101
|
Rajendran K, Krishnamoorthy M, Karuppiah K, Ethiraj K, Sekar S. Chitinase from Streptomyces mutabilis as an Effective Eco-friendly Biocontrol Agent. Appl Biochem Biotechnol 2024; 196:18-31. [PMID: 37097402 DOI: 10.1007/s12010-023-04489-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Blood sucking parasites not only cause economic loss but also transmit numerous diseases. Dermanyssus gallinae, an obligatory blood feeding ectoparasite causes huge production loss to the poultry industry. Mosquitoes act as vector for transmitting several viral and parasitic diseases in humans. Acaricide resistance limits the control of these parasites. The present study was aimed to control the parasites using chitinase that have selective degradation of chitin, an important component in exoskeleton development. Chitinase was induced in Streptomyces mutabilis IMA8 with chitin extracted from Charybdis smithii. The enzyme showed more than 50% activity at 30-50 °C and the optimum activity at 45 °C. The enzyme activity of chitinase was highest at pH 7.0. The kinetic parameters Km and Vmax values of chitinase were determined by non-linear regression using Michaelis-Menten equation and its derivative Hanes-Wolf plot. The larvicidal effect of different concentrations of chitinase was evaluated against all instar larvae (I-IV) and pupae of An. stephensi and Ae. aegypti after 24 h of exposure. The percentage of mortality was directly proportional to the chitinase concentration. Bioassay for miticidal activity showed that chitinase had excellent miticidal activity (LC50 = 24.2 ppm) against D. gallinae. The present study suggested the usage of Streptomyces mutabilis for preparation of chitinase in mosquito and mite control.
Collapse
Affiliation(s)
- Kumar Rajendran
- Aquatic Microbiology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
- Department of Fisheries Science, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| | - Madhuri Krishnamoorthy
- Aquatic Microbiology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Kannan Karuppiah
- Department of Zoology, Kongunadu Arts and Science College, Coimbatore, 641029, Tamil Nadu, India
| | - Kannapiran Ethiraj
- Aquatic Microbiology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
- Department of Fisheries Science, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| | - Sivaranjani Sekar
- Aquatic Microbiology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| |
Collapse
|
102
|
Cai T, Wang X, Liu B, Zhao H, Liu C, Zhang X, Zhang Y, Gao H, Schal C, Zhang F. A cuticular protein, BgCPLCP1, contributes to insecticide resistance by thickening the cockroach endocuticle. Int J Biol Macromol 2024; 254:127642. [PMID: 37898258 DOI: 10.1016/j.ijbiomac.2023.127642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Overuse of insecticides has led to severe environmental problems. Insect cuticle, which consists mainly of chitin, proteins and a thin outer lipid layer, serves multiple functions. Its prominent role is as a physical barrier that impedes the penetration of xenobiotics, including insecticides. Blattella germanica (L.) is a major worldwide indoor pest that causes allergic disease and asthma. Extensive use of pyrethroid insecticides, including β-cypermethrin, has selected for the rapid and independent evolution of resistance in cockroach populations on a global scale. We demonstrated that BgCPLCP1, the first CPLCP (cuticular proteins of low complexity with a highly repetitive proline-rich region) family cuticular protein in order Blattodea, contributes to insecticide penetration resistance. Silencing BgCPLCP1 resulted in 85.0 %-85.7 % and 81.0 %-82.0 % thinner cuticle (and especially thinner endocuticle) in the insecticide-susceptible (S) and β-cypermethrin-resistant (R) strains, respectively. The thinner and more permeable cuticles resulted in 14.4 % and 20.0 % lower survival of β-cypermethrin-treated S- and R-strain cockroaches, respectively. This study advances our understanding of cuticular penetration resistance in insects and opens opportunities for the development of new efficiently and environmentally friendly insecticides targeting the CPLCP family of cuticular proteins.
Collapse
Affiliation(s)
- Tong Cai
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Xuejun Wang
- Shandong Center for Disease Control and Prevention, Jinan 250013, China
| | - Baorui Liu
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Haizheng Zhao
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Caixia Liu
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Xiancui Zhang
- School of Life Science, Huzhou University, Huzhou 313000, China
| | - Yuting Zhang
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Huiyuan Gao
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.
| | - Fan Zhang
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
103
|
Yu MV, Abdulcarim AB, Baligod MIN, Dela Cruz FSE, Ordoñez CJV, Garcia-Bertuso A. Bioefficacy of the ethanolic crude extract of the wild leek, Allium ampeloprasum L. (Amaryllidaceae), against the third and fourth larval stages of Aedes aegypti L. (Culicidae). Acta Trop 2024; 249:107067. [PMID: 37984549 DOI: 10.1016/j.actatropica.2023.107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Insecticide resistance is a threat to vector control worldwide. In the Philippines, dengue burden remains significant, thus prioritizing the need to develop eco-friendly control strategies and tools against mosquito vectors. Various Allium species have been found to possess larvicidal activity against dengue-carrying mosquitoes. In this study, the larvicidal activity of the crude extract of Allium ampeloprasum L. (Asparagales: Amaryllidaceae) was studied in concentrations ranging from 1 to 10,000 mg/L against the third (L3) and fourth (L4) larval instars of Aedes aegypti L. Larval mortality at 48 h were subjected to probit analysis and Kruskal-Wallis H test to estimate lethal concentrations and to determine significant means among the groups, respectively. Results show that the crude extract of A. ampeloprasum L. demonstrated larvicidal activity against the L3 and L4 Ae. aegypti L. Concentrations corresponding to 50% mortality (Lethal Concentration 50 [LC50]) among L3 and L4 larvae were estimated at 2,829.16 and 13,014.06 mg/L, respectively. Moreover, 90% mortality (LC90) in the L3 and L4 larvae were estimated at 9,749.75 and 57,836.58 mg/L, respectively. Only 1,000 and 10,000 mg/L for L3, and the 10,000 mg/L for L4, had comparable larvicidal action to the commercial larvicide used as a positive control. The results support the presence of bioactive compounds with larvicidal properties, thus suggesting A. ampeloprasum L. as a potential source of active ingredients for the development of a plant-based larvicide.
Collapse
Affiliation(s)
- Michael Villaseñor Yu
- College of Public Health, University of the Philippines Manila, Manila, Philippines.
| | | | | | | | | | - Arlene Garcia-Bertuso
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines.
| |
Collapse
|
104
|
Jourdan J, El Toum Abdel Fadil S, Oehlmann J, Hupało K. Rapid development of increased neonicotinoid tolerance in non-target freshwater amphipods. ENVIRONMENT INTERNATIONAL 2024; 183:108368. [PMID: 38070438 DOI: 10.1016/j.envint.2023.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/25/2024]
Abstract
The comprehensive assessment of the long-term impacts of constant exposure to pollutants on wildlife populations remains a relatively unexplored area of ecological risk assessment. Empirical evidence to suggest that multigenerational exposure affects the susceptibility of organisms is scarce, and the underlying mechanisms in the natural environment have yet to be fully understood. In this study, we first examined the arthropod candidate species, Gammarus roeselii that - unlike closely related species - commonly occurs in many contaminated river systems of Central Europe. This makes it a suitable study organism to investigate the development of tolerances and phenotypic adaptations along pollution gradients. In a 96-h acute toxicity assay with the neonicotinoid thiacloprid, we indeed observed a successive increase in tolerance in populations coming from contaminated regions. This was accompanied by a certain phenotypic change, with increased investment into reproduction. To address the question of whether these changes are plastic or emerged from longer lasting evolutionary processes, we conducted a multigeneration experiment in the second part of our study. Here, we used closely-related Hyalella azteca and pre-exposed them for multiple generations to sublethal concentrations of thiacloprid in a semi-static design (one week renewal of media containing 0.1 or 1.0 µg/L thiacloprid). The pre-exposed individuals were then used in acute toxicity assays to see how quickly such adaptive responses can develop. Over only two generations, the tolerance to the neonicotinoid almost doubled, suggesting developmental plasticity as a plausible mechanism for the rapid adaptive response to strong selection factors such as neonicotinoid insecticides. It remains to be discovered whether the plasticity of rapidly developed tolerance is species-specific and explains why closely related species - which may not have comparable adaptive response capabilities - disappear in polluted habitats. Overall, our findings highlight the neglected role of developmental plasticity during short- and long-term exposure of natural populations to pollution. Moreover, our results show that even pollutant levels seven times lower than concentrations found in the study region have a clear impact on the developmental trajectories of non-target species.
Collapse
Affiliation(s)
- Jonas Jourdan
- Department Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13 D-60438, Frankfurt am Main, Germany.
| | - Safia El Toum Abdel Fadil
- Department Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany; Faculty of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20 D-21033, Hamburg, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13 D-60438, Frankfurt am Main, Germany
| | - Kamil Hupało
- Department of Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
105
|
Skorokhod O, Vostokova E, Gilardi G. The role of P450 enzymes in malaria and other vector-borne infectious diseases. Biofactors 2024; 50:16-32. [PMID: 37555735 DOI: 10.1002/biof.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Vector-borne infectious diseases are still an important global health problem. Malaria is the most important among them, mainly pediatric, life-threatening disease. Malaria and other vector-borne disorders caused by parasites, bacteria, and viruses have a strong impact on public health and significant economic costs. Most vector-borne diseases could be prevented by vector control, with attention to the ecological and biodiversity conservation aspects. Chemical control with pesticides and insecticides is widely used as a measure of prevention although increasing resistance to insecticides is a serious issue in vector control. Metabolic resistance is the most common mechanism and poses a big challenge. Insect enzyme systems, including monooxygenase CYP P450 enzymes, are employed by vectors mainly to metabolize insecticides thus causing resistance. The discovery and application of natural specific inhibitors/blockers of vector P450 enzymes as synergists for commonly used pesticides will contribute to the "greening" of insecticides. Besides vector CYPs, host CYP enzymes could also be exploited to fight against vector-borne diseases: using mostly their detoxifying properties and involvement in the immune response. Here, we review published research data on P450 enzymes from all players in vector-borne infections, that is, pathogens, vectors, and hosts, regarding the potential role of CYPs in disease. We discuss strategies on how to exploit cytochromes P450 in vector-borne disease control.
Collapse
Affiliation(s)
- Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Ekaterina Vostokova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
106
|
Dyer NA, Lucas ER, Nagi SC, McDermott DP, Brenas JH, Miles A, Clarkson CS, Mawejje HD, Wilding CS, Halfon MS, Asma H, Heinz E, Donnelly MJ. Mechanisms of transcriptional regulation in Anopheles gambiae revealed by allele specific expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568226. [PMID: 38045426 PMCID: PMC10690255 DOI: 10.1101/2023.11.22.568226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Malaria control relies on insecticides targeting the mosquito vector, but this is increasingly compromised by insecticide resistance, which can be achieved by elevated expression of detoxifying enzymes that metabolize the insecticide. In diploid organisms, gene expression is regulated both in cis, by regulatory sequences on the same chromosome, and by trans acting factors, affecting both alleles equally. Differing levels of transcription can be caused by mutations in cis-regulatory modules (CRM), but few of these have been identified in mosquitoes. We crossed bendiocarb resistant and susceptible Anopheles gambiae strains to identify cis-regulated genes that might be responsible for the resistant phenotype using RNAseq, and cis-regulatory module sequences controlling gene expression in insecticide resistance relevant tissues were predicted using machine learning. We found 115 genes showing allele specific expression in hybrids of insecticide susceptible and resistant strains, suggesting cis regulation is an important mechanism of gene expression regulation in Anopheles gambiae. The genes showing allele specific expression included a higher proportion of Anopheles specific genes on average younger than genes those with balanced allelic expression.
Collapse
Affiliation(s)
- Naomi A Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Eric R Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Sanjay C Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Daniel P McDermott
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jon H Brenas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Alistair Miles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Chris S Clarkson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Henry D Mawejje
- Infectious Diseases Research Collaboration (IDRC), Plot 2C Nakasero Hill Road, P.O.Box 7475, Kampala, Uganda
| | - Craig S Wilding
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Marc S Halfon
- Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo-State University of New York, 955 Main Street, Buffalo, New York 14203, USA
| | - Hasiba Asma
- Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo-State University of New York, 955 Main Street, Buffalo, New York 14203, USA
| | - Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
107
|
Mysore K, Njoroge TM, Stewart ATM, Winter N, Hamid-Adiamoh M, Sun L, Feng RS, James LD, Mohammed A, Severson DW, Duman-Scheel M. Characterization of a novel RNAi yeast insecticide that silences mosquito 5-HT1 receptor genes. Sci Rep 2023; 13:22511. [PMID: 38110471 PMCID: PMC10728091 DOI: 10.1038/s41598-023-49799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
G protein-coupled receptors (GPCRs), which regulate numerous intracellular signaling cascades that mediate many essential physiological processes, are attractive yet underexploited insecticide targets. RNA interference (RNAi) technology could facilitate the custom design of environmentally safe pesticides that target GPCRs in select target pests yet are not toxic to non-target species. This study investigates the hypothesis that an RNAi yeast insecticide designed to silence mosquito serotonin receptor 1 (5-HTR1) genes can kill mosquitoes without harming non-target arthropods. 5-HTR.426, a Saccharomyces cerevisiae strain that expresses an shRNA targeting a site specifically conserved in mosquito 5-HTR1 genes, was generated. The yeast can be heat-inactivated and delivered to mosquito larvae as ready-to-use tablets or to adult mosquitoes using attractive targeted sugar baits (ATSBs). The results of laboratory and outdoor semi-field trials demonstrated that consumption of 5-HTR.426 yeast results in highly significant mortality rates in Aedes, Anopheles, and Culex mosquito larvae and adults. Yeast consumption resulted in significant 5-HTR1 silencing and severe neural defects in the mosquito brain but was not found to be toxic to non-target arthropods. These results indicate that RNAi insecticide technology can facilitate selective targeting of GPCRs in intended pests without impacting GPCR activity in non-targeted organisms. In future studies, scaled production of yeast expressing the 5-HTR.426 RNAi insecticide could facilitate field trials to further evaluate this promising new mosquito control intervention.
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Teresia M Njoroge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Akilah T M Stewart
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Nikhella Winter
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
| | - Majidah Hamid-Adiamoh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Longhua Sun
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Rachel Shui Feng
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
| | - Lester D James
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
| | - Azad Mohammed
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
| | - David W Severson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA.
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
108
|
Upshur IF, Fehlman M, Parikh V, Vinauger C, Lahondère C. Sugar feeding by invasive mosquito species on ornamental and wild plants. Sci Rep 2023; 13:22121. [PMID: 38092771 PMCID: PMC10719288 DOI: 10.1038/s41598-023-48089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Feeding on plant-derived sugars is an essential component of mosquito biology, affecting key aspects of their lives such as survival, metabolism, and reproduction. Among mosquitoes, Aedes aegypti and Aedes albopictus are two invasive mosquito species in the US, and are vectors of diseases such as dengue fever, chikungunya, and Zika. These species live in heavily populated, urban areas, where they have high accessibility to human hosts as well as to plants in backyards and public landscapes. However, the range of plants that are suitable sugar hosts for these species remains to be described, despite the importance of understanding what plants may attract or repel mosquitoes to inform citizens and municipal authorities accordingly. Here, we tested whether Ae. aegypti and Ae. albopictus would sugar-feed on eleven commonly planted ornamental plant species. We confirmed feeding activity using the anthrone method and identified the volatile composition of plant headspace using gas-chromatography mass-spectroscopy. These chemical analyses revealed that a broad range of olfactory cues are associated with plants that mosquitoes feed on. This prompted us to use plant DNA barcoding to identify plants that field-caught mosquitoes feed on. Altogether, results show that native and invasive mosquito species can exploit a broader range of plants than originally suspected, including wild and ornamental plants from different phyla throughout the Spring, Summer and Fall seasons.
Collapse
Affiliation(s)
- Irving Forde Upshur
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Mikhyle Fehlman
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Vansh Parikh
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- The Fralin Life Science Institute Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center of Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- The Fralin Life Science Institute Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Center of Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
109
|
Pai HH, Chang CY, Lin KC, Hsu EL. Rapid insecticide resistance bioassays for three major urban insects in Taiwan. Parasit Vectors 2023; 16:447. [PMID: 38042818 PMCID: PMC10693703 DOI: 10.1186/s13071-023-06055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND Taiwan's warm and humid climate and dense population provide a suitable environment for the breeding of pests. The three major urban insects in Taiwan are house flies, cockroaches, and mosquitoes. In cases where a disease outbreak or high pest density necessitates chemical control, selecting the most effective insecticide is crucial. The resistance of pests to the selected environmental insecticide must be rapidly assessed to achieve effective chemical control and reduce environmental pollution. METHODS In this study, we evaluated the resistance of various pests, namely, house flies (Musca domestica L.), cockroaches (Blattella germanica L. and Periplaneta americana), and mosquitoes (Aedes aegypti and Ae. albopictus) against 10 commonly used insecticides. Rapid insecticide resistance bioassays were performed using discriminating doses or concentrations of the active ingredients of insecticides. RESULTS Five field strains of M. domestica (L.) are resistant to all 10 commonly used insecticides and exhibit cross- and multiple resistance to four types of pyrethroids and three types of organophosphates, propoxur, fipronil, and imidacloprid. None of the five field strains of P. americana are resistant to any of the tested insecticides, and only one strain of B. germanica (L.) is resistant to permethrin. One strain of Ae. albopictus is resistant to pirimiphos-methyl, whereas five strains of Ae. aegypti exhibit multiple resistance to pyrethroids, organophosphates, and other insecticides. CONCLUSIONS In the event of a disease outbreak or high pest density, rapid insecticide resistance bioassays may be performed using discriminating doses or concentrations to achieve precise and effective chemical control, reduce environmental pollution, and increase control efficacy.
Collapse
Affiliation(s)
- Hsiu-Hua Pai
- Department of Kinesiology, Health, and Leisure Studies, National University of Kaohsiung, Kaohsiung, Taiwan (ROC).
| | - Chun-Yung Chang
- Department of Kinesiology, Health, and Leisure Studies, National University of Kaohsiung, Kaohsiung, Taiwan (ROC)
| | - Kai-Chen Lin
- Department of Kinesiology, Health, and Leisure Studies, National University of Kaohsiung, Kaohsiung, Taiwan (ROC)
| | - Err-Lieh Hsu
- Department of Entomology, National Taiwan University, Taipei, Taiwan (ROC)
| |
Collapse
|
110
|
Ramkumar G, Muthusamy R, Narayanan M, Shivakumar MS, Kweka EJ. Overexpression of cytochrome P450 and esterase genes involved in permethrin resistance in larvae and adults of Culex quinquefasciatus. Parasitol Res 2023; 122:3205-3212. [PMID: 37874391 DOI: 10.1007/s00436-023-08010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Mosquitoes are important vectors of several arthropod-borne diseases, which remain a priority for epidemiological research. Mosquito vector control strategies have traditionally relied on chemical insecticides such as synthetic pyrethroids. However, the indiscriminate use of pesticides has resulted in the development of resistance in many mosquito species. In insects, resistance evolves primarily through the overexpression of one or more gene products from the cytochrome P450, carboxylesterase, and glutathione superfamilies. The current study examined the expression of cytochrome P450 CYP6M2, CYP6AA7, CYP6Z2, CYP9J34, α-Esterase, Esterase B1, and neuroactin genes in larvae and adults of a permethrin-resistant (PerRes) and susceptible (Sus) Culex quinquefasciatus strains. The results showed that the CYP6AA7 gene was overexpressed (10-fold) in larvae and adults with PerRes (p < 0.01) followed by CYPJ34 (9.0-fold) and CYP6Z2 (5.0-fold) compared to the Sus, whereas fewer changes in CYP6M gene expression were observed in PerRes adults (p < 0.05), and no expression was found in larvae. The esterase gene was overexpressed in PerRes larvae (9.0-fold) followed by adults (2.5-fold) compared to the susceptible strain. Based on data, the present study suggests that cytochrome P450, CYP6AA7, CYP6Z2, CYP9J34, α-Esterase, Esterase B1, and neuroactin genes were involved in permethrin resistance in larval and adult Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Govindaraju Ramkumar
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA, 30223, USA
- Molecular Entomology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Ranganathan Muthusamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institution, Hosur, 635130, Tamil Nadu, India.
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602105, Tamil Nadu, India
| | | | - Eliningaya J Kweka
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
- Research Department, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania
- Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania
| |
Collapse
|
111
|
Bonina V, Arpaia S. The use of RNA interference for the management of arthropod pests in livestock farms. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:631-646. [PMID: 37401856 DOI: 10.1111/mve.12677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/11/2023] [Indexed: 07/05/2023]
Abstract
Pest management in farm animals is an important action to contain economic damage to livestock production and prevent transmission of severe diseases to the stock. The use of chemical insecticides is still the most common approach followed by farmers; however, avoiding possible toxic effects on animals is a fundamental task for pest control measures compatible with animal well-being. Moreover, legal constraints and insurgence of resistance by target species to the available insecticidal compounds are increasingly complicating farmers' operations. Alternatives to chemical pesticides have been explored with some promising results in the area of biological control or the use of natural products as sprays. The application of RNA interference techniques has enabled the production of new means of pest control in agriculture, and it is opening a promising avenue for controlling arthropod pests of livestock. Transcript depletion of specific target genes of the recipient organisms is based on the action of double-strand RNAs (dsRNA) capable of impairing the production of fundamental proteins. Their mode of action, based on the specific recognition of short genomic sequences, is expected to be highly selective towards non-target organisms potentially exposed; in addition, there are physical and chemical barriers to dsRNA uptake by mammalian cells that render these products practically innocuous for higher animals. Summarising existing literature on gene silencing for main taxa of arthropod pests of livestock (Acarina, Diptera, Blattoidea), this review explores the perspectives of practical applications of dsRNA-based pesticides against the main pests of farm animals. Knowledge gaps are summarised to stimulate additional research in this area.
Collapse
Affiliation(s)
- Valeria Bonina
- Department of Veterinary Medicine and Animal Productions, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Salvatore Arpaia
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, TERIN-BBC Research Centre Trisaia, Rotondella, Matera, Italy
| |
Collapse
|
112
|
Tsecouras JC, Thiemann TC, Hung KY, Henke JA, Gerry AC. Prevalence of Permethrin Resistance in Culex Tarsalis Populations in Southern California. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2023; 39:236-242. [PMID: 38108432 DOI: 10.2987/23-7136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
In the western United States, Culex tarsalis is the most important vector of West Nile virus. Insecticides containing permethrin or other pyrethroid compounds are commonly used to control these mosquitoes. Because of the range of environments where Cx. tarsalis are found, this species is under insecticide pressure from both vector control and agricultural spraying. Mosquito populations may evolve resistance through mechanisms such as target site insensitivity, including the frequently identified knockdown resistance (kdr) mutations. Prevalence of permethrin resistance was determined for Cx. tarsalis from 5 southern California field sites representing 2 distinct valley regions (Coachella Valley and Inland Valley), which are geographically separated by the north-south-running Peninsular Mountain Ranges. These two valley regions are >100 km apart and vary considerably in their environmental and habitat characteristics. Permethrin resistance in mosquito populations was determined by the Centers for Disease Control and Prevention (CDC) bottle bioassay, using glass bottles coated with permethrin at 0.19 μg/cm2 of internal surface. Permethrin resistance was evident in Cx. tarsalis populations from the Coachella Valley field sites with all sites showing similar mortality in the bottle bioassay, while Cx. tarsalis from the Inland Valley field sites were largely susceptible to permethrin, with mortality rates that were similar to a susceptible lab strain of Cx. tarsalis.
Collapse
|
113
|
Lukenge M, Ignell R, Hill SR. Adenosine triphosphate overrides the aversive effect of antifeedants and toxicants: a model alternative phagostimulant for sugar-based vector control tools. Parasit Vectors 2023; 16:416. [PMID: 37964326 PMCID: PMC10647091 DOI: 10.1186/s13071-023-06039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Sugar, when used as the phagostimulant in attractive toxic bait control tools, limits the efficacy and selectivity of this technology. Thus, more potent and selective phagostimulants than sugar are required to improve this technology. The potency of adenosine triphosphate (ATP) as an alternative model phagostimulant was assessed to determine its capacity to override the aversive effects of select antifeedants and toxicants. How ATP and sucrose modulate the rate of toxicity in the yellow fever mosquito Aedes aegypti was also examined. METHODS A no-choice feeding assay was used to investigate the phagostimulatory ability of ATP to override the aversive effects of structurally divergent antifeedant and toxicant compounds, and to modulate the rate of toxicity over 24 h. Binary combinations of antifeedant and toxicant compounds, at various concentrations, were similarly assessed for enhanced lethal potency. In comparison, no-choice open access and cotton wick feeding assays were used to determine the phagostimulatory role of sucrose in the ingestion of boric acid-laced diets. Dissections of the guts were performed to determine the diet destination as dependant on the phagostimulant. RESULTS ATP is a potent phagostimulant that dose dependently overrides aversion to antifeedant and toxicant tastants. Feeding on antifeedant- or toxicant-laced diets that was induced by ATP selectively resulted in rapid knockdown (nicotine, lobeline and caffeine) or death (boric acid and propylene glycol), with a combination of the two lethal compounds inducing a synergistic effect at lower concentrations. ATP- and sucrose-induced feeding predominantly directed the antifeedant- or toxicant-laced meals to the midgut and the crop, respectively. CONCLUSIONS ATP is an efficacious alternative model phagostimulant to sucrose that overrides the aversive effects of antifeedants and toxicants, resulting in rapid toxic effects. Furthermore, this study demonstrates that variation in the rate of toxicity between ATP- and sugar-induced feeding is at least partly regulated by the differential feeding response, volume imbibed and the destination of the meals. Additional research is needed to identify structurally related, stable analogues of ATP due to the ephemeral nature of this molecule. For future applications, the workflow presented in this study may be used to evaluate such analogues for their suitability for use in attractive bait stations designed to target a broad range of haematophagous arthropods and prevent off-target species' feeding.
Collapse
Affiliation(s)
- Matthew Lukenge
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Rickard Ignell
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sharon Rose Hill
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
114
|
Meier CJ, Martin LE, Hillyer JF. Mosquito larvae exposed to a sublethal dose of photosensitive insecticides have altered juvenile development but unaffected adult life history traits. Parasit Vectors 2023; 16:412. [PMID: 37951916 PMCID: PMC10638795 DOI: 10.1186/s13071-023-06004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Larvicides are critical for the control of mosquito-borne diseases. However, even sublethal exposure to a larvicide can alter development and life history traits, which can then affect population density and disease transmission dynamics. Photosensitive insecticides (PSIs) are a promising class of larvicide that are toxic when ingested and activated by light. We investigated whether the time of day when exposure occurs, or the process of pupation, affects larval susceptibility to PSI phototoxicity in the mosquito Anopheles gambiae, and whether sublethal exposure to PSIs alters life history traits. METHODS Larvae were treated with lethal concentrations of the PSIs methylene blue (MB) and rose bengal (RB), and larval survival was measured at various times of day. Additionally, larvae were exposed to two concentrations of each PSI that resulted in low and medium mortality, and the life history traits of the surviving larvae were measured. RESULTS Pupation, which predominantly occurs in the evening, protected larvae from PSI toxicity, but the toxicity of PSIs against larvae that had yet to pupate was unaffected by time of day. Larval exposure to a sublethal concentration of MB, but not RB, shortened the time to pupation. However, larval exposure to a sublethal concentration of RB, but not MB, increased pupal mortality. Neither PSI had a meaningful effect on the time to eclosion, adult longevity, or adult melanization potential. CONCLUSIONS PSIs are lethal larvicides. Sublethal PSI exposure alters mosquito development, but does not affect adult life history traits.
Collapse
Affiliation(s)
- Cole J Meier
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-16342, Nashville, TN, 37235, USA
| | - Lindsay E Martin
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-16342, Nashville, TN, 37235, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-16342, Nashville, TN, 37235, USA.
| |
Collapse
|
115
|
Mponzi WP, Msaky DS, Binyaruka P, Kaindoa EW. Exploring the potential of village community banking as a community-based financing system for house improvements and malaria vector control in rural Tanzania. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002395. [PMID: 37922222 PMCID: PMC10624283 DOI: 10.1371/journal.pgph.0002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2023]
Abstract
House improvement is associated with remarkable reductions in indoor mosquito bites and disease incidences, even in typical rural houses. However, its exploitation remains extremely poor in Tanzania and other endemic countries due to limited financial resources. Nevertheless, village community banks (VICOBA), practiced in Tanzania for nearly two decades, have proven to provide financial services to rural communities that would otherwise not be able to get them from formal financial institutions. This study explored the need, opinion, and willingness of VICOBA members to use VICOBA platforms as a source of finance for improving local houses and eventually controlling mosquito-borne diseases. A mixed-methods approach was used in this study, whereby a survey was administered to 150 participants and twelve focus group discussions were done in three villages in Ulanga district, rural Tanzania. The FGDs comprised eight participants each, with equal representation of males and females. The FGD guide was used to probe the opinions of study participants on malaria transmission, housing condition improvements, and financial resources. About 99% of all participants indicated the urgent need to improve their houses to prevent mosquito bites and were willing to utilize VICOBA for improving their houses. In the focus group discussion, the majority of people who participated were also in need of improving their houses. All participants confirmed that they were at the highest risk of getting mosquito-borne diseases, and they were willing to use money that was either saved or borrowed from their VICOBA for housing improvements and vector control. A self-sustaining financial system destined for house improvement and related interventions against malaria and other mosquito-borne diseases is crucial. The community members were willing to use VICOBA as a source of finance for house improvement and disease control; however, there was limited knowledge and sensitization on how they could utilize VICOBA for disease control.
Collapse
Affiliation(s)
- Winifrida P. Mponzi
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Dickson S. Msaky
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- The Nelson Mandela, African Institution of Science and Technology, School of Life Sciences and Bio Engineering, Tengeru, Arusha, United Republic of Tanzania
| | - Peter Binyaruka
- Department of Health System, Impact Evaluation and Policy, Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Emmanuel W. Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- The Nelson Mandela, African Institution of Science and Technology, School of Life Sciences and Bio Engineering, Tengeru, Arusha, United Republic of Tanzania
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
116
|
Hill B, Schafer B, Vargas N, Zamora D, Shrotri R, Perez S, Farmer G, Avon A, Pai A, Mori H, Zhong J. Functional analysis of Rickettsia monacensis strain humboldt folA dihydrofolate reductase gene via complementation assay. Ticks Tick Borne Dis 2023; 14:102217. [PMID: 37379700 DOI: 10.1016/j.ttbdis.2023.102217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Nutritive symbiosis between bacteria and ticks is observed across a range of ecological contexts; however, little characterization on the molecular components responsible for this symbiosis has been done. Previous studies in our lab demonstrated that Rickettsia monacensis str. Humboldt (strain Humboldt) can synthesize folate de novo via the folate biosynthesis pathway involving folA, folC, folE, folKP, and ptpS genes. In this study, expression of the strain Humboldt folA gene within a folA mutant Escherichia coli construct was used to functionally characterize the strain Humboldt folA folate gene in vivo. The strain Humboldt folA folate gene was subcloned into a TransBac vector and transformed into a folA mutant E. coli construct. The mutant containing strain Humboldt folA subclone and a pFE604 clone of the knocked-out folA gene was cured of pFE604. Curing of the folA mutant E. coli construct was successful using acridine orange and 43.5 °C incubation temperature. The plasmid curing assay showed curing efficiency of the folA mutant at 100%. Functional complementation was assessed by growth phenotype on minimal media with and without IPTG between strain Humboldt folA and E. coli folA. Large and homogenous wild-type colony growth was observed for both strain Humboldt and E. coli folA on minimal media with 0.1 mM IPTG, wild-type growth for strain Humboldt folA and pin-point growth for E. coli folA on 0.01 mM IPTG, and pin-point growth without IPTG for both strain Humboldt and E. coli folA. This study provides evidence substantiating the in vivo functionality of strain Humboldt folA in producing functional gene products for folate biosynthesis.
Collapse
Affiliation(s)
- Brandon Hill
- Department of Biological Sciences, Cal Poly Humboldt, 1 Harpst Street, Arcata, CA 95521, United States of America
| | - Ben Schafer
- Department of Biological Sciences, Cal Poly Humboldt, 1 Harpst Street, Arcata, CA 95521, United States of America
| | - Nolan Vargas
- Department of Biological Sciences, Cal Poly Humboldt, 1 Harpst Street, Arcata, CA 95521, United States of America
| | - Danny Zamora
- Department of Biological Sciences, Cal Poly Humboldt, 1 Harpst Street, Arcata, CA 95521, United States of America
| | - Rohan Shrotri
- Department of Biological Sciences, Cal Poly Humboldt, 1 Harpst Street, Arcata, CA 95521, United States of America
| | - Sarahi Perez
- Department of Biological Sciences, Cal Poly Humboldt, 1 Harpst Street, Arcata, CA 95521, United States of America
| | - Geoffrey Farmer
- Department of Biological Sciences, Cal Poly Humboldt, 1 Harpst Street, Arcata, CA 95521, United States of America
| | - Aren Avon
- Department of Biological Sciences, Cal Poly Humboldt, 1 Harpst Street, Arcata, CA 95521, United States of America
| | - Anirudh Pai
- Department of Biological Sciences, Cal Poly Humboldt, 1 Harpst Street, Arcata, CA 95521, United States of America
| | - Hirotada Mori
- Laboratory of Systems Microbiology, Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Jianmin Zhong
- Department of Biological Sciences, Cal Poly Humboldt, 1 Harpst Street, Arcata, CA 95521, United States of America.
| |
Collapse
|
117
|
Weng SC, Antoshechkin I, Marois E, Akbari OS. Efficient sex separation by exploiting differential alternative splicing of a dominant marker in Aedes aegypti. PLoS Genet 2023; 19:e1011065. [PMID: 38011259 PMCID: PMC10703412 DOI: 10.1371/journal.pgen.1011065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/07/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Only female mosquitoes consume blood giving them the opportunity to transmit deadly human pathogens. Therefore, it is critical to remove females before conducting releases for genetic biocontrol interventions. Here we describe a robust sex-sorting approach termed SEPARATOR (Sexing Element Produced by Alternative RNA-splicing of A Transgenic Observable Reporter) that exploits sex-specific alternative splicing of an innocuous reporter to ensure exclusive dominant male-specific expression. Using SEPARATOR, we demonstrate reliable sex selection from early larval and pupal stages in Aedes aegypti, and use a Complex Object Parametric Analyzer and Sorter (COPAS) to demonstrate scalable high-throughput sex-selection of first instar larvae. Additionally, we use this approach to sequence the transcriptomes of early larval males and females and find several genes that are sex-specifically expressed. SEPARATOR can simplify mass production of males for release programs and is designed to be cross-species portable and should be instrumental for genetic biocontrol interventions.
Collapse
Affiliation(s)
- Shih-Che Weng
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, California, United States of America
| | - Eric Marois
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, Strasbourg, France
| | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
118
|
Peng YX, Liu ZY, Lin PX, Su SC, Gao CF, Wu SF. Reverse genetic study reveals the molecular targets of chordotonal organ TRPV channel modulators. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105584. [PMID: 37945222 DOI: 10.1016/j.pestbp.2023.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 11/12/2023]
Abstract
Insecticides have been widely used for the control of insect pests that have a significant impact on agriculture and human health. A better understanding of insecticide targets is needed for effective insecticide design and resistance management. Pymetrozine, afidopyropen and flonicamid are reported to target on proteins that located on insect chordotonal organs, resulting in the disruption of insect coordination and the inhibition of feeding. In this study, we systematically examined the susceptibility of six Drosophila melanogaster mutants (five transient receptor potential channels and one mechanoreceptor) to three commercially used insecticides, in order to identify the receptor subunits critical to the insect's response to insecticides. Our results showed that iav1, nan36aand wtrw1 mutants exhibited significantly reduced susceptibility to pymetrozine and afidopyropen, but not to flonicamid. The number of eggs produced by the three mutant females were significantly less than that of the w1118 strain. Meanwhile, the longevity of all male mutants and females of nan36a and wtrw1 mutants was significantly shorter than that of the w1118 strain as the control. However, we observed no gravitaxis defects in wtrw1 mutants and the anti-gravitaxis of wtrw1 mutants was abolished by pymetrozine. Behavioral assays using thermogenetic tools further confirmed the bioassay results and supported the idea that Nan as a TRPV subfamily member located in Drosophila chordotonal neurons, acting as a target of pymetrozine, which interferes with Drosophila and causes motor deficits with gravitaxis defects. Taken together, this study elucidates the interactions of pymetrozine and afidopyropen with TRPV channels, Nan and Iav, and TRPA channel, Wtrw. Our research provides another evidence that pymetrozine and afidopyropen might target on nan, iav and wtrw channels and provides insights into the development of sustainable pest management strategies.
Collapse
Affiliation(s)
- Yu-Xuan Peng
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
| | - Zhao-Yu Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
| | - Pin-Xuan Lin
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
| | - Shao-Cong Su
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572025, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572025, China.
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572025, China.
| |
Collapse
|
119
|
Yang XY, Yang W, Zhao H, Wang BJ, Shi Y, Wang MY, Liu SQ, Liao XL, Shi L. Functional analysis of UDP-glycosyltransferase genes conferring indoxacarb resistance in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105589. [PMID: 37945240 DOI: 10.1016/j.pestbp.2023.105589] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 11/12/2023]
Abstract
UDP-glycosyltransferase (UGT) is the major detoxification enzymes of phase II involved in xenobiotics metabolism, which potentially mediates the formation of insect resistance. Previous transcriptome sequencing studies have found that several UGT genes were upregulated in indoxacarb resistant strains of Spodoptera litura, but whether these UGT genes were involved in indoxacarb resistance and their functions in resistance were unclear. In this study, the UGTs inhibitor, 5-nitrouracil, enhanced the toxicity of indoxacarb against S. litura, preliminarily suggesting that UGTs were participated in indoxacarb resistance. Two UGT genes, UGT33J17 and UGT41D10 were upregulated in the resistant strains and could be induced by indoxacarb. Alignment of UGT protein sequences revealed two conserved donor-binding regions with several key residues that interact with catalytic sites and sugar donors. Further molecular modeling and docking analysis indicated that two UGT proteins were able to stably bind indoxacarb and N-decarbomethoxylated metabolite (DCJW). Furthermore, knockdown of UGT33J17 and UGT41D10 decreased viability of Spli-221 cells and enhanced susceptibility of larvae to indoxacarb. Transgenic overexpression of these genes reduced the toxicity of indoxacarb in Drosophila melanogaster. This work revealed that upregulation of UGT genes significantly contributes to indoxacarb resistance in S. litura, and is of great significance for the development of integrated and sustainable management strategies for resistant pests in the field.
Collapse
Affiliation(s)
- Xi-Yu Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wen Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Hui Zhao
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Bing-Jie Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yao Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Meng-Yu Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shuang-Qing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiao-Lan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| | - Li Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
120
|
Pazmiño-Betancourth M, Ochoa-Gutiérrez V, Ferguson HM, González-Jiménez M, Wynne K, Baldini F, Childs D. Evaluation of diffuse reflectance spectroscopy for predicting age, species, and cuticular resistance of Anopheles gambiae s.l under laboratory conditions. Sci Rep 2023; 13:18499. [PMID: 37898634 PMCID: PMC10613238 DOI: 10.1038/s41598-023-45696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023] Open
Abstract
Mid-infrared spectroscopy (MIRS) combined with machine learning analysis has shown potential for quick and efficient identification of mosquito species and age groups. However, current technology to collect spectra is destructive to the sample and does not allow targeting specific tissues of the mosquito, limiting the identification of other important biological traits such as insecticide resistance. Here, we assessed the use of a non-destructive approach of MIRS for vector surveillance, micro diffuse reflectance spectroscopy (µDRIFT) using mosquito legs to identify species, age and cuticular insecticide resistance within the Anopheles gambiae s.l. complex. These mosquitoes are the major vectors of malaria in Africa and the focus on surveillance in malaria control programs. Legs required significantly less scanning time and showed more spectral consistence compared to other mosquito tissues. Machine learning models were able to identify An. gambiae and An. coluzzii with an accuracy of 0.73, two ages groups (3 and 10 days old) with 0.77 accuracy and we obtained accuracy of 0.75 when identifying cuticular insecticide resistance. Our results highlight the potential of different mosquito tissues and µDRIFT as tools for biological trait identification on mosquitoes that transmit malaria. These results can guide new ways of identifying mosquito traits which can help the creation of innovative surveillance programs by adapting new technology into mosquito surveillance and control tools.
Collapse
Affiliation(s)
- Mauro Pazmiño-Betancourth
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Victor Ochoa-Gutiérrez
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Heather M Ferguson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Klaas Wynne
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Francesco Baldini
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - David Childs
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
121
|
Ali A, Shah FM, Manfron J, Monteiro LM, de Almeida VP, Raman V, Khan IA. Baccharis Species Essential Oils: Repellency and Toxicity against Yellow Fever Mosquitoes and Imported Fire Ants. J Xenobiot 2023; 13:641-652. [PMID: 37987442 PMCID: PMC10660731 DOI: 10.3390/jox13040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Essential oils from five Baccharis species were screened for their toxicity and biting deterrence/repellency against yellow fever mosquito, Aedes aegypti (L.), and imported fire ants, including Solenopsis invicta Buren (RIFA), Solenopsis richteri Forel (BIFA) and their hybrids (HIFA). Baccharis microdonta DC. and B. punctulata DC. at 10 µg/cm2 showed biting deterrence similar to DEET, N, N-diethyl-meta-toluamide at 25 nmol/cm2, whereas the repellency of B. pauciflosculosa DC., B. sphenophylla Dusén ex Malme and B. reticularioides Deble & A.S. Oliveira essential oils was significantly lower than DEET against mosquitoes. Two major compounds from the active essential oils, kongol and spathulenol, also exhibited biting deterrence similar to DEET against mosquitoes. The highest toxicity exhibited against mosquitoes was by Baccharis punctulata essential oil (LC50 = 20.4 ppm), followed by B. pauciflosculosa (LC50 = 31.9 ppm), B. sphenophylla (LC50 = 30.8 ppm), B. microdonta (LC50 = 28.6 ppm), kongol (LC50 = 32.3 ppm), spathulenol (LC50 = 48.7 ppm) and B. reticularioides essential oil (LC50 = 84.4 ppm). Baccharis microdonta essential oil showed repellency against RIFA, BIFA and HIFA at 4.9, 4.9 and 39 µg/g, respectively. Baccharis microdonta essential oil also showed toxicity with LC50 of 78.9, 97.5 and 136.5 µg/g against RIFA, BIFA and HIFA, respectively, at 24 h post treatment.
Collapse
Affiliation(s)
- Abbas Ali
- National Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA; (F.M.S.); (I.A.K.)
| | - Farhan Mahmood Shah
- National Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA; (F.M.S.); (I.A.K.)
| | - Jane Manfron
- Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, Brazil; (J.M.); (L.M.M.); (V.P.d.A.)
| | - Luciane M. Monteiro
- Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, Brazil; (J.M.); (L.M.M.); (V.P.d.A.)
| | - Valter P. de Almeida
- Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, Brazil; (J.M.); (L.M.M.); (V.P.d.A.)
| | - Vijayasankar Raman
- National Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA; (F.M.S.); (I.A.K.)
| | - Ikhlas A. Khan
- National Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA; (F.M.S.); (I.A.K.)
| |
Collapse
|
122
|
Tufan-Cetin O, Cetin H. Use of micro and macroalgae extracts for the control of vector mosquitoes. PeerJ 2023; 11:e16187. [PMID: 37842039 PMCID: PMC10569164 DOI: 10.7717/peerj.16187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Mosquitoes are one of the most dangerous vectors of human diseases such as malaria, dengue, chikungunya, and Zika virus. Controlling these vectors is a challenging responsibility for public health authorities worldwide. In recent years, the use of products derived from living organisms has emerged as a promising approach for mosquito control. Among these living organisms, algae are of great interest due to their larvicidal properties. Some algal species provide nutritious food for larvae, while others produce allelochemicals that are toxic to mosquito larvae. In this article, we reviewed the existing literature on the larvicidal potential of extracts of micro- and macroalgae, transgenic microalgae, and nanoparticles of algae on mosquitoes and their underlying mechanisms. The results of many publications show that the toxic effects of micro- and macroalgae on mosquitoes vary according to the type of extraction, solvents, mosquito species, exposure time, larval stage, and algal components. A few studies suggest that the components of algae that have toxic effects on mosquitoes show through synergistic interaction between components, inhibition of feeding, damage to gut membrane cells, and inhibition of digestive and detoxification enzymes. In conclusion, algae extracts, transgenic microalgae, and nanoparticles of algae have shown significant larvicidal activity against mosquitoes, making them potential candidates for the development of new mosquito control products.
Collapse
Affiliation(s)
- Ozge Tufan-Cetin
- Department of Environmental Protection Technology, Vocational School of Technical Sciences, Akdeniz University, Antalya, Türkiye
| | - Huseyin Cetin
- Department of Biology, Faculty of Science, Akdeniz University, Antalya, Türkiye
| |
Collapse
|
123
|
Kweyamba PA, Hofer LM, Kibondo UA, Mwanga RY, Sayi RM, Matwewe F, Austin JW, Stutz S, Moore SJ, Müller P, Tambwe MM. Sub-lethal exposure to chlorfenapyr reduces the probability of developing Plasmodium falciparum parasites in surviving Anopheles mosquitoes. Parasit Vectors 2023; 16:342. [PMID: 37789458 PMCID: PMC10546750 DOI: 10.1186/s13071-023-05963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Pyrethroid resistance in the key malaria vectors threatens the success of pyrethroid-treated nets. To overcome pyrethroid resistance, Interceptor® G2 (IG2), a 'first-in-class' dual insecticidal net that combines alpha-cypermethrin with chlorfenapyr, was developed. Chlorfenapyr is a pro-insecticide, requiring bio-activation by oxidative metabolism within the insect's mitochondria, constituting a mode of action preventing cross-resistance to pyrethroids. Recent epidemiological trials conducted in Benin and Tanzania confirm IG2's public health value in areas with pyrethroid-resistant Anopheles mosquitoes. As chlorfenapyr might also interfere with the metabolic mechanism of the Plasmodium parasite, we hypothesised that chlorfenapyr may provide additional transmission-reducing effects even if a mosquito survives a sub-lethal dose. METHODS We tested the effect of chlorfenapyr netting to reduce Plasmodium falciparum transmission using a modified WHO tunnel test with a dose yielding sub-lethal effects. Pyrethroid-resistant Anopheles gambiae s.s. with L1014F and L1014S knockdown resistance alleles and expression levels of pyrethroid metabolisers CYP6P3, CYP6M2, CYP4G16 and CYP6P1 confirmed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) prior to conducting experiments were exposed to untreated netting and netting treated with 200 mg/m3 chlorfenapyr for 8 h overnight and then fed on gametocytemic blood meals from naturally infected individuals. Prevalence and intensity of oocysts and sporozoites were determined on day 8 and day 16 after feeding. RESULTS Both prevalence and intensity of P. falciparum infection in the surviving mosquitoes were substantially reduced in the chlorfenapyr-exposed mosquitoes compared to untreated nets. The odds ratios in the prevalence of oocysts and sporozoites were 0.33 (95% confidence interval; 95% CI 0.23-0.46) and 0.43 (95% CI 0.25-0.73), respectively, while only the incidence rate ratio for oocysts was 0.30 (95% CI 0.22-0.41). CONCLUSION We demonstrated that sub-lethal exposure of pyrethroid-resistant mosquitoes to chlorfenapyr substantially reduces the proportion of infected mosquitoes and the intensity of the P. falciparum infection. This will likely also contribute to the reduction of malaria in communities beyond the direct killing of mosquitoes.
Collapse
Affiliation(s)
- Prisca A Kweyamba
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
| | - Lorenz M Hofer
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Ummi A Kibondo
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Rehema Y Mwanga
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Rajabu M Sayi
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Fatuma Matwewe
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - James W Austin
- Professional & Specialty Solutions, BASF Corporation, Global Development, Public Health Insecticides, Research Triangle Park, NC, 27709, USA
| | - Susanne Stutz
- Professional & Specialty Solutions, BASF SE, Public Health, 67117, Limburgerhof, Germany
| | - Sarah J Moore
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru, P.O. Box 447, Arusha, Tanzania
| | - Pie Müller
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Mgeni M Tambwe
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| |
Collapse
|
124
|
Xu J, Zheng J, Zhang R, Wang H, Du J, Li J, Zhou D, Sun Y, Shen B. Identification and functional analysis of ABC transporter genes related to deltamethrin resistance in Culex pipiens pallens. PEST MANAGEMENT SCIENCE 2023; 79:3642-3655. [PMID: 37183172 DOI: 10.1002/ps.7539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Pathogens that reproduce or develop in mosquitoes can transmit several diseases, endanger human health, and overwhelm health systems. Synthetic pyrethroids are the most widely used insecticides against adult mosquitoes, but their widespread use has led to resistance. The adenosine triphosphate (ATP)-binding cassette (ABC) transporters are involved in the resistance monitoring of insects, but their role and underlying mechanisms in insecticide resistance have not been fully elucidated. In the present study, we identified ABC transporter genes in Culex pipiens and investigated their role in the development of insecticide resistance. RESULTS We identified 63 ABC transporter genes in Cx. pipiens and classified them as per the ABC transporter subfamilies. We also performed phylogenetic analysis. The knockdown rate of the mosquitoes orally fed with the ABC transporter inhibitor verapamil increased after deltamethrin treatment compared with that of the control group. Several genes from the ABCB, ABCC, and ABCG subfamilies were highly expressed in resistant mosquitoes. Immunofluorescence analysis revealed that ABCG6032427 was expressed in the head, chest, abdomen, wings, and legs, and the expression was the highest in the legs. Subsequently, knockdown of ABCG6032427 using RNA interference (RNAi) increased the sensitivity of the mosquitoes to deltamethrin, and scanning and transmission electron microscopy revealed that ABCG6032427 knockdown reduced cuticle thickness and the cuticle became loose and irregular. CONCLUSIONS ABCG6032427 may modulate cuticle thickness and structure, thus play an important role in the development of deltamethrin resistance in mosquitoes. Thus, it could be a potential target for deltamethrin resistance management in Cx. pipiens. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingwei Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Junnan Zheng
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Ruimin Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Huan Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - JiaJia Du
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jinze Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
125
|
Jung M, Lee DH. Population dynamics of hard ticks (Acari: Ixodidae) and their harboring rates of Severe Fever with Thrombocytopenia Syndrome (SFTS) virus in four landscapes of Gyeonggi Province, South Korea. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:359-368. [PMID: 37787900 DOI: 10.1007/s10493-023-00844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
Population dynamics of hard ticks and their harboring rates of fatal severe fever with thrombocytopenia syndrome (SFTS) were monitored from 2021 to 2022 in Gyeonggi-do, South Korea. Hard ticks were surveyed monthly using CO2-bait traps in four vegetation types, including grassland, grave, mountain trail, and shrub. From the 2-year monitoring, totals of 5,737 and 14,298 hard ticks were collected in 2021 and 2022, respectively, all of which belonged to the genus Haemaphysalis. Of these collected ticks, 97.9 and 98.3% of adults and nymphs were identified as Haemaphysalis longicornis. Generally, density peaks of H. longicornis nymphs and adults were observed from April to May and from June to July, respectively. For Haemaphysalis flava, adults showed density peaks in September, whereas no obvious seasonal patterns were observed for nymphs. The density peak of Haemaphysalis larvae was observed in August and September, followed by a density peak of adults. There was a large variation in the number of hard ticks collected among the four vegetation types, yielding no significant difference among them over the 2-year monitoring. Half of the collected ticks from each vegetation type were pooled into groups by species and developmental stage and subjected to analysis of SFTS virus harboring rates, which yielded no SFTS positive pool detected over the 2-year monitoring.
Collapse
Affiliation(s)
- Minhyung Jung
- Department of Life Sciences, Gachon University, Seongnam-si, 13120, Gyeonggi-do, South Korea
| | - Doo-Hyung Lee
- Department of Life Sciences, Gachon University, Seongnam-si, 13120, Gyeonggi-do, South Korea.
| |
Collapse
|
126
|
Wei P, Zeng X, Han H, Yang Y, Zhang Y, He L. Alternative splicing of a carboxyl/choline esterase gene enhances the fenpropathrin tolerance of Tetranychus cinnabarinus. INSECT SCIENCE 2023; 30:1255-1266. [PMID: 36544383 DOI: 10.1111/1744-7917.13166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Detoxification plays a crucial role in agricultural pests to withstand pesticides, and cytochrome P450s, carboxyl/choline esterases (CCEs), and glutathione-S-transferases are the main proteins responsible for their detoxification ability. The activity of CCEs can be upregulated, downregulated, or modified by mutation. However, few studies have examined the role of alternative splicing in altering the properties of CCEs. We identified 2 variants of TcCCE23 in Tetranychus cinnabarinus: a long version (CCE23-V1) and a short version that is 18 nucleotides shorter than CCE23-V1 (CCE23-V2). Whether splicing affects the activity of TcCCE23 remains unclear. Overexpression of CCE23-V2 in fenpropathrin-resistant T. cinnabarinus revealed that splicing affected the detoxification of fenpropathrin by CCE23-V2. The mortality of mites was significantly higher when the expression of CCE23-V2 was knocked down (43.2% ± 3.3%) via injection of CCE23-dsRNA (double-stranded RNA) compared with the control group injected with green fluorescent protein-dsRNA under fenpropathrin exposure; however, the downregulation of CCE23-V1 (61.3% ± 6.3%) by CCE23-small interfering RNA had no such effect, indicating CCE23-V2 plays a greater role in xenobiotic metabolism than CCE23-V1. The tolerance of flies overexpressing CCE23-V2 to fenpropathrin (50% lethal dose [LD50 ] = 19.47 μg/g) was significantly higher than that of Gal4/UAS-CCE23-V1 transgenic flies (LD50 = 13.11 μg/g). Molecular docking analysis showed that splicing opened a "gate" that enlarges the substrate binding cavity of CCE23-V2, might enhance the ability of CCE23-V2 to harbor fenpropathrin molecules. These findings suggest that splicing might enhance the detoxifying capability of TcCCE23. Generally, our data improve the understanding of the diversity and complexity of the mechanisms underlying the regulation of CCEs.
Collapse
Affiliation(s)
- Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Xinying Zeng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Haonan Han
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Yiqing Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
127
|
Bickersmith SA, Jurczynski JD, Sallum MAM, Chaves LSM, Bergo ES, Rodriguez GAD, Morante CA, Rios CT, Saavedra MP, Alava F, Gamboa D, Vinetz JM, Conn JE. Mutations Linked to Insecticide Resistance Not Detected in the Ace-1 or VGSC Genes in Nyssorhynchus darlingi from Multiple Localities in Amazonian Brazil and Peru. Genes (Basel) 2023; 14:1892. [PMID: 37895241 PMCID: PMC10606710 DOI: 10.3390/genes14101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Indoor residual spray (IRS), mainly employing pyrethroid insecticides, is the most common intervention for preventing malaria transmission in many regions of Latin America; the use of long-lasting insecticidal nets (LLINs) has been more limited. Knockdown resistance (kdr) is a well-characterized target-site resistance mechanism associated with pyrethroid and DDT resistance. Most mutations detected in acetylcholinesterase-1 (Ace-1) and voltage-gated sodium channel (VGSC) genes are non-synonymous, resulting in a change in amino acid, leading to the non-binding of the insecticide. In the present study, we analyzed target-site resistance in Nyssorhynchus darlingi, the primary malaria vector in the Amazon, in multiple malaria endemic localities. We screened 988 wild-caught specimens of Ny. darlingi from three localities in Amazonian Peru and four in Amazonian Brazil. Collections were conducted between 2014 and 2021. The criteria were Amazonian localities with a recent history as malaria hotspots, primary transmission by Ny. darlingi, and the use of both IRS and LLINs as interventions. Fragments of Ace-1 (456 bp) and VGSC (228 bp) were amplified, sequenced, and aligned with Ny. darlingi sequences available in GenBank. We detected only synonymous mutations in the frequently reported Ace-1 codon 280 known to confer resistance to organophosphates and carbamates, but detected three non-synonymous mutations in other regions of the gene. Similarly, no mutations linked to insecticide resistance were detected in the frequently reported codon (995) at the S6 segment of domain II of VGSC. The lack of genotypic detection of insecticide resistance mutations by sequencing the Ace-1 and VGSC genes from multiple Ny. darlingi populations in Brazil and Peru could be associated with low-intensity resistance, or possibly the main resistance mechanism is metabolic.
Collapse
Affiliation(s)
- Sara A. Bickersmith
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; (S.A.B.); (J.D.J.)
| | - John D. Jurczynski
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; (S.A.B.); (J.D.J.)
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.A.M.S.); (L.S.M.C.)
| | - Leonardo S. M. Chaves
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.A.M.S.); (L.S.M.C.)
| | - Eduardo S. Bergo
- Secretaria de Estado da Saúde de São Paulo, Instituto Pasteur, São Paulo 01027-000, Brazil;
| | - Gloria A. D. Rodriguez
- Laboratorio de Referencia Regional de Loreto, Gerencia Regional de Salud de Loreto (GERESA), Loreto 16001, Peru; (G.A.D.R.); (C.A.M.); (C.T.R.)
| | - Clara A. Morante
- Laboratorio de Referencia Regional de Loreto, Gerencia Regional de Salud de Loreto (GERESA), Loreto 16001, Peru; (G.A.D.R.); (C.A.M.); (C.T.R.)
| | - Carlos T. Rios
- Laboratorio de Referencia Regional de Loreto, Gerencia Regional de Salud de Loreto (GERESA), Loreto 16001, Peru; (G.A.D.R.); (C.A.M.); (C.T.R.)
| | - Marlon P. Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (M.P.S.); (D.G.); (J.M.V.)
| | - Freddy Alava
- Gerencia Regional de Salud de Loreto (GERESA), Loreto 16001, Peru;
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (M.P.S.); (D.G.); (J.M.V.)
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (M.P.S.); (D.G.); (J.M.V.)
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jan E. Conn
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; (S.A.B.); (J.D.J.)
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
128
|
Sun Z, Lu Z, Xiao T, Chen Y, Fu P, Lu K, Gui F. Genome-Wide Scanning Loci and Differentially Expressed Gene Analysis Unveils the Molecular Mechanism of Chlorantraniliprole Resistance in Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14092-14107. [PMID: 37699662 DOI: 10.1021/acs.jafc.3c04228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Chlorantraniliprole has been widely used to controlSpodoptera frugiperda, but it has led to the development of chlorantraniliprole resistance. Multiomics analysis of strains with two extreme traits helps to elucidate the complex mechanisms involved. Herein, following genome resequencing and application of the Euclidean distance algorithm, 550 genes within a 16.20-Mb-linked region were identified from chlorantraniliprole-resistant (Ch-R) and chlorantraniliprole-susceptible (Ch-Sus) strains. Using transcriptome sequencing, 2066 differentially expressed genes were identified between Ch-R and Ch-Sus strains. Through association analysis, three glutathione S-transferase family genes and four trehalose transporter genes were selected for functional verification. Notably, SfGSTD1 had the strongest binding ability with chlorantraniliprole and is responsible for chlorantraniliprole tolerance. The Ch-R strain also increased the intracellular trehalose content by upregulating the transcription of SfTret1, thereby contributing to chlorantraniliprole resistance. These findings provide a new perspective to reveal the mechanism of resistance of agricultural pests to insecticides.
Collapse
Affiliation(s)
- Zhongxiang Sun
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Zhihui Lu
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yaping Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Pengfei Fu
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Furong Gui
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
129
|
Guo Y, Hu K, Zhou J, Xie Z, Zhao Y, Zhao S, Gu J, Zhou X, Yan G, James AA, Chen XG. The dynamics of deltamethrin resistance evolution in Aedes albopictus has an impact on fitness and dengue virus type-2 vectorial capacity. BMC Biol 2023; 21:194. [PMID: 37704988 PMCID: PMC10500878 DOI: 10.1186/s12915-023-01693-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Worldwide invasion and expansion of Aedes albopictus, an important vector of dengue, chikungunya, and Zika viruses, has become a serious concern in global public health. Chemical insecticides are the primary means currently available to control the mosquito populations. However, long-term and large-scale use of insecticides has selected for resistance in the mosquito that is accompanied by a genetic load that impacts fitness. RESULTS A number of laboratory strains representing different resistance mechanisms were isolated and identified from laboratory-derived, deltamethrin-resistant Ae. albopictus recovered in previous work. Resistance levels and fitness costs of the strains were evaluated and compared to characterize the evolution of the resistance genotypes and phenotypes. The heterozygous F1534S mutation (1534F/S) in the voltage gated sodium channel (vgsc) gene product (VGSC), first detected in early stages of resistance evolution, not only confers high-level resistance, but also produces no significant fitness costs, leading to the rapid spread of resistance in the population. This is followed by the increase in frequency of homozygous F1534S (1534S/S) mosquitoes that have significant fitness disadvantages, prompting the emergence of an unlinked I1532T mutation with fewer side effects and a mating advantage better adapted to the selection and reproductive pressures imposed in the experiments. Metabolic resistance with no significant fitness cost and mediating a high-tolerance resistance phenotype may play a dominant role in the subsequent evolution of resistance. The different resistant strains had similar vector competence for dengue virus type-2 (DENV-2). Furthermore, a comparative analysis of vectorial capacity revealed that increased survival due to deltamethrin resistance balanced the negative fitness cost effects and contributed to the risk of dengue virus (DENV) transmission by resistant populations. The progressive evolution of resistance results in mosquitoes with both target-site insensitivity and metabolic resistance with lower fitness costs, which further leads to resistant populations with both high resistance levels and vectorial capacity. CONCLUSIONS This study reveals a possible mechanism for the evolution of deltamethrin resistance in Aedes albopictus. These findings will help guide practical strategies for insecticide use, resistance management and the prevention and control of mosquito-borne disease.
Collapse
Affiliation(s)
- Yijia Guo
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ke Hu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jingni Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | | | - Yijie Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Siyu Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinbao Gu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaohong Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, Irvine, CA, USA
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA.
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA.
- , Irvine, USA.
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
130
|
Pullmann-Lindsley H, Bartlett-Miller A, Pitts RJ. Diols and sugar substitutes in attractive toxic sugar baits targeting Aedes aegypti and Aedes albopictus (Diptera: Culicidae) mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1022-1029. [PMID: 37348932 DOI: 10.1093/jme/tjad072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/27/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
Around the world, mosquitoes continue to transmit disease-causing pathogens and develop resistance to insecticides. We previously discovered that a generally regarded as safe (GRAS) compound, 1,2-propanediol, reduces adult mosquito survivorship when ingested. In this study, we assess and compare 5 more chemically related compounds for mosquito lethality and 8 GRAS sugar substitutes to determine toxicity. We conducted a series of feeding assays to determine if ingesting the compounds influenced mosquito mean survivorship in locally collected lab-reared populations of Aedes aegypti (Diptera, Culicidae, Linnaeus, 1762) and Aedes albopictus (Diptera, Culicidae, Skuse, 1894) mosquitoes. Our results indicate that 1,2-propanediol, 1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,3-propanediol, DL-dithiothreitol, acesulfame potassium, allulose, erythritol, sodium saccharin, stevia, and sucralose significantly reduced the mean survivorship of one or both species. Short-term trials with the most toxic compounds revealed that they could substantially affect survivorship after 24 h. We also found that there were different responses in the 2 species and that in several experimental conditions, male mosquitoes expired to a greater extent than female mosquitoes. These findings indicate that several of the compounds are toxic to mosquitoes. Further study is required to determine their effectiveness in attractive toxic sugar baits (ATSBs) as a potential component of population control strategies.
Collapse
Affiliation(s)
| | - Ava Bartlett-Miller
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX 76706, USA
| | - Ronald Jason Pitts
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX 76706, USA
| |
Collapse
|
131
|
Zoh MG, Bonneville JM, Laporte F, Tutagata J, Sadia CG, Fodjo BK, Mouhamadou CS, McBeath J, Schmitt F, Horstmann S, Reynaud S, David JP. Deltamethrin and transfluthrin select for distinct transcriptomic responses in the malaria vector Anopheles gambiae. Malar J 2023; 22:256. [PMID: 37667239 PMCID: PMC10476409 DOI: 10.1186/s12936-023-04673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND The widespread use of pyrethroid insecticides in Africa has led to the development of strong resistance in Anopheles mosquitoes. Introducing new active ingredients can contribute to overcome this phenomenon and ensure the effectiveness of vector control strategies. Transfluthrin is a polyfluorinated pyrethroid whose structural conformation was thought to prevent its metabolism by cytochrome P450 monooxygenases in malaria vectors, thus representing a potential alternative for managing P450-mediated resistance occurring in the field. In this study, a controlled selection was used to compare the dynamics of resistance between transfluthrin and the widely used pyrethroid deltamethrin in the mosquito Anopheles gambiae. Then, the associated molecular mechanisms were investigated using target-site mutation genotyping and RNA-seq. METHODS A field-derived line of An. gambiae carrying resistance alleles at low frequencies was used as starting material for a controlled selection experiment. Adult females were selected across 33 generations with deltamethrin or transfluthrin, resulting in three distinct lines: the Delta-R line (selected with deltamethrin), the Transflu-R line (selected with transfluthrin) and the Tiassale-S line (maintained without selection). Deltamethrin and transfluthrin resistance levels were monitored in each selected line throughout the selection process, as well as the frequency of the L1014F kdr mutation. At generation 17, cross-resistance to other public health insecticides was investigated and transcriptomes were sequenced to compare gene transcription variations and polymorphisms associated with adaptation to each insecticide. RESULTS A rapid increase in resistance to deltamethrin and transfluthrin was observed throughout the selection process in each selected line in association with an increased frequency of the L1014F kdr mutation. Transcriptomic data support a broader response to transfluthrin selection as compared to deltamethrin selection. For instance, multiple detoxification enzymes and cuticle proteins were specifically over-transcribed in the Transflu-R line including the known pyrethroid metabolizers CYP6M2, CYP9K1 and CYP6AA1 together with other genes previously associated with resistance in An. gambiae. CONCLUSION This study confirms that recurrent exposure of adult mosquitoes to pyrethroids in a public health context can rapidly select for various resistance mechanisms. In particular, it indicates that in addition to target site mutations, the polyfluorinated pyrethroid transfluthrin can select for a broad metabolic response, which includes some P450s previously associated to resistance to classical pyrethroids. This unexpected finding highlights the need for an in-depth study on the adaptive response of mosquitoes to newly introduced active ingredients in order to effectively guide and support decision-making programmes in malaria control.
Collapse
Affiliation(s)
- Marius Gonse Zoh
- Laboratoire d'Ecologie Alpine (LECA), Grenoble-Alpes University, Savoie Mont-Blanc University, CNRS, 38041, Grenoble, France.
- Vector Control Product Evaluation Centre (VCPEC) Institut Pierre Richet (VCPEC IPR)/INSP, Bouaké, Côte d'Ivoire.
| | - Jean-Marc Bonneville
- Laboratoire d'Ecologie Alpine (LECA), Grenoble-Alpes University, Savoie Mont-Blanc University, CNRS, 38041, Grenoble, France
| | - Frederic Laporte
- Laboratoire d'Ecologie Alpine (LECA), Grenoble-Alpes University, Savoie Mont-Blanc University, CNRS, 38041, Grenoble, France
| | - Jordan Tutagata
- Laboratoire d'Ecologie Alpine (LECA), Grenoble-Alpes University, Savoie Mont-Blanc University, CNRS, 38041, Grenoble, France
| | | | - Behi K Fodjo
- Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | | | - Justin McBeath
- Envu, Milton Hall, Ely Road. Milton, Cambridge, CB24 6WZ, UK
| | - Frederic Schmitt
- Envu, 2022 Environmental Science FR S.A.S, 3 Place Giovanni Da Verrazzano, 69009, Lyon, France
| | - Sebastian Horstmann
- Envu, 2022 ES Deutschland GmbH, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
| | - Stéphane Reynaud
- Laboratoire d'Ecologie Alpine (LECA), Grenoble-Alpes University, Savoie Mont-Blanc University, CNRS, 38041, Grenoble, France
| | - Jean-Philippe David
- Laboratoire d'Ecologie Alpine (LECA), Grenoble-Alpes University, Savoie Mont-Blanc University, CNRS, 38041, Grenoble, France
| |
Collapse
|
132
|
Nardini L, Brito-Fravallo E, Campagne P, Pain A, Genève C, Vernick KD, Mitri C. The voltage-gated sodium channel, para, limits Anopheles coluzzii vector competence in a microbiota dependent manner. Sci Rep 2023; 13:14572. [PMID: 37666840 PMCID: PMC10477260 DOI: 10.1038/s41598-023-40432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023] Open
Abstract
The voltage-gated sodium channel, para, is a target of DDT and pyrethroid class insecticides. Single nucleotide mutations in para, called knockdown resistant or kdr, which contribute to resistance against DDT and pyrethroid insecticides, have been correlated with increased susceptibility of Anopheles to the human malaria parasite Plasmodium falciparum. However, a direct role of para activity on Plasmodium infection has not yet been established. Here, using RNA-mediated silencing, we provide in vivo direct evidence for the requirement of wild-type (wt) para function for insecticide activity of deltamethrin. Depletion of wt para, which is susceptible to insecticide, causes deltamethrin tolerance, indicating that insecticide-resistant kdr alleles are likely phenocopies of loss of para function. We then show that normal para activity in An. coluzzii limits Plasmodium infection prevalence for both P. falciparum and P. berghei. A transcriptomic analysis revealed that para activity does not modulate the expression of immune genes. However, loss of para function led to enteric dysbiosis with a significant increase in the total bacterial abundance, and we show that para function limiting Plasmodium infection is microbiota dependent. In the context of the bidirectional "enteric microbiota-brain" axis studied in mammals, these results pave the way for studying whether the activity of the nervous system could control Anopheles vector competence.
Collapse
Affiliation(s)
- Luisa Nardini
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Emma Brito-Fravallo
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Pascal Campagne
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Université de Paris, 75015, Paris, France
| | - Adrien Pain
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Corinne Genève
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Kenneth D Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Christian Mitri
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France.
| |
Collapse
|
133
|
Mahyoub JA, Algamdi AG, Aljameeli MM. Resistance development to bioinsecticides in Aedes aegypti (Culicidae: Diptera), the vector of dengue fever in Saudi Arabia. Saudi J Biol Sci 2023; 30:103776. [PMID: 37635838 PMCID: PMC10458291 DOI: 10.1016/j.sjbs.2023.103776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
A laboratory strain of Aedes aegypti (L) was subjected repeatedly to larval selection pressure with two bacterial insecticides, spinosad (Saccharopolyspora spinosa) and bacilod (Bacillus thuringiensis israelensis). The results indicated that the mosquito Ae. aegypti acquired low resistance to spinosad and bacilod by about 3.1 and 2.4-fold, respectively, due to selection pressure for fifteen successive generations. The slope values of the selected strains were increased gradually from one generation to the next, indicating moderate homogeneity between individuals in their response to the test bio-insecticide. Moreover, larval selection with current bacterial bioinsecticides prolonged the time required to digest a blood meal. It showed an evident decrease in the reproductive potential of adult mosquitoes surviving selected larvae.
Collapse
Affiliation(s)
- Jazem A. Mahyoub
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P. O. Box: 80203, Jeddah, Saudi Arabia
| | - Abdullah G. Algamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P. O. Box: 80203, Jeddah, Saudi Arabia
| | - Mohammad M. Aljameeli
- Department of Biology, College of Arts and Sciences, Northern Border University, Rafha, Saudi Arabia
| |
Collapse
|
134
|
Wang HL, Rao Q, Chen ZZ. Identifying potential insecticide resistance markers through genomic-level comparison of Bemisia tabaci (Gennadius) lines. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22034. [PMID: 37434515 DOI: 10.1002/arch.22034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/07/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023]
Abstract
The invasive whitefly (Bemisia tabaci) MED is one of the most economically damaging plant pests. The extensive use of insecticide over decades has led to that the invasive B. tabaci MED has developed resistance to a wide range of insecticide classes, but little is known about the genetic background associated with resistance. To this end, we conducted a comparative genome-wide analysis of single-base nucleotide polymorphisms between MED whitefly lines collected from fields that were recently infested and an insecticide-susceptible MED whitefly line collected in 1976. First, low-coverage genome sequencings were conducted on DNA isolated from individual whiteflies. The sequencing results were evaluated using an available B. tabaci MED genome as a reference. Significant genetic differences were discovered between MED whitefly lines collected from fields that were recently infested and an insecticide-susceptible MED whitefly line based on the principal component analyses. Top GO categories and KEGG pathways that might be involved in insecticide resistance development were identified, and several of them have not been previously associated with resistance. Additionally, we identified several genetic loci with novel variations including Cytochrome P450 monooxygenases (P450s), UDP-glucuronosyltransferases (UGTs), Glutathione S-transferases (GSTs), esterase, carboxyl-esterases (COE), ABC transporters, fatty acyl-CoA reductase, voltage-gated sodium channels, GABA receptor, and cuticle proteins (CPs) that were previously reported to have close associations with pesticide resistance in well-studied insect groups that provide an essential resource for the design of insecticide resistance-linked loci arrays insecticide. Our results was obtained solely on resequencing genome data sets, more pesticide bio-assays combined with omics datasets should be further used to verify the markers identified here.
Collapse
Affiliation(s)
- Hua-Ling Wang
- College of Forestry, Hebei Agricultural University, Hebei, China
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - Qiong Rao
- School of Agriculture and Food Science, Zhejiang A & F University, Hangzhou, China
| | - Zhen-Zhu Chen
- College of Forestry, Hebei Agricultural University, Hebei, China
| |
Collapse
|
135
|
Abstract
Haematophagous arthropods, including mosquitoes, ticks, flies, triatomine bugs and lice (here referred to as vectors), are involved in the transmission of various pathogens to mammals on whom they blood feed. The diseases caused by these pathogens, collectively known as vector-borne diseases (VBDs), threaten the health of humans and animals. Although the vector arthropods differ in life histories, feeding behaviour as well as reproductive strategies, they all harbour symbiotic microorganisms, known as microbiota, on which they depend for completing essential aspects of their biology, such as development and reproduction. In this Review, we summarize the shared and unique key features of the symbiotic associations that have been characterized in the major vector taxa. We discuss the crosstalks between microbiota and their arthropod hosts that influence vector metabolism and immune responses relevant for pathogen transmission success, known as vector competence. Finally, we highlight how current knowledge on symbiotic associations is being explored to develop non-chemical-based alternative control methods that aim to reduce vector populations, or reduce vector competence. We conclude by highlighting the remaining knowledge gaps that stand to advance basic and translational aspects of vector-microbiota interactions.
Collapse
Affiliation(s)
- Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China.
| | - Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
136
|
Holcomb KM, Nguyen C, Komar N, Foy BD, Panella NA, Baskett ML, Barker CM. Predicted reduction in transmission from deployment of ivermectin-treated birdfeeders for local control of West Nile virus. Epidemics 2023; 44:100697. [PMID: 37348378 PMCID: PMC10529638 DOI: 10.1016/j.epidem.2023.100697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/01/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Ivermectin (IVM)-treated birds provide the potential for targeted control of Culex mosquitoes to reduce West Nile virus (WNV) transmission. Ingestion of IVM increases mosquito mortality, which could reduce WNV transmission from birds to humans and in enzootic maintenance cycles affecting predominantly bird-feeding mosquitoes and from birds to humans. This strategy might also provide an alternative method for WNV control that is less hampered by insecticide resistance and the logistics of large-scale pesticide applications. Through a combination of field studies and modeling, we assessed the feasibility and impact of deploying IVM-treated birdfeed in residential neighborhoods to reduce WNV transmission. We first tracked 105 birds using radio telemetry and radio frequency identification to monitor their feeder usage and locations of nocturnal roosts in relation to five feeder sites in a neighborhood in Fort Collins, Colorado. Using these results, we then modified a compartmental model of WNV transmission to account for the impact of IVM on mosquito mortality and spatial movement of birds and mosquitoes on the neighborhood level. We found that, while the number of treated lots in a neighborhood strongly influenced the total transmission potential, the arrangement of treated lots in a neighborhood had little effect. Increasing the proportion of treated birds, regardless of the WNV competency status, resulted in a larger reduction in infection dynamics than only treating competent birds. Taken together, model results indicate that deployment of IVM-treated feeders could reduce local transmission throughout the WNV season, including reducing the enzootic transmission prior to the onset of human infections, with high spatial coverage and rates of IVM-induced mortality in mosquitoes. To improve predictions, more work is needed to refine estimates of daily mosquito movement in urban areas and rates of IVM-induced mortality. Our results can guide future field trials of this control strategy.
Collapse
Affiliation(s)
- Karen M Holcomb
- Davis Arbovirus Research and Training Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States.
| | - Chilinh Nguyen
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States; Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Nicholas Komar
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Brian D Foy
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nicholas A Panella
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Marissa L Baskett
- Department of Environmental Science and Policy, University of California, Davis, CA, United States
| | - Christopher M Barker
- Davis Arbovirus Research and Training Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States.
| |
Collapse
|
137
|
Wang Y, Wang X, Brown DJ, An M, Xue RD, Liu N. Insecticide resistance: Status and potential mechanisms in Aedes aegypti. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105577. [PMID: 37666603 DOI: 10.1016/j.pestbp.2023.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
Aedes aegypti, an important vector in the transmission of human diseases, has developed resistance to two commonly used classes of insecticides, pyrethroids and organophosphates, in populations worldwide. This study examined sensitivity/resistance to chlorpyrifos, fenitrothion, malathion, deltamethrin, permethrin, and β-cyfluthrin, along with possible metabolic detoxification and target site insensitivity, in three Aedes aegypti mosquito strains. The resistant strain (PR) had developed high levels of resistance to all three pyrethroid insecticides compared to a susceptible population, with 6, 500-, 3200- and 17,000-fold resistance to permethrin, β-cyfluthrin, and deltamethrin, respectively. A newly emerged Ae. aegypti population collected from St. Augustine, Florida (AeStA) showed elevated levels of resistance to malathion (12-fold) and permethrin (25-fold). Synergists DEF (S,S,S,-tributyl phosphorotrithioate) and DEM (diethyl maleate) showed no or minor effects on insecticide resistance in both the AeStA and PRG20strains, but PBO (piperonyl butoxide) completely abolished resistance to both malathion and permethrin in AeStA and partially suppressed resistance in PR. The voltage-gated sodium channel sequences were examined to explore the mechanism that only partially inhibited the suppression of resistance to PBO in PR. Two mutations, V1016G/I and F1534C substitutions, both of which are associated with the development of pyrethroid resistance, were identified in the PRG20 strain but not in AeStA. These results suggest that while cytochrome P450 mediated detoxification may not be solely responsible, it is the major mechanism governing the development of resistance in AeStA. Both P450 mediated detoxification and target site insensitivity through the mutations in the voltage-gated sodium channel contribute to the high levels of resistance in the PRG20 strain.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Xin Wang
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Dylan J Brown
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Mengru An
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Rui-De Xue
- Anastasia Mosquito Control District of St. Johns County, 120 EOC Drive, St. Augustine, FL 32092, United States of America.
| | - Nannan Liu
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| |
Collapse
|
138
|
Wen X, Feng K, Qin J, Wei P, Cao P, Zhang Y, Yuchi Z, He L. A detoxification pathway initiated by a nuclear receptor TcHR96h in Tetranychus cinnabarinus (Boisduval). PLoS Genet 2023; 19:e1010911. [PMID: 37708138 PMCID: PMC10501649 DOI: 10.1371/journal.pgen.1010911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
Understanding the mechanism of detoxification initiation in arthropods after pesticide exposure is crucial. Although the identity of transcription factors that induce and regulate the expression of detoxification genes in response to pesticides is beginning to emerge, whether transcription factors directly interact with xenobiotics is unclear. The findings of this study revealed that a nuclear hormone receptor, Tetranychus cinnabarinus hormone receptor (HR) TcHR96h, regulates the overexpression of the detoxification gene TcGSTm02, which is involved in cyflumetofen resistance. The nuclear translocation of TcHR96h increased after cyflumetofen exposure, suggesting direct binding with cyflumetofen. The direct binding of TcHR96h and cyflumetofen was supported by several independent proteomic assays that quantify interactions with small molecules. Together, this study proposes a model for the initiation of xenobiotic detoxification in a polyphagous agricultural pest. These insights not only provide a better understanding of the mechanisms of xenobiotic detoxification and metabolism in arthropods, but also are crucial in understanding adaptation in polyphagous herbivores.
Collapse
Affiliation(s)
- Xiang Wen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Kaiyang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Juan Qin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Youjun Zhang
- Department of Plants and Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
139
|
Shehzad M, Bodlah I, Siddiqui JA, Bodlah MA, Fareen AGE, Islam W. Recent insights into pesticide resistance mechanisms in Plutella xylostella and possible management strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95296-95311. [PMID: 37606784 DOI: 10.1007/s11356-023-29271-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Insects are incredibly successful and diverse organisms, but they also pose a significant threat to agricultural crops, causing potential losses of up to US$470 billion. Among these pests, Plutella xylostella (Linnaeus), a devastating insect that attacks cruciferous vegetables, alone results in monetary losses of around US$4-5 billion worldwide. While insecticides have effectively protected plants under field conditions, their use comes with various environmental and mammalian hazards. Additionally, insects are developing resistance to commonly used insecticides, rendering management strategies less effective. Arthropods employ a range of behavioral and biochemical mechanisms to cope with harmful chemicals, which contribute to the development of resistance. Understanding these mechanisms is crucial for addressing the issue of resistance. It is imperative to integrate strategies that can delay the development of resistance and enhance the efficiency of insecticides. Therefore, we present an overview of insecticide resistance in insects, focusing on P. xylostella, to provide insights into the current resistance status of this pest and propose tactics that can improve the effectiveness of insecticides.
Collapse
Affiliation(s)
- Muhammad Shehzad
- Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Imran Bodlah
- Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Junaid Ali Siddiqui
- College of Agriculture, College of Life Science, Guizhou University, Guiyang, 550025, China
| | - Muhammad Adnan Bodlah
- Fareed Biodiversity Conservation Centre, Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Ammara Gull E Fareen
- Department of Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
140
|
Coutinho-Abreu IV, Jamshidi O, Raban R, Atabakhsh K, Merriman JA, Fischbach MA, Akbari OS. Identification of human skin microbiome odorants that manipulate mosquito landing behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553996. [PMID: 37662338 PMCID: PMC10473644 DOI: 10.1101/2023.08.19.553996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The resident human skin microbiome is responsible for the production of most of the human scents that are attractive to mosquitoes. Hence, engineering the human skin microbiome to synthesize less of mosquito attractants or produce repellents could potentially reduce bites and prevent the transmission of deadly mosquito-borne pathogens. In order to further characterize the human skin volatilome, we quantified the major volatiles of 39 strains of skin commensals (Staphylococci and Corynebacterium). Importantly, to validate the behavioral activity of these volatiles, we first assessed landing behavior triggered by human skin bacteria volatiles. We demonstrated that this behavioral step is gated by the presence of carbon dioxide and L-(+)-lactic acid, similar to the combinatorial coding triggering short range attraction. Repellency behavior to selected skin volatiles and the geraniol terpene was tested in the presence of carbon dioxide and L-(+)-lactic acid. In a 2-choice landing behavior context, the skin volatiles 2- and 3-methyl butyric acids reduced mosquito landing by 62.0-81.6% and 87.1-99.6%, respectively. Similarly, geraniol was capable of reducing mosquito landing behavior by 74.9%. We also tested the potential repellency effects of geraniol on mosquitoes at short-range using a 4-port olfactometer. In these assays, geraniol reduced mosquito attraction (69-78%) to a mixture of key human kairomones carbon dioxide, L-(+)-lactic acid, and ammonia. These findings demonstrate that carbon dioxide and L-(+)-lactic acid changes the valence of other skin volatiles towards mosquito landing behavior. Moreover, this study offers candidate odorants to be targeted in a novel strategy to reduce attractants or produce repellents by the human skin microbiota that may curtail mosquito bites, and subsequent mosquito-borne disease.
Collapse
Affiliation(s)
- Iliano V. Coutinho-Abreu
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Omid Jamshidi
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Robyn Raban
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Katayoon Atabakhsh
- Department of Bioengineering Stanford University, Stanford, CA 94305, USA
| | - Joseph A. Merriman
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Microbiome Therapies Initiative, Stanford University, Palo Alto, CA 94305, USA
| | - Michael A. Fischbach
- Department of Bioengineering Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Microbiome Therapies Initiative, Stanford University, Palo Alto, CA 94305, USA
| | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
141
|
Yüksel E, Yıldırım A, İmren M, Canhilal R, Dababat AA. Xenorhabdus and Photorhabdus Bacteria as Potential Candidates for the Control of Culex pipiens L. (Diptera: Culicidae), the Principal Vector of West Nile Virus and Lymphatic Filariasis. Pathogens 2023; 12:1095. [PMID: 37764903 PMCID: PMC10537861 DOI: 10.3390/pathogens12091095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
Vector-borne diseases pose a severe threat to human and animal health. Culex pipiens L. (Diptera: Culicidae) is a widespread mosquito species and serves as a vector for the transmission of infectious diseases such as West Nile disease and Lymphatic Filariasis. Synthetic insecticides have been the prime control method for many years to suppress Cx. pipiens populations. However, recently, the use of insecticides has begun to be questioned due to the detrimental impact on human health and the natural environment. Therefore, many authorities urge the development of eco-friendly control methods that are nontoxic to humans. The bacterial associates [Xenorhabdus and Photorhabdus spp. (Enterobacterales: Morganellaceae)] of entomopathogenic nematodes (EPNs) (Sterinernema spp. and Heterorhabditis spp.) (Rhabditida: Heterorhabditidae and Steinernematidae) are one of the green approaches to combat a variety of insect pests. In the present study, the mosquitocidal activity of the cell-free supernatants and cell suspension (4 × 107 cells mL-1) of four different symbiotic bacteria (Xenorhabdus nematophila, X. bovienii, X. budapestensis, and P. luminescens subsp. kayaii) was assessed against different development stages of Cx. pipiens (The 1st/2nd and 3rd/4th instar larvae and pupa) under laboratory conditions. The bacterial symbionts were able to kill all the development stages with varying levels of mortality. The 1st/2nd instar larvae exhibited the highest susceptibility to the cell-free supernatants and cell suspensions of symbiotic bacteria and the efficacy of the cell-free supernatants and cell suspensions gradually declined with increasing phases of growth. The highest effectiveness was achieved by the X. bovienii KCS-4S strain inducing 95% mortality to the 1st/2nd instar larvae. The results indicate that tested bacterial symbionts have great potential as an eco-friendly alternative to insecticides.
Collapse
Affiliation(s)
- Ebubekir Yüksel
- Department of Plant Protection, Faculty of Agriculture, Kayseri Erciyes University, Kayseri 38030, Türkiye;
| | - Alparslan Yıldırım
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38280, Türkiye;
| | - Mustafa İmren
- Department of Plant Protection, Faculty of Agriculture, Abant Izzet Baysal University, Bolu 14030, Türkiye;
| | - Ramazan Canhilal
- Department of Plant Protection, Faculty of Agriculture, Kayseri Erciyes University, Kayseri 38030, Türkiye;
| | | |
Collapse
|
142
|
Derilus D, Impoinvil LM, Muturi EJ, McAllister J, Kenney J, Massey SE, Hemme R, Kothera L, Lenhart A. Comparative Transcriptomic Analysis of Insecticide-Resistant Aedes aegypti from Puerto Rico Reveals Insecticide-Specific Patterns of Gene Expression. Genes (Basel) 2023; 14:1626. [PMID: 37628677 PMCID: PMC10454789 DOI: 10.3390/genes14081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Aedes aegypti transmits major arboviruses of public health importance, including dengue, chikungunya, Zika, and yellow fever. The use of insecticides represents the cornerstone of vector control; however, insecticide resistance in Ae. aegypti has become widespread. Understanding the molecular basis of insecticide resistance in this species is crucial to design effective resistance management strategies. Here, we applied Illumina RNA-Seq to study the gene expression patterns associated with resistance to three widely used insecticides (malathion, alphacypermethrin, and lambda-cyhalothrin) in Ae. aegypti populations from two sites (Manatí and Isabela) in Puerto Rico (PR). Cytochrome P450s were the most overexpressed detoxification genes across all resistant phenotypes. Some detoxification genes (CYP6Z7, CYP28A5, CYP9J2, CYP6Z6, CYP6BB2, CYP6M9, and two CYP9F2 orthologs) were commonly overexpressed in mosquitoes that survived exposure to all three insecticides (independent of geographical origin) while others including CYP6BY1 (malathion), GSTD1 (alpha-cypermethrin), CYP4H29 and GSTE6 (lambda-cyhalothrin) were uniquely overexpressed in mosquitoes that survived exposure to specific insecticides. The gene ontology (GO) terms associated with monooxygenase, iron binding, and passive transmembrane transporter activities were significantly enriched in four out of six resistant vs. susceptible comparisons while serine protease activity was elevated in all insecticide-resistant groups relative to the susceptible strain. Interestingly, cuticular-related protein genes (chinase and chitin) were predominantly downregulated, which was also confirmed in the functional enrichment analysis. This RNA-Seq analysis presents a detailed picture of the candidate detoxification genes and other pathways that are potentially associated with pyrethroid and organophosphate resistance in Ae. aegypti populations from PR. These results could inform development of novel molecular tools for detection of resistance-associated gene expression in this important arbovirus vector and guide the design and implementation of resistance management strategies.
Collapse
Affiliation(s)
- Dieunel Derilus
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (L.M.I.); (E.J.M.)
| | - Lucy Mackenzie Impoinvil
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (L.M.I.); (E.J.M.)
| | - Ephantus J. Muturi
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (L.M.I.); (E.J.M.)
| | - Janet McAllister
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA; (J.M.); (J.K.); (L.K.)
| | - Joan Kenney
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA; (J.M.); (J.K.); (L.K.)
| | - Steven E. Massey
- Biology Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00925, USA;
| | - Ryan Hemme
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, PR 00920, USA;
| | - Linda Kothera
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA; (J.M.); (J.K.); (L.K.)
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (L.M.I.); (E.J.M.)
| |
Collapse
|
143
|
Mu Q, Zhao X, Li F, Li W, Zhou X, Lun X, Wang Y, Hua D, Liu Q, Xiao D, Meng F. A novel strategy for screening mutations in the voltage-gated sodium channel gene of Aedes albopictus based on multiplex PCR-mass spectrometry minisequencing technology. Infect Dis Poverty 2023; 12:74. [PMID: 37580776 PMCID: PMC10426094 DOI: 10.1186/s40249-023-01122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND The current prevention and control strategy for Aedes albopictus heavily relies on comprehensive management, such as environmental management and chemical control. However, the wide application of pyrethroids has facilitated the development of insecticide resistance, primarily via mutations in the voltage-gated sodium channel (VGSC) gene. This study aims to develop a novel strategy for detecting mutations in the VGSC gene in Ae. albopictus using multiplex PCR-mass spectrometry (MPCR-MS) minisequencing technology. METHODS We established a new strategy for detecting mutations in the VGSC gene in Ae. albopictus using MPCR-MS minisequencing technology. MPCR amplification and mass probe extension (MPE) were first used, followed by single nucleotide polymorphism (SNP) typing mass spectrometry, which allows the simultaneous detection of multiple mutation sites of the VGSC gene in 96 samples of Ae. albopictus. A total of 70 wild-collected Ae. albopictus were used to evaluate the performance of the method by comparing it with other methods. RESULTS Three target sites (1016, 1532, 1534) in the VGSC gene can be detected simultaneously by double PCR amplification combined with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry, achieving a detection limit of 20 fg/μl. We applied this method to 70 wild-collected Ae. albopictus, and the obtained genotypes were consistent with the routine sequencing results, suggesting the accuracy of our method. CONCLUSIONS MPCR-MS minisequencing technology provides a sensitive and high-throughput approach to Ae. albopictus VGSC gene mutation screening. Compared with conventional sequencing, this method is economical and time-saving. It is of great value for insecticide resistance surveillance in areas with a high risk of vector-borne disease.
Collapse
Affiliation(s)
- Qunzheng Mu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
- Weifang No. 2 People's Hospital, Weifang, 261000, Shandong, People's Republic of China
| | - Xin Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Fengfeng Li
- Weifang Medical College, Weifang, 261000, Shandong, People's Republic of China
| | - Wenyu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Xinxin Zhou
- Beijing Daxing District Center for Disease Control and Prevention, Beijing, 102600, Beijing, People's Republic of China
| | - Xinchang Lun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Yiguan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Dongdong Hua
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Di Xiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Fengxia Meng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| |
Collapse
|
144
|
Kouadio FPA, Wipf NC, Nygble AS, Fodjo BK, Sadia CG, Vontas J, Mavridis K, Müller P, Mouhamadou CS. Relationship between insecticide resistance profiles in Anopheles gambiae sensu lato and agricultural practices in Côte d'Ivoire. Parasit Vectors 2023; 16:270. [PMID: 37559080 PMCID: PMC10410919 DOI: 10.1186/s13071-023-05876-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Insecticide-based malaria vector control is increasingly undermined due to the development of insecticide resistance in mosquitoes. Insecticide resistance may partially be related to the use of pesticides in agriculture, while the level and mechanisms of resistance might differ between agricultural practices. The current study aimed to assess whether phenotypic insecticide resistance and associated molecular resistance mechanisms in Anopheles gambiae sensu lato differ between agricultural practices. METHODS We collected An. gambiae s.l. larvae in six sites with three different agricultural practices, including rice, vegetable and cocoa cultivation. We then exposed the emerging adult females to discriminating concentrations of bendiocarb (0.1%), deltamethrin (0.05%), DDT (4%) and malathion (5%) using the standard World Health Organization insecticide susceptibility test. To investigate underlying molecular mechanisms of resistance, we used multiplex TaqMan qPCR assays. We determined the frequency of target-site mutations, including Vgsc-L995F/S and Vgsc-N1570Y, and Ace1-G280S. In addition, we measured the expression levels of genes previously associated with insecticide resistance in An. gambiae s.l., including the cytochrome P450-dependent monooxygenases CYP4G16, CYP6M2, CYP6P1, CYP6P3, CYP6P4, CYP6Z1 and CYP9K1, and the glutathione S-transferase GSTe2. RESULTS The An. gambiae s.l. populations from all six agricultural sites were resistant to bendiocarb, deltamethrin and DDT, while the populations from the two vegetable cultivation sites were additionally resistant to malathion. Most tested mosquitoes carried at least one mutant Vgsc-L995F allele that is associated with pyrethroid and DDT resistance. In the cocoa cultivation sites, we observed the highest 995F frequencies (80-87%), including a majority of homozygous mutants and several in co-occurrence with the Vgsc-N1570Y mutation. We detected the Ace1 mutation most frequently in vegetable-growing sites (51-60%), at a moderate frequency in rice (20-22%) and rarely in cocoa-growing sites (3-4%). In contrast, CYP6M2, CYP6P3, CYP6P4, CYP6Z1 and CYP9K1, previously associated with metabolic insecticide resistance, showed the highest expression levels in the populations from rice-growing sites compared to the susceptible Kisumu reference strain. CONCLUSION In our study, we observed intriguing associations between the type of agricultural practices and certain insecticide resistance profiles in the malaria vector An. gambiae s.l. which might arise from the use of pesticides deployed for protecting crops.
Collapse
Affiliation(s)
- France-Paraudie A Kouadio
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303 Abidjan 01, Abidjan, Côte d'Ivoire.
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire.
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland.
- University of Basel, Petersplatz 1, P.O. Box, CH-4001, Basel, Switzerland.
| | - Nadja C Wipf
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, P.O. Box, CH-4001, Basel, Switzerland
| | | | - Behi K Fodjo
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303 Abidjan 01, Abidjan, Côte d'Ivoire
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - Christabelle G Sadia
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303 Abidjan 01, Abidjan, Côte d'Ivoire
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Pie Müller
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, P.O. Box, CH-4001, Basel, Switzerland
| | - Chouaïbou S Mouhamadou
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303 Abidjan 01, Abidjan, Côte d'Ivoire
| |
Collapse
|
145
|
Pan X, Ding JH, Zhao SQ, Shi HC, Miao WL, Wu FA, Sheng S, Zhou WH. Identification and functional study of detoxification-related genes in response to tolfenpyrad stress in Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105503. [PMID: 37532323 DOI: 10.1016/j.pestbp.2023.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023]
Abstract
Glyphodes pyloalis Walker (G. pyloalis) is a common destructive mulberry pest. Due to the long-term and frequent use of insecticides, it has developed tolerance to commonly used insecticides. Tolfenpyrad (TFP) is a novel pyrazole heterocyclic insecticide. In order to understand the TFP detoxification mechanism of G. pyloalis larvae, we first estimated the LC30 dose of TFP for 3rd instar G. pyloalis larvae. Next, we identified genes that were differentially expressed in 3rd instar G. pyloalis larvae treated with TFP compared to the control group by transcriptome sequencing. In total, 86,949,569 and 67,442,028 clean reads were obtained from TFP-treated and control G. pyloalis larvae, respectively. A total of 5588 differentially expressed genes (DEGs) were identified in TFP-treated and control G. pyloalis larvae, of which 3084 genes were upregulated and 2504 genes were downregulated. We analyzed the expression of 43 candidate detoxification enzyme genes associated with insecticide tolerance using qPCR. According to the spatiotemporal expression pattern of DEGs, we found that CYP6ABE1, CYP333A36 and GST-epsilon8 were highly expressed in the midgut, while CarEs14 was strongly expressed in haemolymph. Furthermore, we successfully knocked down these genes by RNA interference. After silencing CYP6ABE1 and CYP333A36, bioassay showed that the mortality rate of TFP-treated G. pyloalis larvae was significantly higher compared to the control group. This study provides a theoretical foundation for understanding the sensitivity of G. pyloalis to TFP and establish the basis for the effective and green management of this pest.
Collapse
Affiliation(s)
- Xin Pan
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Jian-Hao Ding
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Shuai-Qi Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Hui-Cong Shi
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Wang-Long Miao
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Fu-An Wu
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212100 Zhenjiang, China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212100 Zhenjiang, China.
| | - Wei-Hong Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212100 Zhenjiang, China.
| |
Collapse
|
146
|
Lee DE, Shin J, Kim YH, Choi KS, Choe H, Lee KP, Lee SH, Kim JH. Inference of selection pressures that drive insecticide resistance in Anopheles and Culex mosquitoes in Korea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105520. [PMID: 37532334 DOI: 10.1016/j.pestbp.2023.105520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Pyrethroids are primarily used for mosquito control in Korea. However, high frequencies of mutations conferring resistance to not only pyrethroids but also to other insecticides have been found in mosquito populations. This study aimed to examine the hypothesis that insecticides used outside of public health may play a role in selection. Briefly, the resistance mutation frequencies to three insecticide groups (pyrethroids, organophosphates, and cyclodienes) were estimated in two representative groups of mosquito species (Anopheles Hyrcanus Group and Culex pipiens complex). The relationship between these frequencies and the land-use status of the collection sites was investigated through multiple regression analysis. In the Anopheles Hyrcanus Group, the frequencies of both ace1 (organophosphate resistance) and rdl (cyclodiene resistance) mutations were positively correlated with 'proximity to golf course', possibly be due to the insecticides used for turf maintenance. They also showed positive correlations with field area and rice paddy area, respectively, suggesting the role of agricultural insecticides in the selection of these resistance traits. For the Cx. pipiens complex, the kdr (pyrethroid resistance), ace1, and rdl mutations were positively correlated with the residential area, field, and rice paddy, respectively. Therefore, pyrethroids used for public health could serve as a direct source of resistance selection pressure against kdr, whereas non-public health insecticides may pose primary selection pressure against the ace1 and rdl traits. The current findings suggest that the insecticides used in agriculture and the golf industry play a significant role in mosquito selection, despite variations in the extent of indirect selection pressure according to the mosquito groups and insecticide classes.
Collapse
Affiliation(s)
- Do Eun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeewoo Shin
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Ho Kim
- Department of Entomology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Kwang Shik Choi
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeyeong Choe
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwang Pum Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Si Hyeock Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ju Hyeon Kim
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
147
|
Weng SC, Antoshechkin I, Marois E, Akbari OS. Efficient Sex Separation by Exploiting Differential Alternative Splicing of a Dominant Marker in Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545348. [PMID: 37398094 PMCID: PMC10312783 DOI: 10.1101/2023.06.16.545348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Only female mosquitoes consume blood and transmit deadly human pathogens. Therefore, it is critical to remove females before conducting releases for genetic biocontrol interventions. Here we describe a robust sex-sorting approach termed SEPARATOR (Sexing Element Produced by Alternative RNA-splicing of A Transgenic Observable Reporter) that exploits sex-specific alternative splicing of an innocuous reporter to ensure exclusive dominant male-specific expression. Using SEPARATOR, we demonstrate reliable sex selection from larval and pupal stages in Aedes aegypti, and use a Complex Object Parametric Analyzer and Sorter (COPAS®) to demonstrate scalable high-throughput sex-selection of first instar larvae. Additionally, we use this approach to sequence the transcriptomes of early larval males and females and find several genes that are sex-specifically expressed in males. SEPARATOR can simplify mass production of males for release programs and is designed to be cross-species portable and should be instrumental for genetic biocontrol interventions.
Collapse
Affiliation(s)
- Shih-Che Weng
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, CA91125, USA
| | - Eric Marois
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, France
| | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
148
|
Adib D, Jafari A, Silivanova E, Basseri H, Gholizadeh S. Molecular analysis of acetylcholinesterase gene in field-collected populations of Musca domestica (Diptera: Muscidae) in Northwestern Iran. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:9. [PMID: 37480682 PMCID: PMC10362979 DOI: 10.1093/jisesa/iead054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023]
Abstract
Nowadays, pyrethroid (Py) insecticides are commonly used against household insect pests and housefly. The combination of Py and organophosphates (OP) are also utilized to combat these insects. The resistance status of Iranian housefly populations to them and carbamate (CB) insecticides is uncertain. This study investigates the presence of acetylcholinesterase (AChE) mutations related to the resistance of Musca domestica to OP and/or CB insecticides in Northwestern Iran. Nucleotides 1041-1776, based on their positions in the ACE gene of aabys strain, were amplified and sequenced in houseflies collected from West Azerbaijan, Gilan, and Ardebil Provinces, Iran. Among 12 single-nucleotide polymorphisms detected, 3 mismatches were found at nucleotides 1174 (T/A, G), 1473 (G/T, C), and 1668 (T/A), leading to amino acid substitutions in V260L, G342A/V, and F407Y positions with various combinations. Genotyping results showed that 85% of specimens had at least one of these substitutions. In addition, the Iranian housefly population was composed of 5 insensitive and sensitive alleles. For the first time, the current study reports the presence of V260L, G342A, G342V, and F407Y substitutions in M. domestica specimens collected from Northwestern Iran. The selection of multiple alleles in field populations might be due to the application of various pesticides/insecticides during extended periods in the region. These molecular levels signify the presence of control problems in the area and the need for developing effective control strategies for such populations.
Collapse
Affiliation(s)
- Delnia Adib
- Health and Biomedical Informatics Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Medical Entomology Department, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Toxicology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Elena Silivanova
- All-Russian Scientific Research Institute of Veterinary Entomology and Arachnology, Branch of Federal State Institution Federal Research Centre Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences (ASRIVEA - Branch of Tyumen Scientific Centre SB RAS), Institutskaya St. 2, Tyumen, 625041, Russian Federation
| | - Hamidreza Basseri
- Vector Biology and Control of Diseases Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saber Gholizadeh
- Health and Biomedical Informatics Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Medical Entomology Department, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
149
|
Kouadio FPA, Sika AN, Fodjo BK, Sadia CG, Oyou SK, Ouattara AF, Mouhamadou CS. Phenotypic resistance to pyrethroid associated to metabolic mechanism in Vgsc-L995F-resistant Anopheles gambiae malaria mosquitoes. Wellcome Open Res 2023; 8:118. [PMID: 37396200 PMCID: PMC10308139 DOI: 10.12688/wellcomeopenres.19126.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
Background: The indiscriminate use of insecticides in agriculture and public health lead to a selection of resistance mechanisms in malaria vectors compromising vector control tools and strategies. This study investigated the metabolic response in the Vgsc-L995F Anopheles gambiae Tiassalé resistance strain after long-term exposure of larvae and adults to deltamethrin insecticide. Methods: Vgsc-L995F An. gambiae Tiassalé strain larvae were exposed over 20 generations to deltamethrin (LS) and adults to PermaNet 2.0 (AS) and combining exposure at larvae and adult stages (LAS) and compared to unexposed (NS) group. All four groups were subjected to the standard World Health Organization (WHO) susceptibility tube tests using deltamethrin (0.05%), bendiocarb (0.1%) and malathion (5%). Vgsc-L995F/S knockdown-resistance ( kdr) mutation frequency was screened using multiplex assays based on Taqman real-time polymerase chain reaction (PCR) method. Additionally, expression levels of detoxification enzymes associated to pyrethroid resistance, including CYP4G16, CYP6M2, CYP6P1, CYP6P3, CYP6P4, CYP6Z1 and CYP9K1, and glutathione S-transferase GSTe2 were measured. Results: Our results indicated that deltamethrin resistance was a response to insecticide selection pressure in LS, AS and LAS groups, while susceptibility was observed in NS group. The vectors showed varied mortality rates with bendiocarb and full susceptibility to malathion throughout the selection with LS, AS and LAS groups. Vgsc-L995F mutation stayed at high allelic frequency level in all groups with a frequency between 87% and 100%. Among the overexpressed genes, CYP6P4 gene was the most overexpressed in LS, AS and LAS groups. Conclusion: Long-term exposure of larvae and adults of Vgsc-L995F resistant- An. gambiae Tiassalé strain to deltamethrin and PermaNet 2.0 net induced resistance to deltamethrin under a significant effect of cytochromes P450 detoxification enzymes. These outcomes highlight the necessity of investigating metabolic resistance mechanisms in the target population and not solely kdr resistance mechanisms prior the implementation of vector control strategies for a better impact.
Collapse
Affiliation(s)
- France-Paraudie A. Kouadio
- Environment and Health, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, 01 BP 1303 Abidjan 01, Cote d'Ivoire
- Natural Sciences, Université Nangui Abrogoua, Abidjan, 02 BP 801 Abidjan 02, Cote d'Ivoire
| | - Angèle N. Sika
- Natural Sciences, Université Nangui Abrogoua, Abidjan, 02 BP 801 Abidjan 02, Cote d'Ivoire
| | - Behi K. Fodjo
- Environment and Health, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, 01 BP 1303 Abidjan 01, Cote d'Ivoire
- Natural Sciences, Université Nangui Abrogoua, Abidjan, 02 BP 801 Abidjan 02, Cote d'Ivoire
| | - Christabelle G. Sadia
- Environment and Health, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, 01 BP 1303 Abidjan 01, Cote d'Ivoire
- Natural Sciences, Université Nangui Abrogoua, Abidjan, 02 BP 801 Abidjan 02, Cote d'Ivoire
| | - Sébastien K. Oyou
- Environment and Health, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, 01 BP 1303 Abidjan 01, Cote d'Ivoire
| | - Allassane F. Ouattara
- Environment and Health, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, 01 BP 1303 Abidjan 01, Cote d'Ivoire
- Natural Sciences, Université Nangui Abrogoua, Abidjan, 02 BP 801 Abidjan 02, Cote d'Ivoire
| | - Chouaïbou S. Mouhamadou
- Environment and Health, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, 01 BP 1303 Abidjan 01, Cote d'Ivoire
| |
Collapse
|
150
|
Rubio-Palis Y, Dzuris N, Sandi C, Vizcaino-Cabarrus RL, Corredor-Medina C, González JA, Lenhart AE. Insecticide resistance levels and associated mechanisms in three Aedes aegypti populations from Venezuela. Mem Inst Oswaldo Cruz 2023; 118:e220210. [PMID: 37377253 DOI: 10.1590/0074-02760220210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The massive use of insecticides in public health has exerted selective pressure resulting in the development of resistance in Aedes aegypti to different insecticides in Venezuela. Between 2010 and 2020, the only insecticides available for vector control were the organophosphates (Ops) fenitrothion and temephos which were focally applied. OBJECTIVES To determine the state of insecticide resistance and to identify the possible biochemical and molecular mechanisms involved in three populations of Ae. aegypti from Venezuela. METHODS CDC bottle bioassays were conducted on Ae. aegypti collected between October 2019 and February 2020 in two hyperendemic localities for dengue in Aragua State and in a malaria endemic area in Bolívar State. Insecticide resistance mechanisms were studied using biochemical assays and polymerase chain reaction (PCR) to detect kdr mutations. FINDINGS Bioassays showed contrasting results among populations; Las Brisas was resistant to malathion, permethrin and deltamethrin, Urbanización 19 de Abril was resistant to permethrin and Nacupay to malathion. All populations showed significantly higher activity of mixed function oxidases and glutathione-S-transferases (GSTs) in comparison with the susceptible strain. The kdr mutations V410L, F1534C, and V1016I were detected in all populations, with F1534C at higher frequencies. MAIN CONCLUSION Insecticide resistance persists in three Ae. aegypti populations from Venezuela even in the relative absence of insecticide application.
Collapse
Affiliation(s)
- Yasmin Rubio-Palis
- Universidad de Carabobo, Instituto de Investigaciones Biomédicas, Maracay, Venezuela
| | - Nicole Dzuris
- US Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Entomology Branch, Atlanta, GA, USA
| | - Christopher Sandi
- US Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Entomology Branch, Atlanta, GA, USA
| | - Rita Lucrecia Vizcaino-Cabarrus
- US Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Entomology Branch, Atlanta, GA, USA
| | - Claudia Corredor-Medina
- US Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Entomology Branch, Atlanta, GA, USA
| | - Jesús Alberto González
- Ministerio del Poder Popular para la Salud, Dirección General de Salud Ambiental, Dirección de Control de Vectores, Maracay, Venezuela
| | - Audrey E Lenhart
- US Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Entomology Branch, Atlanta, GA, USA
| |
Collapse
|