101
|
Todorović Vukotić N, Đorđević J, Pejić S, Đorđević N, Pajović SB. Antidepressants- and antipsychotics-induced hepatotoxicity. Arch Toxicol 2021; 95:767-789. [PMID: 33398419 PMCID: PMC7781826 DOI: 10.1007/s00204-020-02963-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is a serious health burden. It has diverse clinical presentations that can escalate to acute liver failure. The worldwide increase in the use of psychotropic drugs, their long-term use on a daily basis, common comorbidities of psychiatric and metabolic disorders, and polypharmacy in psychiatric patients increase the incidence of psychotropics-induced DILI. During the last 2 decades, hepatotoxicity of various antidepressants (ADs) and antipsychotics (APs) received much attention. Comprehensive review and discussion of accumulated literature data concerning this issue are performed in this study, as hepatotoxic effects of most commonly prescribed ADs and APs are classified, described, and discussed. The review focuses on ADs and APs characterized by the risk of causing liver damage and highlights the ones found to cause life-threatening or severe DILI cases. In parallel, an overview of hepatic oxidative stress, inflammation, and steatosis underlying DILI is provided, followed by extensive review and discussion of the pathophysiology of AD- and AP-induced DILI revealed in case reports, and animal and in vitro studies. The consequences of some ADs and APs ability to affect drug-metabolizing enzymes and therefore provoke drug–drug interactions are also addressed. Continuous collecting of data on drugs, mechanisms, and risk factors for DILI, as well as critical data reviewing, is crucial for easier DILI diagnosis and more efficient risk assessment of AD- and AP-induced DILI. Higher awareness of ADs and APs hepatotoxicity is the prerequisite for their safe use and optimal dosing.
Collapse
Affiliation(s)
- Nevena Todorović Vukotić
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia.
| | - Jelena Đorđević
- Institute of Physiology and Biochemistry "Ivan Đaja", Faculty of Biology, University of Belgrade, 16 Studentski Trg, 11000, Belgrade, Serbia
| | - Snežana Pejić
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia
| | - Neda Đorđević
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia
| | - Snežana B Pajović
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia.,Faculty of Medicine, University of Niš, 81 Blvd. Dr. Zorana Đinđića, 18000, Niš, Serbia
| |
Collapse
|
102
|
Fan L, You Y, Fan Y, Shen C, Xue Y. Association Between ApoA1 Gene Polymorphisms and Antipsychotic Drug-Induced Dyslipidemia in Schizophrenia. Neuropsychiatr Dis Treat 2021; 17:1289-1297. [PMID: 33958870 PMCID: PMC8096449 DOI: 10.2147/ndt.s305200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Dyslipidemia frequently occurs in schizophrenia patients treated with antipsychotic drugs (APDs), especially atypical APDs. Apolipoprotein A1 (ApoA1) plays a key role in lipid metabolism. The aim of this study was to investigate whether ApoA1 gene polymorphisms are associated with APD-induced dyslipidemia in schizophrenia patients. PATIENTS AND METHODS A total of 1987 patients with schizophrenia were enrolled in this study. Serum lipid profiles were determined with a biochemistry analyzer. Genotyping for the rs5072 polymorphism of ApoA1 was performed with TaqMan assay. Logistic regression analysis was carried out to evaluate the relationship between ApoA1 gene polymorphisms and APD-induced dyslipidemia. The effects of drug classification (typical vs atypical APD) and drug regimen (monotherapy vs combination therapy) on serum lipid levels were also analyzed. RESULTS A significant association was found between rs5072 and triglyceride (TG) levels in the recessive model of the logistic regression analysis (adjusted odds ratio [OR]=1.50, 95% confidence interval [CI]: 1.03, 2.17; P<0.05). TG level was significantly higher in patients treated with combination therapy (1.03 (0.71, 1.51) mmol/l) compared to monotherapy (0.93 (0.67, 1.43) mmol/l) and was also associated with sex. There were significant differences in TG levels among the three genotypes of ApoA1 rs5072 (GG, GA, and AA) in the whole study population and in patients treated with atypical APDs. CONCLUSION The ApoA1 rs5072 variant is associated with dysregulated TG metabolism in schizophrenia patients treated with APDs, which may increase susceptibility to dyslipidemia.
Collapse
Affiliation(s)
- Lin Fan
- Department of Pharmacy, Huai'an Third People's Hospital, Huai'an, People's Republic of China
| | - Yiwen You
- Department of Pharmacy, Huai'an Third People's Hospital, Huai'an, People's Republic of China
| | - Yao Fan
- Division of Clinical Epidemiology, Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yong Xue
- Department of Medical Laboratory, Huai'an Third People's Hospital, Huai'an, People's Republic of China
| |
Collapse
|
103
|
Cognitive performance in early, treatment-resistant psychosis patients: Could cognitive control play a role in persistent symptoms? Psychiatry Res 2021; 295:113607. [PMID: 33285345 DOI: 10.1016/j.psychres.2020.113607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022]
Abstract
Approximately one third of psychosis patients fail to respond to conventional antipsychotic medication, which exerts its effect via striatal dopamine receptor antagonism. The present study aimed to investigate impaired cognitive control as a potential contributor to persistent positive symptoms in treatment resistant (TR) patients. 52 medicated First Episode Psychosis (FEP) patients (17 TR and 35 non-TR (NTR)) took part in a longitudinal study in which they performed a series of cognitive tasks and a clinical assessment at two timepoints, 12 months apart. Cognitive performance at baseline was compared to that of 39 healthy controls (HC). Across both timepoints, TR patients were significantly more impaired than NTR patients in a task of cognitive control, while performance on tasks of phonological and semantic fluency, working memory and general intelligence did not differ between patient groups. No significant associations were found between cognitive performance and psychotic symptomatology, and no significant performance changes were observed from the first to second timepoint in any of the cognitive tasks within patient groups. The results suggest that compared with NTR patients, TR patients have an exacerbated deficit specific to cognitive control, which is established early in psychotic illness and stabilises in the years following a first episode.
Collapse
|
104
|
Feng R, Womer FY, Edmiston EK, Chen Y, Wang Y, Chang M, Yin Z, Wei Y, Duan J, Ren S, Li C, Liu Z, Jiang X, Wei S, Li S, Zhang X, Zuo XN, Tang Y, Wang F. Antipsychotic Effects on Cortical Morphology in Schizophrenia and Bipolar Disorders. Front Neurosci 2020; 14:579139. [PMID: 33362453 PMCID: PMC7758211 DOI: 10.3389/fnins.2020.579139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Previous studies of atypical antipsychotic effects on cortical structures in schizophrenia (SZ) and bipolar disorder (BD) have findings that vary between the short and long term. In particular, there has not been a study exploring the effects of atypical antipsychotics on age-related cortical structural changes in SZ and BD. This study aimed to determine whether mid- to long-term atypical antipsychotic treatment (mean duration = 20 months) is associated with cortical structural changes and whether age-related cortical structural changes are affected by atypical antipsychotics. Methods: Structural magnetic resonance imaging images were obtained from 445 participants consisting of 88 medicated patients (67 with SZ, 21 with BD), 84 unmedicated patients (50 with SZ, 34 with BD), and 273 healthy controls (HC). Surface-based analyses were employed to detect differences in thickness and area among the three groups. We examined the age-related effects of atypical antipsychotics after excluding the potential effects of illness duration. Results: Significant differences in cortical thickness were observed in the frontal, temporal, parietal, and insular areas and the isthmus of the cingulate gyrus. The medicated group showed greater cortical thinning in these regions than the unmediated group and HC; furthermore, there were age-related differences in the effects of atypical antipsychotics, and these effects did not relate to illness duration. Moreover, cortical thinning was significantly correlated with lower symptom scores and Wisconsin Card Sorting Test (WCST) deficits in patients. After false discovery rate correction, cortical thinning in the right middle temporal gyrus in patients was significantly positively correlated with lower HAMD scores. The unmedicated group showed only greater frontotemporal thickness than the HC group. Conclusion: Mid- to long-term atypical antipsychotic use may adversely affect cortical thickness over the course of treatment and ageing and may also result in worsening cognitive function.
Collapse
Affiliation(s)
- Ruiqi Feng
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fay Y. Womer
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - E. Kale Edmiston
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yifan Chen
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yinshan Wang
- CAS Key Laboratory of Behavioral Science and Research Center for Lifespan Development of Mind and Brain (CLIMB), Institute of Psychology, Beijing, China
| | - Miao Chang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyang Yin
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yange Wei
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jia Duan
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Sihua Ren
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chao Li
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhuang Liu
- School of Public Health, China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shengnan Wei
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Songbai Li
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Xi-Nian Zuo
- Key Laboratory of Brain and Education Sciences, School of Education Sciences, Nanning Normal University, Nanning, China
| | - Yanqing Tang
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
105
|
Hwang T, Shah T, Sadeghi-Nejad H. A Review of Antipsychotics and Priapism. Sex Med Rev 2020; 9:464-471. [PMID: 33214060 DOI: 10.1016/j.sxmr.2020.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Pharmacologically induced priapism is now the most common cause of priapism, with approximately 50% of drug-related priapism being attributed to antipsychotic usage. The majority of pharmacologic priapism is believed to result in ischemic priapism (low flow), which may lead to irreversible complications, such as erectile dysfunction. It is imperative that prescribing physicians be aware of potentially inciting medications. OBJECTIVES To identify medications, specifically antipsychotics, associated with priapism and prolonged erections and understand the rates and treatment of these side effects. METHODS A PubMed search of all articles available on the database relating to priapism, prolonged erections, and antipsychotics was performed. RESULTS Various typical and atypical antipsychotic drugs (APDs) have been implicated in pharmacologically induced priapism. In addition to dopaminergic and serotoninergic receptors, APDs have affinities for a wide array of other receptors in the central nervous system, including histaminergic, noradrenergic, and cholinergic receptors. Although the exact mechanism is unknown, the most commonly proposed mechanism of priapism associated with APDs is α-adrenergic blockade in the corpora cavernosa of the penis. Priapism appears in only a small fraction of men using medications with α1-receptor-blocking properties, indicating differential sensitivities to the α-blocking effect among men, and/or additional risk factors that may contribute to the development of priapism. The best predictor for the subsequent development of priapism is a past history of having prolonged and painless erections. The acute management algorithm of APD-induced priapism is the same as for other causes of low-flow priapism. CONCLUSION Clinicians should educate patients treated with antipsychotics about the potential for priapism and its sequelae including permanent erectile dysfunction. Appropriate patient education will raise awareness, encourage early reporting, and help reduce the long-term consequences associated with priapism through early intervention. Hwang T, Shah T,Sadeghi-NejadH. A Review of Antipsychotics and Priapism. Sex Med Rev 2021;9:464-471.
Collapse
Affiliation(s)
- Thomas Hwang
- Department of Urology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Tejash Shah
- Department of Urology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | | |
Collapse
|
106
|
Hoyer D. Targeting the 5-HT system: Potential side effects. Neuropharmacology 2020; 179:108233. [PMID: 32805212 DOI: 10.1016/j.neuropharm.2020.108233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
Targeting the serotonin (5-HT) system is no simple task: there are at least 15 5-HT receptors, in addition to a number of transporters and metabolizing enzymes. Multiple 5-HT receptor variants exist due to genetic variations and/or post translational modifications, splice variants or editing variants. Some receptors may form homo and heteromers. The 5-HT system is targeted by multiple drugs to treat a variety of diseases. Given the homology amongst the 5-HT and neighbouring receptor classes, only few drugs are actually selective for a single target. In fact, many 5-HT drugs act on a combination of targets, i.e. several receptors and/or transporters or enzymes. For instance, a number of antidepressants or antipsychotics act on 5-HT and other transmitter systems. Recently developed drugs may show target selectivity by design, based on the current state of knowledge, whereas many older compounds hit multiple targets since they were developed using phenotypic screens, as was done well into the 1980's. Ergot analogues, antipsychotics or antidepressants, fall into this category. As our knowledge developed over the last 25-30 years, some targets have very well-defined liabilities: for instance, 5HT2B or 5-HT2A receptor agonists, will produce valvulopathies or hallucinations, respectively, whereas 5-HT3 receptor antagonists, may lead to constipation. This short review will be limited in scope as there are multiple targets and even more compounds to discuss. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Daniel Hoyer
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia; Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
107
|
Cao B, Chen Y, McIntyre RS, Yan L. Acyl-Carnitine plasma levels and their association with metabolic syndrome in individuals with schizophrenia. Psychiatry Res 2020; 293:113458. [PMID: 32977055 DOI: 10.1016/j.psychres.2020.113458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/13/2020] [Indexed: 02/06/2023]
Abstract
The metabolic syndrome (MetS) affects individuals with schizophrenia at a higher rate when compared to individuals in the general population. Accumulating evidence indicated that subjects with MetS generally manifest elevated levels of acyl-carnitines, which are important carriers for transporting fatty acyl group. Abnormalities of acyl-carnitines in individuals with schizophrenia with or without MetS had not been sufficiently characterized. We conducted this post-hoc analysis with our published data to further evaluate the differences of 29 acyl-carnitines in 46 individuals with schizophrenia with MetS and 123 without MetS. The rate of MetS was 27.2% (46/169) in the individuals with schizophrenia. After FDR correction, the individuals with schizophrenia and MetS showed significantly higher levels of 17 plasma acyl-carnitines, compared to individuals without MetS. Eight acyl-carnitines (i.e., C3, C4, C5, C6: 1, C10: 1, C10: 2, C14: 2-OH, C16: 2-OH) were significantly different between two groups after adjusting for age and sex. The correlation analysis reported that acyl-carnitine concentrations have potential correlations with certain metabolic parameters. Our findings provide valuable new clues for exploring the roles of acyl-carnitines in the diagnosis and treatment of schizophrenia. More data and molecular biology evidences are needed to replicate our findings and elucidate relevant mechanisms.
Collapse
Affiliation(s)
- Bing Cao
- School of Psychology and Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Psychology Education, Southwest University, Chongqing 400715, China.
| | - Yan Chen
- Dalla Lana School of Public Health, University of Toronto. 155 College St., Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, P. R. China; Medical and Health Analysis Center, Peking University, Beijing 100191, P. R. China; Vaccine Research Center, School of Public Health, Peking University, Beijing 100191, P. R. China.
| |
Collapse
|
108
|
Sanson A, Riva MA. Anti-Stress Properties of Atypical Antipsychotics. Pharmaceuticals (Basel) 2020; 13:E322. [PMID: 33092112 PMCID: PMC7589119 DOI: 10.3390/ph13100322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Stress exposure represents a major environmental risk factor for schizophrenia and other psychiatric disorders, as it plays a pivotal role in the etiology as well as in the manifestation of disease symptomatology. It may be inferred that pharmacological treatments must be able to modulate the behavioral, functional, and molecular alterations produced by stress exposure to achieve significant clinical outcomes. This review aims at examining existing clinical and preclinical evidence that supports the ability of atypical antipsychotic drugs (AAPDs) to modulate stress-related alterations. Indeed, while the pharmacodynamic differences between AAPDs have been extensively characterized, less is known on their ability to regulate downstream mechanisms that are critical for functional recovery and patient stabilization. We will discuss stress-related mechanisms, spanning from neuroendocrine function to inflammation and neuronal plasticity, which are relevant for the manifestation of schizophrenic symptomatology, and we will discuss if and how AAPDs may interfere with such mechanisms. Considering the impact of stress in everyday life, we believe that a better understanding of the potential effects of AAPDs on stress-related mechanisms may provide novel and important insights for improving therapeutic strategies aimed at promoting coping mechanisms and enhancing the quality of life of patients affected by psychiatric disorders.
Collapse
Affiliation(s)
| | - Marco A. Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Giuseppe Balzaretti 9, 20133 Milan, Italy;
| |
Collapse
|
109
|
Toneatti R, Shin JM, Shah UH, Mayer CR, Saunders JM, Fribourg M, Arsenovic PT, Janssen WG, Sealfon SC, López-Giménez JF, Benson DL, Conway DE, González-Maeso J. Interclass GPCR heteromerization affects localization and trafficking. Sci Signal 2020; 13:eaaw3122. [PMID: 33082287 PMCID: PMC7717648 DOI: 10.1126/scisignal.aaw3122] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Membrane trafficking processes regulate G protein-coupled receptor (GPCR) activity. Although class A GPCRs are capable of activating G proteins in a monomeric form, they can also potentially assemble into functional GPCR heteromers. Here, we showed that the class A serotonin 5-HT2A receptors (5-HT2ARs) affected the localization and trafficking of class C metabotropic glutamate receptor 2 (mGluR2) through a mechanism that required their assembly as heteromers in mammalian cells. In the absence of agonists, 5-HT2AR was primarily localized within intracellular compartments, and coexpression of 5-HT2AR with mGluR2 increased the intracellular distribution of the otherwise plasma membrane-localized mGluR2. Agonists for either 5-HT2AR or mGluR2 differentially affected trafficking through Rab5-positive endosomes in cells expressing each component of the 5-HT2AR-mGluR2 heterocomplex alone, or together. In addition, overnight pharmacological 5-HT2AR blockade with clozapine, but not with M100907, decreased mGluR2 density through a mechanism that involved heteromerization between 5-HT2AR and mGluR2. Using TAT-tagged peptides and chimeric constructs that are unable to form the interclass 5-HT2AR-mGluR2 complex, we demonstrated that heteromerization was necessary for the 5-HT2AR-dependent effects on mGluR2 subcellular distribution. The expression of 5-HT2AR also augmented intracellular localization of mGluR2 in mouse frontal cortex pyramidal neurons. Together, our data suggest that GPCR heteromerization may itself represent a mechanism of receptor trafficking and sorting.
Collapse
MESH Headings
- Amino Acids/pharmacology
- Animals
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Membrane/metabolism
- Clozapine/pharmacology
- Endosomes/metabolism
- HEK293 Cells
- Humans
- Mice, 129 Strain
- Mice, Knockout
- Microscopy, Confocal
- Multiprotein Complexes/chemistry
- Multiprotein Complexes/metabolism
- Protein Multimerization
- Protein Transport/drug effects
- Receptor, Serotonin, 5-HT2A/chemistry
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptors, Metabotropic Glutamate/chemistry
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Serotonin Antagonists/pharmacology
- Signal Transduction
Collapse
Affiliation(s)
- Rudy Toneatti
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jong M Shin
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Urjita H Shah
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Carl R Mayer
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - Justin M Saunders
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Miguel Fribourg
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Translational Transplant Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul T Arsenovic
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - William G Janssen
- Department Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan F López-Giménez
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, E-18016 Granada, Spain
| | - Deanna L Benson
- Department Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23220, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
110
|
Zhang Z, Ye M, Li Q, You Y, Yu H, Ma Y, Mei L, Sun X, Wang L, Yue W, Li R, Li J, Zhang D. The Schizophrenia Susceptibility Gene OPCML Regulates Spine Maturation and Cognitive Behaviors through Eph-Cofilin Signaling. Cell Rep 2020; 29:49-61.e7. [PMID: 31577955 DOI: 10.1016/j.celrep.2019.08.091] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/09/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022] Open
Abstract
Previous genetic and biological evidence converge on the involvement of synaptic dysfunction in schizophrenia, and OPCML, encoding a synaptic membrane protein, is reported to be genetically associated with schizophrenia. However, its role in the pathophysiology of schizophrenia remains largely unknown. Here, we found that Opcml is strongly expressed in the mouse hippocampus; ablation of Opcml leads to reduced phosphorylated cofilin and dysregulated F-actin dynamics, which disturbs the spine maturation. Furthermore, Opcml interacts with EphB2 to control the stability of spines by regulating the ephrin-EphB2-cofilin signaling pathway. Opcml-deficient mice display impaired cognitive behaviors and abnormal sensorimotor gating, which are similar to features in neuropsychiatric disorders such as schizophrenia. Notably, the administration of aripiprazole partially restores the abnormal behaviors in Opcml-/- mice by increasing the phosphorylated cofilin level and facilitating spine maturation. We demonstrated a critical role of the schizophrenia-susceptible gene OPCML in spine maturation and cognitive behaviors via regulating the ephrin-EphB2-cofilin signaling pathway, providing further insights into the characteristics of schizophrenia.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Maoqing Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Qiongwei Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yang You
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Hao Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yuanlin Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Liwei Mei
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiaqin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Lifang Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Rena Li
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Jun Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
111
|
Issy AC, Pedrazzi JFC, van Oosten ABS, Checheto T, Silva RR, Noël F, Del-Bel E. Effects of Doxycycline in Swiss Mice Predictive Models of Schizophrenia. Neurotox Res 2020; 38:1049-1060. [PMID: 32929685 DOI: 10.1007/s12640-020-00268-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/14/2023]
Abstract
Schizophrenia patients show very complex symptoms in several psychopathological domains. Some of these symptoms remain poorly treated. Therefore, continued effort is needed to find novel pharmacological strategies for improving schizophrenia symptoms. Recently, minocycline, a second-generation tetracycline, has been suggested as an adjunctive treatment for schizophrenia. The antipsychotic-like effect of doxycycline, a minocycline analog, was investigated here. We found that both minocycline and doxycycline prevented amphetamine-induced prepulse inhibition (PPI) disruption. However, neither of them blocked MK801-induced effects, albeit doxycycline had a modest impact against ketamine-induced effects. Neither c-Fos nor nNOS expression, which was evaluated in limbic regions, were modified after acute or sub-chronic treatment with doxycycline. Therefore, apomorphine inducing either PPI disruption and climbing behavior was not prevented by doxycycline. This result discards a direct blockade of D2-like receptors, also suggested by the lack of doxycycline cataleptic-induced effect. Contrasting, doxycycline prevented SKF 38393-induced effects, suggesting a preferential doxycycline action at D1-like rather than D2-like receptors. However, doxycycline did not bind to the orthosteric sites of D1, D2, D3, D4, 5-HT2A, 5-HT1A, and A2A receptors suggesting no direct modulation of these receptors. Our data corroborate the antipsychotic-like effect of doxycycline. However, these effects are probably not mediated by doxycycline direct interaction with classical receptors enrolled in the antipsychotic effect.
Collapse
Affiliation(s)
- Ana Carolina Issy
- Dental School of Ribeirão Preto, Department of Basic and Oral Biology, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, São Paulo, Brazil.,Medical School of Ribeirão Preto, Department of Neuroscience and Behavior Sciences, USP, Ribeirão Preto, SP, Brazil
| | - João Francisco C Pedrazzi
- Dental School of Ribeirão Preto, Department of Basic and Oral Biology, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, São Paulo, Brazil.,Medical School of Ribeirão Preto, Department of Neuroscience and Behavior Sciences, USP, Ribeirão Preto, SP, Brazil
| | - Anna Beatriz Saito van Oosten
- Dental School of Ribeirão Preto, Department of Basic and Oral Biology, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Thiago Checheto
- Dental School of Ribeirão Preto, Department of Basic and Oral Biology, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Rafaela R Silva
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - François Noël
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elaine Del-Bel
- Dental School of Ribeirão Preto, Department of Basic and Oral Biology, University of São Paulo (USP), Ribeirão Preto, SP, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, São Paulo, Brazil. .,Medical School of Ribeirão Preto, Department of Neuroscience and Behavior Sciences, USP, Ribeirão Preto, SP, Brazil. .,Medical School of Ribeirão Preto, Department of Physiology, USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
112
|
Ibi D, Nakasai G, Koide N, Sawahata M, Kohno T, Takaba R, Nagai T, Hattori M, Nabeshima T, Yamada K, Hiramatsu M. Reelin Supplementation Into the Hippocampus Rescues Abnormal Behavior in a Mouse Model of Neurodevelopmental Disorders. Front Cell Neurosci 2020; 14:285. [PMID: 32982694 PMCID: PMC7492784 DOI: 10.3389/fncel.2020.00285] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
In the majority of schizophrenia patients, chronic atypical antipsychotic administration produces a significant reduction in or even complete remission of psychotic symptoms such as hallucinations and delusions. However, these drugs are not effective in improving cognitive and emotional deficits in patients with schizophrenia. Atypical antipsychotic drugs have a high affinity for the dopamine D2 receptor, and a modest affinity for the serotonin 5-HT2A receptor. The cognitive and emotional deficits in schizophrenia are thought to involve neural networks beyond the classical dopaminergic mesolimbic pathway, however, including serotonergic systems. For example, mutations in the RELN gene, which encodes Reelin, an extracellular matrix protein involved in neural development and synaptic plasticity, are associated with neurodevelopmental disorders such as schizophrenia and autism spectrum disorder. Furthermore, hippocampal Reelin levels are down-regulated in the brains of both schizophrenic patients and in rodent models of schizophrenia. In the present study, we investigated the effect of Reelin microinjection into the mouse hippocampus on behavioral phenotypes to evaluate the role of Reelin in neurodevelopmental disorders and to test a therapeutic approach that extends beyond classical monoamine targets. To model the cognitive and emotional deficits, as well as histological decreases in Reelin-positive cell numbers and hippocampal synaptoporin distribution, a synaptic vesicle protein, offspring that were prenatally exposed to maternal immune activation were used. Microinjections of recombinant Reelin protein into the hippocampus rescued impairments in object memory and anxiety-like behavior and recruited synaptoporin in the hippocampus in offspring exposed to antenatal inflammation. These results suggest that Reelin supplementation has the potential to treat cognitive and emotional impairments, as well as synaptic disturbances, in patients with neurodevelopmental disorders such as schizophrenia.
Collapse
Affiliation(s)
- Daisuke Ibi
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Genki Nakasai
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Nayu Koide
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Rika Takaba
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Project Office for Neuropsychological Research Center, Fujita Health University, Toyoake, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University, Graduate School of Health Sciences, Toyoake, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masayuki Hiramatsu
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
113
|
Hanswijk SI, Spoelder M, Shan L, Verheij MMM, Muilwijk OG, Li W, Liu C, Kolk SM, Homberg JR. Gestational Factors throughout Fetal Neurodevelopment: The Serotonin Link. Int J Mol Sci 2020; 21:E5850. [PMID: 32824000 PMCID: PMC7461571 DOI: 10.3390/ijms21165850] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Serotonin (5-HT) is a critical player in brain development and neuropsychiatric disorders. Fetal 5-HT levels can be influenced by several gestational factors, such as maternal genotype, diet, stress, medication, and immune activation. In this review, addressing both human and animal studies, we discuss how these gestational factors affect placental and fetal brain 5-HT levels, leading to changes in brain structure and function and behavior. We conclude that gestational factors are able to interact and thereby amplify or counteract each other's impact on the fetal 5-HT-ergic system. We, therefore, argue that beyond the understanding of how single gestational factors affect 5-HT-ergic brain development and behavior in offspring, it is critical to elucidate the consequences of interacting factors. Moreover, we describe how each gestational factor is able to alter the 5-HT-ergic influence on the thalamocortical- and prefrontal-limbic circuitry and the hypothalamo-pituitary-adrenocortical-axis. These alterations have been associated with risks to develop attention deficit hyperactivity disorder, autism spectrum disorders, depression, and/or anxiety. Consequently, the manipulation of gestational factors may be used to combat pregnancy-related risks for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sabrina I. Hanswijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Marcia Spoelder
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Ling Shan
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands;
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Otto G. Muilwijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Weizhuo Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Chunqing Liu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Sharon M. Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, The Netherlands;
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| |
Collapse
|
114
|
Sakamoto R, Koyama A. Effective Therapy Against Severe Anxiety Caused by Cancer: A Case Report and Review of the Literature. Cureus 2020; 12:e8414. [PMID: 32626629 PMCID: PMC7331780 DOI: 10.7759/cureus.8414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Anxiety can make it difficult for patients to manage their illness. Therefore, it is important to reduce their anxiety if possible. However, few studies have examined the efficacy of drugs in the treatment of anxiety in patients with cancer. Our case had failed to respond to benzodiazepines, and it was difficult to use a selective serotonin reuptake inhibitor (SSRI) as the next drug. This case report describes the effective use of quetiapine to treat anxiety. We report this rare case along with a literature review. Few studies have assessed the treatment of anxiety in patients with rare cancers. In our case, quetiapine effectively alleviated anxiety associated with cystic adenoid carcinoma. However, in clinical practice, it is possible that anxiety is treated without differentiating the effects of cancer status, e.g. life prognosis, treatment progress. In our patient, benzodiazepines had no effect on anxiety. Thus, different drugs may be required to treat anxiety associated with cancer. The present study demonstrated that quetiapine is a useful modality for the palliative care of patients with rare cancer and intractable anxiety. Quetiapine may be an effective alternative to benzodiazepines (BZ) and SSRIs for treating anxiety in patients with cancer. However, further investigation is needed to clarify the efficacy of treatments for anxiety associated with rare cancers.
Collapse
Affiliation(s)
- Ryo Sakamoto
- Psychosomatic Medicine, Kindai University Faculty of Medicine, Osakasayama City, JPN
| | - Atsuko Koyama
- Psychosomatic Medicine, Kindai University Faculty of Medicine, Osakasayama City, JPN
| |
Collapse
|
115
|
Kang S, Noh HJ, Bae SH, Kim YS, Lew H, Lim J, Kim SJ, Hong KS, Rah JC, Kim CH. Clozapine generates obsessive compulsive disorder-like behavior in mice. Mol Brain 2020; 13:84. [PMID: 32471517 PMCID: PMC7257162 DOI: 10.1186/s13041-020-00621-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/12/2020] [Indexed: 11/23/2022] Open
Abstract
Clozapine is thought to induce obsessive compulsive symptoms (OCS) in schizophrenic patients. However, because OCS are often comorbid with schizophrenia regardless of clozapine treatment, it remains unclear whether clozapine can generate OCS de novo. Thus, it has been difficult to establish a causal link between clozapine and OCS in human studies. To address this question, we asked whether chronic treatment with clozapine can induce obsessive compulsive disorder (OCD)-like behavior in mice. We injected mice with long-term continuous release pellets embedded with clozapine four times at 60-day intervals and then monitored the mice for signs of OCD-like behavior up to 40 wk. of age. We found clozapine increases grooming behavior as early as 30 wk. of age. We also investigated the effect clozapine on grooming behavior in Sapap3 knockout (KO) mice, which are a well-known animal model of OCD. In Sapap3 heterozygous KO mice, clozapine increases grooming behavior much earlier than in wild-type mice, suggesting a clozapine-OCD gene interaction. Fluoxetine, which is often used in the treatment of OCS and OCD, reduced the grooming behavior induced by clozapine. These data demonstrate that chronic clozapine treatment can generate OCD-like behavior in mice and support the hypothesis that clozapine produces de novo OCS regardless of schizophrenia status.
Collapse
Affiliation(s)
- Shinwon Kang
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hyun Jong Noh
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | | | - Yong-Seok Kim
- Korea Brain Research Institute, Daegu, 41068, South Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, South Korea
| | - Hogun Lew
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jisoo Lim
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Se Joo Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kyung Sue Hong
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, Daegu, 41068, South Korea. .,Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, South Korea.
| | - Chul Hoon Kim
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
116
|
The role of glutamate receptors and their interactions with dopamine and other neurotransmitters in the development of tardive dyskinesia: preclinical and clinical results. Behav Pharmacol 2020; 31:511-523. [PMID: 32459694 DOI: 10.1097/fbp.0000000000000563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tardive dyskinesia is a serious, disabling, movement disorder associated with the ongoing use of antipsychotic medication. Current evidence regarding the pathophysiology of tardive dyskinesia is mainly based on preclinical animal models and is still not completely understood. The leading preclinical hypothesis of tardive dyskinesia development includes dopaminergic imbalance in the direct and indirect pathways of the basal ganglia, cholinergic deficiency, serotonin receptor disturbances, neurotoxicity, oxidative stress, and changes in synaptic plasticity. Although, the role of the glutamatergic system has been confirmed in preclinical tardive dyskinesia models it seems to have been neglected in recent reviews. This review focuses on the role and interactions of glutamate receptors with dopamine, acetylcholine, and serotonin in the neuropathology of tardive dyskinesia development. Moreover, preclinical and clinical results of the differentiated effectiveness of N-methyl-D-aspartate (NMDA) receptor antagonists are discussed with a special focus on antagonists that bind with the GluN2B subunit of NMDA receptors. This review also presents new combinations of drugs that are worth considering in the treatment of tardive dyskinesia.
Collapse
|
117
|
Jafferany M, Stamu‐O'Brien C, Mkhoyan R, Patel A. Psychotropic drugs in dermatology: A dermatologist's approach and choice of medications. Dermatol Ther 2020; 33:e13385. [DOI: 10.1111/dth.13385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Mohammad Jafferany
- Department of Psychiatry, CMU Medical Education Partners Central Michigan University College of Medicine Saginaw Michigan USA
| | | | | | - Arsh Patel
- Wake Forest University School of Medicine Winston‐Salem North Carolina USA
| |
Collapse
|
118
|
Baltzersen OB, Meltzer HY, Frokjaer VG, Raghava JM, Baandrup L, Fagerlund B, Larsson HBW, Fibiger HC, Glenthøj BY, Knudsen GM, Ebdrup BH. Identification of a Serotonin 2A Receptor Subtype of Schizophrenia Spectrum Disorders With Pimavanserin: The Sub-Sero Proof-of-Concept Trial Protocol. Front Pharmacol 2020; 11:591. [PMID: 32425802 PMCID: PMC7204912 DOI: 10.3389/fphar.2020.00591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background All current approved antipsychotic drugs against schizophrenia spectrum disorders share affinity for the dopamine receptor (D2R). However, up to one-third of these patients respond insufficiently, and in some cases, side-effects outweigh symptom reduction. Previous data have suggested that a subgroup of antipsychotic-naïve patients will respond to serotonin 2A receptor (2AR) blockade. Aims This investigator-initiated, translational, proof-of-concept study has overall two aims; 1) To test the clinical effectiveness of monotherapy with the newly approved drug against Parkinson's disease psychosis, pimavanserin, in antipsychotic-free patients with first-episode schizophrenia spectrum disorders; 2) To characterize the neurobiological profile of responders to pimavaserin. Materials and Equipment Forty patients will be enrolled in this 6-week open label, one-armed trial with the selective serotonin 2AR antagonist (pimavanserin 34 mg/day). At baseline, patients will undergo: positron emission tomography (PET) imaging of the serotonin 2AR using the radioligand [¹¹C]Cimbi-36; structural magnetic resonance imaging (MRI); MR spectroscopy of cerebral glutamate levels and diffusion tensor imaging; cognitive and psychopathological examinations; electrocardiogram, and blood sampling for genetic- and metabolic analyses. Outcome Measures The primary clinical endpoint will be reduction in the Positive and Negative Syndrome Scale (PANSS) positive score. Secondary clinical endpoints comprise multiple clinical ratings (positive and negative symptoms, depressive-, obsessive-compulsive symptoms, quality of life, social functioning, sexual functioning, and side-effects). PET, MRI, and cognitive parameters will be used for in-depth neuropsychiatric characterization of pimavanserin response. Anticipated Results Clinically, we expect pimavanserin to reduce psychotic symptoms with similar effect as observed with conventional antipsychotics, for which we have comparable historical data. We expect pimavanserin to induce minimal side-effects. Neurobiologically, we expect psychotic symptom reduction to be most prominent in patients with low frontal serotonin 2AR binding potential at baseline. Potential pro-cognitive and brain structural effects of pimavanserin will be explored. Perspectives Sub-Sero will provide unique information about the role serotonin 2AR in antipsychotic-free, first-episode psychosis. If successful, Sub-Sero will aid identification of a “serotonergic subtype” of schizophrenia spectrum patients, thereby promoting development of precision medicine in clinical psychiatry. Clinical Trial Registration ClinicalTrials, identifier NCT03994965.
Collapse
Affiliation(s)
- Olga B Baltzersen
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention & Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark
| | - Herbert Y Meltzer
- Departments of Psychiatry and Behavioral Sciences, Pharmacology, and Physiology, School of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Vibe G Frokjaer
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Mental Health Services Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jayachandra M Raghava
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention & Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark.,Functional Imaging Unit (FIU), Rigshospitalet Glostrup, Glostrup, Denmark
| | - Lone Baandrup
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention & Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention & Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit (FIU), Rigshospitalet Glostrup, Glostrup, Denmark
| | - H Christian Fibiger
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Birte Y Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention & Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Centre for Neuropsychiatric Schizophrenia Research (CNSR), Centre for Clinical Intervention & Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
119
|
Alvarez-Herrera S, Escamilla R, Medina-Contreras O, Saracco R, Flores Y, Hurtado-Alvarado G, Maldonado-García JL, Becerril-Villanueva E, Pérez-Sánchez G, Pavón L. Immunoendocrine Peripheral Effects Induced by Atypical Antipsychotics. Front Endocrinol (Lausanne) 2020; 11:195. [PMID: 32373066 PMCID: PMC7186385 DOI: 10.3389/fendo.2020.00195] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Atypical antipsychotics (AAP) or second-generation antipsychotics are the clinical option for schizophrenia treatment during acute psychoses, but they are also indicated for maintenance during lifetime, even though they are being used for other psychiatric conditions in clinical practice such as affective disorders and autism spectrum disorder, among others. These drugs are differentiated from typical antipsychotics based on their clinical profile and are a better choice because they cause fewer side effects regarding extrapyramidal symptoms (EPS). Even though they provide clear therapeutic benefits, AAP induce peripheral effects that trigger phenotypic, functional, and systemic changes outside the Central Nervous System (CNS). Metabolic disease is frequently associated with AAP and significantly impacts the patient's quality of life. However, other peripheral changes of clinical relevance are present during AAP treatment, such as alterations in the immune and endocrine systems as well as the intestinal microbiome. These less studied alterations also have a significant impact in the patient's health status. This manuscript aims to revise the peripheral immunological, endocrine, and intestinal microbiome changes induced by AAP consumption recommended in the clinical guidelines for schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Samantha Alvarez-Herrera
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Raúl Escamilla
- Clínica de Esquizofrenia, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Oscar Medina-Contreras
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Ricardo Saracco
- Clínica de Esquizofrenia, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Yvonne Flores
- Clínica de Esquizofrenia, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Gabriela Hurtado-Alvarado
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - José Luis Maldonado-García
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| |
Collapse
|
120
|
Behavioral abnormalities and phosphorylation deficits of extracellular signal-regulated kinases 1 and 2 in rat offspring of the maternal immune activation model. Physiol Behav 2020; 217:112805. [DOI: 10.1016/j.physbeh.2020.112805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 12/31/2022]
|
121
|
V. Giridharan V, Scaini G, Colpo GD, Doifode T, F. Pinjari O, Teixeira AL, Petronilho F, Macêdo D, Quevedo J, Barichello T. Clozapine Prevents Poly (I:C) Induced Inflammation by Modulating NLRP3 Pathway in Microglial Cells. Cells 2020; 9:E577. [PMID: 32121312 PMCID: PMC7140445 DOI: 10.3390/cells9030577] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a complex psychiatric disorder that exhibits an interconnection between the immune system and the brain. Experimental and clinical studies have suggested the presence of neuroinflammation in schizophrenia. In the present study, the effect of antipsychotic drugs, including clozapine, risperidone, and haloperidol (10, 20 and 20 μM, respectively), on the production of IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-17, IL-18, INF-γ, and TNF-α was investigated in the unstimulated and polyriboinosinic-polyribocytidilic acid [poly (I:C)]-stimulated primary microglial cell cultures. In the unstimulated cultures, clozapine, risperidone, and haloperidol did not influence the cytokine levels. Nevertheless, in cell cultures under strong inflammatory activation by poly (I:C), clozapine reduced the levels of IL-1α, IL-1β, IL-2, and IL-17. Risperidone and haloperidol both reduced the levels of IL-1α, IL-1β, IL-2, and IL-17, and increased the levels of IL-6, IL-10, INF-γ, and TNF-α. Based on the results that were obtained with the antipsychotic drugs and observing that clozapine presented with a more significant anti-inflammatory effect, clozapine was selected for the subsequent experiments. We compared the profile of cytokine suppression obtained with the use of NLRP3 inflammasome inhibitor, CRID3 to that obtained with clozapine, to test our hypothesis that clozapine inhibits the NLRP3 inflammasome. Clozapine and CRID3 both reduced the IL-1α, IL-1β, IL-2, and IL-17 levels. Clozapine reduced the level of poly (I:C)-activated NLRP3 expression by 57%, which was higher than the reduction thay was seen with CRID3 treatment (45%). These results suggest that clozapine might exhibit anti-inflammatory effects by inhibiting NLRP3 inflammasome and this activity is not typical with the use of other antipsychotic drugs under the conditions of strong microglial activation.
Collapse
Affiliation(s)
- Vijayasree V. Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
| | - Gabriela D. Colpo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
| | - Tejaswini Doifode
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
| | - Omar F. Pinjari
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
| | - Antônio L. Teixeira
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC 88700-000, Brazil;
| | - Danielle Macêdo
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP 14000-000, Brazil;
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC 88800-000, Brazil
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC 88800-000, Brazil
| |
Collapse
|
122
|
Ghabrash MF, Coronado-Montoya S, Aoun J, Gagné AA, Mansour F, Ouellet-Plamondon C, Trépanier A, Jutras-Aswad D. Cannabidiol for the treatment of psychosis among patients with schizophrenia and other primary psychotic disorders: A systematic review with a risk of bias assessment. Psychiatry Res 2020; 286:112890. [PMID: 32126328 DOI: 10.1016/j.psychres.2020.112890] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/20/2022]
Abstract
Current treatments for primary psychotic disorders include antipsychotics, some of which have significant side effects or suboptimal efficacy. Cannabidiol is a cannabinoid with potential antipsychotic properties. This systematic review examines the use of cannabidiol as an antipsychotic treatment for primary psychotic disorders. CINAHL, EBM, EMBASE, MEDLINE and PubMed databases were searched from 1970 to 2019 for experimental and observational studies evaluating the antipsychotic and cognitive modulation properties of cannabidiol in individuals with psychotic disorders. There were eight eligible studies evaluating the antipsychotic potential of cannabidiol, involving a total of 210 participants. Due to study heterogeneity, we present the extracted data on general psychopathology, positive and negative symptoms, cognition and functioning outcomes as a narrative synthesis. We found limited evidence supporting antipsychotic efficacy for cannabidiol and none supporting its benefits for cognition or functioning. Cannabidiol treatment had an advantageous side effect profile compared to other antipsychotics and was well tolerated across studies. Observational studies had a higher risk of bias than experimental studies. Factors potentially contributing to variability in outcome results included cannabidiol dosage, treatment duration, use as an adjunctive treatment and participant inclusion criteria, which warrant further investigation to determine whether cannabidiol can be effective as a treatment for psychosis.
Collapse
Affiliation(s)
- Maykel Farag Ghabrash
- Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), 900 St-Denis Street, Montréal, QC, Canada, H2X0A9; Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, 2900 Édouard-Montpetit Boulevard, Room S-750, Montréal, QC, Canada, H3T 1J4
| | - Stephanie Coronado-Montoya
- Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), 900 St-Denis Street, Montréal, QC, Canada, H2X0A9; Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, 2900 Édouard-Montpetit Boulevard, Room S-750, Montréal, QC, Canada, H3T 1J4.
| | - John Aoun
- Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), 900 St-Denis Street, Montréal, QC, Canada, H2X0A9; Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, 2900 Édouard-Montpetit Boulevard, Room S-750, Montréal, QC, Canada, H3T 1J4
| | - Andrée-Anne Gagné
- Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), 900 St-Denis Street, Montréal, QC, Canada, H2X0A9; Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, 2900 Édouard-Montpetit Boulevard, Room S-750, Montréal, QC, Canada, H3T 1J4
| | - Flavi Mansour
- Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), 900 St-Denis Street, Montréal, QC, Canada, H2X0A9; Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, 2900 Édouard-Montpetit Boulevard, Room S-750, Montréal, QC, Canada, H3T 1J4
| | - Clairélaine Ouellet-Plamondon
- Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), 900 St-Denis Street, Montréal, QC, Canada, H2X0A9; Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, 2900 Édouard-Montpetit Boulevard, Room S-750, Montréal, QC, Canada, H3T 1J4
| | - Annie Trépanier
- Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), 900 St-Denis Street, Montréal, QC, Canada, H2X0A9
| | - Didier Jutras-Aswad
- Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), 900 St-Denis Street, Montréal, QC, Canada, H2X0A9; Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, 2900 Édouard-Montpetit Boulevard, Room S-750, Montréal, QC, Canada, H3T 1J4.
| |
Collapse
|
123
|
Endomba FT, Tankeu AT, Nkeck JR, Tochie JN. Leptin and psychiatric illnesses: does leptin play a role in antipsychotic-induced weight gain? Lipids Health Dis 2020; 19:22. [PMID: 32033608 PMCID: PMC7006414 DOI: 10.1186/s12944-020-01203-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Antipsychotic-induced weight gain is the most prevalent somatic adverse event occurring in patients treated by antipsychotics, especially atypical antipsychotics. It is of particular interest because of its repercussion on cardiovascular morbidity and mortality especially now that the use of second-generation antipsychotics has been extended to other mental health illnesses such as bipolar disorders and major depressive disorder. The mechanism underlying antipsychotics-induced weight gain is still poorly understood despite a significant amount of work on the topic. Recently, there has been an on-going debate of tremendous research interest on the relationship between antipsychotic-induced weight gain and body weight regulatory hormones such as leptin. Given that, researchers have brought to light the question of leptin's role in antipsychotic-induced weight gain. Here we summarize and discuss the existing evidence on the link between leptin and weight gain related to antipsychotic drugs, especially atypical antipsychotics.
Collapse
Affiliation(s)
- Francky Teddy Endomba
- Psychiatry Internship Program, University of Bourgogne, 21000, Dijon, France.,Department of Internal Medicine and sub-Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Aurel T Tankeu
- Department of Internal Medicine and sub-Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon.,Aging and Metabolism Laboratory, Department of physiology, University of Lausanne, Lausanne, Switzerland
| | - Jan René Nkeck
- Department of Internal Medicine and sub-Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Joel Noutakdie Tochie
- Department of Anaesthesiology and Critical Care Medicine, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon. .,Human Research Education and Networking, Yaoundé, Cameroon.
| |
Collapse
|
124
|
Abstract
PURPOSE/BACKGROUND In addition to clozapine, other atypical antipsychotic drugs pharmacologically similar to clozapine, for example, olanzapine, risperidone, and melperone, are also effective in a similar proportion of treatment-resistant schizophrenia (TRS) patients, ~40%. The major goal of this study was to compare 2 doses of lurasidone, another atypical antipsychotic drug, and time to improvement in psychopathology and cognition during a 6-month trial in TRS patients. METHODS/PROCEDURES The diagnosis of TRS was based on clinical history and lack of improvement in psychopathology during a 6-week open trial of lurasidone 80 mg/d (phase 1). This was followed by a randomized, double-blind, 24-week trial of lurasidone, comparing 80- and 240-mg/d doses (phase 2). FINDINGS/RESULTS Significant non-dose-related improvement in the Positive and Negative Syndrome Scale-Total and subscales and in 2 of 7 cognitive domains, speed of processing and executive function, were noted. Twenty-eight (41.8%) of 67 patients in the combined sample improved ≥20% in the Positive and Negative Syndrome Scale-Total. Of the 28 responders, 19 (67.9%) first reached ≥20% improvement between weeks 6 and 24 during phase 2, including some who had previously failed to respond to clozapine. IMPLICATIONS/CONCLUSIONS Improvement with lurasidone is comparable with those previously reported for clozapine, melperone, olanzapine, and risperidone in TRS patients. In addition, this study demonstrated that 80 mg/d lurasidone, an effective and tolerable dose for non-TRS patients, was also effective in TRS patients but required longer duration of treatment. Direct comparison of lurasidone with clozapine in TRS patients is indicated.
Collapse
|
125
|
Mehta ND, Won MJ, Babin SL, Patel SS, Wassef AA, Chuang AZ, Sereno AB. Differential benefits of olanzapine on executive function in schizophrenia patients: Preliminary findings. Hum Psychopharmacol 2020; 35:e2718. [PMID: 31837056 DOI: 10.1002/hup.2718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Schizophrenia patients show executive function (EF) impairments in voluntary orienting as measured by eye-movements. We tested 14 inpatients to investigate the effects of the antipsychotic olanzapine on EF, as measured by antisaccade eye-movement performance. METHODS Patients were tested at baseline (before olanzapine), 3-5 days post-medication, and 12-14 days post-medication. Patients were also assessed on the Positive and Negative Syndrome Scale (PANSS) to measure the severity of schizophrenia-related symptoms, and administered the Stroop task, a test of EF. Nine matched controls were also tested on the antisaccade and Stroop. RESULTS Both groups showed improvement on Stroop and antisaccade; however, the schizophrenia group improved significantly more on antisaccade, indicating an additional benefit of olanzapine on EF performance. Patients with poorer baseline antisaccade performance (High-Deficit) showed significantly greater improvement on the antisaccade task than patients with better baseline performance (Low-Deficit), suggesting that baseline EF impairment predicts the magnitude of cognitive improvement with olanzapine. These subgroups showed significant and equivalent improvement on PANSS scores, indicating that improvement on the antisaccade task with olanzapine was not a result of differences in magnitude of clinical improvement. CONCLUSIONS This preliminary study provides evidence that olanzapine may be most advantageous for patients with greater baseline EF deficits.
Collapse
Affiliation(s)
- Neeti D Mehta
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, Texas.,Rice University, Houston, Texas
| | - Michelle J Won
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, Texas.,Rice University, Houston, Texas
| | - Shelly L Babin
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, Texas
| | - Saumil S Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Adel A Wassef
- Department of Psychiatry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Alice Z Chuang
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, Texas
| | - Anne B Sereno
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, Texas.,Department of Psychological Sciences, Purdue University, Indiana.,Weldon School of Biomedical Engineering, Purdue University, Indiana
| |
Collapse
|
126
|
Fyfe TJ, Kellam B, Sykes DA, Capuano B, Scammells PJ, Lane JR, Charlton SJ, Mistry SN. Structure-Kinetic Profiling of Haloperidol Analogues at the Human Dopamine D 2 Receptor. J Med Chem 2019; 62:9488-9520. [PMID: 31580666 DOI: 10.1021/acs.jmedchem.9b00864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Haloperidol is a typical antipsychotic drug (APD) associated with an increased risk of extrapyramidal side effects (EPSs) and hyperprolactinemia relative to atypical APDs such as clozapine. Both drugs are dopamine D2 receptor (D2R) antagonists, with contrasting kinetic profiles. Haloperidol displays fast association/slow dissociation at the D2R, whereas clozapine exhibits relatively slow association/fast dissociation. Recently, we have provided evidence that slow dissociation from the D2R predicts hyperprolactinemia, whereas fast association predicts EPS. Unfortunately, clozapine can cause severe side effects independent of its D2R action. Our results suggest an optimal kinetic profile for D2R antagonist APDs that avoids EPS. To begin exploring this hypothesis, we conducted a structure-kinetic relationship study of haloperidol and revealed that subtle structural modifications dramatically change binding kinetic rate constants, affording compounds with a clozapine-like kinetic profile. Thus, optimization of these kinetic parameters may allow development of novel APDs based on the haloperidol scaffold with improved side-effect profiles.
Collapse
Affiliation(s)
- Tim J Fyfe
- School of Pharmacy, Centre for Biomolecular Sciences , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Barrie Kellam
- School of Pharmacy, Centre for Biomolecular Sciences , University of Nottingham , Nottingham NG7 2RD , U.K
| | - David A Sykes
- School of Life Sciences, Queen's Medical Centre , University of Nottingham , Nottingham NG7 2UH , U.K.,Centre of Membrane Protein and Receptors , University of Nottingham , Nottingham NG7 2UH , U.K
| | | | | | - J Robert Lane
- School of Life Sciences, Queen's Medical Centre , University of Nottingham , Nottingham NG7 2UH , U.K.,Centre of Membrane Protein and Receptors , University of Nottingham , Nottingham NG7 2UH , U.K
| | - Steven J Charlton
- School of Life Sciences, Queen's Medical Centre , University of Nottingham , Nottingham NG7 2UH , U.K.,Centre of Membrane Protein and Receptors , University of Nottingham , Nottingham NG7 2UH , U.K.,Excellerate Bioscience Ltd., BioCity , Nottingham NG1 1GF , U.K
| | - Shailesh N Mistry
- School of Pharmacy, Centre for Biomolecular Sciences , University of Nottingham , Nottingham NG7 2RD , U.K
| |
Collapse
|
127
|
Yoshikawa A, Li J, Meltzer HY. A functional HTR1A polymorphism, rs6295, predicts short-term response to lurasidone: confirmation with meta-analysis of other antipsychotic drugs. THE PHARMACOGENOMICS JOURNAL 2019; 20:260-270. [PMID: 31636356 DOI: 10.1038/s41397-019-0101-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 09/10/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023]
Abstract
Stimulation of the serotonin (5-HT)1A receptor (HTR1A) has been shown to contribute to the mechanism of action of some atypical antipsychotic drugs (APDs), including clozapine and lurasidone. A meta-analysis of rs6295, a functional polymorphism located at the promoter region of HTR1A, showed association with clinical response in schizophrenic patients treated with atypical APD. We have now tested whether other SNPs related to rs6295 predict response to lurasidone. We first evaluated whether rs358532 and rs6449693, tag SNPs for rs6295, predicted response to lurasidone, using data from two clinical trials of acutely psychotic schizophrenia patients with European (EUR, n = 171) or African (AFR, n = 131) ancestry; we then determined if those findings could be replicated in a third trial of lurasidone of similar design. Weekly changes (up to 6 weeks) in the Positive and Negative Syndrome Scale (PANSS) Total score and its five subscales were used to assess response. In EUR, a significant association, or trends for association, were observed for PANSS Total (p = 0.035), positive (p = 0.039), negative (p = 0.004), and disorganization (p = 0.0087) subscales, at week 1-6. There was a trend for replication with PANNS Total (p = 0.036) in the third trial. No significant association was observed in AFR or the placebo group. Meta-analysis of five studies, including the three with lurasidone, showed that rs6295 was associated with improvement in positive (p = 0.023) and negative (p ≤ 0.0001) symptoms in EUR patients with schizophrenia. This is the first study to show a significant association between functional HTR1A polymorphisms and treatment response to lurasidone. The meta-analysis provides additional evidence that rs6295 could be a race-dependent biomarker for predicting treatment response to APDs in schizophrenic patients with European Ancestry.
Collapse
Affiliation(s)
- Akane Yoshikawa
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, 60611, USA.,Schizophrenia Project, Tokyo Metropolitan Institute of Medical Sciences, Tokyo, 156-8506, Japan
| | - Jiang Li
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
128
|
Kato T. Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry Clin Neurosci 2019; 73:526-540. [PMID: 31021488 DOI: 10.1111/pcn.12852] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
Abstract
Biological studies of bipolar disorder initially focused on the mechanism of action for antidepressants and antipsychotic drugs, and the roles of monoamines (e.g., serotonin, dopamine) have been extensively studied. Thereafter, based on the mechanism of action of lithium, intracellular signal transduction systems, including inositol metabolism and intracellular calcium signaling, have drawn attention. Involvement of intracellular calcium signaling has been supported by genetics and cellular studies. Elucidation of the neural circuits affected by calcium signaling abnormalities is critical, and our previous study suggested a role of the paraventricular thalamic nucleus. The genetic vulnerability of mitochondria causes calcium dysregulation and results in the hyperexcitability of serotonergic neurons, which are suggested to be susceptible to oxidative stress. Efficacy of anticonvulsants, animal studies of candidate genes, and studies using induced pluripotent stem cell-derived neurons have suggested a relation between bipolar disorder and the hyperexcitability of neurons. Recent genetic findings suggest the roles of polyunsaturated acids. At the systems level, social rhythm therapy targets circadian rhythm abnormalities, and cognitive behavioral therapy may target emotion/cognition (E/C) imbalance. In the future, pharmacological and psychosocial treatments may be combined and optimized based on the biological basis of each patient, which will realize individualized treatment.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
129
|
Nakazawa T, Hashimoto R, Takuma K, Hashimoto H. Modeling of psychiatric disorders using induced pluripotent stem cell-related technologies. J Pharmacol Sci 2019; 140:321-324. [DOI: 10.1016/j.jphs.2019.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
|
130
|
Effect fingerprints of antipsychotic drugs on neural networks in vitro. J Neural Transm (Vienna) 2019; 126:1363-1371. [PMID: 31321550 DOI: 10.1007/s00702-019-02050-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 07/14/2019] [Indexed: 12/29/2022]
Abstract
We compared the acute effect of typical (haloperidol) and atypical (aripiprazole, clozapine, olanzapine) antipsychotic drugs (APDs) on spontaneous electrophysiological activity of in vitro neuronal networks cultured on microelectrode arrays (MEAs). Network burst analysis revealed a "regularizing" effect of all APDs at therapeutic concentrations, i.e., an increase of network-wide temporal synchronization. At supratherapeutic concentrations, all APDs but olanzapine mediated a decrease of burst and spike rates, burst duration, number of spikes in bursts, and network synchrony. The rank order of potency of APDs was: haloperidol > aripiprazole > clozapine > olanzapine (no suppression). Disruption of network function was not due to enhanced cell death as assessed by trypan blue staining. APDs promoted distinct concentration-dependent alterations yielding acute effect fingerprints of the tested compounds. These effects were rather characteristic for individual compounds than distinctive for typical vs. atypical APDs. Thus, this dichotomy may be of value in distinguishing clinical features but has no apparent basis on the network or local circuitry level.
Collapse
|
131
|
Emerging therapeutic potential of anti-psychotic drugs in the management of human glioma: A comprehensive review. Oncotarget 2019; 10:3952-3977. [PMID: 31231472 PMCID: PMC6570463 DOI: 10.18632/oncotarget.26994] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Despite numerous advancements in the last decade, human gliomas such as astrocytoma and glioblastoma multiforme have the worst prognoses among all cancers. Anti-psychotic drugs are commonly prescribed to treat mental disorders among cancer patients, and growing empirical evidence has revealed their antitumor, anti-metastatic, anti-angiogenic, anti-proliferative, chemo-preventive, and neo-adjuvant efficacies in various in vitro, in vivo, and clinical glioma models. Anti-psychotic drugs have drawn the attention of physicians and researchers owing to their beneficial effects in the prevention and treatment of gliomas. This review highlights data on the therapeutic potential of various anti-psychotic drugs as anti-proliferative, chemopreventive, and anti-angiogenic agents in various glioma models via the modulation of upstream and downstream molecular targets involved in apoptosis, autophagy, oxidative stress, inflammation, and the cell cycle in in vitro and in vivo preclinical and clinical stages among glioma patients. The ability of anti-psychotic drugs to modulate various signaling pathways and multidrug resistance-conferring proteins that enhance the efficacy of chemotherapeutic drugs with low side-effects exemplifies their great potential as neo-adjuvants and potential chemotherapeutics in single or multimodal treatment approach. Moreover, anti-psychotic drugs confer the ability to induce glioma into oligodendrocyte-like cells and neuronal-like phenotype cells with reversal of epigenetic alterations through inhibition of histone deacetylase further rationalize their use in glioma treatment. The improved understanding of anti-psychotic drugs as potential chemotherapeutic drugs or as neo-adjuvants will provide better information for their use globally as affordable, well-tolerated, and effective anticancer agents for human glioma.
Collapse
|
132
|
Adem A, Madjid N, Stiedl O, Bonito-Oliva A, Konradsson-Geuken Å, Holst S, Fisone G, Ögren SO. Atypical but not typical antipsychotic drugs ameliorate phencyclidine-induced emotional memory impairments in mice. Eur Neuropsychopharmacol 2019; 29:616-628. [PMID: 30910381 DOI: 10.1016/j.euroneuro.2019.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 01/09/2023]
Abstract
Schizophrenia is associated with cognitive impairments related to hypofunction in glutamatergic N-methyl-D-aspartate receptor (NMDAR) transmission. Phencyclidine (PCP), a non-competitive NMDAR antagonist, models schizophrenia-like behavioral symptoms including cognitive deficits in rodents. This study examined the effects of PCP on emotional memory function examined in the passive avoidance (PA) task in mice and the ability of typical and atypical antipsychotic drugs (APDs) to rectify the PCP-mediated impairment. Pre-training administration of PCP (0.5, 1, 2 or 3 mg/kg) dose-dependently interfered with memory consolidation in the PA task. In contrast, PCP was ineffective when administered after training, and immediately before the retention test indicating that NMDAR blockade interferes with memory encoding mechanisms. The typical APD haloperidol and the dopamine D2/3 receptor antagonist raclopride failed to block the PCP-induced PA impairment suggesting a negligible role of D2 receptors in the PCP impairment. In contrast, the memory impairment was blocked by the atypical APDs clozapine and olanzapine in a dose-dependent manner while risperidone was effective only at the highest dose tested (1 mg/kg). The PCP-induced impairment involves 5-HT1A receptor mechanisms since the antagonist NAD-299 blocked the memory impairment caused by PCP and the ability of clozapine to attenuate the impairment by PCP. These results indicate that atypical but not typical APDs can ameliorate NMDAR-mediated memory impairments and support the view that atypical APDs such as clozapine can modulate glutamatergic memory dysfunctions through 5-HT1A receptor mechanisms. These findings suggest that atypical APDs may improve cognitive impairments related to glutamatergic dysfunction relevant for emotional memories in schizophrenia.
Collapse
Affiliation(s)
- Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, United Arab Emirates.
| | - Nather Madjid
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, United Arab Emirates; Department of Neuroscience, Karolinska Institutet, Solnavägen 9, S-171 77 Stockholm, Sweden
| | - Oliver Stiedl
- Center for Neurogenomics and Cognitive Research, VU University Amsterdam, the Netherlands
| | | | - Åsa Konradsson-Geuken
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, S-171 77 Stockholm, Sweden
| | - Sarah Holst
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, S-171 77 Stockholm, Sweden
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, S-171 77 Stockholm, Sweden
| | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, S-171 77 Stockholm, Sweden.
| |
Collapse
|
133
|
Phenothiazine antipsychotics exhibit dual properties in pseudo-allergic reactions: Activating MRGPRX2 and inhibiting the H 1 receptor. Mol Immunol 2019; 111:118-127. [PMID: 31051313 DOI: 10.1016/j.molimm.2019.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 11/23/2022]
Abstract
Phenothiazines are a class of antipsychotics that share the same tricyclic structure and are widely used in clinical settings. Adverse reactions from these drugs, however, have been regularly reported, with allergic skin reactions noted in some cases. Nevertheless, the mechanisms underlying anaphylaxis by these drugs have not been described. In the present study, we found that phenothiazine antipsychotics increased calcium mobilization and activated mast cells to release β-hexosaminidase, histamine, and tumor necrosis factor-α via Mas-related G-protein-coupled receptor member X2 (MRGPRX2) in vitro. In addition, they induced histamine release in serum via Mrgprb2 in C57BL/6 mice without Evans blue extravasation or paw swell. Further experiments indicated these drugs had good interaction with the histamine H1 receptor (H1R) and show an anti-calcium mobilization effect on H1R-HEK293 cells, which confirmed a potential antagonist effect of these drugs on the H1R. The molecular docking and activity experiments indicated that the N-methyl substitution on the side chain of these drugs played a significant role in activating MRGPRX2, while the phenothiazine tricyclic ring was associated with the inhibiting effect on the H1R. Therefore, due to their dual properties of increasing histamine levels without obvious allergic symptoms, clinicians should be highly vigilant for damage from histamine accumulation and long-term inflammatory reactions during the clinical use of phenothiazine antipsychotics.
Collapse
|
134
|
Gaillard-Bigot F, Zendjidjian XY, Kheloufi F, Casse-Perrot C, Guilhaumou R, Micallef J, Fakra E, Azorin JM, Blin O. Quantitative System Pharmacology (QSP): An Integrative Framework for paradigm change in the treatment of the first-episode schizophrenia. Encephale 2019; 44:S34-S38. [PMID: 30935485 DOI: 10.1016/s0013-7006(19)30077-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite the lack of progress in the curative treatment of mental illness, especially schizophrenia, the accumulation of neuroscience data over the past decade suggests the re-conceptualization of schizophrenia. With the advent of new biomarkers and cognitive tools, new neuroscience technologies such as functional dynamic connectivity and the identification of subtle clinical features; it is now possible to detect early stages at risk or prodromes of a first psychotic episode. Current concepts reconceptualizes schizophrenia as a neurodevelopmental disorder at early onset, with polygenic risk and only symptomatic treatment for positive symptoms at this time. The use of such technologies in the future suggests new diagnostic and therapeutic options. Next steps include new pharmacological perspectives and potential contributions of new technologies such as quantitative system pharmacology brain computational modeling approach.
Collapse
Affiliation(s)
- F Gaillard-Bigot
- Service de pharmacologie clinique et pharmacovigilance, CIC CPCET, assistance publique des hôpitaux de Marseille, Institut de neurosciences des systèmes, Inserm UMR 1106, université d'Aix-Marseille, France
| | - X-Y Zendjidjian
- Pôle psychiatrie centre, hôpital de la Conception, assistance publique des hôpitaux de Marseille, Marseille, France
| | - F Kheloufi
- Service de pharmacologie clinique et pharmacovigilance, CIC CPCET, assistance publique des hôpitaux de Marseille, Institut de neurosciences des systèmes, Inserm UMR 1106, université d'Aix-Marseille, France
| | - C Casse-Perrot
- Service de pharmacologie clinique et pharmacovigilance, CIC CPCET, assistance publique des hôpitaux de Marseille, Institut de neurosciences des systèmes, Inserm UMR 1106, université d'Aix-Marseille, France
| | - R Guilhaumou
- Service de pharmacologie clinique et pharmacovigilance, CIC CPCET, assistance publique des hôpitaux de Marseille, Institut de neurosciences des systèmes, Inserm UMR 1106, université d'Aix-Marseille, France
| | - J Micallef
- Service de pharmacologie clinique et pharmacovigilance, CIC CPCET, assistance publique des hôpitaux de Marseille, Institut de neurosciences des systèmes, Inserm UMR 1106, université d'Aix-Marseille, France
| | - E Fakra
- Department of Psychiatry, University Hospital of Saint-Etienne, Saint-Etienne, France, Inserm U1059, University of Lyon, Saint-Etienne F-42023, France
| | - J-M Azorin
- Department of Psychiatry, Sainte Marguerite University Hospital, Marseille, France
| | - O Blin
- Service de pharmacologie clinique et pharmacovigilance, CIC CPCET, assistance publique des hôpitaux de Marseille, Institut de neurosciences des systèmes, Inserm UMR 1106, université d'Aix-Marseille, France.
| |
Collapse
|
135
|
Subtle modifications to a thieno[2,3-d]pyrimidine scaffold yield negative allosteric modulators and agonists of the dopamine D2 receptor. Eur J Med Chem 2019; 168:474-490. [DOI: 10.1016/j.ejmech.2019.01.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 12/21/2022]
|
136
|
Aguilar L, Lorenzo C, Fernández-Ovejero R, Roncero C, Montejo AL. Tardive Dyskinesia After Aripiprazole Treatment That Improved With Tetrabenazine, Clozapine, and Botulinum Toxin. Front Pharmacol 2019; 10:281. [PMID: 30949057 PMCID: PMC6435569 DOI: 10.3389/fphar.2019.00281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/06/2019] [Indexed: 11/13/2022] Open
Abstract
We report on a patient with tardive dyskinesia (TDK) treated with aripiprazole, a third-generation antipsychotic with partial D2 agonist-antagonist activity at both the dopamine and serotonin receptors. The patient’s condition improved with administration of a combination of tetrabenazine, botulinum toxin, and clozapine, which has previously not been used. We suggest that this treatment combination may have potential benefits for patients with TDK. After aripiprazole discontinuation, the patient was treated with clozapine (150 mg/day) and biperiden (8 mg/day). Due to a lack of improvement, we administered 300 units (intramuscularly; IM) of botulinum toxin into the paravertebral muscles every 3 months and 1,000 units IM every 4 months in addition to tetrabenazine (75 mg/day) and biperiden (8 mg/day). The patient stopped this treatment, at which point TDK reappeared. After starting a treatment regimen of clozapine (100 mg/day), tetrabenazine (75 mg/day), and botulinum toxin (300 units IM), the patient’s symptoms remitted.
Collapse
Affiliation(s)
- Lourdes Aguilar
- Psychiatry Service, Health Care Complex, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Psychiatry, University of Salamanca, Salamanca, Spain
| | - Carolina Lorenzo
- Psychiatry Service, Health Care Complex, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Psychiatry, University of Salamanca, Salamanca, Spain
| | | | - Carlos Roncero
- Psychiatry Service, Health Care Complex, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Psychiatry, University of Salamanca, Salamanca, Spain
| | - Angel L Montejo
- Psychiatry Service, Health Care Complex, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Nursing School E.U.E.F., University of Salamanca, Salamanca, Spain
| |
Collapse
|
137
|
Li P, Wang Y, Liu X, Zhou Z, Wang J, Zhou H, Zheng L, Yang L. Atypical antipsychotics induce human osteoblasts apoptosis via Wnt/β-catenin signaling. BMC Pharmacol Toxicol 2019; 20:10. [PMID: 30755277 PMCID: PMC6373048 DOI: 10.1186/s40360-019-0287-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 01/22/2019] [Indexed: 01/13/2023] Open
Abstract
Background There is evidence that atypical antipsychotics (APs) increase risk of osteoporosis in schizophrenia patients, however the mechanism is unclear. The aim of the study was to explore the molecular mechanisms about Wnt/β-catenin signal pathway underlying the osteal side effects of APs. Methods We cultured human osteoblast cell line hFob1. 19 (OB) treatments with olanzapine, risperidone, amisulpride, aripiprazole or resveratrol in vitro. OB cells viability was detected by cell viability assay. OB cells apoptosis was analyzed by flow cytometry (FCM). Further apoptosis-related marker and β-catenin expression was analyzed by Western blot and Immunofluorescence analysis. Results Compared with the control group, proliferation of OB cells decreased and apoptosis rates of OB cells increased significantly in APs group (p < 0.05). There were a reduced level of Bcl-2, Mcl-1 (antiapoptotic marker) and an elevated level of Bax, Cleaved-Caspase3 (proapoptotic marker) in APs group (p < 0.05). Simultaneously, β-catenin expression decreased in cytoplasm and nucleus (p < 0.05). Compared with the just APs group, the apoptosis rates decreased and β-catenin expression increased significantly in resevratrol combined with APs group (p < 0.05). Correlation analysis showed positive correlation between β-catenin expression and the apoptotic rate in OB cells (r = − 0.515, p < 0.05). Conclusions APs cause OB cells apoptosis relating to Wnt/β-catenin signaling while resevratrol could reverse this phenomenon. Our study could lay the foundation for overcoming the APs-induced osteal side effects to improve the life quality of schizophrenia patients.
Collapse
Affiliation(s)
- Peifan Li
- Department of Psychiatry, Hospital Affiliated to Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yiming Wang
- Department of Psychiatry, Hospital Affiliated to Guizhou Medical University, Guiyang, 550004, Guizhou, China. .,Neuroelectrophysiological testing center, Hospital Affiliated to Guizhou Medical University, Guiyang, 550004, Guizhou, China. .,Undergraduate mental health education and counseling center, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Xingde Liu
- Department of Cardiology, Hospital Affiliated to Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Zhen Zhou
- Clinical research center, Hospital Affiliated to Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jun Wang
- Clinical research center, Hospital Affiliated to Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Haiyan Zhou
- Clinical research center, Hospital Affiliated to Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Lei Zheng
- Department of Psychiatry, Hospital Affiliated to Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Lixia Yang
- Department of Psychiatry, Hospital Affiliated to Guizhou Medical University, Guiyang, 550004, Guizhou, China
| |
Collapse
|
138
|
Fernandes TMP, Silverstein SM, Butler PD, Kéri S, Santos LG, Nogueira RL, Santos NA. Color vision impairments in schizophrenia and the role of antipsychotic medication type. Schizophr Res 2019; 204:162-170. [PMID: 30201549 DOI: 10.1016/j.schres.2018.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022]
Abstract
Schizophrenia patients (SCZ) demonstrate deficits in many domains of mental functioning, including visual perception. An issue that has been relatively unexplored, in terms of explaining variation in visual function in SCZ, however, is medication use. The present study explored potential medication effects on color vision in SCZ, a process that is strongly linked to dopaminergic function in the retina. SCZ patients who had clear-cut either typical (n = 29) or atypical (n = 29) monotherapy, without any other concurrent medication, and a group of age- and gender-matched healthy controls participated in the study. Color vision was assessed by the Cambridge Colour Test, using the Trivector and Ellipse subtests. The results demonstrated impaired color perception in patients with schizophrenia, especially in those receiving typical antipsychotics, but these deficits were subtle and not generalized to all parameters. Our findings are consistent with the known neurophysiology of the retina and visual pathways, and with the effects of dopamine blocking medications, but the results should be carefully interpreted.
Collapse
Affiliation(s)
| | | | - Pamela D Butler
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Szabolcs Kéri
- Budapest University of Technology and Economics, Budapest, Hungary
| | | | | | | |
Collapse
|
139
|
Maroteaux L, Béchade C, Roumier A. Dimers of serotonin receptors: Impact on ligand affinity and signaling. Biochimie 2019; 161:23-33. [PMID: 30685449 DOI: 10.1016/j.biochi.2019.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/16/2019] [Indexed: 01/03/2023]
Abstract
Membrane receptors often form complexes with other membrane proteins that directly interact with different effectors of the signal transduction machinery. G-protein-coupled receptors (GPCRs) were for long time considered as single pharmacological entities. However, evidence for oligomerization appeared for various classes and subtypes of GPCRs. This review focuses on metabotropic serotonin (5-hydroxytryptamine, 5-HT) receptors, which belong to the rhodopsin-like class A of GPCRs, and will summarize the convergent evidence that homo- and hetero-dimers containing 5-HT receptors exist in transfected cells and in-vivo. We will show that complexes involving 5-HT receptors may acquire new signal transduction pathways and new physiological roles. In some cases, these complexes participate in disease-specific deregulations, that can be differentially affected by various drugs. Hence, selecting receptor complex-specific responses of these heterodimers may constitute an emerging strategy likely to improve beneficial therapeutic effects.
Collapse
Affiliation(s)
- Luc Maroteaux
- INSERM UMR-S839, S1270, Paris, 75005, France; Sorbonne Université, Paris, 75005, France; Institut du Fer à Moulin, Paris, 75005, France.
| | - Catherine Béchade
- INSERM UMR-S839, S1270, Paris, 75005, France; Sorbonne Université, Paris, 75005, France; Institut du Fer à Moulin, Paris, 75005, France
| | - Anne Roumier
- INSERM UMR-S839, S1270, Paris, 75005, France; Sorbonne Université, Paris, 75005, France; Institut du Fer à Moulin, Paris, 75005, France
| |
Collapse
|
140
|
Schrader JM, Irving CM, Octeau JC, Christian JA, Aballo TJ, Kareemo DJ, Conti J, Camberg JL, Lane JR, Javitch JA, Kovoor A. The differential actions of clozapine and other antipsychotic drugs on the translocation of dopamine D2 receptors to the cell surface. J Biol Chem 2019; 294:5604-5615. [PMID: 30670597 DOI: 10.1074/jbc.ra118.004682] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 12/28/2018] [Indexed: 01/18/2023] Open
Abstract
Most clinically available antipsychotic drugs (APDs) bind dopamine D2 receptors (D2R) at therapeutic concentrations, and it is thought that they suppress psychotic symptoms by serving as competitive antagonists of dopamine at D2R. Here, we present data that demonstrate that APDs act independently of dopamine at an intracellular pool of D2R to enhance transport of D2R to the cell surface and suggest that APDs can act as pharmacological chaperones at D2R. Among the first- and second-generation APDs that we tested, clozapine exhibited the lowest efficacy for translocating D2R to the cell surface. Thus, our observations could provide a cellular explanation for some of the distinct therapeutic characteristics of clozapine in schizophrenia. They also suggest that differential intracellular actions of APDs at their common G protein-coupled receptor (GPCR) target, D2R, could contribute to differences in their clinical profiles.
Collapse
Affiliation(s)
- Joseph M Schrader
- From the Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Craig M Irving
- From the Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - J Christopher Octeau
- From the Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Joseph A Christian
- From the Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Timothy J Aballo
- From the Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Dean J Kareemo
- From the Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Joseph Conti
- the Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island 02881
| | - Jodi L Camberg
- the Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island 02881
| | - J Robert Lane
- the Division of Pharmacology, Physiology, and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.,the Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, United Kingdom
| | - Jonathan A Javitch
- the Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York 10032, and.,the Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032
| | - Abraham Kovoor
- From the Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881,
| |
Collapse
|
141
|
Haduch A, Daniel WA. The engagement of brain cytochrome P450 in the metabolism of endogenous neuroactive substrates: a possible role in mental disorders. Drug Metab Rev 2019; 50:415-429. [PMID: 30501426 DOI: 10.1080/03602532.2018.1554674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The current state of knowledge indicates that the cerebral cytochrome P450 (CYP) plays an important role in the endogenous metabolism in the brain. Different CYP isoenzymes mediate metabolism of many endogenous substrates such as monoaminergic neurotransmitters, neurosteroids, cholesterol, vitamins and arachidonic acid. Therefore, these enzymes may affect brain development, susceptibility to mental and neurodegenerative diseases and may contribute to their pathophysiology. In addition, they can modify the therapeutic effects of psychoactive drugs at the place of their target action in the brain, where the drugs can act by affecting the metabolism of endogenous substrates. The article focuses on the role of cerebral CYP isoforms in the metabolism of neurotransmitters, neurosteroids, and cholesterol, and their possible involvement in animal behavior, as well as in stress, depression, schizophrenia, cognitive processes, learning, and memory. CYP-mediated alternative pathways of dopamine and serotonin synthesis may have a significant role in the local production of these neurotransmitters in the brain regions where the disturbances of these neurotransmitter systems are observed in depression and schizophrenia. The local alternative synthesis of neurotransmitters may be of great importance in the brain, since dopamine and serotonin do not pass the blood-brain barrier and cannot be supplied from the periphery. In vitro studies indicate that human CYP2D6 catalyzing dopamine and serotonin synthesis is more efficient in these reactions than the rat CYP2D isoforms. It suggests that these alternative pathways may have much greater significance in the human brain but confirmation of these assumptions requires further studies.
Collapse
Affiliation(s)
- Anna Haduch
- a Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology , Polish Academy of Sciences , Kraków , Poland
| | - Władysława Anna Daniel
- a Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology , Polish Academy of Sciences , Kraków , Poland
| |
Collapse
|
142
|
Gao J, Li M. Reinforcement attenuation as a behavioral technique to suppress conditioned avoidance response in rats: A comparative study with olanzapine. J Psychopharmacol 2019; 33:86-100. [PMID: 30334674 DOI: 10.1177/0269881118805497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Antipsychotic treatment is effective in the treatment of psychosis, although it also brings with it some unwanted side effects and is associated with low compliance. Finding a non-pharmacological alternative for antipsychotic treatment is highly desirable. AIMS This preclinical study examined the 'antipsychotic' efficacy of such a behavioral technique using a conditioned avoidance response model. This technique, termed reinforcement attenuation (RA), is to administer a brief footshock (0.1-2.0 s, 0.8 mA) at the end of each trial regardless of whether a well-trained rat makes an avoidance response or not. RESULTS RA achieved the same avoidance suppressing effect as olanzapine (an atypical antipsychotic drug), including both acute suppression and sensitized suppression of avoidance response in well-trained Sprague-Dawley adult male rats. Interestingly, the RA-induced sensitization (an enhanced disruption of avoidance responding) enhanced subsequent olanzapine sensitivity, whereas the olanzapine (1.0 mg/kg)-induced sensitization had little impact on later RA treatment. When RA and olanzapine (0.5 mg/kg, subcutaneously) were used together, the RA-induced sensitization was still detectable in the RA challenge test, although its magnitude was reduced by olanzapine. Finally, we showed that the RA-induced sensitization in avoidance suppression persisted from adolescence into adulthood, long after such a treatment was terminated. CONCLUSIONS These findings demonstrate that the RA is functionally equivalent (if not superior) to antipsychotic treatment in the avoidance suppression effect (both acute and sensitization effects) in both adolescent and adult animals. Behavioral therapies that specifically target the reinforcer of psychotic thoughts might be a viable strategy for the treatment of psychosis.
Collapse
Affiliation(s)
- Jun Gao
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China.,CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China
| | - Ming Li
- Faculty of Psychology, Southwest University, Chongqing, China.,Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China.,Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
143
|
de la Fuente Revenga M, Ibi D, Cuddy T, Toneatti R, Kurita M, Ijaz MK, Miles MF, Wolstenholme JT, González-Maeso J. Chronic clozapine treatment restrains via HDAC2 the performance of mGlu2 receptor agonism in a rodent model of antipsychotic activity. Neuropsychopharmacology 2019; 44:443-454. [PMID: 30038413 PMCID: PMC6300555 DOI: 10.1038/s41386-018-0143-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/06/2018] [Accepted: 06/25/2018] [Indexed: 01/25/2023]
Abstract
Preclinical findings in rodent models pointed toward activation of metabotropic glutamate 2/3 (mGlu2/3) receptors as a new pharmacological approach to treat psychosis. However, more recent studies failed to show clinical efficacy of mGlu2/3 receptor agonism in schizophrenia patients. We previously proposed that long-term antipsychotic medication restricted the therapeutic effects of these glutamatergic agents. However, little is known about the molecular mechanism underlying the potential repercussion of previous antipsychotic exposure on the therapeutic performance of mGlu2/3 receptor agonists. Here we show that this maladaptive effect of antipsychotic treatment is mediated mostly via histone deacetylase 2 (HDAC2). Chronic treatment with the antipsychotic clozapine led to a decrease in mouse frontal cortex mGlu2 mRNA, an effect that required expression of both HDAC2 and the serotonin 5-HT2A receptor. This transcriptional alteration occurred in association with HDAC2-dependent repressive histone modifications at the mGlu2 promoter. We found that chronic clozapine treatment decreased via HDAC2 the capabilities of the mGlu2/3 receptor agonist LY379268 to activate G-proteins in the frontal cortex of mice. Chronic clozapine treatment blunted the antipsychotic-related behavioral effects of LY379268, an effect that was not observed in HDAC2 knockout mice. More importantly, co-administration of the class I and II HDAC inhibitor SAHA (vorinostat) preserved the antipsychotic profile of LY379268 and frontal cortex mGlu2/3 receptor density in wild-type mice. These findings raise concerns on the design of previous clinical studies with mGlu2/3 agonists, providing the rationale for the development of HDAC2 inhibitors as a new epigenetic-based approach to improve the currently limited response to treatment with glutamatergic antipsychotics.
Collapse
Affiliation(s)
- Mario de la Fuente Revenga
- 0000 0004 0458 8737grid.224260.0Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Daisuke Ibi
- 0000 0004 0458 8737grid.224260.0Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA ,0000 0001 0670 2351grid.59734.3cDepartment Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.259879.8Department of Chemical Pharmacology, Meijo University, Nagoya, 468-8503 Japan
| | - Travis Cuddy
- 0000 0004 0458 8737grid.224260.0Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Rudy Toneatti
- 0000 0004 0458 8737grid.224260.0Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Mitsumasa Kurita
- 0000 0001 0670 2351grid.59734.3cDepartment Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,0000 0004 1797 168Xgrid.417741.0Present Address: Dainippon Sumitomo Pharma Co., Ltd., Osaka, 564-0053 Japan
| | - Maryum K. Ijaz
- 0000 0004 0458 8737grid.224260.0Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Michael F. Miles
- 0000 0004 0458 8737grid.224260.0Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA ,0000 0004 0458 8737grid.224260.0VCU Alcohol Research Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Jennifer T. Wolstenholme
- 0000 0004 0458 8737grid.224260.0Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA ,0000 0004 0458 8737grid.224260.0VCU Alcohol Research Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA. .,Department Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
144
|
Dopamine receptor heteromers: biasing antipsychotics. Future Med Chem 2018; 10:2675-2677. [PMID: 30518245 DOI: 10.4155/fmc-2018-0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
145
|
Matrisciano F, Dong E, Nicoletti F, Guidotti A. Epigenetic Alterations in Prenatal Stress Mice as an Endophenotype Model for Schizophrenia: Role of Metabotropic Glutamate 2/3 Receptors. Front Mol Neurosci 2018; 11:423. [PMID: 30564095 PMCID: PMC6289213 DOI: 10.3389/fnmol.2018.00423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/30/2018] [Indexed: 01/13/2023] Open
Abstract
Mice subjected to prenatal restraint stress (PRS mice) showed biochemical and behavioral abnormalities consistent with a schizophrenia-like phenotype (Matrisciano et al., 2016). PRS mice are characterized by increased DNA-methyltransferase 1 (DNMT1) and ten-eleven methylcytosine dioxygenase 1 (TET1) expression levels and exhibit an enrichment of 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC) at neocortical GABAergic and glutamatergic gene promoters. Activation of group II metabotropic glutamate receptors (mGlu2 and−3 receptors) showed a potential epigenetically-induced antipsychotic activity by reversing the molecular and behavioral changes observed in PRS mice. This effect was most likely caused by the increase in the expression of growth arrest and DNA damage 45-β (Gadd45-β) protein, a molecular player of DNA demethylation, induced by the activation of mGlu2/3 receptors. This effect was mimicked by clozapine and valproate but not by haloperidol. Treatment with the selective mGlu2/3 receptors agonist LY379268 also increased the amount of Gadd45-β bound to specific promoter regions of reelin, BDNF, and GAD67. A meta-analysis of several clinical trials showed that treatment with an orthosteric mGlu2/3 receptor agonist improved both positive and negative symptoms of schizophrenia, but only in patients who were early-in-disease and had not been treated with atypical antipsychotic drugs (Kinon et al., 2015). Our findings show that PRS mice are valuable model for the study of epigenetic mechanisms involved in the pathogenesis of schizophrenia and support the hypothesis that pharmacological modulation of mGlu2/3 receptors could impact the early phase of schizophrenia and related neurodevelopmental disorders by regulating epigenetic processes that lie at the core of the disorders.
Collapse
Affiliation(s)
- Francesco Matrisciano
- Department of Psychiatry, Psychiatric Institute, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Erbo Dong
- Department of Psychiatry, Center for Alcohol Research in Epigenetics College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University of Rome "Sapienza", Rome, Italy.,IRCCS, Neuromed, Pozzilli, Italy
| | - Alessandro Guidotti
- Department of Psychiatry, Psychiatric Institute, College of Medicine, University of Illinois Chicago, Chicago, IL, United States.,Department of Psychiatry, Center for Alcohol Research in Epigenetics College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
146
|
Scherzer ND, Reddy AG, Le TV, Chernobylsky D, Hellstrom WJG. Unintended Consequences: A Review of Pharmacologically-Induced Priapism. Sex Med Rev 2018; 7:283-292. [PMID: 30503727 DOI: 10.1016/j.sxmr.2018.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Priapism has been linked to many commonly prescribed medications, as well as recreational drugs and toxins. Although the incidence of priapism as a result of medication is small, the increasing use of antidepressants, antipsychotics, and recreational drugs may lead to more cases of pharmacologically-induced priapism in the future. AIM To provide a comprehensive, up-to-date review of the most common causes of pharmacologically induced priapism and discuss incidence, pathophysiology, and basic management strategies. METHODS A review of the available literature from 1960 to 2018 was performed using PubMed with regards to pharmacologically induced priapism. MAIN OUTCOME MEASURE We reviewed publications that outlined incidence, pathophysiology, and management strategies for various pharmacologic causes of priapism: antidepressants, antipsychotics, antihypertensives, methylphenidate, cocaine, heparin, gonadotropin-releasing hormone, propofol, spider bites, and other miscellaneous causes. RESULTS An understanding of the pathophysiology behind common pharmacologic causes of priapism can assist in the development of better treatment strategies and prevent future episodes of priapism. By understanding the potential risks associated with the use of medications with α-blocking or sympathomimetic properties, physicians can reduce the likelihood of priapism in their patients, especially those with other medical conditions that put them at increased baseline risk. Early corporal aspiration and injection of phenylephrine reduces additional complications related to priapism. In select patients, early placement of a penile prosthesis may prevent further morbidity. CONCLUSION By developing a greater understanding of common pharmacologic causes of priapism, physicians can promptly identify and manage symptoms, leading to decreased patient morbidity. Scherzer ND, Reddy AG, Le TV, Chernobylsky D, Hellstrom WJG. Unintended Consequences: A Review of Pharmacologically-Induced Priapism. Sex Med Rev 2019;7:283-292.
Collapse
Affiliation(s)
| | - Amit G Reddy
- Department of Urology, Tulane University, New Orleans, LA, USA
| | - Tan V Le
- Department of Urology, Tulane University, New Orleans, LA, USA; Department of Andrology, Binh Dan Hospital, Ho Chi Minh City, Vietnam
| | | | | |
Collapse
|
147
|
Lam L, Anand S, Li X, Tse ML, Zhao JX, Chan EW. Efficacy and safety of naltrexone for amfetamine and methamfetamine use disorder: a systematic review of randomized controlled trials. Clin Toxicol (Phila) 2018; 57:225-233. [PMID: 30451013 DOI: 10.1080/15563650.2018.1529317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Amfetamine and methamfetamine abuse remains a prevalent health problem, increasing the burden on healthcare. Naltrexone, a µ-opioid receptor antagonist, has been suggested as a promising treatment for amfetamine and methamfetamine use disorder. OBJECTIVE To review the current evidence for the efficacy and safety of naltrexone as a pharmacological treatment for amfetamine and methamfetamine use disorder. The primary outcome was defined as abstinence or reduction of use. Secondary outcomes were, attenuated "positive" subjective effects (e.g., "feel good," "craving," etc.) of amfetamine or methamfetamine after naltrexone treatment, adverse events and physiological changes (e.g., blood pressure, heart rate). METHODS This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. A systematic literature search was conducted on 2 April 2017, and updated on 31 March 2018. Records were retrieved from databases including PubMed, EMBASE Classic plus EMBASE 1980 via Ovid, and the databases were searched using keywords and/or headings: (naltrexone AND amfetamine AND dependence) OR (naltrexone AND amfetamine AND craving) OR (vivitrol AND amfetamine) OR (revia AND amfetamine) OR (naltrexone AND amfetamine) OR (naltrexone AND methamfetamine dependence) OR (naltrexone AND methamfetamine AND craving) OR (vivitrol AND methamfetamine) OR (revia AND methamfetamine) OR (naltrexone AND ice) OR (naltrexone AND crystal meth) OR (naltrexone AND methamfetamine). Studies investigating the effects of naltrexone on amfetamine or methamfetamine use were eligible for inclusion. All studies were rated as low risk of bias using the Cochrane tool for risk of bias. RESULTS Among 591 identified studies, there were four randomized controlled trials. Two studies investigated the effects of naltrexone on amfetamine use disorder and two on methamfetamine use. Compared to placebo, the abstinence rate was increased significantly (p < 0.05) by naltrexone in one of two amfetamine studies, whereas there was no statistical difference in the only study reporting methamfetamine use. In one out of two amfetamine studies, naltrexone significantly attenuated either craving levels or subjective effects (e.g., "want more," "like effect") relative to placebo (p < 0.05). Additionally, only in one of two methamfetamine studies did naltrexone produce a significant reduction (p < 0.05) in craving levels or attenuated subjective effects. Both amfetamine and methamfetamine studies showed good tolerability of naltrexone, with few adverse events seen. CONCLUSIONS There is presently insufficient evidence to support the use of naltrexone in amfetamine and metamfetamine use disorders. There is a compelling need for high-quality studies to further evaluate the potential use of naltrexone.
Collapse
Affiliation(s)
- Lam Lam
- a Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy , Li Ka Shing Faculty of Medicine, The University of Hong Kong , Hong Kong , Hong Kong
| | - Shweta Anand
- a Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy , Li Ka Shing Faculty of Medicine, The University of Hong Kong , Hong Kong , Hong Kong
| | - Xue Li
- a Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy , Li Ka Shing Faculty of Medicine, The University of Hong Kong , Hong Kong , Hong Kong
| | - M L Tse
- b Hong Kong Poison Information Centre , Hospital Authority and Clinical Toxicology Department, United Christian Hospital , Hong Kong
| | - Jia X Zhao
- a Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy , Li Ka Shing Faculty of Medicine, The University of Hong Kong , Hong Kong , Hong Kong
| | - Esther W Chan
- a Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy , Li Ka Shing Faculty of Medicine, The University of Hong Kong , Hong Kong , Hong Kong
| |
Collapse
|
148
|
Cao X, Zhang Y, Chen Y, Qiu Y, Yu M, Xu X, Liu X, Liu BF, Zhang L, Zhang G. Synthesis and Biological Evaluation of Fused Tricyclic Heterocycle Piperazine (Piperidine) Derivatives As Potential Multireceptor Atypical Antipsychotics. J Med Chem 2018; 61:10017-10039. [PMID: 30383372 DOI: 10.1021/acs.jmedchem.8b01096] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Herein, a novel series of multireceptor ligands was developed as polypharmacological antipsychotic agents using the designed multiple ligand approach between dopamine receptors and serotonin receptors. Among them, compound 47 possessed unique pharmacological features, exhibiting high affinities for D2, D3, 5-HT1A, 5-HT2A, and 5-HT6 receptors and low efficacy at the off-target receptors (5-HT2C, histamine H1, and adrenergic α1 receptor). Compound 47 showed dose-dependent inhibition of apomorphine- and MK-801-induced motor behavior, and the conditioned avoidance response with low cataleptic effect. Moreover, compound 47 resulted nonsignificantly serum prolactin levels and weight gain change compared with risperidone. Additionally, compound 47 possessed a favorable pharmacokinetic profile with oral bioavailability of 58.8% in rats. Furthermore, compound 47 displayed procognition properties in a novel object recognition task in rats. Taken together, compound 47 may constitute a novel class of atypical antipsychotic drugs for schizophrenia.
Collapse
Affiliation(s)
- Xudong Cao
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yifang Zhang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yin Chen
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road , Xuzhou , Jiangsu 221116 , China
| | - Yinli Qiu
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road , Xuzhou , Jiangsu 221116 , China
| | - Minquan Yu
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road , Xuzhou , Jiangsu 221116 , China
| | - Xiangqing Xu
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road , Xuzhou , Jiangsu 221116 , China
| | - Xin Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Bi-Feng Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Guisen Zhang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China.,Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road , Xuzhou , Jiangsu 221116 , China
| |
Collapse
|
149
|
Hideshima KS, Hojati A, Saunders JM, On DM, de la Fuente Revenga M, Shin JM, Sánchez-González A, Dunn CM, Pais AB, Pais AC, Miles MF, Wolstenholme JT, González-Maeso J. Role of mGlu2 in the 5-HT 2A receptor-dependent antipsychotic activity of clozapine in mice. Psychopharmacology (Berl) 2018; 235:3149-3165. [PMID: 30209534 PMCID: PMC6408231 DOI: 10.1007/s00213-018-5015-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/29/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Serotonin 5-HT2A and metabotropic glutamate 2 (mGlu2) are neurotransmitter G protein-coupled receptors (GPCRs) involved in the signaling mechanisms underlying psychosis and schizophrenia treatment. Previous findings in mGlu2 knockout (KO) mice suggested that mGlu2 is necessary for head-twitch behavior, a rodent phenotype characteristic of hallucinogenic 5-HT2A receptor agonists. However, the role of mGlu2 in the behavioral effects induced by antipsychotic drugs remains poorly understood. Here, we tested antipsychotic-like behavioral phenotypes induced by the atypical antipsychotic clozapine in mGlu2-KO mice and wild-type control littermates. METHODS Locomotor activity was tested in mGlu2-KO mice and control littermates injected (i.p.) with clozapine (1.5 mg/kg) or vehicle followed by MK801 (0.5 mg/kg), PCP (7.5 mg/kg), amphetamine (6 mg/kg), scopolamine (2 mg/kg), or vehicle. Using a virally (HSV) mediated transgene expression approach, the role of frontal cortex mGlu2 in the modulation of MK801-induced locomotor activity by clozapine treatment was also evaluated. RESULTS The effect of clozapine on hyperlocomotor activity induced by the dissociative drugs MK801 and phencyclidine (PCP) was decreased in mGlu2-KO mice as compared to controls. Clozapine treatment, however, reduced hyperlocomotor activity induced by the stimulant drug amphetamine and the deliriant drug scopolamine in both wild-type and mGlu2-KO mice. Virally mediated over-expression of mGlu2 in the frontal cortex of mGlu2-KO mice rescued the ability of clozapine to reduce MK801-induced hyperlocomotion. CONCLUSION These findings further support the existence of a functionally relevant crosstalk between 5-HT2A and mGlu2 receptors in different preclinical models of antipsychotic activity.
Collapse
Affiliation(s)
- Kelsey S Hideshima
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Ashkhan Hojati
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Justin M Saunders
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Doan M On
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Mario de la Fuente Revenga
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Jong M Shin
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Ana Sánchez-González
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Cassandra M Dunn
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Alexander B Pais
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
- VCU Alcohol Research Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Anthony C Pais
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
- VCU Alcohol Research Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
- VCU Alcohol Research Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
- VCU Alcohol Research Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
150
|
Matei V, Purnichi T, Mihailescu A, Grigoras R. PROLACTIN LEVEL IN PATIENTS WITH FIRST EPISODE SCHIZOPHRENIA TREATED FOR ONE YEAR WITH ATYPICAL ANTIPSYCHOTICS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2018; 14:483-490. [PMID: 31149301 PMCID: PMC6516404 DOI: 10.4183/aeb.2018.483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CONTEXT Atypical antipsychotics (AAs) are the first-line treatments for schizophrenia, schizoaffective disorder and bipolar disorder. However, they are now extensively utilized as off label in a myriad of diseases despite their frequently serious metabolic side-effects and hyperprolactinemia. OBJECTIVE The purpose of our study was to observe long-term (one year) prolactin level change in first episode schizophrenia patients treated with one of the four AAs: olanzapine, quetiapine, amisulpride, ziprasidone. DESIGN This study is an analysis of the prolactin level associated with the atypical antipsychotics used in European First Episode Schizophrenia Trial (EUFEST) study. SUBJECTS AND METHODS Seventy-three first episode schizophrenia patients from the 113 patients, randomized to one of the four AAs treatment arms. Prolactin level was obtained at baseline, 6 and 12 months for all the four AAs. Analyses have been done for each antipsychotic separately for each sex. RESULTS For the male patients neither of the four antipsychotics have been associated with a statistically significant increase of prolactin level in the entire study (p>0.05). In case of the female patients, treatment with olanzapine (p=.021) and ziprasidone (p=.005) has been associated with a decrease of prolactin level in one year compared with baseline. CONCLUSIONS In both men and women, the administration of these four AAs is not associated with the increase of prolactin levels, moreover, in women's case, there is a reduction of prolactin values at administration of Olanzapine and Ziprasidone. These results are optimistic, suggesting that long term administration of these antipsychotics is safe regarding prolactin level.
Collapse
Affiliation(s)
- V.P. Matei
- “Prof. Dr. Alexandru Obregia” Clinical Psychiatric Hospital, Psychiatry, 2 Department, Romania
- “Prof. Dr. Alexandru Obregia” Clinical Psychiatric Hospital, Neurology, Neurosurgery, Psychiatry and Child and Adolescent Psychiatry Department, Romania
| | - T. Purnichi
- “Prof. Dr. Alexandru Obregia” Clinical Psychiatric Hospital, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - A. Mihailescu
- “Prof. Dr. Alexandru Obregia” Clinical Psychiatric Hospital, 1 Department, “Carol Davila” University of Medicine and Pharmacy, Romania
- “Prof. Dr. Alexandru Obregia” Clinical Psychiatric Hospital, Complementary Sciences, Bucharest, Romania
| | - R. Grigoras
- Voila Psychiatric Hospital - 1 department, Campina, Romania
| |
Collapse
|