101
|
Saumell-Esnaola M, Delgado D, García del Caño G, Beitia M, Sallés J, González-Burguera I, Sánchez P, López de Jesús M, Barrondo S, Sánchez M. Isolation of Platelet-Derived Exosomes from Human Platelet-Rich Plasma: Biochemical and Morphological Characterization. Int J Mol Sci 2022; 23:ijms23052861. [PMID: 35270001 PMCID: PMC8911307 DOI: 10.3390/ijms23052861] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Platelet-Rich Plasma (PRP) is enriched in molecular messengers with restorative effects on altered tissue environments. Upon activation, platelets release a plethora of growth factors and cytokines, either in free form or encapsulated in exosomes, which have been proven to promote tissue repair and regeneration. Translational research on the potential of exosomes as a safe nanosystem for therapeutic cargo delivery requires standardizing exosome isolation methods along with their molecular and morphological characterization. With this aim, we isolated and characterized the exosomes released by human PRP platelets. Western blot analysis revealed that CaCl2-activated platelets (PLT-Exos-Ca2+) released more exosomes than non-activated ones (PLT-Exos). Moreover, PLT-Exos-Ca2+ exhibited a molecular signature that meets the most up-to-date biochemical criteria for platelet-derived exosomes and possessed morphological features typical of exosomes as assessed by transmission electron microscopy. Array analysis of 105 analytes including growth factors and cytokines showed that PLT-Exos-Ca2+ exhibited lower levels of most analytes compared to PLT-Exos, but relatively higher levels of those consistently validated as components of the protein cargo of platelet exosomes. In summary, the present study provides new insights into the molecular composition of human platelet-derived exosomes and validates a method for isolating highly pure platelet exosomes as a basis for future preclinical studies in regenerative medicine and drug delivery.
Collapse
Affiliation(s)
- Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
| | - Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
| | - Gontzal García del Caño
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Maider Beitia
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Correspondence: (J.S.); (M.S.); Tel.: +34-945-013114 (J.S.); +34-945-252077 (M.S.)
| | - Imanol González-Burguera
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
| | - Maider López de Jesús
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
| | - Mikel Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain
- Correspondence: (J.S.); (M.S.); Tel.: +34-945-013114 (J.S.); +34-945-252077 (M.S.)
| |
Collapse
|
102
|
Trenkenschuh E, Richter M, Heinrich E, Koch M, Fuhrmann G, Friess W. Enhancing the Stabilization Potential of Lyophilization for Extracellular Vesicles. Adv Healthc Mater 2022; 11:e2100538. [PMID: 34310074 PMCID: PMC11468620 DOI: 10.1002/adhm.202100538] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/18/2021] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EV) are an emerging technology as immune therapeutics and drug delivery vehicles. However, EVs are usually stored at -80 °C which limits potential clinical applicability. Freeze-drying of EVs striving for long-term stable formulations is therefore studied. The most appropriate formulation parameters are identified in freeze-thawing studies with two different EV types. After a freeze-drying feasibility study, four lyophilized EV formulations are tested for storage stability for up to 6 months. Freeze-thawing studies revealed improved colloidal EV stability in presence of sucrose or potassium phosphate buffer instead of sodium phosphate buffer or phosphate-buffered saline. Less aggregation and/or vesicle fusion occurred at neutral pH compared to slightly acidic or alkaline pH. EVs colloidal stability can be most effectively preserved by addition of low amounts of poloxamer 188. Polyvinyl pyrrolidone failed to preserve EVs upon freeze-drying. Particle size and concentration of EVs are retained over 6 months at 40 °C in lyophilizates containing 10 mm K- or Na-phosphate buffer, 0.02% poloxamer 188, and 5% sucrose. The biological activity of associated beta-glucuronidase is maintained for 1 month, but decreased after 6 months. Here optimized parameters for lyophilization of EVs that contribute to generate long-term stable EV formulations are presented.
Collapse
Affiliation(s)
- Eduard Trenkenschuh
- Pharmaceutical Technology and BiopharmaceuticsDepartment of PharmacyLudwig‐Maximilians‐Universitaet MuenchenMunich81377Germany
| | - Maximilian Richter
- Helmholtz Centre for Infection Research (HZI)Biogenic Nanotherapeutics Group (BION)Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Campus E8.1Saarbruecken66123Germany
- Department of PharmacySaarland UniversityCampus E8.1Saarbruecken66123Germany
| | - Eilien Heinrich
- Helmholtz Centre for Infection Research (HZI)Biogenic Nanotherapeutics Group (BION)Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Campus E8.1Saarbruecken66123Germany
- Department of PharmacySaarland UniversityCampus E8.1Saarbruecken66123Germany
| | - Marcus Koch
- INM – Leibniz Institute for New MaterialsCampus D2 2Saarbruecken66123Germany
| | - Gregor Fuhrmann
- Helmholtz Centre for Infection Research (HZI)Biogenic Nanotherapeutics Group (BION)Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Campus E8.1Saarbruecken66123Germany
- Department of PharmacySaarland UniversityCampus E8.1Saarbruecken66123Germany
| | - Wolfgang Friess
- Pharmaceutical Technology and BiopharmaceuticsDepartment of PharmacyLudwig‐Maximilians‐Universitaet MuenchenMunich81377Germany
| |
Collapse
|
103
|
Hettich BF, Bader JJ, Leroux J. Encapsulation of Hydrophilic Compounds in Small Extracellular Vesicles: Loading Capacity and Impact on Vesicle Functions. Adv Healthc Mater 2022; 11:e2100047. [PMID: 33951319 PMCID: PMC11469324 DOI: 10.1002/adhm.202100047] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/04/2021] [Indexed: 12/11/2022]
Abstract
Their natural functions in intercellular communication render extracellular vesicles (EV) highly attractive for drug delivery applications. However, the loading efficiency of present methods to incorporate particularly hydrophilic low molecular weight drugs of biomedical interest is largely unexplored, as is the impact these methods may have on the intrinsic structural and biological vesicle properties. Here, different methods are exploited to incorporate hydrophilic non-membrane permeable compounds into stem cell-derived small EV, and to assess the vesicle characteristics after the different loading processes. When comparing several methods head-to-head, the loading capacity increases in the order saponin ≤ sonication < fusion < freeze-thawing ≤ osmotic shock. Interestingly, the structural and biological functions of small EV are dependent on the applied encapsulation process, with the functional properties being altered at a greater extent. Therefore, the importance of including additional characterization parameters to probe alterations of the biological functionality of small EV is clearly demonstrated. Here, freeze-thawing and particularly the osmotic shock have proven to be the most appropriate methods for EV loading, as they achieve a high drug encapsulation and yet preserve the investigated structural and biological vesicle characteristics.
Collapse
Affiliation(s)
- Britta Franziska Hettich
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| | - Johannes Josua Bader
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| | - Jean‐Christophe Leroux
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichZurich8093Switzerland
| |
Collapse
|
104
|
Latreille PL, Le Goas M, Salimi S, Robert J, De Crescenzo G, Boffito DC, Martinez VA, Hildgen P, Banquy X. Scratching the Surface of the Protein Corona: Challenging Measurements and Controversies. ACS NANO 2022; 16:1689-1707. [PMID: 35138808 DOI: 10.1021/acsnano.1c05901] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This Review aims to provide a systematic analysis of the literature regarding ongoing debates in protein corona research. Our goal is to portray the current understanding of two fundamental and debated characteristics of the protein corona, namely, the formation of mono- or multilayers of proteins and their binding (ir)reversibility. The statistical analysis we perform reveals that these characterisitics are strongly correlated to some physicochemical factors of the NP-protein system (particle size, bulk material, protein type), whereas the technique of investigation or the type of measurement (in situ or ex situ) do not impact the results, unlike commonly assumed. Regarding the binding reversibility, the experimental design (either dilution or competition experiments) is also shown to be a key factor, probably due to nontrivial protein binding mechanisms, which could explain the paradoxical phenomena reported in the literature. Overall, we suggest that to truly predict and control the protein corona, future efforts should be directed toward the mechanistic aspects of protein adsorption.
Collapse
Affiliation(s)
- Pierre-Luc Latreille
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Marine Le Goas
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Sina Salimi
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Jordan Robert
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montreal H3C 3A7, Canada
| | - Daria C Boffito
- Department of Chemical Engineering, Polytechnique Montréal, Montreal H3C 3A7, Canada
| | - Vincent A Martinez
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, U.K
| | - Patrice Hildgen
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
105
|
Kusuma GD, Li A, Zhu D, McDonald H, Inocencio IM, Chambers DC, Sinclair K, Fang H, Greening DW, Frith JE, Lim R. Effect of 2D and 3D Culture Microenvironments on Mesenchymal Stem Cell-Derived Extracellular Vesicles Potencies. Front Cell Dev Biol 2022; 10:819726. [PMID: 35237601 PMCID: PMC8882622 DOI: 10.3389/fcell.2022.819726] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Therapeutic benefits of mesenchymal stem cells (MSCs) are now widely believed to come from their paracrine signalling, i.e. secreted factors such as cytokines, chemokines, and extracellular vesicles (EVs). Cell-free therapy using EVs is an active and emerging field in regenerative medicine. Typical 2D cultures on tissue culture plastic is far removed from the physiological environment of MSCs. The application of 3D cell culture allows MSCs to adapt to their cellular environment which, in turn, influences their paracrine signalling activity. In this study we evaluated the impact of 3D MSCs culture on EVs secretion, cargo proteome composition, and functional assessment in immunomodulatory, anti-inflammatory and anti-fibrotic properties.MSC-EVs from 2D and 3D cultures expressed classical EV markers CD81, CD63, and CD9 with particle diameter of <100 nm. There were distinct changes in immunomodulatory potencies where 3D cultures exhibited reduced indoleamine 2,3-dioxygenase (IDO) activity and significantly reduced macrophage phagocytosis. Administration of 2D and 3D EVs following double dose bleomycin challenge in aged mice showed a marked increase of bodyweight loss in 3D group throughout days 7–28. Histopathological observations of lung tissues in 3D group showed increased collagen deposition, myofibroblast differentiation and leukocytes infiltrations. Assessment of lung mechanics showed 3D group did not improve lung function and instead exhibited increased resistance and tissue damping. Proteome profiling of MSC-EV composition revealed molecular enrichment of EV markers (compared to parental cells) and differential proteome between EVs from 2D and 3D culture condition associated with immune-based and fibrosis/extracellular matrix/membrane organization associated function.This study provides insight into distinct variation in EV protein composition dependent on the cellular microenvironment of the parental cells, which could have implications in their therapeutic effect and potency. Overall, this work suggests that EVs produced from 3D MSC cultures did not enhance typical MSC-EV properties expected from 2D cultures (immunomodulation, anti-fibrotic, anti-inflammatory). The outcome highlights critical differences between MSC-EVs obtained from different culture microenvironments, which should be considered when scaling up MSC culture for clinical manufacturing.
Collapse
Affiliation(s)
- Gina D. Kusuma
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- *Correspondence: Gina D. Kusuma, ; Rebecca Lim,
| | - Anqi Li
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Dandan Zhu
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Hannah McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Ishmael M. Inocencio
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Daniel C. Chambers
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD, Australia
- School of Clinical Medicine, Faculty of Health Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Kenneth Sinclair
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Haoyun Fang
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David W. Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jessica E. Frith
- Department of Materials Science and Engineering, Monash University, Melbourne, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- *Correspondence: Gina D. Kusuma, ; Rebecca Lim,
| |
Collapse
|
106
|
Hosseini K, Ranjbar M, Pirpour Tazehkand A, Asgharian P, Montazersaheb S, Tarhriz V, Ghasemnejad T. Evaluation of exosomal non-coding RNAs in cancer using high-throughput sequencing. J Transl Med 2022; 20:30. [PMID: 35033106 PMCID: PMC8760667 DOI: 10.1186/s12967-022-03231-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Clinical oncologists need more reliable and non-invasive diagnostic and prognostic biomarkers to follow-up cancer patients. However, the existing biomarkers are often invasive and costly, emphasizing the need for the development of biomarkers to provide convenient and precise detection. Extracellular vesicles especially exosomes have recently been the focus of translational research to develop non-invasive and reliable biomarkers for several diseases such as cancers, suggesting as a valuable source of tumor markers. Exosomes are nano-sized extracellular vesicles secreted by various living cells that can be found in all body fluids including serum, urine, saliva, cerebrospinal fluid, and ascites. Different molecular and genetic contents of their origin such as nucleic acids, proteins, lipids, and glycans in a stable form make exosomes a promising approach for various cancers' diagnoses, prediction, and follow-up in a minimally invasive manner. Since exosomes are used by cancer cells for intercellular communication, they play a critical role in the disease process, highlighting the importance of their use as clinically relevant biomarkers. However, regardless of the advantages that exosome-based diagnostics have, they suffer from problems regarding their isolation, detection, and characterization of their contents. This study reviews the history and biogenesis of exosomes and discusses non-coding RNAs (ncRNAs) and their potential as tumor markers in different types of cancer, with a focus on next generation sequencing (NGS) as a detection method. Moreover, the advantages and challenges associated with exosome-based diagnostics are also presented.
Collapse
Affiliation(s)
- Kamran Hosseini
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Ranjbar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Pirpour Tazehkand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parina Asgharian
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
107
|
Giraud R, Moyon A, Simoncini S, Duchez AC, Nail V, Chareyre C, Bouhlel A, Balasse L, Fernandez S, Vallier L, Hache G, Sabatier F, Dignat-George F, Lacroix R, Guillet B, Garrigue P. Tracking Radiolabeled Endothelial Microvesicles Predicts Their Therapeutic Efficacy: A Proof-of-Concept Study in Peripheral Ischemia Mouse Model Using SPECT/CT Imaging. Pharmaceutics 2022; 14:pharmaceutics14010121. [PMID: 35057018 PMCID: PMC8778059 DOI: 10.3390/pharmaceutics14010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Microvesicles, so-called endothelial large extracellular vesicles (LEVs), are of great interest as biological markers and cell-free biotherapies in cardiovascular and oncologic diseases. However, their therapeutic perspectives remain limited due to the lack of reliable data regarding their systemic biodistribution after intravenous administration. Methods: Applied to a mouse model of peripheral ischemia, radiolabeled endothelial LEVs were tracked and their in vivo whole-body distribution was quantified by microSPECT/CT imaging. Hindlimb perfusion was followed by LASER Doppler and motility impairment function was evaluated up to day 28 post-ischemia. Results: Early and specific homing of LEVs to ischemic hind limbs was quantified on the day of ischemia and positively correlated with reperfusion intensity at a later stage on day 28 after ischemia, associated with an improved motility function. Conclusions: This concept is a major asset for investigating the biodistribution of LEVs issued from other cell types, including cancer, thus partly contributing to better knowledge and understanding of their fate after injection.
Collapse
Affiliation(s)
- Romain Giraud
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
- CERIMED, CNRS, Marseille, Aix Marseille University, 13385 Marseille, France; (V.N.); (S.F.)
- Radiopharmacy, Pôle Pharmacie, University Hospitals of Marseille, APHM, 13005 Marseille, France
| | - Anaïs Moyon
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
- CERIMED, CNRS, Marseille, Aix Marseille University, 13385 Marseille, France; (V.N.); (S.F.)
- Radiopharmacy, Pôle Pharmacie, University Hospitals of Marseille, APHM, 13005 Marseille, France
| | - Stéphanie Simoncini
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
| | - Anne-Claire Duchez
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
| | - Vincent Nail
- CERIMED, CNRS, Marseille, Aix Marseille University, 13385 Marseille, France; (V.N.); (S.F.)
- Radiopharmacy, Pôle Pharmacie, University Hospitals of Marseille, APHM, 13005 Marseille, France
| | - Corinne Chareyre
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
| | - Ahlem Bouhlel
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
- CERIMED, CNRS, Marseille, Aix Marseille University, 13385 Marseille, France; (V.N.); (S.F.)
| | - Laure Balasse
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
- CERIMED, CNRS, Marseille, Aix Marseille University, 13385 Marseille, France; (V.N.); (S.F.)
| | - Samantha Fernandez
- CERIMED, CNRS, Marseille, Aix Marseille University, 13385 Marseille, France; (V.N.); (S.F.)
| | - Loris Vallier
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
| | - Guillaume Hache
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
- CERIMED, CNRS, Marseille, Aix Marseille University, 13385 Marseille, France; (V.N.); (S.F.)
| | - Florence Sabatier
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
| | - Françoise Dignat-George
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
- Department of Hematology and Vascular Biology, University Hospitals of Marseille, APHM, 13005 Marseille, France
| | - Romaric Lacroix
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
- Department of Hematology and Vascular Biology, University Hospitals of Marseille, APHM, 13005 Marseille, France
| | - Benjamin Guillet
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
- CERIMED, CNRS, Marseille, Aix Marseille University, 13385 Marseille, France; (V.N.); (S.F.)
- Radiopharmacy, Pôle Pharmacie, University Hospitals of Marseille, APHM, 13005 Marseille, France
| | - Philippe Garrigue
- C2VN, INSERM, INRAE, Aix Marseille University, 13385 Marseille, France; (R.G.); (A.M.); (S.S.); (A.-C.D.); (C.C.); (A.B.); (L.B.); (L.V.); (G.H.); (F.S.); (F.D.-G.); (R.L.); (B.G.)
- CERIMED, CNRS, Marseille, Aix Marseille University, 13385 Marseille, France; (V.N.); (S.F.)
- Radiopharmacy, Pôle Pharmacie, University Hospitals of Marseille, APHM, 13005 Marseille, France
- Correspondence:
| |
Collapse
|
108
|
Alsaadi N, Srinivasan AJ, Seshadri A, Shiel M, Neal MD, Scott MJ. The emerging therapeutic potential of extracellular vesicles in trauma. J Leukoc Biol 2022; 111:93-111. [PMID: 34533241 PMCID: PMC9169334 DOI: 10.1002/jlb.3mir0621-298r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Traumatic injury is a major cause of morbidity and mortality worldwide, despite significant advances in treatments. Most deaths occur either very early, through massive head trauma/CNS injury or exsanguination (despite advances in transfusion medicine), or later after injury often through multiple organ failure and secondary infection. Extracellular vesicles (EVs) are known to increase in the circulation after trauma and have been used to limited extent as diagnostic and prognostic markers. More intriguingly, EVs are now being investigated as both causes of pathologies post trauma, such as trauma-induced coagulopathy, and as potential treatments. In this review, we highlight what is currently known about the role and effects of EVs in various aspects of trauma, as well as exploring current literature from investigators who have begun to use EVs therapeutically to alter the physiology and pathology of traumatic insults. The potential effectiveness of using EVs therapeutically in trauma is supported by a large number of experimental studies, but there is still some way to go before we understand the complex effects of EVs in what is already a complex disease process.
Collapse
Affiliation(s)
- Nijmeh Alsaadi
- Division of General and Trauma Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amudan J Srinivasan
- Division of General and Trauma Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anupamaa Seshadri
- Division of General and Trauma Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew Shiel
- Division of Hematology-Oncology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew D Neal
- Division of General and Trauma Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melanie J Scott
- Division of General and Trauma Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
109
|
Hercher D, Nguyen MQ, Dworak H. Extracellular vesicles and their role in peripheral nerve regeneration. Exp Neurol 2021; 350:113968. [PMID: 34973963 DOI: 10.1016/j.expneurol.2021.113968] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/04/2021] [Accepted: 12/25/2021] [Indexed: 12/18/2022]
Abstract
Peripheral nerve injuries often result in sensory and motor dysfunction in respective parts of the body. Regeneration after peripheral nerve injuries is a complex process including the differentiation of Schwann cells, recruiting of macrophages, blood vessel growth and axonal regrowth. Extracellular vesicles (EVs) are considered to play a pivotal role in intercellular communication and transfer of biological information. Specifically, their bioactivity and ability to deliver cargos of various types of nucleic acids and proteins have made them a potential vehicle for neurotherapeutics. However, production, characterization, dosage and targeted delivery of EVs still pose challenges for the clinical translation of EV therapeutics. This review summarizes the current knowledge of EVs in the context of the healthy and injured peripheral nerve and addresses novel concepts for modification of EVs as therapeutic agents for peripheral nerve regeneration.
Collapse
Affiliation(s)
- David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Mai Quyen Nguyen
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Helene Dworak
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
110
|
Kang SY, Lee EJ, Byun JW, Han D, Choi Y, Hwang DW, Lee DS. Extracellular Vesicles Induce an Aggressive Phenotype in Luminal Breast Cancer Cells Via PKM2 Phosphorylation. Front Oncol 2021; 11:785450. [PMID: 34966685 PMCID: PMC8710663 DOI: 10.3389/fonc.2021.785450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/24/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Aerobic glycolysis is a hallmark of glucose metabolism in cancer. Previous studies have suggested that cancer cell-derived extracellular vesicles (EVs) can modulate glucose metabolism in adjacent cells and promote disease progression. We hypothesized that EVs originating from cancer cells can modulate glucose metabolism in recipient cancer cells to induce cell proliferation and an aggressive cancer phenotype. METHODS Two breast cancer cell lines with different levels of glycolytic activity, MDA-MB-231 cells of the claudin-low subtype and MCF7 cells of the luminal type, were selected and cocultured as the originating and recipient cells, respectively, using an indirect coculture system, such as a Transwell system or a microfluidic system. The [18F]fluorodeoxyglucose (FDG) uptake by the recipient MCF7 cells was assessed before and after coculture with MDA-MB-231 cells. Proteomic and transcriptomic analyses were performed to investigate the changes in gene expression patterns in the recipient MCF7 cells and MDA-MB-231 cell-derived EVs. RESULTS FDG uptake by the recipient MCF7 cells significantly increased after coculture with MDA-MB-231 cells. In addition, phosphorylation of PKM2 at tyrosine-105 and serine-37, which is necessary for tumorigenesis and aerobic glycolysis, was highly activated in cocultured MCF7 cells. Proteomic profiling revealed the proliferation and dedifferentiation of MCF7 cells following coculture with MDA-MB-231 cells. Transcriptomic analysis demonstrated an increase in glycolysis in cocultured MCF7 cells, and the component analysis of glycolysis-related genes revealed that the second most abundant component after the cytoplasm was extracellular exosomes. In addition, proteomic analysis of EVs showed that the key proteins capable of phosphorylating PKM2 were present as cargo inside MDA-MB-231 cell-derived EVs. CONCLUSIONS The phenomena observed in this study suggest that cancer cells can induce a phenotype transition of other subtypes to an aggressive phenotype to consequently activate glucose metabolism via EVs. Therefore, this study could serve as a cornerstone for further research on interactions between cancer cells.
Collapse
Affiliation(s)
- Seo Young Kang
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Eun Ji Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Woo Byun
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Dohyun Han
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, South Korea
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Yoori Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Do Won Hwang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- THERABEST, Co. Inc., Seoul, South Korea
| | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
111
|
Jeyaraman M, Muthu S, Gulati A, Jeyaraman N, G.S P, Jain R. Mesenchymal Stem Cell-Derived Exosomes: A Potential Therapeutic Avenue in Knee Osteoarthritis. Cartilage 2021; 13:1572S-1585S. [PMID: 33016114 PMCID: PMC8808857 DOI: 10.1177/1947603520962567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Knee osteoarthritis is the leading cause of functional disability in adults. The goals of knee osteoarthritis management are directed toward symptomatic pain relief along with the attainment of the functional quality of life. The treatment strategy ranges from conservative to surgical management with reparative and restorative techniques. The emergence of cell-based therapies has paved the way for the usage of mesenchymal stem cells (MSCs) in cartilage disorders. Currently, global researchers are keen on their research on nanomedicine and targeted drug delivery. MSC-derived exosomes act as a directed therapy to halt the disease progression and to provide a pain-free range of movements with increased quality of cartilage on regeneration. International Society for Extracellular Vesicles and the European Network on Microvesicles and Exosomes in Health and Disease have formed guidelines to foster the use of the growing therapeutic potential of exosomal therapy in osteoarthritis. Although regenerative therapies with MSC are being seen to hold a future in the management of osteoarthritis, extracellular vesicle-based technology holds the key to unlock the potential toward knee preservation and regeneration. The intricate composition and uncertain functioning of exosomes are inquisitive facets warranting further exploration.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopedics, School of
Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh,
India
| | - Sathish Muthu
- Government Hospital, Velayuthampalayam,
Karur, Tamil Nadu, India
| | - Arun Gulati
- Kalpana Chawla Government Medical
College, Karnal, Haryana, India
| | | | - Prajwal G.S
- JJM Medical College, Davangere,
Karnataka, India
| | - Rashmi Jain
- School of Medical Sciences and Research,
Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
112
|
Keshavarz Alikhani H, Shokoohian B, Rezasoltani S, Hossein-khannazer N, Yadegar A, Hassan M, Vosough M. Application of Stem Cell-Derived Extracellular Vesicles as an Innovative Theranostics in Microbial Diseases. Front Microbiol 2021; 12:785856. [PMID: 34917064 PMCID: PMC8669997 DOI: 10.3389/fmicb.2021.785856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), as nano-/micro-scale vehicles, are membranous particles containing various cargoes including peptides, proteins, different types of RNAs and other nucleic acids, and lipids. These vesicles are produced by all cell types, in which stem cells are a potent source for them. Stem cell-derived EVs could be promising platforms for treatment of infectious diseases and early diagnosis. Infectious diseases are responsible for more than 11 million deaths annually. Highly transmissible nature of some microbes, such as newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), drives researcher's interest to set up different strategies to develop novel therapeutic strategies. Recently, EVs-based diagnostic and therapeutic approaches have been launched and gaining momentum very fast. The efficiency of stem cell-derived EVs on treatment of clinical complications of different viruses and bacteria, such as SARS-CoV-2, hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), Staphylococcus aureus, Escherichia coli has been demonstrated. On the other hand, microbial pathogens are able to incorporate their components into their EVs. The microbe-derived EVs have different physiological and pathological impacts on the other organisms. In this review, we briefly discussed biogenesis and the fate of EVs. Then, EV-based therapy was described and recent developments in understanding the potential application of stem cell-derived EVs on pathogenic microorganisms were recapitulated. Furthermore, the mechanisms by which EVs were exploited to fight against infectious diseases were highlighted. Finally, the deriver challenges in translation of stem cell-derived EVs into the clinical arena were explored.
Collapse
Affiliation(s)
- Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Bahare Shokoohian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Sama Rezasoltani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
113
|
Li T, Tan X, Li S, Al-Nusaif M, Le W. Role of Glia-Derived Extracellular Vesicles in Neurodegenerative Diseases. Front Aging Neurosci 2021; 13:765395. [PMID: 34744700 PMCID: PMC8563578 DOI: 10.3389/fnagi.2021.765395] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs), as nano-sized vesicles secreted by almost all cells, have been recognized as the essential transmitter for cell-to-cell communication and participating in multiple biological processes. Neurodegenerative diseases (ND), such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, share common mechanisms of the aggregation and propagation of distinct pathologic proteins among cells in the nervous systems and neuroinflammatory reactions mediated by glia during the pathogenic process. This feature indicates the vital role of crosstalk between neurons and glia in the pathogenesis of ND. In recent years, glia-derived EVs have been investigated as potential mediators of signals between neurons and glia, which provides a new direction and strategy for understanding ND. By a comprehensive summary, it can be concluded that glia-derived EVs have both a beneficial and/or a detrimental effect in the process of ND. Therefore, this review article conveys the role of glia-derived EVs in the pathogenesis of ND and raises current limitations of their potential application in the diagnosis and treatment of ND.
Collapse
Affiliation(s)
- Tianbai Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiang Tan
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Murad Al-Nusaif
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
114
|
Yee Mon KJ, Zhu H, Daly CWP, Vu LT, Smith NL, Patel R, Topham DJ, Scheible K, Jambo K, Le MTN, Rudd BD, Grimson A. MicroRNA-29 specifies age-related differences in the CD8+ T cell immune response. Cell Rep 2021; 37:109969. [PMID: 34758312 DOI: 10.1016/j.celrep.2021.109969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/09/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators of cell fate in the CD8+ T cell response to infection. Although there are several examples of miRNAs acting on effector CD8+ T cells after infection, it is unclear whether differential expression of one or more miRNAs in the naive state is consequential in altering their long-term trajectory. To answer this question, we examine the role of miR-29 in neonatal and adult CD8+ T cells, which express different amounts of miR-29 only prior to infection and adopt profoundly different fates after immune challenge. We find that manipulation of miR-29 expression in the naive state is sufficient for age-adjusting the phenotype and function of CD8+ T cells, including their regulatory landscapes and long-term differentiation trajectories after infection. Thus, miR-29 acts as a developmental switch by controlling the balance between a rapid effector response in neonates and the generation of long-lived memory in adults.
Collapse
Affiliation(s)
- Kristel J Yee Mon
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Hongya Zhu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ciarán W P Daly
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Luyen T Vu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Norah L Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Ravi Patel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Kristin Scheible
- Department of Pediatrics, Division of Neonatology, University of Rochester, Rochester, NY 14642, USA
| | - Kondwani Jambo
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Minh T N Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
115
|
Niazi V, Ghafouri-Fard S, Verdi J, Jeibouei S, Karami F, Pourhadi M, Ahani M, Atarodi K, Soleimani M, Zali H, Zomorrod MS. Hypoxia preconditioned mesenchymal stem cell-derived exosomes induce ex vivo expansion of umbilical cord blood hematopoietic stem cells CD133+ by stimulation of Notch signaling pathway. Biotechnol Prog 2021; 38:e3222. [PMID: 34734683 DOI: 10.1002/btpr.3222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cells (MSCs) are crucial cells that play an essential role in the maintenance, self-renewal, and proliferation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) in the bone marrow niche. It has been proven that MSCs can be used as a feeder layer for the proliferation of HSCs to enhance the number of HPCs and HSCs. Recently, it has been demonstrated that MSC-derived exosome (MSC-DE) has critical roles in different biological processes in bone marrow (BM). In the current research, we examined the importance of hypoxia-preconditioned MSC-derived exosomes (HP-MSC-DE) and normoxia-preconditioned MSC-derived exosomes (NP-MSC-DE) in the self-renewal and long-term clonogenic potential of umbilical cord blood hematopoietic stem cells (UCB-HSCs). We showed that the secretion rate and component of the exosome (EXO) were changed in HP-MSC-DE compared to NP-MSC-DE. Notably, the Jagged-1 (Notch ligand) content of EXO was much more plentiful in HP-MSC-DE compared to NP-MSC-DE. The addition of HP-MSC-DE enriched by Jagged-1 to the co-culture system stimulates the Notch pathway on the membrane of UCB-HSCs CD133+ and enhances proliferation. HP-MSC-DE induction using an anti-Jagged-1 antibody suppresses all biological functions of the Jagged-1 protein. Importantly, HP-MSC-DE containing Jagged-1 could change the biology of HSCs CD133+ and increase the self-renewal capacity, quiescence, and clonogenic potential of CD133+ cells. Moreover, they support generating a large number of primitive cells. Our study signified the importance of HP-MSC-DE in the proliferation of UCB-HSCs CD133+, which manifested therapeutic applications of EXO in the enhanced number of HSCs and subsequently alleviated bone marrow transplantation.
Collapse
Affiliation(s)
- Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Shabnam Jeibouei
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Karami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Pourhadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Ahani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Atarodi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Soufi Zomorrod
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
116
|
Sun Y, Liu G, Zhang K, Cao Q, Liu T, Li J. Mesenchymal stem cells-derived exosomes for drug delivery. Stem Cell Res Ther 2021; 12:561. [PMID: 34717769 PMCID: PMC8557580 DOI: 10.1186/s13287-021-02629-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes are extracellular vesicles secreted by various cells, mainly composed of lipid bilayers without organelles. In recent years, an increasing number of researchers have focused on the use of exosomes for drug delivery. Targeted drug delivery in the body is a promising method for treating many refractory diseases such as tumors and Alzheimer's disease (AD). Finding a suitable drug delivery carrier in the body has become a popular research today. In various drug delivery studies, the exosomes secreted by mesenchymal stem cells (MSC-EXOs) have been broadly researched due to their immune properties, tumor-homing properties, and elastic properties. While MSC-EXOs have apparent advantages, some unresolved problems also exist. This article reviews the studies on MSC-EXOs for drug delivery, summarizes the characteristics of MSC-EXOs, and introduces the primary production and purification methods and drug loading methods to provide solutions for existing problems and suggestions for future studies.
Collapse
Affiliation(s)
- Yao Sun
- Department of General Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Guoliang Liu
- Operating Theater and Department of Anestheology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Qian Cao
- Department of Education, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
117
|
Zhu S, Li S, Yi M, Li N, Wu K. Roles of Microvesicles in Tumor Progression and Clinical Applications. Int J Nanomedicine 2021; 16:7071-7090. [PMID: 34703228 PMCID: PMC8536885 DOI: 10.2147/ijn.s325448] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Microvesicles are extracellular vesicles with diameter ranging from 100 to 1000 nm that are secreted by tumor cells or other cells in the tumor microenvironment. A growing number of studies demonstrate that tumor-derived microvesicles are involved in tumor initiation and progression, as well as drug resistance. In addition, tumor-derived microvesicles carry a variety of immunogenic molecules and inhibit tumor response to immunotherapy; therefore, they can be exploited for use in tumor vaccines. Moreover, because of their high stability, tumor-derived microvesicles extracted from body fluids can be used as biomarkers for cancer diagnosis or assessment of prognosis. Tumor-derived microvesicles can also be deployed to reverse drug resistance of tumor regenerative cells, or to deliver chemotherapeutic drugs and oncolytic adenovirus for the treatment of cancer patients. This review summarizes the general characteristics of tumor-derived microvesicles, focusing on their biological characteristics, their involvement in tumor progression, and their clinical applications.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shiyu Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| |
Collapse
|
118
|
Matsuki Y, Yanagawa T, Sumiyoshi H, Yasuda J, Nakao S, Goto M, Shibata-Seki T, Akaike T, Inagaki Y. Modification of exosomes with carbonate apatite and a glycan polymer improves transduction efficiency and target cell selectivity. Biochem Biophys Res Commun 2021; 583:93-99. [PMID: 34735885 DOI: 10.1016/j.bbrc.2021.10.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023]
Abstract
Exosomes are secreted from a variety of cells and transmit parental cell-derived biomolecules, such as nucleic acids and proteins, to recipient cells in distant organs. In addition to their important roles in both physiological and pathological conditions, exosomes are expected to serve as natural drug carriers without any cytotoxicity, immunogenicity, or tumorigenicity. However, the use of exosomes as drug delivery tools is limited due to the low uptake efficiency of the target cells, insufficient release of the contents from the endosome to the cytosol, and possible adverse effects caused by the delivery to non-target cells. In the present study, we examined the effects of the modification of exosomes with carbonate apatite or a lactose-carrying polymer. Using newly generated monitoring exosomes that contain either firefly luciferase or fused mCherry/enhanced green fluorescent protein, we demonstrated that the modification of exosomes with carbonate apatite improved their release from the endosome into the cytosol in recipient cells. Meanwhile, the modification of exosomes with a lactose-carrying polymer enhanced the selective delivery to parenchymal hepatocytes. These modified exosomes may provide an efficient strategy for macromolecule therapy for incurable diseases that cannot be treated with conventional small-molecule compounds.
Collapse
Affiliation(s)
- Yuki Matsuki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Takayo Yanagawa
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Hideaki Sumiyoshi
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Jumpei Yasuda
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Sachie Nakao
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Mitsuaki Goto
- Biomaterial Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, Tsukuba, Japan
| | - Teiko Shibata-Seki
- Biomaterial Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, Tsukuba, Japan; Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, Tsukuba, Japan
| | - Toshihiro Akaike
- Biomaterial Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, Tsukuba, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan; Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan; Institute of Medical Sciences, Tokai University, Isehara, Japan.
| |
Collapse
|
119
|
Khorasani ABS, Sanaei MJ, Pourbagheri-Sigaroodi A, Ghaffari SH, Bashash D. CAR T cell therapy in solid tumors; with an extensive focus on obstacles and strategies to overcome the challenges. Int Immunopharmacol 2021; 101:108260. [PMID: 34678690 DOI: 10.1016/j.intimp.2021.108260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/19/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
The application of the CAR T cell therapy in hematologic malignancies holds prosperous results that intensified the unprecedented enthusiasm to employ this fascinating strategy in other types of human malignancies. Although the researchers invested a great deal of effort to exploit the utmost efficacy of these cells in the context of solid tumors, few articles reviewed obstacles and opportunities. The current review aims to provide comprehensive literature of recent advances of CAR T cell therapy in a wide range of solid tumors; and also, to discuss the original data obtained from international research laboratories on this topic. Despite promising results, several radical obstacles are on the way of this approach. This review discusses the most important drawbacks and also responds to questions on how the intrinsic features of solid tumors in addition to the tumor microenvironment-related challenges and the immune-relating adverse effects can curb satisfactory outcomes of CAR T cells. The last section allocates a special focus on innovative and contemporary policies which have already been adopted to surmount these challenges. Finally, we comment on the future research aspects in which the efficacy, as well as the safety of CAR T cell therapy, might be improved.
Collapse
Affiliation(s)
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
120
|
Kim YS, Go G, Yun CW, Yea JH, Yoon S, Han SY, Lee G, Lee MY, Lee SH. Topical Administration of Melatonin-Loaded Extracellular Vesicle-Mimetic Nanovesicles Improves 2,4-Dinitrofluorobenzene-Induced Atopic Dermatitis. Biomolecules 2021; 11:1450. [PMID: 34680082 PMCID: PMC8533309 DOI: 10.3390/biom11101450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
Atopic dermatitis (AD) is caused by multiple factors that trigger chronic skin inflammation, including a defective skin barrier, immune cell activation, and microbial exposure. Although melatonin has an excellent biosafety profile and a potential to treat AD, there is limited clinical evidence from controlled trials that support the use of melatonin as an AD treatment. The delivery of melatonin via the transdermal delivery system is also a challenge in designing melatonin-based AD treatments. In this study, we generated melatonin-loaded extracellular vesicle-mimetic nanoparticles (MelaNVs) to improve the transdermal delivery of melatonin and to evaluate their therapeutic potential in AD. The MelaNVs were spherical nanoparticles with an average size of 100 nm, which is the optimal size for the transdermal delivery of drugs. MelaNVs showed anti-inflammatory effects by suppressing the release of TNF-α and β-hexosaminidase in LPS-treated RAW264.7 cells and compound 48/80-treated RBL-2H3 cells, respectively. MelaNVs showed a superior suppressive effect compared to an equivalent concentration of free melatonin. Treating a 2,4-dinitrofluorobenzene (DNCB)-induced AD-like mouse model with MelaNVs improved AD by suppressing local inflammation, mast cell infiltration, and fibrosis. In addition, MelaNVs effectively suppressed serum IgE levels and regulated serum IFN-γ and IL-4 levels. Taken together, these results suggest that MelaNVs are novel and efficient transdermal delivery systems of melatonin and that MelaNVs can be used as a treatment to improve AD.
Collapse
Affiliation(s)
- Yoon Seon Kim
- Department of Medical Science, Soonchunhyang University, Asan-si 31538, Korea;
| | - Gyeongyun Go
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (G.G.); (J.-H.Y.); (G.L.)
- Department of Biochemistry, BK21FOUR Project2, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Chul-Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea;
| | - Ji-Hye Yea
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (G.G.); (J.-H.Y.); (G.L.)
| | - Sungtae Yoon
- Stembio Ltd., Entrepreneur 306, Asan-si 31538, Korea; (S.Y.); (S.-Y.H.)
| | - Su-Yeon Han
- Stembio Ltd., Entrepreneur 306, Asan-si 31538, Korea; (S.Y.); (S.-Y.H.)
| | - Gaeun Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (G.G.); (J.-H.Y.); (G.L.)
- Department of Biochemistry, BK21FOUR Project2, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Mi-Young Lee
- Department of Medical Science, Soonchunhyang University, Asan-si 31538, Korea;
- Department of Medical Biotechnology, Soonchunhyang University, Asan-si 31538, Korea
| | - Sang Hun Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (G.G.); (J.-H.Y.); (G.L.)
- Department of Biochemistry, BK21FOUR Project2, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea;
- Stembio Ltd., Entrepreneur 306, Asan-si 31538, Korea; (S.Y.); (S.-Y.H.)
| |
Collapse
|
121
|
Goudarzi F, Kiani A, Moradi M, Haghshenas B, Hashemnia M, Karami A, Mohammadalipour A. Intraprostatic injection of exosomes isolated from adipose-derived mesenchymal stem cells for the treatment of chronic non-bacterial prostatitis. J Tissue Eng Regen Med 2021; 15:1144-1154. [PMID: 34559469 DOI: 10.1002/term.3251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem cells (MSCs) own the capacity to secrete trophic factors as exosomes which play significant roles in regulating the functions of other cells and preventing inflammation. Due to the inflammatory process in chronic non-bacterial prostatitis (CNP) and the ambiguity in the treatment of this disease, the present study was aimed to investigate the therapeutic use of adipose-derived MSC exosomes in an animal model of CNP. MSCs were first isolated from rat subcutaneous adipose tissue, and exosomes were extracted from them. Specific features of exosomes were characterized by a scanning electron microscope, western blot technique, and Dynamic Light Scattering methods. To establish CNP in rats, intraprostatic injection of Freund's complete adjuvant was done. After confirmation of prostatitis, intraprostatic injections of exosomes were performed for treatment. Histological evaluation revealed that treatment with exosomes resulted in a relative improvement of lesions caused by CNP. The expression of p-NF-κB and p-IκBα proteins along with inflammatory markers was significantly increased in the CNP group, which treatment with exosomes significantly reduced their expression as well as IL-1β and TNF-α proteins. The antioxidant effects of exosomes were also determined by significantly regulating glutathione peroxidase and superoxide dismutase activity and malondialdehyde levels in these animals. Our results cautiously suggest the therapeutic effects of MSC-derived exosomes against CNP-induced prostatitis through their antioxidant and anti-inflammatory activities, which should be further considered in the future.
Collapse
Affiliation(s)
- Farjam Goudarzi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmoudreza Moradi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Urology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Afshin Karami
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
122
|
Arteaga-Blanco LA, Bou-Habib DC. The Role of Extracellular Vesicles from Human Macrophages on Host-Pathogen Interaction. Int J Mol Sci 2021; 22:ijms221910262. [PMID: 34638604 PMCID: PMC8508751 DOI: 10.3390/ijms221910262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
The nano-sized membrane enclosed extracellular vesicles (EVs) released by virtually all cell types play an essential role in intercellular communication via delivering bio-molecules, such as nucleic acids, proteins, lipids, and other molecules to recipient cells. By mediating an active and steady-state cell-to-cell communication, EVs contribute to regulating and preserving cellular homeostasis. On the other hand, EVs can also spread pathogen-derived molecules during infections, subverting the host immune responses during infections and thus worsening pathophysiological processes. In recent years, the biological functioning of EVs has become a widespread research field in basic and clinical branches of medical sciences due to their potential role in therapeutic applications for several diseases. This review aims to summarize the main recent findings regarding the implication of EVs shed by human macrophages (MΦ-EVs) and how they can modulate the host immune response to control or increase the damage caused by infectious agents. We will also present the methods used to describe MΦ-EVs, as well as the potential of these EVs as disease diagnostic tools for some human pathogens. We believe that an in-depth understanding of the host–pathogen interactions mediated by MΦ-EVs may trigger the development of innovative therapeutic strategies against infectious diseases.
Collapse
Affiliation(s)
- Luis A. Arteaga-Blanco
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
- Correspondence: (L.A.A.-B.); or (D.C.B.-H.)
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro 21040-900, Brazil
- Correspondence: (L.A.A.-B.); or (D.C.B.-H.)
| |
Collapse
|
123
|
Smit-McBride Z, Morse LS. MicroRNA and diabetic retinopathy-biomarkers and novel therapeutics. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1280. [PMID: 34532417 PMCID: PMC8421969 DOI: 10.21037/atm-20-5189] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/14/2021] [Indexed: 01/10/2023]
Abstract
Diabetic retinopathy (DR) accounts for ~80% of legal blindness in persons aged 20-74 years and is associated with enormous social and health burdens. Current therapies are invasive, non-curative, and in-effective in 15-25% of DR patients. This review outlines the potential utility of microRNAs (miRNAs) as biomarkers and potential therapy for diabetic retinopathy. miRNAs are small noncoding forms of RNA that may play a role in the pathogenesis of DR by altering the level of expression of genes via single nucleotide polymorphism and regulatory loops. A majority of miRNAs are intracellular and specific intracellular microRNAs have been associated with cellular changes associated with DR. Some microRNAs are extracellular and called circulatory microRNAs. Circulatory miRNAs have been found to be differentially expressed in serum and bodily fluid in patients with diabetes mellitus (DM) with and without retinopathy. Some miRNAs have been associated with the severity of DR, and future studies may reveal whether circulatory miRNAs could serve as novel reliable biomarkers to detect or predict retinopathy progression. Therapeutic strategies can be developed utilizing the natural miRNA/long noncoding RNA (lncRNA) regulatory loops. miRNAs and lncRNAs are two major families of the non-protein-coding transcripts. They are regulatory molecules for fundamental cellular processes via a variety of mechanisms, and their expression and function are tightly regulated. The recent evidence indicates a cross-talk between miRNAs and lncRNAs. Therefore, dysregulation of miRNAs and lncRNAs is critical to human disease pathogenesis, such as diabetic retinopathy. miRNAs are long-distance communicators and reprogramming agents, and they embody an entirely novel paradigm in cellular and tissue signaling and interaction. By targeting specific miRNAs, whole pathways implicated in the pathogenesis of DR may potentially be altered. Understanding the endogenous roles of miRNAs in the pathogenesis of diabetic retinopathy could lead to novel diagnostic and therapeutic approaches to managing this frequently blinding retinal condition.
Collapse
Affiliation(s)
- Zeljka Smit-McBride
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, USA
| | - Lawrence S Morse
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
124
|
Bondhopadhyay B, Sisodiya S, Alzahrani FA, Bakhrebah MA, Chikara A, Kasherwal V, Khan A, Rani J, Dar SA, Akhter N, Tanwar P, Agrawal U, Hussain S. Exosomes: A Forthcoming Era of Breast Cancer Therapeutics. Cancers (Basel) 2021; 13:4672. [PMID: 34572899 PMCID: PMC8464658 DOI: 10.3390/cancers13184672] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
Despite the recent advancements in therapeutics and personalized medicine, breast cancer remains one of the most lethal cancers among women. The prognostic and diagnostic aids mainly include assessment of tumor tissues with conventional methods towards better therapeutic strategies. However, current era of gene-based research may influence the treatment outcome particularly as an adjunct to diagnostics by exploring the role of non-invasive liquid biopsies or circulating markers. The characterization of tumor milieu for physiological fluids has been central to identifying the role of exosomes or small extracellular vesicles (sEVs). These exosomes provide necessary communication between tumor cells in the tumor microenvironment (TME). The manipulation of exosomes in TME may provide promising diagnostic/therapeutic strategies, particularly in triple-negative breast cancer patients. This review has described and highlighted the role of exosomes in breast carcinogenesis and how they could be used or targeted by recent immunotherapeutics to achieve promising intervention strategies.
Collapse
Affiliation(s)
- Banashree Bondhopadhyay
- ICMR-National Institute of Cancer Prevention and Research, Noida 201301, India; (B.B.); (S.S.); (A.C.); (V.K.); (J.R.)
| | - Sandeep Sisodiya
- ICMR-National Institute of Cancer Prevention and Research, Noida 201301, India; (B.B.); (S.S.); (A.C.); (V.K.); (J.R.)
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 411004, India
| | - Faisal Abdulrahman Alzahrani
- Department of Biochemistry, Faculty of Science, Embryonic Stem Cells Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Muhammed A. Bakhrebah
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Atul Chikara
- ICMR-National Institute of Cancer Prevention and Research, Noida 201301, India; (B.B.); (S.S.); (A.C.); (V.K.); (J.R.)
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 411004, India
| | - Vishakha Kasherwal
- ICMR-National Institute of Cancer Prevention and Research, Noida 201301, India; (B.B.); (S.S.); (A.C.); (V.K.); (J.R.)
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, India
| | - Asiya Khan
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida 201313, India;
- Laboratory Oncology Unit, Dr. Bheem Rao Ambedkar Institute Rotary Cancer Hospital (Dr. BRA-IRCH), All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110023, India;
| | - Jyoti Rani
- ICMR-National Institute of Cancer Prevention and Research, Noida 201301, India; (B.B.); (S.S.); (A.C.); (V.K.); (J.R.)
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia;
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65411, Saudi Arabia;
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. Bheem Rao Ambedkar Institute Rotary Cancer Hospital (Dr. BRA-IRCH), All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110023, India;
| | - Usha Agrawal
- ICMR-National Institute of Pathology, New Delhi 110029, India;
| | - Showket Hussain
- ICMR-National Institute of Cancer Prevention and Research, Noida 201301, India; (B.B.); (S.S.); (A.C.); (V.K.); (J.R.)
| |
Collapse
|
125
|
Kraińska MM, Pietrzkowska N, Turlej E, Zongjin L, Marycz K. Extracellular vesicles derived from mesenchymal stem cells as a potential therapeutic agent in acute kidney injury (AKI) in felines: review and perspectives. Stem Cell Res Ther 2021; 12:504. [PMID: 34526105 PMCID: PMC8444608 DOI: 10.1186/s13287-021-02573-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells (MSCs), known from their key role in the regeneration process of tissues, and their abilities to release bioactive factors like extracellular vesicles (EVs) could be considered as a potential, modern tool in the treatment of AKI (acute kidney injury) in both human and veterinary patients. The complex pathophysiology of a renal function disorder (AKI) makes difficult to find a universal therapy, but the treatment strategy is based on MSCs and derived from them, EVs seem to solve this problem. Due to their small size, the ability of the cargo transport, the ease of crossing the barriers and the lack of the ability to proliferate and differentiate, EVs seem to have a significant impact on the development such therapy. Their additional impact associated with their ability to modulate immune response and inflammation process, their strong anti-fibrotic and anti-apoptotic effects and the relation with the releasing of the reactive oxygen species (ROS), that pivotal role in the AKI development is undoubtedly, limits the progress of AKI. Moreover, the availability of EVs from different sources encourages to extend research with using EVs from MSCs in AKI treatment in felines; in that, the possibilities of kidney injuries treatment are still limited to the classical therapies burdened with dangerous side effects. In this review, we underline the significance of the processes, in whose EVs are included during the AKI in order to show the potential benefits of EVs-MSCs-based therapies against AKI in felines.
Collapse
Affiliation(s)
- Magdalena M Kraińska
- International Institute of Translational Medicine (MIMT), Jesionowa St 11, 55-114, Malin, Wisznia Mała, Poland.,Department of General and Transplant Surgery, Warsaw Medical University, Nowogrodzka St 59, 02-014, Warszawa, Poland
| | - Natalia Pietrzkowska
- International Institute of Translational Medicine (MIMT), Jesionowa St 11, 55-114, Malin, Wisznia Mała, Poland
| | - Eliza Turlej
- Department of Experimental Biology, Wroclaw University of Environmental and Life Science, Norwida St 27B, 50-375, Wrocław, Poland
| | - Li Zongjin
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071, China
| | - Krzysztof Marycz
- International Institute of Translational Medicine (MIMT), Jesionowa St 11, 55-114, Malin, Wisznia Mała, Poland. .,Department of Experimental Biology, Wroclaw University of Environmental and Life Science, Norwida St 27B, 50-375, Wrocław, Poland.
| |
Collapse
|
126
|
Rogers RE, Haskell A, White BP, Dalal S, Lopez M, Tahan D, Pan S, Kaur G, Kim H, Barreda H, Woodard SL, Benavides OR, Dai J, Zhao Q, Maitland KC, Han A, Nikolov ZL, Liu F, Lee RH, Gregory CA, Kaunas R. A scalable system for generation of mesenchymal stem cells derived from induced pluripotent cells employing bioreactors and degradable microcarriers. Stem Cells Transl Med 2021; 10:1650-1665. [PMID: 34505405 PMCID: PMC8641084 DOI: 10.1002/sctm.21-0151] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are effective in treating disorders resulting from an inflammatory or heightened immune response. The hMSCs derived from induced pluripotent stem cells (ihMSCs) share the characteristics of tissue derived hMSCs but lack challenges associated with limited tissue sources and donor variation. To meet the expected future demand for ihMSCs, there is a need to develop scalable methods for their production at clinical yields while retaining immunomodulatory efficacy. Herein, we describe a platform for the scalable expansion and rapid harvest of ihMSCs with robust immunomodulatory activity using degradable gelatin methacryloyl (GelMA) microcarriers. GelMA microcarriers were rapidly and reproducibly fabricated using a custom microfluidic step emulsification device at relatively low cost. Using vertical wheel bioreactors, 8.8 to 16.3‐fold expansion of ihMSCs was achieved over 8 days. Complete recovery by 5‐minute digestion of the microcarriers with standard cell dissociation reagents resulted in >95% viability. The ihMSCs matched or exceeded immunomodulatory potential in vitro when compared with ihMSCs expanded on monolayers. This is the first description of a robust, scalable, and cost‐effective method for generation of immunomodulatory ihMSCs, representing a significant contribution to their translational potential.
Collapse
Affiliation(s)
- Robert E Rogers
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Andrew Haskell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Berkley P White
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, Texas, USA
| | - Sujata Dalal
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Megan Lopez
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Daniel Tahan
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Simin Pan
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Gagandeep Kaur
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Hyemee Kim
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Heather Barreda
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Susan L Woodard
- National Center for Therapeutics Manufacturing, Texas A&M University, College Station, Texas, USA
| | - Oscar R Benavides
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, Texas, USA
| | - Jing Dai
- Department of Electrical and Computer Engineering, Texas A&M University, Wisenbaker Engineering Building, College Station, Texas, USA
| | - Qingguo Zhao
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Kristen C Maitland
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, Texas, USA
| | - Arum Han
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, Texas, USA.,Department of Electrical and Computer Engineering, Texas A&M University, Wisenbaker Engineering Building, College Station, Texas, USA
| | - Zivko L Nikolov
- National Center for Therapeutics Manufacturing, Texas A&M University, College Station, Texas, USA.,Biological and Agricultural Engineering, Texas A&M University, Scoates Hall, College Station, Texas, USA
| | - Fei Liu
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Ryang Hwa Lee
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, Texas, USA
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, College Station, Texas, USA
| |
Collapse
|
127
|
Liu W, Yu M, Chen F, Wang L, Ye C, Chen Q, Zhu Q, Xie D, Shao M, Yang L. A novel delivery nanobiotechnology: engineered miR-181b exosomes improved osteointegration by regulating macrophage polarization. J Nanobiotechnology 2021; 19:269. [PMID: 34493305 PMCID: PMC8424816 DOI: 10.1186/s12951-021-01015-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
Background Many patients suffer from implant loosening after the implantation of titanium alloy caused by immune response to the foreign bodies and this could inhibit the following osteogenesis, which could possibly give rise to aseptic loosening and poor osteointegration while there is currently no appropriate solution in clinical practice. Exosome (Exo) carrying miRNA has been proven to be a suitable nanocarrier for solving this problem. In this study, we explored whether exosomes overexpressing miR-181b (Exo-181b) could exert beneficial effect on promoting M2 macrophage polarization, thus inhibiting inflammation as well as promoting osteogenesis and elaborated the underlying mechanism in vitro. Furthermore, we aimed to find whether Exo-181b could enhance osteointegration. Results In vitro, we firstly verified that Exo-181b significantly enhanced M2 polarization and inhibited inflammation by suppressing PRKCD and activating p-AKT. Then, in vivo, we verified that Exo-181b enhanced M2 polarization, reduced the inflammatory response and enhanced osteointegration. Also, we verified that the enhanced M2 polarization could indirectly promote the migration and osteogenic differentiation by secreting VEGF and BMP-2 in vitro. Conclusions Exo-181b could suppress inflammatory response by promoting M2 polarization via activating PRKCD/AKT signaling pathway, which further promoting osteogenesis in vitro and promote osteointegration in vivo. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01015-y.
Collapse
Affiliation(s)
- Wei Liu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - Muyu Yu
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Medical Centre of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Key Clinic Centre of Metabolism Disease, Shanghai Institute for Diabetes, Shanghai, China
| | - Feng Chen
- Department of Orthopaedics, Shanghai Fengxian Central Hospital, Branch of the Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 201400, People's Republic of China.,College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Longqing Wang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - Cheng Ye
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - Qing Chen
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - Qi Zhu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - Dong Xie
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - Mingzhe Shao
- Department of Vascular Surgery, Multidisciplinary Collaboration Group of Diabetic Foot, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Lili Yang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China.
| |
Collapse
|
128
|
Zebrafish as a preclinical model for Extracellular Vesicle-based therapeutic development. Adv Drug Deliv Rev 2021; 176:113815. [PMID: 34058284 DOI: 10.1016/j.addr.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022]
Abstract
Extracellular Vesicles (EVs) are released during various pathophysiological processes and reflect the state of their cell of origin. Once released, they can propagate through biological fluids, target cells, deliver their content and elicit functional responses. These specific features would allow their harnessing as biomarkers, drug nano-vehicles and therapeutic intrinsic modulators. However, the further development of their potential therapeutic application is hampered by the lack of knowledge about how EVs behave in vivo. Recent advances in the field of imaging EVs in vivo now allow live-tracking of endogenous and exogenous EV in various model organisms at high spatiotemporal resolution to define their distribution, half-life and fate. This review highlights current imaging tools available to image EVs in vivo and how live imaging especially in the zebrafish embryo can bring further insights into the characterization of EVs dynamics, biodistribution and functions to potentiate their development for therapeutic applications.
Collapse
|
129
|
Lecuyer M, Pathipati P, Faustino J, Vexler ZS. Neonatal stroke enhances interaction of microglia-derived extracellular vesicles with microglial cells. Neurobiol Dis 2021; 157:105431. [PMID: 34153465 PMCID: PMC9068249 DOI: 10.1016/j.nbd.2021.105431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/21/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Microglial cells support brain homeostasis under physiological conditions and modulate brain injury in a context-dependent and brain maturation-dependent manner. Microglial cells protect neonatal brain from acute stroke. While microglial signaling via direct cell-cell interaction and release of variety of molecules is intensely studied, less is known about microglial signaling via release and uptake of extracellular vesicles (EVs). We asked whether neonatal stroke alters release of microglial EVs (MEV) and MEV communication with activated microglia. We pulled down and plated microglia from ischemic-reperfused and contralateral cortex 24 h after transient middle cerebral artery occlusion (tMCAO) in postnatal day 9 mice, isolated and characterized microglia-derived microvesicles (P3-MEV) and exosomes (P4-MEV), and determined uptake of fluorescently labeled P3-MEV and P4-MEV by plated microglia derived from ischemic-reperfused and contralateral cortex. We then examined how reducing EVs release in neonatal brain-by intra-cortical injection of CRISPR-Cas9-Smpd3/KO (Smpd3/KD) to downregulate Smpd3 gene to disrupt neutral sphingomyelinase-2 (N-SMase2)-impacts P3-MEV and P4-MEV release and stroke injury. Both size and protein composition differed between P3-MEV and P4-MEV. tMCAO further altered protein composition of P3-MEV and P4-MEV and significantly, up to 5-fold, increased uptake of both vesicle subtypes by microglia from ischemic-reperfused regions. Under physiological conditions neurons were the predominant cell type expressing N-SMase-2, an enzyme involved in lipid signaling and EVs release. After tMCAO N-SMase-2 expression was diminished in injured neurons but increased in activated microglia/macrophages, leading to overall reduced N-SMase-2 activity. Compared to intracerebral injection of control plasmid, CRISPR-Cas9-Smpd3/Ct, Smpd3/KD injection further reduced N-SMase-2 activity and significantly reduced injury. Smpd3 downregulation decreased MEV release from injured regions, reduced Smpd3/KD-P3-MEV uptake and abolished Smpd3/KD-P4-MEV uptake by microglia from ischemic-reperfused region. Cumulatively, these data demonstrate that microglial cells release both microvesicles and exosomes in naïve neonatal brain, that the state of microglial activation determines both properties of released EVs and their recognition/uptake by microglia in ischemic-reperfused and control regions, suggesting a modulatory role of MEV in neonatal stroke, and that sphingosine/N-SMase-2 signaling contributes both to EVs release and uptake (predominantly P4-MEV) after neonatal stroke.
Collapse
Affiliation(s)
| | | | - Joel Faustino
- Department of Neurology, UCSF, San Francisco, CA, USA
| | | |
Collapse
|
130
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
131
|
Agarwal S, Agarwal V, Agarwal M, Singh M. Exosomes: Structure, Biogenesis, Types and Application in Diagnosis and Gene and Drug Delivery. Curr Gene Ther 2021; 20:195-206. [PMID: 32787759 DOI: 10.2174/1566523220999200731011702] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/12/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
In recent times, several approaches for targeted gene therapy (GT) had been studied. However, the emergence of extracellular vesicles (EVs) as a shuttle carrying genetic information between cells has gained a lot of interest in scientific communities. Owing to their higher capabilities in dealing with short sequences of nucleic acid (mRNA, miRNA), proteins, recombinant proteins, exosomes, the most popular form of EVs are viewed as reliable biological therapeutic conveyers. They have natural access through every biological membrane and can be employed for site-specific and efficient drug delivery without eliciting any immune responses hence, qualifying as an ideal delivery vehicle. Also, there are many research studies conducted in the last few decades on using exosome-mediated gene therapy into developing an effective therapy with the concept of a higher degree of precision in gene isolation, purification and delivery mechanism loading, delivery and targeting protocols. This review discusses several facets that contribute towards developing an efficient therapeutic regime for gene therapy, highlighting limitations and drawbacks associated with current GT and suggested therapeutic regimes.
Collapse
Affiliation(s)
- Shriya Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Vinayak Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Mugdha Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| |
Collapse
|
132
|
Lim KM, Dayem AA, Choi Y, Lee Y, An J, Gil M, Lee S, Kwak HJ, Vellingirl B, Shin HJ, Cho SG. High Therapeutic and Esthetic Properties of Extracellular Vesicles Produced from the Stem Cells and Their Spheroids Cultured from Ocular Surgery-Derived Waste Orbicularis Oculi Muscle Tissues. Antioxidants (Basel) 2021; 10:antiox10081292. [PMID: 34439540 PMCID: PMC8389225 DOI: 10.3390/antiox10081292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are paracrine factors that mediate stem cell therapeutics. We aimed at evaluating the possible therapeutic and esthetic applications of EVs prepared from the waste human facial tissue-derived orbicularis oculi muscle stem cells (OOM-SCs). OOM-SCs were isolated from the ocular tissues (from elders and youngsters) after upper eyelid blepharoplasty or epiblepharon surgeries. EVs were prepared from the OOM-SCs (OOM-SC-EVs) and their three-dimensional spheroids. OOM-SCs showed a spindle-like morphology with trilineage differentiation capacity, positive expression of CD105, CD 90, and CD73, and negative expression of CD45 and CD34, and their stem cell properties were compared with other adult mesenchymal stem cells. OOM-SC-EVs showed a high inhibitory effect on melanin synthesis in B16F10 cells by blocking tyrosinase activity. OOM-SC-EVs treatment led to a significant attenuation of senescence-associated changes, a decrease in reactive oxygen species generation, and an upregulation of antioxidant genes. We demonstrated the regeneration activity of OOM-SC-EVs in in vitro wound healing of normal human dermal fibroblasts and upregulation of anti-wrinkle-related genes and confirmed the therapeutic potential of OOM-SC-EVs in the healing of the in vivo wound model. Our study provides promising therapeutic and esthetic applications of OOM-SC-EVs, which can be obtained from the ocular surgery-derived waste human facial tissues.
Collapse
Affiliation(s)
- Kyung Min Lim
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Ahmed Abdal Dayem
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Yujin Choi
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Yoonjoo Lee
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Jongyub An
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Minchan Gil
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Soobin Lee
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Hee Jeong Kwak
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Balachandar Vellingirl
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641-046, India;
| | - Hyun Jin Shin
- Department of Ophthalmology, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea
- Correspondence: (H.J.S.); (S.-G.C.)
| | - Ssang-Goo Cho
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
- Correspondence: (H.J.S.); (S.-G.C.)
| |
Collapse
|
133
|
Unleashing the therapeutic potential of apoptotic bodies. Biochem Soc Trans 2021; 48:2079-2088. [PMID: 32869835 PMCID: PMC7609033 DOI: 10.1042/bst20200225] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs), membrane-bound vesicles that are naturally released by cells, have emerged as new therapeutic opportunities. EVs, particularly exosomes and microvesicles, can transfer effector molecules and elicit potent responses in recipient cells, making them attractive therapeutic targets and drug delivery platforms. Furthermore, containing predictive biomarkers and often being dysregulated in various disease settings, these EVs are being exploited for diagnostic purposes. In contrast, the therapeutic application of apoptotic bodies (ApoBDs), a distinct type of EVs released by cells undergoing a form of programmed cell death called apoptosis, has been largely unexplored. Recent studies have shed light on ApoBD biogenesis and functions, promisingly implicating their therapeutic potential. In this review, we discuss many strategies to develop ApoBD-based therapies as well as highlight their advantages and challenges, thereby positioning ApoBD for potential EV-based therapy.
Collapse
|
134
|
Man F, Meng C, Liu Y, Wang Y, Zhou Y, Ma J, Lu R. The Study of Ginger-Derived Extracellular Vesicles as a Natural Nanoscale Drug Carrier and Their Intestinal Absorption in Rats. AAPS PharmSciTech 2021; 22:206. [PMID: 34297224 DOI: 10.1208/s12249-021-02087-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles have been widely used in drug delivery systems and clinical studies as a new natural nanoscale drug carrier. Most of these studies focused on the extracellular vesicles from animals, but few involved in the extracellular vesicles from edible plants. This study was the first to explore the potential and value of ginger-derived extracellular vesicles (GDEVs) as drug carrier by using the content ratio method and to further study their intestinal absorption in rats. In this experiment, GDEVs were extracted and purified by ultrahigh-speed centrifugation. GDEVs were saucer-like with a particle size of 70.09±19.24 nm and a zeta potential of -27.70±12.20 mV. In this experiment, high-performance liquid chromatography was used to explore the difference in gingerol content between GDEVs and ginger slices. Under the same mass, the contents of 6-gingerol (6G), 8-gingerol (8G), and 10-gingerol (10G) in GDEVs were 10.21-fold, 22.69-fold, and 32.36-fold of those in ginger slices, respectively. In this experiment, the absorption kinetics and absorption site of GDEVs were investigated using in situ single-pass intestinal perfusion method in rats. GDEVs could be absorbed by the small intestine in the concentration range of 15-60 mg/mL, and the absorption trend of different intestinal segments was duodenum > jejunum > ileum. These results indicated that GDEVs had good loading capacity and significant prospects as a carrier of the drug delivery system. At the same time, combining the oil-water partition coefficient (6G < 8G < 10G) of three gingerol compounds, we speculated that the loading capacity of GDEVs increased with the increase of the lipid solubility of the compounds. This study fully demonstrated the potential and value of ginger-derived extracellular vesicles as natural nanocarrier and provided an important reference for the further application of plant-derived extracellular vesicles in the drug delivery system.
Collapse
Affiliation(s)
- Fulong Man
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai, 264209, Shandong, China
| | - Chen Meng
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai, 264209, Shandong, China
| | - Yang Liu
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai, 264209, Shandong, China
| | - Yuchen Wang
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai, 264209, Shandong, China
| | - Yun Zhou
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai, 264209, Shandong, China
| | - Jinqian Ma
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai, 264209, Shandong, China
| | - Rong Lu
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai, 264209, Shandong, China.
- Weihai Neoland Biosciences Co.,Ltd. C-301,Torch Innovative Imbark base, No.213-2 Huoju Road, Weihai, 264209, Shandong, China.
| |
Collapse
|
135
|
Yan YY, Zhou WM, Wang YQ, Guo QR, Zhao FX, Zhu ZY, Xing YX, Zhang HY, Aljofan M, Jarrahi AM, Makabel B, Zhang JY. The Potential Role of Extracellular Vesicles in COVID-19 Treatment: Opportunity and Challenge. Front Mol Biosci 2021; 8:699929. [PMID: 34368228 PMCID: PMC8345113 DOI: 10.3389/fmolb.2021.699929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 infection has become an urgent public health concern worldwide, severely affecting our society and economy due to the long incubation time and high prevalence. People spare no effort on the rapid development of vaccine and treatment all over the world. Amongst the numerous ways of tackling this pandemic, some approaches using extracellular vesicles (EVs) are emerging. In this review, we summarize current prevalence and pathogenesis of COVID-19, involving the combination of SARS-CoV-2 and virus receptor ACE2, endothelial dysfunction and micro thrombosis, together with cytokine storm. We also discuss the ongoing EVs-based strategies for the treatment of COVID-19, including mesenchymal stem cell (MSC)-EVs, drug-EVs, vaccine-EVs, platelet-EVs, and others. This manuscript provides the foundation for the development of targeted drugs and vaccines for SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Yan-yan Yan
- School of Medicine, Shanxi Datong University, Datong, China
| | - Wen-min Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yu-qing Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiao-ru Guo
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Xinjiang Institute of Materia Medica, Urumqi, China
| | - Fu-xi Zhao
- School of Medicine, Shanxi Datong University, Datong, China
| | - Zhuang-yan Zhu
- School of Medicine, Shanxi Datong University, Datong, China
| | - Yan-xia Xing
- School of Medicine, Shanxi Datong University, Datong, China
| | - Hai-yan Zhang
- School of Medicine, Shanxi Datong University, Datong, China
| | - Mohamad Aljofan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | | | - Jian-ye Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
136
|
Antounians L, Catania VD, Montalva L, Liu BD, Hou H, Chan C, Matei AC, Tzanetakis A, Li B, Figueira RL, da Costa KM, Wong AP, Mitchell R, David AL, Patel K, De Coppi P, Sbragia L, Wilson MD, Rossant J, Zani A. Fetal lung underdevelopment is rescued by administration of amniotic fluid stem cell extracellular vesicles in rodents. Sci Transl Med 2021; 13:13/590/eaax5941. [PMID: 33883273 DOI: 10.1126/scitranslmed.aax5941] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 03/04/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022]
Abstract
Fetal lung underdevelopment, also known as pulmonary hypoplasia, is characterized by decreased lung growth and maturation. The most common birth defect found in babies with pulmonary hypoplasia is congenital diaphragmatic hernia (CDH). Despite research and clinical advances, babies with CDH still have high morbidity and mortality rates, which are directly related to the severity of lung underdevelopment. To date, there is no effective treatment that promotes fetal lung growth and maturation. Here, we describe a stem cell-based approach in rodents that enhances fetal lung development via the administration of extracellular vesicles (EVs) derived from amniotic fluid stem cells (AFSCs). Using fetal rodent models of pulmonary hypoplasia (primary epithelial cells, organoids, explants, and in vivo), we demonstrated that AFSC-EV administration promoted branching morphogenesis and alveolarization, rescued tissue homeostasis, and stimulated epithelial cell and fibroblast differentiation. We confirmed this regenerative ability in in vitro models of lung injury using human material, where human AFSC-EVs obtained following good manufacturing practices restored pulmonary epithelial homeostasis. Investigating EV mechanism of action, we found that AFSC-EV beneficial effects were exerted via the release of RNA cargo. MicroRNAs regulating the expression of genes involved in lung development, such as the miR17-92 cluster and its paralogs, were highly enriched in AFSC-EVs and were increased in AFSC-EV-treated primary lung epithelial cells compared to untreated cells. Our findings suggest that AFSC-EVs hold regenerative ability for underdeveloped fetal lungs, demonstrating potential for therapeutic application in patients with pulmonary hypoplasia.
Collapse
Affiliation(s)
- Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Vincenzo D Catania
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Louise Montalva
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Benjamin D Liu
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Huayun Hou
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Cadia Chan
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Andreea C Matei
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Areti Tzanetakis
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada.,Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
| | - Rebeca L Figueira
- Laboratory of Experimental Fetal and Neonatal Surgery, Division of Pediatric Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paolo, 14049-900, Brazil
| | - Karina M da Costa
- Laboratory of Experimental Fetal and Neonatal Surgery, Division of Pediatric Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paolo, 14049-900, Brazil
| | - Amy P Wong
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
| | - Robert Mitchell
- School of Biological Sciences, University of Reading, Reading RG6 6AS, UK
| | - Anna L David
- Institute for Women's Health, University College London, London WC1E 6HU, UK.,NIHR University College London Hospitals Biomedical Research Centre, London W1T 7HA, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6AS, UK.,FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg 79104, Germany
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College of London, London WC1N 1EH, UK.,NIHR Biomedical Research Centre and Specialist Neonatal and Paediatric Unit, Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Lourenço Sbragia
- Laboratory of Experimental Fetal and Neonatal Surgery, Division of Pediatric Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paolo, 14049-900, Brazil
| | - Michael D Wilson
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Janet Rossant
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada. .,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada.,Department of Surgery, University of Toronto, Toronto, M5T 1P5, Canada
| |
Collapse
|
137
|
Kottorou A, Dimitrakopoulos FI, Tsezou A. Non-coding RNAs in cancer-associated cachexia: clinical implications and future perspectives. Transl Oncol 2021; 14:101101. [PMID: 33915516 PMCID: PMC8100623 DOI: 10.1016/j.tranon.2021.101101] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/11/2021] [Indexed: 12/18/2022] Open
Abstract
Cachexia is a multifactorial syndrome characterized by skeletal muscle loss, with or without adipose atrophy, irreversible through nutritional support, in the context of systemic inflammation and metabolic disorders. It is mediated by inflammatory reaction and affects almost 50% of all cancer patients, due to prominent systemic inflammation associated with the disease. The comprehension of the molecular mechanisms that are implicated in cancer cachexia sheds light on its pathogenesis and lays the foundations for the discovery of new therapeutic targets and biomarkers. Recently, ncRNAs, like microRNAs as well as lncRNAs and circRNAs seem to regulate pathways that are implicated in cancer cachexia pathogenesis, as it has been observed in animal models and in cancer cachexia patients, highlighting their therapeutic potential. Moreover, increasing evidence highlights the involvement of circulating and exosomal ncRNAs in the activation and maintenance of systemic inflammation in cancer and cancer-associated cachexia. In that context, the present review focuses on the clinical significance of ncRNAs in cancer-associated cachexia.
Collapse
Affiliation(s)
- Anastasia Kottorou
- Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, 26504, Rio, Greece
| | | | - Aspasia Tsezou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500, Larissa, Greece; Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
138
|
Wei Z, Chen Z, Zhao Y, Fan F, Xiong W, Song S, Yin Y, Hu J, Yang K, Yang L, Xu B, Ge J. Mononuclear phagocyte system blockade using extracellular vesicles modified with CD47 on membrane surface for myocardial infarction reperfusion injury treatment. Biomaterials 2021; 275:121000. [PMID: 34218049 DOI: 10.1016/j.biomaterials.2021.121000] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) with anti-apoptotic and anti-inflammatory properties have been intensively studied. However, rapid clearance by the mononuclear phagocyte system remains a huge barrier for the delivery of extracellular vesicle contents into target organs and restricts its wider application, particularly in the heart. CD47 is a transmembrane protein that enables cancer cells to evade clearance by macrophages through CD47- signal regulatory proteinα binding, which initiates a "don't eat me" signal. This study aimed to explore the biodistribution and delivery efficiency of EVs carrying the membrane protein CD47 and specific anti-apoptotic miRNAs. EVs were isolated from MSCs overexpressing CD47 (CD47-EVs) and identified. Fluorescence-labeled EVs were injected through the tail vein and tracked using fluorescence imaging. In silico analysis was performed to determine miRNA profiles in MSCs and in a heart-derived H9c2 cardiomyoblast cell line under hypoxia vs. normoxia conditions. Electro CD47-EV was constructed by encapsulating purified CD47-EV with miR-21a via electroporation. The effect of miR21-EVs on the pro-apoptotic gene encoding phosphatase and tensin homolog (PTEN) was evaluated by dual-luciferase assay, qPCR, and western blotting. Exogenous miR21 distribution, PTEN protein level, blood vessel density, anti-apoptotic effect by TdT-mediated dUTP nick-end labeling staining, and macrophage and leukocyte infiltration in the myocardium were assessed by immunofluorescence staining. Cardiac functional recovery during the early stage and recovery period was evaluated using echocardiography. The results showed that CD47-EVs were still detectable in the plasma 120 min after the tail vein injection, compared to the detection time of less than 30 min observed with the unmodified EVs. More strikingly, CD47-EVs preferentially accumulated in the heart in the ischemia-reperfusion (I/R) + CD47-EV group [heart total fluorescence radiance ( × 105 Photons/sec/cm2/sr) 51.62 ± 11.30 v.s. 10.08 ± 3.15 in the I/R + unmodified EVs group] 8 h post-injection. Exogenous miR-21 is efficiently internalized into cardiomyocytes, inhibits apoptosis, alleviates inflammation, and improves cardiac function. In conclusion, electro CD47-EVs efficiently improve biodistribution in the heart, shedding new light on the application of a two-step EV delivery method (CD47 genetic modification followed by therapeutic content electrotransfection) as a potential therapeutic tool for myocardial I/R injury that may benefit patients in the future.
Collapse
Affiliation(s)
- Zilun Wei
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China; Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhaoyang Chen
- Cardiology Department, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yongchao Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fan Fan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Weidong Xiong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuai Song
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Yong Yin
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Jingjing Hu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Kun Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Lebing Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China.
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China.
| |
Collapse
|
139
|
Verdi J, Ketabchi N, Noorbakhsh N, Saleh M, Ebrahimi-Barough S, Seyhoun I, Kavianpour M. Development and Clinical Application of Tumor-derived Exosomes in Patients with Cancer. Curr Stem Cell Res Ther 2021; 17:91-102. [PMID: 34161212 DOI: 10.2174/1574888x16666210622123942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/16/2020] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
A tumor is an abnormal growth of cells within a tissue that can lead to death due to late diagnosis, poor prognosis, drug resistance, and finally enhanced metastasis formation. Exosomes are nanovesicles that have been derived from all the different cell types. These vesicles can transfer various molecules, including the distinct form of nucleic acids (mRNA, miRNA, and circRNA) and proteins. Tumor-derived exosomes (TEXs) have exceptionally important roles through multiple molecular and cellular pathways like progression, tumorigenesis, drug resistance, and as well as metastasis. TEXs are detectable in all body fluids, such as serum and urine, a convenient and non-invasive way to access these nano-sized vesicles. TEXs lead to the symptom expression of genetic aberrations in the tumor cell population, making them an accurate and sensitive biomarker for the diagnosis and prognosis of tumors. On the other hand, TEXs contain major histocompatibility complexes (MHCs) and play important dual roles in regulating tumor immune responses; they can mediate both immune activation and suppression through tumor-associated immunity. Despite numerous scientific studies, there are still many technical barriers to distinguish TEXs from non-tumor-derived exosomes. Removing exosomes lead to a wide difference in outcomes inside a patient's body. Hence, controversial pieces of evidence have demonstrated the vital role of TEXs as hopeful biomarkers for the early detection of cancers, evaluation of therapeutic effects, and monitoring of the patient.
Collapse
Affiliation(s)
- Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Ketabchi
- Department of Medical Laboratory Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Negar Noorbakhsh
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Seyhoun
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Kavianpour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
140
|
Phan TH, Divakarla SK, Yeo JH, Lei Q, Tharkar P, Pansani TN, Leslie KG, Tong M, Coleman VA, Jämting Å, Du Plessis MD, New EJ, Kalionis B, Demokritou P, Woo HK, Cho YK, Chrzanowski W. New Multiscale Characterization Methodology for Effective Determination of Isolation-Structure-Function Relationship of Extracellular Vesicles. Front Bioeng Biotechnol 2021; 9:669537. [PMID: 34164385 PMCID: PMC8215393 DOI: 10.3389/fbioe.2021.669537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have been lauded as next-generation medicines, but very few EV-based therapeutics have progressed to clinical use. Limited clinical translation is largely due to technical barriers that hamper our ability to mass produce EVs, i.e., to isolate, purify, and characterize them effectively. Technical limitations in comprehensive characterization of EVs lead to unpredicted biological effects of EVs. Here, using a range of optical and non-optical techniques, we showed that the differences in molecular composition of EVs isolated using two isolation methods correlated with the differences in their biological function. Our results demonstrated that the isolation method determines the composition of isolated EVs at single and sub-population levels. Besides the composition, we measured for the first time the dry mass and predicted sedimentation of EVs. These parameters were likely to contribute to the biological and functional effects of EVs on single cell and cell cultures. We anticipate that our new multiscale characterization approach, which goes beyond traditional experimental methodology, will support fundamental understanding of EVs as well as elucidate the functional effects of EVs in in vitro and in vivo studies. Our findings and methodology will be pivotal for developing optimal isolation methods and establishing EVs as mainstream therapeutics and diagnostics. This innovative approach is applicable to a wide range of sectors including biopharma and biotechnology as well as to regulatory agencies.
Collapse
Affiliation(s)
- Thanh Huyen Phan
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Shiva Kamini Divakarla
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Jia Hao Yeo
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| | - Qingyu Lei
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Priyanka Tharkar
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Taisa Nogueira Pansani
- Department of Dental Materials and Prosthodontics, Araraquara School of Dentistry, UNESP-Universidade Estadual Paulista, Araraquara, Brazil
| | - Kathryn G Leslie
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| | - Maggie Tong
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| | - Victoria A Coleman
- Nanometrology Section, National Measurement Institute Australia, Lindfield, NSW, Australia
| | - Åsa Jämting
- Nanometrology Section, National Measurement Institute Australia, Lindfield, NSW, Australia
| | - Mar-Dean Du Plessis
- Nanometrology Section, National Measurement Institute Australia, Lindfield, NSW, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia.,School of Chemistry, Faculty of Science, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Bill Kalionis
- Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women's Hospital, and Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Hyun-Kyung Woo
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, South Korea.,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, South Korea.,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Wojciech Chrzanowski
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
141
|
New epigenetic players in stroke pathogenesis: From non-coding RNAs to exosomal non-coding RNAs. Biomed Pharmacother 2021; 140:111753. [PMID: 34044272 PMCID: PMC8222190 DOI: 10.1016/j.biopha.2021.111753] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/22/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have critical role in the pathophysiology as well as recovery after ischemic stroke. ncRNAs, particularly microRNAs, and the long non-coding RNAs (lncRNAs) are critical for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. Moreover, exosomes have been considered as nanocarriers capable of transferring various cargos, such as lncRNAs and miRNAs to recipient cells, with prominent inter-cellular roles in the mediation of neuro-restorative events following strokes and neural injuries. In this review, we summarize the pathogenic role of ncRNAs and exosomal ncRNAs in the stroke.
Collapse
|
142
|
Microglial Extracellular Vesicles as Vehicles for Neurodegeneration Spreading. Biomolecules 2021; 11:biom11060770. [PMID: 34063832 PMCID: PMC8224033 DOI: 10.3390/biom11060770] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Microglial cells are the neuroimmune competent cells of the central nervous system. In the adult, microglia are responsible for screening the neuronal parenchyma searching for alterations in homeostasis. Chronic neuroinflammation plays a role in neurodegenerative disease. Indeed, microglia-mediated neuroinflammation is involved in the onset and progression of several disorders in the brain and retina. Microglial cell reactivity occurs in an orchestrated manner and propagates across the neural parenchyma spreading the neuroinflammatory signal from cell to cell. Extracellular vesicles are important vehicles of intercellular communication and act as message carriers across boundaries. Extracellular vesicles can be subdivided in several categories according to their cellular origin (apoptotic bodies, microvesicles and exosomes), each presenting, different but sometimes overlapping functions in cell communication. Mounting evidence suggests a role for extracellular vesicles in regulating microglial cell action. Herein, we explore the role of microglial extracellular vesicles as vehicles for cell communication and the mechanisms that trigger their release. In this review we covered the role of microglial extracellular vesicles, focusing on apoptotic bodies, microvesicles and exosomes, in the context of neurodegeneration and the impact of these vesicles derived from other cells in microglial cell reactivity.
Collapse
|
143
|
Huang J, Xiong J, Yang L, Zhang J, Sun S, Liang Y. Cell-free exosome-laden scaffolds for tissue repair. NANOSCALE 2021; 13:8740-8750. [PMID: 33969373 DOI: 10.1039/d1nr01314a] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the development of regenerative medicine, tissue repair at the molecular, cellular, tissue, and organ level has seen continuous improvements over traditional techniques. As the core of tissue repair, seed cells are widely used in various fields of regenerative medicine. However, their use is still associated with problems such as decreased cell survival and regeneration capacity after transplantation, immune rejection, and ethical concerns. Therefore, it is difficult to universally and safely apply stem cell banks for regenerative medicine. The paracrine effects of cells, especially secretion of exosomes, play vital roles in cell communication, immune response, angiogenesis, scar formation, tissue repair, and other biological functions. Exosomes are a type of nanoscale extracellular vesicle that contain biologically active molecules such as RNA and proteins; therefore, exosomes can replicate the functions of their parental cells. Meanwhile, exosomes can be used as nanocarriers to deliver active factors or small molecules to promote tissue repair. Preclinical studies of exosomes in tissue engineering and regenerative medicine have been carried in the fields of bone/cartilage repair, nerve regeneration, liver and kidney regeneration, skin repair, vascular tissue regeneration, etc. This review introduces exosomes from the aspects of biogenesis, composition, identification, and isolation, and focuses on the development status of scaffold materials for exosome delivery. In addition, we highlight examples of exosome-laden scaffolds for preclinical applications in tissue repair. We look forward to the broad application prospects of exosome-laden scaffolds.
Collapse
Affiliation(s)
- Jianghong Huang
- Department of Orthopedics, Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen 518035, China and Tsinghua University Shenzhen International Graduate School, Innovation Leading Engineering Doctor, Class 9 of 2020, Shenzhen, 518055, China
| | - Jianyi Xiong
- Department of Orthopedics, Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen 518035, China
| | - Lei Yang
- Department of Orthopedics, Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen 518035, China
| | - Jun Zhang
- Tsinghua University Shenzhen International Graduate School, Innovation Leading Engineering Doctor, Class 9 of 2020, Shenzhen, 518055, China
| | - Shuqing Sun
- Tsinghua University Shenzhen International Graduate School, Institute of Biomedicine and Health Engineering, Shenzhen, 518055, China
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare & Shenzhen Institute of Mental Health, Shenzhen, 518020, China.
| |
Collapse
|
144
|
Wang W, Liu J, Yang M, Qiu R, Li Y, Bian S, Hao B, Lei B. Intravitreal Injection of an Exosome-Associated Adeno-Associated Viral Vector Enhances Retinoschisin 1 Gene Transduction in the Mouse Retina. Hum Gene Ther 2021; 32:707-716. [PMID: 33832349 DOI: 10.1089/hum.2020.328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To investigate whether exosome-associated adeno-associated virus (AAV) retinoschisin 1 (RS1) vector improved the transduction efficiency of RS1 in the mouse retina. pAAV2-RS1-ZsGreen plasmid was constructed by homologous recombination. Exosome-associated AAV vectors containing human RS1 gene (exosome-associated AAV [exo-AAV]2-RS1-ZsGreen) were isolated from producer cells' supernatant, and confirmed by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. In vitro, HEK-293T cells were transduced with AAV2-RS1-ZsGreen and exo-AAV2-RS1-ZsGreen. In vivo, 1 μL of AAV2-RS1-ZsGreen or 1 μL exo-AAV2-RS1-ZsGreen (2 × 108 genome copies/μL) was injected intravitreally into the C57BL/6J mouse eyes. Phosphate buffer saline was injected as controls. The mRNA and the protein expression in the retina were detected. Exo-AAV2-RS1-ZsGreen possessed lipid bilayers, a saucer-like structures and an average of 120 nm particle size. The expression of RS1 and ZsGreen in exo-AAV2-RS1-ZsGreen group were 7.6 times and 5.7 times that of AAV2-RS1-ZsGreen group in HEK-293T cells, respectively. Furthermore, RS1 protein expression increased by 11.8 times in HEK-293T cells. Intravitreal injection of exo-AAV significantly increased the transduction efficiency of RS1 than AAV. Exo-AAV may be a powerful gene delivery system for gene therapy of X-link retinoschisis as well as other inherited retina degenerations.
Collapse
Affiliation(s)
- Weiping Wang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jingyang Liu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mingzhu Yang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ruiqi Qiu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ya Li
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shasha Bian
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bingtao Hao
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
145
|
Extracellular Vesicle Application as a Novel Therapeutic Strategy for Ischemic Stroke. Transl Stroke Res 2021; 13:171-187. [PMID: 33982152 DOI: 10.1007/s12975-021-00915-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Ischemic stroke (IS) accounts for most of the cases of stroke onset, and due to short therapeutic time window for thrombolysis and numerous limited treatment measures and contraindications, lots of patients cannot receive satisfying therapeutic effects resulting in high disability and mortality worldly. In recent years, extracellular vesicles (EVs), as nanosized membrane-structured vesicles secreted from almost all cells, especially from stem/progenitor cells, have been reported to exert significant beneficial effects on IS from multiple approaches and notably ameliorate neurological outcome. Moreover, based on nano-size and lipid bilayer structure, EVs can easily penetrate the blood-brain barrier and migrate into the brain. In this review, we mainly systematically summarize the therapeutic effects of EVs on IS and explore their potential applications. Simultaneously, we also discuss administration routines, dosages, experimental observation time, and some key issues of EV application during IS treatment. It contributes to a comprehensive understanding of the progress of EV treatment for IS and providing confident evidence for further EV clinical application widely.
Collapse
|
146
|
Tan Y, Bian Y, Song Y, Zhang Q, Wan X. Exosome-Contained APOH Associated With Antiphospholipid Syndrome. Front Immunol 2021; 12:604222. [PMID: 34040601 PMCID: PMC8143051 DOI: 10.3389/fimmu.2021.604222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Background Antiphospholipid syndrome (APS) is a systemic autoimmune disease that can lead to thrombosis and/or pregnancy complications. Exosomes, membrane-encapsulated vesicles that are released into the extracellular environment by many types of cells, can carry signals to recipient cells to affect angiogenesis, apoptosis, and inflammation. There is increasing evidence suggesting that exosomes play critical roles in pregnancy. However, the contribution of exosomes to APS is still unknown. Methods Peripheral plasma was collected from healthy early pregnancy patients (NC-exos) and early pregnancy patients with APS (APS-exos) for exosome extraction and characterization. The effect of exosomes from different sources on pregnancy outcomes was determined by establishing a mouse pregnancy model. Following the coincubation of exosomes and human umbilical vein endothelial cells (HUVECs), functional tests examined the features of APS-exos. The APS-exos and NC-exos were analyzed by quantitative proteomics of whole protein tandem mass tag (TMT) markers to explore the different compositions and identify key proteins. After incubation with HUVECs, functional tests investigated the characteristics of key exosomal proteins. Western blot analysis was used to identify the key pathways. Results In the mouse model, APS-exos caused an APS-like birth outcome. In vitro experiments showed that APS-exos inhibited the migration and tube formation of HUVECs. Quantitative proteomics analysis identified 27 upregulated proteins and 9 downregulated proteins in APS-exos versus NC-exos. We hypothesized that apolipoprotein H (APOH) may be a core protein, and the analysis of clinical samples was consistent with finding from the proteomic TMT analysis. APOH-exos led to APS-like birth outcomes. APOH-exos directly enter HUVECs and may play a role through the phospho-extracellular signal-regulated kinase pathway. Conclusions Our study suggests that both APS-exos and APOH-exos impair vascular development and lead to pregnancy complications. APOH-exos may be key actors in the pathogenesis of APS. This study provides new insights into the pathogenesis of APS and potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Integrated Traditional Chinese Medicine (TCM) & Western Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiding Bian
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunfeng Song
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinhua Zhang
- Department of Integrated Traditional Chinese Medicine (TCM) & Western Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
147
|
Perocheau D, Touramanidou L, Gurung S, Gissen P, Baruteau J. Clinical applications for exosomes: Are we there yet? Br J Pharmacol 2021; 178:2375-2392. [PMID: 33751579 PMCID: PMC8432553 DOI: 10.1111/bph.15432] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/18/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a subset of extracellular vesicles essential for cell-cell communication in health and disease with the ability to transport nucleic acids, functional proteins and other metabolites. Their clinical use as diagnostic biomarkers and therapeutic carriers has become a major field of research over recent years, generating rapidly expanding scientific interest and financial investment. Their reduced immunogenicity compared to liposomes or viral vectors and their ability to cross major physiological barriers like the blood-brain barrier make them an appealing and innovative option as biomarkers and therapeutic agents. Here, we review the latest clinical developments of exosome biotechnology for diagnostic and therapeutic purposes, including the most recent COVID-19-related exosome-based clinical trials. We present current exosome engineering strategies for optimal clinical safety and efficacy, and assess the technology developed for good manufacturing practice compliant scaling up and storage approaches along with their limitations in pharmaceutical industry.
Collapse
Affiliation(s)
- Dany Perocheau
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Loukia Touramanidou
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sonam Gurung
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paul Gissen
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK.,Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Julien Baruteau
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK.,Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
148
|
Jia X, Huang G, Wang S, Long M, Tang X, Feng D, Zhou Q. Extracellular vesicles derived from mesenchymal stem cells containing microRNA-381 protect against spinal cord injury in a rat model via the BRD4/WNT5A axis. Bone Joint Res 2021; 10:328-339. [PMID: 34024119 PMCID: PMC8160032 DOI: 10.1302/2046-3758.105.bjr-2020-0020.r1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIMS Non-coding microRNA (miRNA) in extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) may promote neuronal repair after spinal cord injury (SCI). In this paper we report on the effects of MSC-EV-microRNA-381 (miR-381) in a rodent model of SCI. METHODS In the current study, the luciferase assay confirmed a binding site of bromodomain-containing protein 4 (BRD4) and Wnt family member 5A (WNT5A). Then we detected expression of miR-381, BRD4, and WNT5A in dorsal root ganglia (DRG) cells treated with MSC-isolated EVs and measured neuron apoptosis in culture by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. A rat model of SCI was established to detect the in vivo effect of miR-381 and MSC-EVs on SCI. RESULTS We confirmed an interaction between miR-381 and BRD4, and showed that miR-381 overexpression inhibited the expression of BRD4 in DRG cells as well as the apoptosis of DRG cells through WNT5A via activation of Ras homologous A (RhoA)/Rho-kinase activity. Moreover, treatment of MSC-EVs rescued neuron apoptosis and promoted the recovery of SCI through inhibition of the BRD4/WNT5A axis. CONCLUSION Taken altogether, miR-381 derived from MSC-EVs can promote the recovery of SCI through BRD4/WNT5A axis, providing a new perspective on SCI treatment. Cite this article: Bone Joint Res 2021;10(5):328-339.
Collapse
Affiliation(s)
- Xufeng Jia
- The People's Hospital of Jianyang City, Jianyang, China
| | | | - Shaohua Wang
- The People's Hospital of Jianyang City, Jianyang, China
| | - Miao Long
- The People's Hospital of Jianyang City, Jianyang, China
| | - Xiaojun Tang
- The People's Hospital of Jianyang City, Jianyang, China
| | - Daxiong Feng
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qingzhong Zhou
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
149
|
Nozohouri S, Vaidya B, Abbruscato TJ. Exosomes in Ischemic Stroke. Curr Pharm Des 2021; 26:5533-5545. [PMID: 32534564 DOI: 10.2174/1381612826666200614180253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
Abstract
Ischemic stroke, a leading cause of mortality, results in severe neurological outcomes in the patients. Effective stroke therapies may significantly decrease the extent of injury. For this purpose, novel and efficient drug delivery strategies need to be developed. Among a myriad of therapeutic and drug delivery techniques, exosomes have shown promising results in ischemic stroke either by their intrinsic therapeutic characteristics, which can result in angiogenesis and neurogenesis or by acting as competent, biocompatible drug delivery vehicles to transport neurotherapeutic agents into the brain. In this review, we have discussed different methods of exosome isolation and cargo loading techniques, advantages and disadvantages of using exosomes as a drug delivery carrier and the therapeutic applications of exosomes with a focus on ischemic stroke therapy.
Collapse
Affiliation(s)
- Saeideh Nozohouri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX-79106, United States
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX-79106, United States
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX-79106, United States
| |
Collapse
|
150
|
Quantification of Circulating Cell Free Mitochondrial DNA in Extracellular Vesicles with PicoGreen™ in Liquid Biopsies: Fast Assessment of Disease/Trauma Severity. Cells 2021; 10:cells10040819. [PMID: 33917426 PMCID: PMC8067453 DOI: 10.3390/cells10040819] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/25/2022] Open
Abstract
The analysis of circulating cell free DNA (ccf-DNA) is an emerging diagnostic tool for the detection and monitoring of tissue injury, disease progression, and potential treatment effects. Currently, most of ccf-DNA in tissue and liquid biopsies is analysed with real-time quantitative PCR (qPCR) that is primer- and template-specific, labour intensive and cost-inefficient. In this report we directly compare the amounts of ccf-DNA in serum of healthy volunteers, and subjects presenting with various stages of lung adenocarcinoma, and survivors of traumatic brain injury using qPCR and quantitative PicoGreen™ fluorescence assay. A significant increase of ccf-DNA in lung adenocarcinoma and traumatic brain injury patients, in comparison to the group of healthy human subjects, was found using both analytical methods. However, the direct correlation between PicoGreen™ fluorescence and qPCR was found only when mitochondrial DNA (mtDNA)-specific primers were used. Further analysis of the location of ccf-DNA indicated that the majority of DNA is located within lumen of extracellular vesicles (EVs) and is easily detected with mtDNA-specific primers. We have concluded that due to the presence of active DNases in the blood, the analysis of DNA within EVs has the potential of providing rapid diagnostic outcomes. Moreover, we speculate that accurate and rapid quantification of ccf-DNA with PicoGreen™ fluorescent probe used as a point of care approach could facilitate immediate assessment and treatment of critically ill patients.
Collapse
|