido 11923, Republic of Korea
| | - Changjin Hong
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - A-reum Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggido 11923, Republic of Korea
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Corresponding author
| | - Tae Hyun Hwang
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Immunology, Mayo Clinic, Jacksonville, FL 32224, USA
- Corresponding author
| |
Collapse
|
125
|
Sitkin S, Lazebnik L, Avalueva E, Kononova S, Vakhitov T. Gastrointestinal microbiome and Helicobacter pylori: Eradicate, leave it as it is, or take a personalized benefit-risk approach? World J Gastroenterol 2022; 28:766-774. [PMID: 35317277 PMCID: PMC8891730 DOI: 10.3748/wjg.v28.i7.766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is generally regarded as a human pathogen and a class 1 carcinogen, etiologically related to gastric and duodenal ulcers, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. However, H. pylori can also be regarded as a commensal symbiont. Unlike other pathogenic/ opportunistic bacteria, H. pylori colonization in infancy is facilitated by T helper type 2 immunity and leads to the development of immune tolerance. Fucosylated gastric mucin glycans, which are an important part of the innate and adaptive immune system, mediate the adhesion of H. pylori to the surface of the gastric epithelium, contributing to successful colonization. H. pylori may have beneficial effects on the host by regulating gastrointestinal (GI) microbiota and protecting against some allergic and autoimmune disorders and inflammatory bowel disease. The potential protective role against inflammatory bowel disease may be related to both modulation of the gut microbiota and the immunomodulatory properties of H. pylori. The inverse association between H. pylori and some potentially proinflammatory and/or procarcinogenic bacteria may suggest it regulates the GI microbiota. Eradication of H. pylori can cause various adverse effects and alter the GI microbiota, leading to short-term or long-term dysbiosis. Overall, studies have shown that gastric Actinobacteria decrease after H. pylori eradication, Proteobacteria increase during short-term follow-up and then return to baseline levels, and Enterobacteriaceae and Enterococcus increase in the short-term and interim follow-up. Various gastric mucosal bacteria (Actinomyces, Granulicatella, Parvimonas, Peptostreptococcus, Prevotella, Rothia, Streptococcus, Rhodococcus, and Lactobacillus) may contribute to precancerous gastric lesions and cancer itself after H. pylori eradication. H. pylori eradication can also lead to dysbiosis of the gut microbiota, with increased Proteobacteria and decreased Bacteroidetes and Actinobacteria. The increase in gut Proteobacteria may contribute to adverse effects during and after eradication. The decrease in Actinobacteria, which are pivotal in the maintenance of gut homeostasis, can persist for > 6 mo after H. pylori eradication. Furthermore, H. pylori eradication can alter the metabolism of gastric and intestinal bacteria. Given the available data, eradication cannot be an unconditional recommendation in every case of H. pylori infection, and the decision to eradicate H. pylori should be based on an assessment of the benefit-risk ratio for the individual patient. Thus, the current guidelines based on the unconditional "test-and-treat" strategy should be revised. The most cautious and careful approach should be taken in elderly patients with multiple eradication failures since repeated eradication can cause antibiotic-associated diarrhea, including severe Clostridioides difficile-associated diarrhea and colitis and antibiotic-associated hemorrhagic colitis due to Klebsiella oxytoca. Furthermore, since eradication therapy with antibiotics and proton pump inhibitors can lead to serious adverse effects and/or dysbiosis of the GI microbiota, supplementation of probiotics, prebiotics, and microbial metabolites (e.g., butyrate + inulin) should be considered to decrease the negative effects of eradication.
Collapse
Affiliation(s)
- Stanislav Sitkin
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named After I.I. Mechnikov, St. Petersburg 191015, Russia
- Non-Infectious Disease Metabolomics Group, Institute of Experimental Medicine, St. Petersburg 197376, Russia
- Epigenetics and Metagenomics Group, Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Leonid Lazebnik
- Department of Outpatient Therapy, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Elena Avalueva
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named After I.I. Mechnikov, St. Petersburg 191015, Russia
| | - Svetlana Kononova
- Non-Infectious Disease Metabolomics Group, Institute of Experimental Medicine, St. Petersburg 197376, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Timur Vakhitov
- Non-Infectious Disease Metabolomics Group, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| |
Collapse
|
126
|
Yang X, Zheng M, Zhou M, Zhou L, Ge X, Pang N, Li H, Li X, Li M, Zhang J, Huang XF, Zheng K, Yu Y. Lentinan Supplementation Protects the Gut–Liver Axis and Prevents Steatohepatitis: The Role of Gut Microbiota Involved. Front Nutr 2022; 8:803691. [PMID: 35127789 PMCID: PMC8810540 DOI: 10.3389/fnut.2021.803691] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiota–gut–liver axis has emerged as an important player in developing nonalcoholic steatohepatitis (NASH), a type of nonalcoholic fatty liver disease (NAFLD). Higher mushroom intake is negatively associated with the prevalence of NAFLD. This study examined whether lentinan, an active ingredient in mushrooms, could improve NAFLD and gut microbiota dysbiosis in NAFLD mice induced by a high-fat (HF) diet. Dietary lentinan supplementation for 15 weeks significantly improved gut microbiota dysbiosis in HF mice, evidenced by increased the abundance of phylum Actinobacteria and decreased phylum Proteobacteria and Epsilonbacteraeota. Moreover, lentinan improved intestinal barrier integrity and characterized by enhancing intestinal tight junction proteins, restoring intestinal redox balance, and reducing serum lipopolysaccharide (LPS). In the liver, lentinan attenuated HF diet-induced steatohepatitis, alteration of inflammation–insulin (NFκB-PTP1B-Akt-GSK3β) signaling molecules, and dysregulation of metabolism and immune response genes. Importantly, the antihepatic inflammation effects of lentinan were associated with improved gut microbiota dysbiosis in the treated animals, since the Spearman's correlation analysis showed that hepatic LPS-binding protein and receptor (Lbp and Tlr4) and pro- and antiinflammatory cytokine expression were significantly correlated with the abundance of gut microbiota of phylum Proteobacteria, Epsilonbacteraeota and Actinobacteria. Therefore, lentinan supplementation may be used to mitigate NAFLD by modulating the microbiota–gut–liver axis.
Collapse
Affiliation(s)
- Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Menglu Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Limian Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Ning Pang
- Tianjin Third Central Hospital, Tianjin, China
| | - Hongchun Li
- Medical Technology Institute, Xuzhou Medical University, Xuzhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Mengdi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jun Zhang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xu-Feng Huang
- School of Medicine, Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- School of Medicine, Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
- *Correspondence: Yinghua Yu
| |
Collapse
|
127
|
Mahapatra S, Mohanty S, Mishra R, Prasad P. An overview of cancer and the human microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:83-139. [DOI: 10.1016/bs.pmbts.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
128
|
Kaźmierczak-Siedlecka K, Daca A, Roviello G, Catalano M, Połom K. Interdisciplinary insights into the link between gut microbiome and gastric carcinogenesis-what is currently known? Gastric Cancer 2022; 25:1-10. [PMID: 34741681 PMCID: PMC8732854 DOI: 10.1007/s10120-021-01260-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Currently, gastric cancer is one of the leading death-related cancer globally. The etiopathogenesis of gastric cancer is multifactorial and includes among others dysbiotic alterations of gastric microbiota. Molecular techniques revealed that stomach is not a sterile organ and it is resides with ecosystem of microbes. Due to the fact that the role of Helicobacter pylori infection in development of gastric cancer is established and well-studied, this paper is mainly focused on the role of other bacterial as well as viral and fungal gut microbiota imbalance in gastric carcinogenesis. Notably, not only the composition of gastric microbiota may play an important role in development of gastric cancer, but also its activity. Microbial metabolites, such as short-chain fatty acids, polyamines, N-nitroso compounds, and lactate, may significantly affect gastric carcinogenesis. Therefore, this paper discussed aforementioned aspects with the interdisciplinary insights (regarding also immunological point of view) into the association between gut microbiome and gastric carcinogenesis based on up-to-date studies.
Collapse
Affiliation(s)
| | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Gdańsk, Poland
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - Martina Catalano
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdansk, ul. Smoluchowskiego 17, 80-214, Gdańsk, Poland
| |
Collapse
|
129
|
Jin D, Huang K, Xu M, Hua H, Ye F, Yan J, Zhang G, Wang Y. Deoxycholic acid induces gastric intestinal metaplasia by activating STAT3 signaling and disturbing gastric bile acids metabolism and microbiota. Gut Microbes 2022; 14:2120744. [PMID: 36067404 PMCID: PMC9467587 DOI: 10.1080/19490976.2022.2120744] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023] Open
Abstract
Intestinal metaplasia (IM) is the inevitable precancerous stage to develop intestinal-type gastric cancer (GC). Deoxycholic acid (DCA) is the main bile acid (BA) component of duodenogastric reflux and has shown an increased concentration during the transition from chronic gastritis to IM associated with continued STAT3 activation. However, the mechanisms underlying how DCA facilitates IM in the gastric epithelium need exploration. We evaluated IM and bile reflux in corpus tissues from 161 subjects undergoing GC screening. Cell survival and proliferation, proinflammatory cytokine expression and TGR5/STAT3/KLF5 axis activity were measured in normal human gastric cells, cancer cells, and organoid lines derived from C57BL/6, FVB/N and insulin-gastrin (INS-GAS) mice treated with DCA. The effects of DCA on IM development were determined in INS-GAS mice with long-term DCA supplementation, after which the gastric bacterial and BA metabolic profiles were measured by 16S rRNA gene sequencing and LC-MS. We revealed a BA-triggered TGR5/STAT3/KLF5 pathway in human gastric IM tissues. In gastric epithelial cells, DCA promoted proliferation and apoptotic resistance, upregulated proinflammatory cytokines and IM markers, and facilitated STAT3 phosphorylation, nuclear accumulation and DNA binding to the KLF5 promoter. DCA triggered STAT3 signaling and the downstream IM marker KLF5 in mouse gastric organoids in vitro and in vivo. In INS-GAS mice, DCA promoted the accumulation of serum total BAs and accelerated the stepwise development of gastric IM and dysplasia. DCA induced gastric environmental alterations involving abnormal BA metabolism and microbial dysbiosis, in which the Gemmobacter and Lactobacillus genera were specifically enriched. Lactobacillus genus enrichment was positively correlated with increased levels of GCA, CA, T-α-MCA, TCA and β-MCA in DCA-administrated INS-GAS mice. DCA promotes nuclear STAT3 phosphorylation, which mediates KLF5 upregulation associated with gastric inflammation and IM development. DCA disturbs the gastric microbiome and BA metabolism homeostasis during IM induction.
Collapse
Affiliation(s)
- Duochen Jin
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, NanjingChina
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Keting Huang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, NanjingChina
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Miao Xu
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, NanjingChina
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Hongjin Hua
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Ye
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, NanjingChina
| | - Jin Yan
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, NanjingChina
| | - Guoxin Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, NanjingChina
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Yun Wang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, NanjingChina
| |
Collapse
|
130
|
Liu D, Chen S, Gou Y, Yu W, Zhou H, Zhang R, Wang J, Ye F, Liu Y, Sun B, Zhang K. Gastrointestinal Microbiota Changes in Patients With Gastric Precancerous Lesions. Front Cell Infect Microbiol 2021; 11:749207. [PMID: 34956928 PMCID: PMC8695999 DOI: 10.3389/fcimb.2021.749207] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background Gastric microbiota may be involved in gastric cancer. The relationship between gastrointestinal microbes and the risk of gastric cancer is unclear. This study aimed to explore the gastric and intestinal bacteria associated with gastritis and gastric precancerous lesions. We conducted a case-control study by performing 16S rRNA gene analysis of gastric biopsies, juices, and stool samples from 148 cases with gastritis or gastric precancerous lesions from Anhui and neighboring provinces, China. And we validated our findings in public datasets. Results Analysis of microbial sequences revealed decreased bacterial alpha diversity in gastric bacteria during the progression of gastritis. Helicobacter pylori was the main contributor to the decreased microbial composition and diversity in the gastric mucosa and had little influence on the microbiota of gastric juice and feces. The gastric mucosal genera Gemella, Veillonella, Streptococcus, Actinobacillus, and Hemophilus had the higher degree of centrality across the progression of gastric precancerous lesions. And Acinetobacter may contribute to the occurrence of intraepithelial neoplasia. In addition, the microbial model of H. pylori-positive gastric biopsies and feces showed value in the prediction of gastric precancerous lesions. Conclusions This study identified associations between gastric precancerous lesions and gastric microbiota, as well as the changes in intestinal microbiota, and explored their values in the prediction of gastric precancerous lesions.
Collapse
Affiliation(s)
- Dehua Liu
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Si Chen
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yawen Gou
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenyong Yu
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hangcheng Zhou
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rutong Zhang
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jinghao Wang
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fei Ye
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yingling Liu
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Baolin Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Kaiguang Zhang
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
131
|
Avalueva EB, Serkova MY, Sitkin SI. <i>Helicobacter pylori</i>. The survival strategy of a commensal symbiont in the <i>Homo sapiens</i> population. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2021:102-108. [DOI: 10.31146/1682-8658-ecg-193-9-102-108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Несмотря на крайне высокую степень инфицированности Helicobacter pylori в популяции Homo sapiens, подавляющее большинство инфицированных являются бессимптомными носителями. Широкое распространение инфекции H. pylori среди лиц без признаков патологии и низкая заболеваемость при хронической колонизации слизистой оболочки желудка указывают на то, что H. pylori с большей вероятностью является условно-патогенным микроорганизмом или патобионтом. Популяционная ликвидация инфекции H. pylori существенно снизила заболеваемость инфекцией H. pylori, однако появление устойчивости к противомикробным препаратам привело к их неэффективности.
Collapse
Affiliation(s)
- E. B. Avalueva
- North-Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - M. Yu. Serkova
- North-Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - S. I. Sitkin
- North-Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation; Almazov National Medical Research Centre
| |
Collapse
|
132
|
Yuan Z, Xiao S, Li S, Suo B, Wang Y, Meng L, Liu Z, Yin Z, Xue Y, Zhou L. The impact of Helicobacter pylori infection, eradication therapy, and probiotics intervention on gastric microbiota in young adults. Helicobacter 2021; 26:e12848. [PMID: 34448282 DOI: 10.1111/hel.12848] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/31/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The impact of probiotics on non-Helicobacter pylori gastric microbiota and its role in microbial restoration after eradication were relatively unknown. We aimed to explore the effect of H. pylori eradication and probiotic intervention on gastric microbiota in young adults. METHODS Fifty-six H. pylori-negative and 95 H. pylori-positive subjects aged 19-30 were included in this study. H. pylori-infected individuals were randomly assigned to quadruple therapy, probiotics supplemented quadruple therapy, or probiotics monotherapy group. Gastric mucosa and gastric juice samples were collected before and 2 months after treatment for 16SrRNA gene sequencing. RESULTS The gastric microbial community structure and composition differed from H. pylori-negative subjects 2 months after successful H. pylori eradication. The α diversity of gastric mucosal microbiota significantly increased and was higher than H. pylori-negative subjects, while the α diversity of gastric juice microbiota decreased and was lower than the H. pylori-negative. After probiotics supplemented eradication treatment, Bifidobacterium was enriched in gastric mucosa, Lactobacillus was enriched in gastric juice, potentially pathogenic bacteria such as Fusobacterium and Campylobacter decreased, and the microbial diversity was closer to that of H. pylori-negative subjects compared to quadruple therapy group. Probiotics monotherapy significantly altered the diversity, community structure, and composition of gastric microbiota but showed no advantage in H. pylori inhibition and upregulating beneficial bacteria such as Bifidobacterium and Lactobacillus and related metabolism pathways. Certain potentially pathogenic bacteria such as Fusobacterium increased after probiotic monotherapy. CONCLUSION H. pylori eradication significantly disrupted gastric microbiota in young adults and could not be restored in a short time. Probiotics supplementation partially helped restore the gastric dysbiosis caused by eradication therapy, but it might be unnecessary for H. pylori-infected young adults to take probiotics alone.
Collapse
Affiliation(s)
- Ziying Yuan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Shiyu Xiao
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Sizhu Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Baojun Suo
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Ye Wang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Lingmei Meng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Zuojing Liu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Zhihao Yin
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Yan Xue
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Liya Zhou
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| |
Collapse
|
133
|
Yang H, Wei B, Hu B. Chronic inflammation and long-lasting changes in the gastric mucosa after Helicobacter pylori infection involved in gastric cancer. Inflamm Res 2021; 70:1015-1026. [PMID: 34549319 DOI: 10.1007/s00011-021-01501-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Helicobacter pylori (H. pylori) infects approximately half of the world's population, as one of the most common chronic infections. H. pylori infection has been widely recognized as a major risk factor for gastric cancer (GC). METHODS Eradication treatment is considered to abolish the inflammatory response and prevent progression to GC. However, only 1-3% of H. pylori-infected patients develop GC, whereas GC can occur even after eradicating H. pylori. In addition, the incidence of GC following H. pylori infection is significantly higher compared to the gross incidence induced by all causes, although eradicating H. pylori reduces the risk of developing GC. RESULTS Therefore, it is reasonable to hypothesize that H. pylori infection results in changes that persist even after its eradication. Several of these changes may not be reversible within a short time, including the status of inflammation, the dysfunction of immunity and apoptosis, mitochondrial changes, aging and gastric dysbacteriosis. CONCLUSION The present review article aimed to discuss these potential long-lasting changes induced by H. pylori infection that may follow the eradication of H. pylori and contribute to the development of GC.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Bin Wei
- Department of Gastroenterology, The First Hospital of Xi'an City, Xi'an, 710002, Shanxi, People's Republic of China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
134
|
Conti L, Borro M, Milani C, Simmaco M, Esposito G, Canali G, Pilozzi E, Ventura M, Annibale B, Lahner E. Gastric microbiota composition in patients with corpus atrophic gastritis. Dig Liver Dis 2021; 53:1580-1587. [PMID: 34116969 DOI: 10.1016/j.dld.2021.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND In corpus atrophic gastritis (CAG), hypochlorhydria makes plausible the overgrowth of intragastric bacteria, whose role in gastric carcinogenesis is under debate. AIMS To characterize the antrum/corpus composition of the gastric bacterial microbiota in CAG patients compared to controls without CAG. METHODS A cross-sectional monocentric study on consecutive patients with known histological diagnosis of CAG undergoing gastroscopy for gastric cancer surveillance and patients without CAG undergoing gastroscopy for dyspepsia or anemia (108 biopsies from 55 patients, median age 61.5). Genomic DNA from one antral and one corpus biopsy from each case (n = 23) and control (n = 32) was extracted. Gastric microbiota was assessed by sequencing hypervariable regions of the 16SrRNA gene. RESULTS Bacterial abundance and diversity were significantly lower in CAG cases than in controls (p < 0.001). Firmicutes were more frequent in cases, Bacteroidetes and Fusobacteria in controls (p < 0.0001). Streptococcaceae were more abundant in cases (p < 0.0001), Prevotellaceae in controls (p < 0.0001). The genus Streptococcus was positively correlated with severe OLGA/OLGIM stages linked to a higher risk of gastric cancer. CONCLUSION Gastric bacterial microbiota in CAG showed a reduced abundance and complexity but was characterized by higher colonization of Firmicutes, in particular Streptococcus, increased in subjects with severe atrophy/metaplasia stages at higher risk of gastric cancer.
Collapse
Affiliation(s)
- Laura Conti
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, Sant'Andrea Hospital, University Sapienza, Rome, Italy
| | - Marina Borro
- Department of Neurosciences, Mental Health, and Sensory Organs, "Sapienza" University of Rome, via di Grottarossa 1035-1039, 00189 Rome, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Microbiome Research Hub, Dept. Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Maurizio Simmaco
- Department of Neurosciences, Mental Health, and Sensory Organs, "Sapienza" University of Rome, via di Grottarossa 1035-1039, 00189 Rome, Italy
| | - Gianluca Esposito
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, Sant'Andrea Hospital, University Sapienza, Rome, Italy
| | - Giulia Canali
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, Sant'Andrea Hospital, University Sapienza, Rome, Italy
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, University Sapienza, Rome, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Microbiome Research Hub, Dept. Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Bruno Annibale
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, Sant'Andrea Hospital, University Sapienza, Rome, Italy
| | - Edith Lahner
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, Sant'Andrea Hospital, University Sapienza, Rome, Italy.
| |
Collapse
|
135
|
Abstract
Little is known about the influence of gastric microbiota on host metabolism, even though the stomach plays an important role in the production of hormones involved in body weight regulation and glucose homeostasis. Proton pump inhibitors (PPIs) and Helicobacter pylori alter gut microbiota, but their impact on gastric microbiota in patients with obesity and the influence of these factors on the metabolic response to bariatric surgery is not fully understood. Forty-one subjects with morbid obesity who underwent sleeve gastrectomy were included in this study. The H. pylori group was established by the detection of H. pylori using a sequencing-based method (n = 16). Individuals in whom H. pylori was not detected were classified according to PPI treatment. Gastric biopsy specimens were obtained during surgery and were analyzed by a high-throughput-sequencing method. Patients were evaluated at baseline and 3, 6, and 12 months after surgery. β-Diversity measures were able to cluster patients according to their gastric mucosa-associated microbiota composition. H. pylori and PPI treatment are presented as two important factors for gastric mucosa-associated microbiota. H. pylori reduced diversity, while PPIs altered β-diversity. Both factors induced changes in the gastric mucosa-associated microbiota composition and its predicted functions. PPI users showed lower percentages of change in the body mass index (BMI) in the short term after surgery, while the H. pylori group showed higher glucose levels and lower percentages of reduction in body weight/BMI 1 year after surgery. PPIs and H. pylori colonization could modify the gastric mucosa-associated microbiota, altering its diversity, composition, and predicted functionality. These factors may have a role in the metabolic evolution of patients undergoing bariatric surgery. IMPORTANCE The gut microbiota has been shown to have an impact on host metabolism. In the stomach, factors like proton pump inhibitor treatment and Helicobacter pylori haven been suggested to alter gut microbiota; however, the influence of these factors on the metabolic response to bariatric surgery has not been fully studied. In this study, we highlight the impact of these factors on the gastric microbiota composition. Moreover, proton pump inhibitor treatment and the presence of Helicobacter pylori could have an influence on bariatric surgery outcomes, mainly on body weight loss and glucose homeostasis. Deciphering the relationship between gastric hormones and gastric microbiota and their contributions to bariatric surgery outcomes paves the way to develop gut manipulation strategies to improve the metabolic success of bariatric surgery.
Collapse
|
136
|
Wen J, Lau HCH, Peppelenbosch M, Yu J. Gastric Microbiota beyond H. pylori: An Emerging Critical Character in Gastric Carcinogenesis. Biomedicines 2021; 9:1680. [PMID: 34829909 PMCID: PMC8615612 DOI: 10.3390/biomedicines9111680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Gastric cancer (GC) is one of the global leading causes of cancer death. The association between Helicobacter pylori, which is a predominant risk factor for GC, with GC development has been well-studied. Recently, accumulating evidence has demonstrated the presence of a large population of microorganisms other than H. pylori in the human stomach. Existing sequencing studies have revealed microbial compositional and functional alterations in patients with GC and highlighted a progressive shift in the gastric microbiota in gastric carcinogenesis with marked enrichments of oral or intestinal commensals. Moreover, using a combination of gastric bacterial signatures, GC patients could be significantly distinguished from patients with gastritis. These findings, therefore, emphasize the importance of a collective microbial community in gastric carcinogenesis. Here, we provide an overview of non-H. pylori gastric microbes in gastric carcinogenesis. The molecular mechanisms of gastric microbes-related carcinogenesis and potential clinical applications of gastric microbiota as biomarkers of GC are also explored.
Collapse
Affiliation(s)
- Jun Wen
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; (J.W.); (H.C.-H.L.)
| | - Harry Cheuk-Hay Lau
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; (J.W.); (H.C.-H.L.)
| | - Maikel Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The Netherlands;
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; (J.W.); (H.C.-H.L.)
- Institute of Digestive Disease, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| |
Collapse
|
137
|
Li F, Zhu H, Tao K, Xia Y, Liu M, Wang Y, Sun Y, Cao T, Chai J, Ni F, Shi B, Xu H. Mucosal microbial microenvironment in early gastric neoplasia and non-neoplastic gastric disease. J Gastroenterol Hepatol 2021; 36:3092-3101. [PMID: 34089623 DOI: 10.1111/jgh.15565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIM The biological characterization of microbial environment in early gastric cancer (EGC), other than Helicobacter pylori, is limited. This study aimed to explore the microbial microenvironment in chronic gastritis (CG), fundic gland polyps (FGPs), low-grade intraepithelial neoplasia (LGIN), and EGC. METHODS 16S-rRNA gene sequencing and bioinformatic analysis were performed on 63 individuals with 252 mucosal biopsies or endoscopic submucosal dissection margin samples from endoscopy. RESULTS The microbiota in gastric LGIN functions analogously to EGC in terms of functional prediction. Neoplastic lesions showed a significant difference to CG or FGPs in beta diversity of the microbiota. Bacteria genera including Paracoccus, Blautia, Barnesiella, Lactobacillus, Thauera, Collinsella were significantly enriched in gastric neoplastic mucosa (LGIN and EGC) compared with non-neoplastic tissues (CG and FGPs). While Pseudomonas and Kingella were depleted in neoplastic tissues. FGPs showed a distinctive microbial network system that negatively interacted with Helicobacter. CONCLUSIONS In terms of the mucosal microbial microenvironment, gastric LGIN and EGC showed no significant difference as early neoplastic lesions. We observed a coordinated microbial microenvironment that correlated negatively with Helicobacter.
Collapse
Affiliation(s)
- Fudong Li
- Department of Gastroenterology and Endoscopy Center, The First Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Gastroenterology and Endoscopy Center, The First Hospital of Jilin University, Changchun, China
| | - Ke Tao
- Department of Gastroenterology and Endoscopy Center, The First Hospital of Jilin University, Changchun, China
| | - Yan Xia
- Department of Gastroenterology and Endoscopy Center, The First Hospital of Jilin University, Changchun, China
| | - Mingqing Liu
- Department of Gastroenterology and Endoscopy Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Wang
- Department of Gastroenterology and Endoscopy Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Sun
- Department of Gastroenterology and Endoscopy Center, The First Hospital of Jilin University, Changchun, China
| | - Tingting Cao
- Department of Gastroenterology and Endoscopy Center, The First Hospital of Jilin University, Changchun, China
| | - Jiannan Chai
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Fengming Ni
- Department of Gastroenterology and Endoscopy Center, The First Hospital of Jilin University, Changchun, China
| | - Bing Shi
- Department of Gastroenterology and Endoscopy Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology and Endoscopy Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
138
|
Sheng Z, Yu L, Li X, Zhao Y, Dai W, Chang SK, Liu J. The anti-obesity effect of fermented tremella/blueberry and its potential mechanisms in metabolically healthy obese rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
139
|
Mao LQ, Zhou YL, Wang SS, Chen L, Hu Y, Yu LM, Xu JM, Lyu B. Impact of Helicobacter pylori eradication on the gastric microbiome. Gut Pathog 2021; 13:60. [PMID: 34645495 PMCID: PMC8513236 DOI: 10.1186/s13099-021-00460-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Helicobacter pylori (Hp) eradication has been used for many years. Yet, the impact of this eradication on the normal gastric microflora is not well understood. In this study, we explored the effect of eradication on the stomach microbial community and its recovery after successful Hp eradication. METHODS Among the 89 included patients, 23, 17, 40, and 9 were included in the Hp-negative, Hp-positive, successful eradication, and failed eradication groups, respectively. Four subgroups were further determined according to disease status (Hp-negative chronic gastritis [N-CG], Hp-negative atrophic gastritis [N-AG], successful-eradication chronic gastritis [SE-CG], and atrophic gastritis with successful eradication [SE-AG]). During the endoscopic examination, one piece of gastric mucosa tissue was obtained from the lesser curvature side of the gastric antrum and gastric corpus, respectively. In addition, 16S rDNA gene sequencing was used to analyze the gastric mucosal microbiome. RESULTS In the Hp-negative group, the gastric microbiota was dominated by five phyla: Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Fusobacteria. After successfully eradicating Hp, the bacterial flora in the stomach recovered to a considerable extent. In the failed eradication group, the flora was similar to the flora in Hp-positive subjects based on the alpha and beta diversities. Among the groups, Curvibacter and Acinetobacter were enriched in the presence of Hp (i.e., failed eradication and Hp-positive groups), suggesting that these two genera could be used as biomarkers in the symbiotic flora in the presence of Hp. SE-CG was characterized by an increase in Firmicutes taxa and a decrease in Proteobacteria taxa compared with N-CG. SE-AG was characterized by a decrease in Firmicutes relative to N-AG. Finally, no differences were found in the pairwise comparisons of nitrate and nitrite reductase functions of the microflora among the four subgroups. CONCLUSIONS After Hp infection, the diversity and relative abundance of gastric microflora were significantly decreased. Yet, gastric microbiota could be partially restored to the Hp-negative status after eradication. Still, this effect was incomplete and might contribute to the long-term risks.
Collapse
Affiliation(s)
- Li-Qi Mao
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Gastroenterology, The First People's Hospital of Huzhou, The First Affiliated Hospital of Huzhou Teachers College, Huzhou, China
| | - Yan-Lin Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuang-Shuang Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Lin Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Hu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei-Min Yu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Gastroenterology, Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing-Ming Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Lyu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
140
|
Liang T, Liu F, Liu L, Zhang Z, Dong W, Bai S, Ma L, Kang L. Effects of Helicobacter pylori Infection on the Oral Microbiota of Reflux Esophagitis Patients. Front Cell Infect Microbiol 2021; 11:732613. [PMID: 34604113 PMCID: PMC8482873 DOI: 10.3389/fcimb.2021.732613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
The human oral microbiota plays a vital role in maintaining metabolic homeostasis. To explore the relationship between Helicobacter pylori (Hp) and reflux esophagitis, we collected 86 saliva samples from reflux esophagitis patients (RE group) and 106 saliva samples from healthy people (C group) for a high-throughput sequencing comparison. No difference in alpha diversity was detected between the RE and the C groups, but beta diversity of the RE group was higher than the C group. Bacteroidetes was more abundant in the RE group, whereas Firmicutes was more abundant in the C group. The linear discriminant analysis effect size analysis demonstrated that the biomarkers of the RE group were Prevotella, Veillonella, Leptotrichia, and Actinomyces, and the biomarkers of the C group were Lautropia, Gemella, Rothia, and Streptococcus. The oral microbial network structure of the C group was more complex than that of the RE group. Second, to explore the effect of Hp on the oral microbiota of RE patients, we performed the 14C-urea breath test on 45 of the 86 RE patients. We compared the oral microbiota of 33 Hp-infected reflux esophagitis patients (REHpp group) and 12 non-Hp-infected reflux esophagitis patients (REHpn group). No difference in alpha diversity was observed between the REHpn and REHpp groups, and beta diversity of the REHpp group was significantly lower than that of the REHpn group. The biomarkers in the REHpp group were Veillonella, Haemophilus, Selenomonas, Megasphaera, Oribacterium, Butyrivibrio, and Campylobacter; and the biomarker in the REHpn group was Stomatobaculum. Megasphaera was positively correlated with Veillonella in the microbial network of the REHpp group. The main finding of this study is that RE disturbs the human oral microbiota, such as increased beta diversity. Hp infection may inhibit this disorderly trend.
Collapse
Affiliation(s)
- Tian Liang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Fang Liu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Lijun Liu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Zhiying Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Wenxue Dong
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Su Bai
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Lifeng Ma
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| |
Collapse
|
141
|
Gomez-Ramirez U, Valencia-Mayoral P, Mendoza-Elizalde S, Murillo-Eliosa JR, Solórzano Santos F, Contreras-Rodríguez A, Zúñiga G, Aguilar-Rodea P, Jiménez-Rojas VL, Vigueras Galindo JC, Salazar-García M, Velázquez-Guadarrama N. Role of Helicobacter pylori and Other Environmental Factors in the Development of Gastric Dysbiosis. Pathogens 2021; 10:1203. [PMID: 34578235 PMCID: PMC8467233 DOI: 10.3390/pathogens10091203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Microbiomes are defined as complex microbial communities, which are mainly composed of bacteria, fungi, and viruses residing in diverse regions of the human body. The human stomach consists of a unique and heterogeneous habitat of microbial communities owing to its anatomical and functional characteristics, that allow the optimal growth of characteristic bacteria in this environment. Gastric dysbiosis, which is defined as compositional and functional alterations of the gastric microbiota, can be induced by multiple environmental factors, such as age, diet, multiple antibiotic therapies, proton pump inhibitor abuse, H. pylori status, among others. Although H. pylori colonization has been reported across the world, chronic H. pylori infection may lead to serious consequences; therefore, the infection must be treated. Multiple antibiotic therapy improvements are not always successful because of the lack of adherence to the prescribed antibiotic treatment. However, the abuse of eradication treatments can generate gastric dysbiotic states. Dysbiosis of the gastric microenvironment induces microbial resilience, due to the loss of relevant commensal bacteria and simultaneous colonization by other pathobiont bacteria, which can generate metabolic and physiological changes or even initiate and develop other gastric disorders by non-H. pylori bacteria. This systematic review opens a discussion on the effects of multiple environmental factors on gastric microbial communities.
Collapse
Affiliation(s)
- Uriel Gomez-Ramirez
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
- Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Pedro Valencia-Mayoral
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (P.V.-M.); (J.R.M.-E.)
| | - Sandra Mendoza-Elizalde
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Juan Rafael Murillo-Eliosa
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (P.V.-M.); (J.R.M.-E.)
| | - Fortino Solórzano Santos
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Pamela Aguilar-Rodea
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Verónica Leticia Jiménez-Rojas
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Juan Carlos Vigueras Galindo
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| | - Marcela Salazar-García
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Norma Velázquez-Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (U.G.-R.); (S.M.-E.); (F.S.S.); (P.A.-R.); (V.L.J.-R.); (J.C.V.G.)
| |
Collapse
|
142
|
Businello G, Angerilli V, Parente P, Realdon S, Savarino E, Farinati F, Grillo F, Vanoli A, Galuppini F, Paccagnella S, Pennelli G, Mastracci L, Saragoni L, Fassan M. Molecular Landscapes of Gastric Pre-Neoplastic and Pre-Invasive Lesions. Int J Mol Sci 2021; 22:9950. [PMID: 34576114 PMCID: PMC8468646 DOI: 10.3390/ijms22189950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric carcinoma (GC) represents one of the most common and most lethal malignancies worldwide. The histopathological characterization of GC precursor lesions has provided great knowledge about gastric carcinogenesis, with the consequent introduction of effective strategies of primary and secondary prevention. In recent years, a large amount of data about the molecular events in GC development is emerging, flanking the histomorphological descriptions. In this review, we describe the landscape of molecular alterations in gastric pre-invasive lesions with a glance at their potential use in the diagnostic and therapeutic decision-making process.
Collapse
Affiliation(s)
- Gianluca Businello
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.B.); (V.A.); (F.G.); (S.P.); (G.P.)
| | - Valentina Angerilli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.B.); (V.A.); (F.G.); (S.P.); (G.P.)
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Stefano Realdon
- Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy;
| | - Edoardo Savarino
- Division of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35121 Padua, Italy; (E.S.); (F.F.)
| | - Fabio Farinati
- Division of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35121 Padua, Italy; (E.S.); (F.F.)
| | - Federica Grillo
- Anatomic Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DICS), University of Genova, 16132 Genova, Italy; (F.G.); (L.M.)
- Ospedale Policlinico San Martino, IRCCS for Oncology and Neuroscience, 16132 Genova, Italy
| | - Alessandro Vanoli
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, 27100 Pavia, Italy;
| | - Francesca Galuppini
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.B.); (V.A.); (F.G.); (S.P.); (G.P.)
| | - Silvia Paccagnella
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.B.); (V.A.); (F.G.); (S.P.); (G.P.)
| | - Gianmaria Pennelli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.B.); (V.A.); (F.G.); (S.P.); (G.P.)
| | - Luca Mastracci
- Anatomic Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DICS), University of Genova, 16132 Genova, Italy; (F.G.); (L.M.)
- Ospedale Policlinico San Martino, IRCCS for Oncology and Neuroscience, 16132 Genova, Italy
| | - Luca Saragoni
- UO Anatomia Patologica, Ospedale G.B. Morgagni-L. Pierantoni, 47121 Forlì, Italy;
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.B.); (V.A.); (F.G.); (S.P.); (G.P.)
- Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy;
| |
Collapse
|
143
|
Helicobacter pylori-Induced Inflammation: Possible Factors Modulating the Risk of Gastric Cancer. Pathogens 2021; 10:pathogens10091099. [PMID: 34578132 PMCID: PMC8467880 DOI: 10.3390/pathogens10091099] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation and long-term tissue injury are related to many malignancies, including gastric cancer (GC). Helicobacter pylori (H. pylori), classified as a class I carcinogen, induces chronic superficial gastritis followed by gastric carcinogenesis. Despite a high prevalence of H. pylori infection, only about 1–3% of people infected with this bacterium develop GC worldwide. Furthermore, the development of chronic gastritis in some, but not all, H. pylori-infected subjects remains unexplained. These conflicting findings indicate that clinical outcomes of aggressive inflammation (atrophic gastritis) to gastric carcinogenesis are influenced by several other factors (in addition to H. pylori infection), such as gut microbiota, co-existence of intestinal helminths, dietary habits, and host genetic factors. This review has five goals: (1) to assess our current understanding of the process of H. pylori-triggered inflammation and gastric precursor lesions; (2) to present a hypothesis on risk modulation by the gut microbiota and infestation with intestinal helminths; (3) to identify the dietary behavior of the people at risk of GC; (4) to check the inflammation-related genetic polymorphisms and role of exosomes together with other factors as initiators of precancerous lesions and gastric carcinoma; and (5) finally, to conclude and suggest a new direction for future research.
Collapse
|
144
|
Weng CY, Xu JL, Sun SP, Wang KJ, Lv B. Helicobacter pylori eradication: Exploring its impacts on the gastric mucosa. World J Gastroenterol 2021; 27:5152-5170. [PMID: 34497441 PMCID: PMC8384747 DOI: 10.3748/wjg.v27.i31.5152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/14/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infects approximately 50% of all humans globally. Persistent H. pylori infection causes multiple gastric and extragastric diseases, indicating the importance of early diagnosis and timely treatment. H. pylori eradication produces dramatic changes in the gastric mucosa, resulting in restored function. Consequently, to better understand the importance of H. pylori eradication and clarify the subsequent recovery of gastric mucosal functions after eradication, we summarize histological, endoscopic, and gastric microbiota changes to assess the therapeutic effects on the gastric mucosa.
Collapse
Affiliation(s)
- Chun-Yan Weng
- Department of Gastroenterology, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Jing-Li Xu
- Department of Gastrointestinal Surgery, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Shao-Peng Sun
- Department of Gastroenterology, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Kai-Jie Wang
- Department of Gastroenterology, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Bin Lv
- Department of Gastroenterology, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
145
|
Javelle E, Mayet A, Million M, Levasseur A, Allodji RS, Marimoutou C, Lavagna C, Desplans J, Fournier PE, Raoult D, Texier G. Gut Microbiota in Military International Travelers with Doxycycline Malaria Prophylaxis: Towards the Risk of a Simpson Paradox in the Human Microbiome Field. Pathogens 2021; 10:pathogens10081063. [PMID: 34451527 PMCID: PMC8400693 DOI: 10.3390/pathogens10081063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Dysbiosis, developed upon antibiotic administration, results in loss of diversity and shifts in the abundance of gut microbes. Doxycycline is a tetracycline antibiotic widely used for malaria prophylaxis in travelers. We prospectively studied changes in the fecal microbiota of 15 French soldiers after a 4-month mission to Mali with doxycycline malaria prophylaxis, compared to changes in the microbiota of 28 soldiers deployed to Iraq and Lebanon without doxycycline. Stool samples were collected with clinical data before and after missions, and 16S rRNA sequenced on MiSeq targeting the V3-V4 region. Doxycycline exposure resulted in increased alpha-biodiversity and no significant beta-dissimilarities. It led to expansion in Bacteroides, with a reduction in Bifidobacterium and Lactobacillus, as in the group deployed without doxycycline. Doxycycline did not alter the community structure and was specifically associated with a reduction in Escherichia and expression of Rothia. Differences in the microbiota existed at baseline between military units but not within the studied groups. This group-effect highlighted the risk of a Simpson paradox in microbiome studies.
Collapse
Affiliation(s)
- Emilie Javelle
- Laveran Military Teaching Hospital, Boulevard Alphonse Laveran, 13013 Marseille, France
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13000 Marseille, France; (P.E.F.); (G.T.)
- IHU-Méditerranée Infection, 19–21 Boulevard Alphonse Laveran, 13013 Marseille, France; (M.M.); (A.L.); (D.R.)
- Correspondence: ; Tel.: +33-(0)6-32-41-99-03; Fax: +33-(0)4-13-73-24-02
| | - Aurélie Mayet
- Centre d’Epidémiologie et de Santé Publique des Armées (CESPA), 13014 Marseille, France; (A.M.); (C.M.); (C.L.); (J.D.)
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, Aix Marseille University, 13000 Marseille, France
| | - Matthieu Million
- IHU-Méditerranée Infection, 19–21 Boulevard Alphonse Laveran, 13013 Marseille, France; (M.M.); (A.L.); (D.R.)
- IRD, AP-HM, SSA, MEPHI, Aix Marseille University, 13000 Marseille, France
| | - Anthony Levasseur
- IHU-Méditerranée Infection, 19–21 Boulevard Alphonse Laveran, 13013 Marseille, France; (M.M.); (A.L.); (D.R.)
- Centre d’Epidémiologie et de Santé Publique des Armées (CESPA), 13014 Marseille, France; (A.M.); (C.M.); (C.L.); (J.D.)
- IRD, AP-HM, SSA, MEPHI, Aix Marseille University, 13000 Marseille, France
| | - Rodrigue S. Allodji
- Radiation Epidemiology Team, CESP, Inserm U1018, 94800 Villejuif, France;
- Université Paris-Saclay, UVSQ, Inserm, CESP, 94807 Villejuif, France
- Department of Research, Gustave Roussy, 94800 Villejuif, France
| | - Catherine Marimoutou
- Centre d’Epidémiologie et de Santé Publique des Armées (CESPA), 13014 Marseille, France; (A.M.); (C.M.); (C.L.); (J.D.)
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, Aix Marseille University, 13000 Marseille, France
- CIC Inserm 1410, CHU de La Réunion, 97400 La Réunion, France
| | - Chrystel Lavagna
- Centre d’Epidémiologie et de Santé Publique des Armées (CESPA), 13014 Marseille, France; (A.M.); (C.M.); (C.L.); (J.D.)
| | - Jérôme Desplans
- Centre d’Epidémiologie et de Santé Publique des Armées (CESPA), 13014 Marseille, France; (A.M.); (C.M.); (C.L.); (J.D.)
| | - Pierre Edouard Fournier
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13000 Marseille, France; (P.E.F.); (G.T.)
- IHU-Méditerranée Infection, 19–21 Boulevard Alphonse Laveran, 13013 Marseille, France; (M.M.); (A.L.); (D.R.)
| | - Didier Raoult
- IHU-Méditerranée Infection, 19–21 Boulevard Alphonse Laveran, 13013 Marseille, France; (M.M.); (A.L.); (D.R.)
- IRD, AP-HM, SSA, MEPHI, Aix Marseille University, 13000 Marseille, France
| | - Gaëtan Texier
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13000 Marseille, France; (P.E.F.); (G.T.)
- Centre d’Epidémiologie et de Santé Publique des Armées (CESPA), 13014 Marseille, France; (A.M.); (C.M.); (C.L.); (J.D.)
| |
Collapse
|
146
|
Paul LJ, Ericsson AC, Andrews FM, Keowen ML, Morales Yniguez F, Garza F, Banse HE. Gastric microbiome in horses with and without equine glandular gastric disease. J Vet Intern Med 2021; 35:2458-2464. [PMID: 34351018 PMCID: PMC8478018 DOI: 10.1111/jvim.16241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/04/2023] Open
Abstract
Background The role of the gastric microbiome in development or persistence of equine glandular gastric disease (EGGD) remains to be investigated. Hypothesis/Objectives The objective was to characterize the glandular mucosal and gastric fluid microbiomes of horses with and without EGGD. It was hypothesized that differences in the mucosal microbiome are associated with EGGD. Animals Twenty‐four horses were enrolled. Methods Gastroscopy was performed and EGGD scores recorded (score 0, n = 6; score 1, n = 8; score ≥2, n = 10). Gastric fluid and pinch biopsies of healthy glandular mucosa and EGGD lesions were collected via gastroscope. 16S rRNA amplicon sequencing of the gastric fluid and glandular mucosal biopsies was performed. Relationships between gastric fluid and mucosal microbial community composition were evaluated among EGGD score groups (EGGD 0‐BX, EGGD 1‐BX, EGGD ≥2‐BX) and among endoscopic appearances: controls from horses without EGGD and normal areas, hyperemic areas, and lesions from horses with EGGD. Results Microbial community structure of mucosal biopsies differed among EGGD score groups (Jaccard similarity index; P = .009). Principal coordinate analysis showed separate clusters for EGGD 0‐BX and EGGD ≥2‐BX. Conclusions and Clinical Importance A modest difference was detected in the community structure of the gastric glandular mucosal microbiome in association with EGGD score.
Collapse
Affiliation(s)
- Linda J Paul
- Louisiana State University, Veterinary Clinical Sciences, Equine Health Studies Program, Baton Rouge, Louisiana, USA
| | - Aaron C Ericsson
- Metagenomics Center, Equine Gut Group, University of Missouri, Columbia, Missouri, USA
| | - Frank M Andrews
- Louisiana State University, Veterinary Clinical Sciences, Equine Health Studies Program, Baton Rouge, Louisiana, USA
| | - Michael L Keowen
- Louisiana State University, Veterinary Clinical Sciences, Equine Health Studies Program, Baton Rouge, Louisiana, USA
| | - Francisco Morales Yniguez
- Louisiana State University, Veterinary Clinical Sciences, Equine Health Studies Program, Baton Rouge, Louisiana, USA
| | - Frank Garza
- Louisiana State University, Veterinary Clinical Sciences, Equine Health Studies Program, Baton Rouge, Louisiana, USA
| | - Heidi E Banse
- Louisiana State University, Veterinary Clinical Sciences, Equine Health Studies Program, Baton Rouge, Louisiana, USA
| |
Collapse
|
147
|
Park JM, Lee WH, Seo H, Oh JY, Lee DY, Kim SJ, Hahm KB. Microbiota changes with fermented kimchi contributed to either the amelioration or rejuvenation of Helicobacter pylori-associated chronic atrophic gastritis. J Clin Biochem Nutr 2021; 69:98-110. [PMID: 34376919 PMCID: PMC8325762 DOI: 10.3164/jcbn.20-123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022] Open
Abstract
Korean fermented kimchi is probiotic food preventing Helicobacter pylori (H. pylori)-associated atrophic gastritis in both animal and human trial. In order to reveal the effect of fermented kimchi against H. pylori infection, we performed clinical trial to document the changes of fecal microbiota in 32 volunteers (H. pylori (-) chronic superficial gastritis (CSG), H. pylori (+) CSG, and H. pylori (+) chronic atrophic gastritis (CAG) with 10 weeks kimchi. Each amplicon is sequenced on MiSeq of Illumina and the sequence reads were clustered into operational taxonomic units using VSEARCH and the Chao, Simpson, and Shannon Indices. Though significant difference in α- or β-diversity was not seen in three groups, kimchi intake led to significant diversity of fecal microbiome. As results, Klebsiella, Enterococcus, Ruminococcaceae, Streptococcus, Roseburia, and Clostirdiumsensu were significantly increased in H. pylori (+) CAG, while Akkermansia, Citrobacter, and Lactobacillus were significantly decreased in H. pylori (+) CAG. With 10 weeks of kimchi administration, Bifidobacterium, Lactobacillus, and Ruminococcus were significantly increased in H. pylori (+) CAG, whereas Bacteroides, Subdoligranulum, and Eubacterium coprostanolines were significantly decreased in H. pylori (-) CAG. 10 weeks of kimchi intake significantly improved pepsinogen I/II ratio (p<0.01) with significant decreases in interleukin-1β. Conclusively, fermented kimchi significantly changed fecal microbiota to mitigate H. pylori-associated atrophic gastritis.
Collapse
Affiliation(s)
- Jong Min Park
- Daejeon University School of Oriental Medicine, Daehak-ro 62, Dong-gu, Daejeon 34520, Korea
| | | | | | | | | | - Seong Jin Kim
- Medpacto Research Institute, Medpacto, Myungdal-ro 92, Seocho-gu, Seoul 06668, Korea
| | - Ki Baik Hahm
- Medpacto Research Institute, Medpacto, Myungdal-ro 92, Seocho-gu, Seoul 06668, Korea
- CHA Cancer Preventive Research Center, CHA Bio Complex, 330 Pangyo-ro, Bundang-gu, Seongnam 13497, Korea
| |
Collapse
|
148
|
Serrano C, Harris PR, Smith PD, Bimczok D. Interactions between H. pylori and the Gastric Microbiome: Impact on Gastric Homeostasis and Disease. CURRENT OPINION IN PHYSIOLOGY 2021; 21:57-64. [PMID: 34113748 PMCID: PMC8186273 DOI: 10.1016/j.cophys.2021.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Like many seemingly inhospitable environments on our planet, the highly acidic human stomach harbors a diverse bacterial microflora. The best-known member of the human gastric flora, Helicobacter pylori, causes a number of gastric diseases, including peptic ulcer disease and gastric adenocarcinoma. In the absence of Helicobacter pylori infection, the gastric microbiota displays some features similar to the oral cavity with Firmicutes the most common phylum, followed by Proteobacteria and Bacteroidetes. When present, H. pylori dominates the gastric microbiome and reduces diversity and composition of other taxa. The composition of the gastric microbiome also is altered in the setting of proton pump inhibitor therapy and gastric neoplasia. This review summarizes foundational and recent studies that have investigated the composition of the human gastric microbiome in a variety of patient groups, with a focus on potential mechanisms involved in regulation of gastric microbial community structure.
Collapse
Affiliation(s)
- Carolina Serrano
- Department of Pediatric Gastroenterology and Nutrition, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paul R. Harris
- Department of Pediatric Gastroenterology and Nutrition, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Phillip D. Smith
- Department of Medicine, Division of Gastroenterology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717
| |
Collapse
|
149
|
Jonaitis P, Kupcinskas L, Kupcinskas J. Molecular Alterations in Gastric Intestinal Metaplasia. Int J Mol Sci 2021; 22:ijms22115758. [PMID: 34071181 PMCID: PMC8199079 DOI: 10.3390/ijms22115758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) remains one of the most common causes of mortality worldwide. Intestinal metaplasia (IM) is one of the preneoplastic gastric lesions and is considered an essential predisposing factor in GC development. Here we present a review of recent most relevant papers to summarize major findings on the molecular alterations in gastric IM. The latest progress in novel diagnostic methods allows scientists to identify various types of molecular alterations in IM, such as polymorphisms in various genes, changes in the expression of micro-RNAs and long noncoding RNAs, and altered microbiome profiles. The results have shown that some of these alterations have strong associations with IM and a potential to be used for screening, treatment, and prognostic purposes; however, one of the most important limiting factors is the inhomogeneity of the studies. Therefore, further large-scale studies and clinical trials with standardized methods designed by multicenter consortiums are needed. As of today, various molecular alterations in IM could become a part of personalized medicine in the near future, which would help us deliver a personalized approach for each patient and identify those at risk of progression to GC.
Collapse
|
150
|
|