101
|
Silva KMR, França DCH, de Queiroz AA, Fagundes-Triches DLG, de Marchi PGF, Morais TC, Honorio-França AC, França EL. Polarization of Melatonin-Modulated Colostrum Macrophages in the Presence of Breast Tumor Cell Lines. Int J Mol Sci 2023; 24:12400. [PMID: 37569777 PMCID: PMC10419558 DOI: 10.3390/ijms241512400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Human colostrum and milk contain diverse cells and soluble components that have the potential to act against tumors. In breast cancer, macrophages play a significant role in immune infiltration and contribute to the progression and spread of tumors. However, studies suggest that these cells can be reprogrammed to act as an antitumor immune response. This study aimed to evaluate the levels of melatonin and its receptors, MT1 (melatonin receptor 1) and MT2 (melatonin receptor 2), in colostrum and assess the differentiation and polarization of the colostrum macrophages modulated by melatonin in the presence of breast tumor cells. Colostrum samples were collected from 116 mothers and tested for their melatonin and receptor levels. The colostrum cells were treated with or without melatonin and then cultured for 24 h in the presence or absence of breast tumor cells. The results showed that melatonin treatment increased the expression of MT1 and MT2 in the colostrum cells. Furthermore, melatonin treatment increased the percentage of M1 macrophages and decreased the percentage of M2 macrophages. When the colostrum macrophages were cocultured with breast tumor cells, melatonin reduced the percentage of both macrophage phenotypes and the cytokines tumor necrosis factor-alpha (TNF-α) and interleukin 8 (IL-8). These data suggest that melatonin can regulate the inflammatory process via M1 macrophages in the tumor microenvironment and, simultaneously, the progression of M2 macrophages that favor tumorigenesis.
Collapse
Affiliation(s)
- Kenia Maria Rezende Silva
- Postgraduate Program in Basic and Applied Immunology and Parasitology, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil (A.A.d.Q.); (D.L.G.F.-T.); (E.L.F.)
| | - Danielle Cristina Honório França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil; (D.C.H.F.); (P.G.F.d.M.)
| | - Adriele Ataídes de Queiroz
- Postgraduate Program in Basic and Applied Immunology and Parasitology, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil (A.A.d.Q.); (D.L.G.F.-T.); (E.L.F.)
| | - Danny Laura Gomes Fagundes-Triches
- Postgraduate Program in Basic and Applied Immunology and Parasitology, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil (A.A.d.Q.); (D.L.G.F.-T.); (E.L.F.)
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil; (D.C.H.F.); (P.G.F.d.M.)
| | - Patrícia Gelli Feres de Marchi
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil; (D.C.H.F.); (P.G.F.d.M.)
| | - Tassiane Cristina Morais
- Postgraduate Program in Public Policies and Local Development, Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória EMESCAM, Vitória 29045-402, ES, Brazil;
| | - Adenilda Cristina Honorio-França
- Postgraduate Program in Basic and Applied Immunology and Parasitology, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil (A.A.d.Q.); (D.L.G.F.-T.); (E.L.F.)
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil; (D.C.H.F.); (P.G.F.d.M.)
| | - Eduardo Luzía França
- Postgraduate Program in Basic and Applied Immunology and Parasitology, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil (A.A.d.Q.); (D.L.G.F.-T.); (E.L.F.)
- Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças 78600-000, MT, Brazil; (D.C.H.F.); (P.G.F.d.M.)
| |
Collapse
|
102
|
Guan Q, Wang Z, Hu K, Cao J, Dong Y, Chen Y. Melatonin Ameliorates Hepatic Ferroptosis in NAFLD by Inhibiting ER Stress via the MT2/cAMP/PKA/IRE1 Signaling Pathway. Int J Biol Sci 2023; 19:3937-3950. [PMID: 37564204 PMCID: PMC10411470 DOI: 10.7150/ijbs.85883] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/04/2023] [Indexed: 08/12/2023] Open
Abstract
Ferroptosis, an iron-dependent cell death form, has recently been observed in the development of non-alcoholic fatty liver disease (NAFLD). Melatonin (Mel) shows potential benefits for preventing and treating liver diseases. Whether and how Mel ameliorates hepatic ferroptosis in NAFLD is not fully understood. Here we established a mouse model of NAFLD induced by long-term high-fat diet (HFD) feeding. We found that Mel treatment ameliorated global metabolic abnormalities and inhibited the progression of NAFLD in mice. Most importantly, Mel supplementation significantly improved HFD-induced iron homeostasis disorders in the liver, including iron overload and ferritin transport disorders. For another, Mel ameliorated HFD-induced hepatic lipid peroxidation. The recuperative role of exogenous Mel on hepatocyte ferroptosis was also observed in PA- or Erastin-treated HepG2 cells. Mechanistically, MT2, but not MT1, was involved in the effect of Mel. Furthermore, Mel treatment inhibited HFD or Erastin-activated ER stress and activated the PKA/IRE1 signaling pathway. Co-expression of p-PKA and p-IRE1 was enhanced by the MT2 antagonist. Inhibitions of PKA and IRE1 respectively improved hepatocyte ferroptosis, and activations of cAMP/PKA reversed Mel's effect on ferroptosis. Collectively, these findings suggest that exogenous Mel inhibits hepatic ferroptosis in NAFLD by ameliorating ER stress through the MT2/cAMP/PKA/IRE1 pathway, proving that Mel is a promising candidate drug for the treatment of hepatic ferroptosis in NAFLD.
Collapse
Affiliation(s)
- Qingyun Guan
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Keyu Hu
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
- Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China
| |
Collapse
|
103
|
Forgham H, Liu L, Zhu J, Javed I, Cai W, Qiao R, Davis TP. Vector enabled CRISPR gene editing - A revolutionary strategy for targeting the diversity of brain pathologies. Coord Chem Rev 2023; 487:215172. [PMID: 37305445 PMCID: PMC10249757 DOI: 10.1016/j.ccr.2023.215172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brain pathologies are considered one of the greatest contributors of death and disability worldwide. Neurodegenerative Alzheimer's disease is the second leading cause of death in adults, whilst brain cancers including glioblastoma multiforme in adults, and pediatric-type high-grade gliomas in children remain largely untreatable. A further compounding issue for patients with brain pathologies is that of long-term neuropsychiatric sequela - as a symptom or arising from high dose therapeutic intervention. The major challenge to effective, low dose treatment is finding therapeutics that successfully cross the blood-brain barrier and target aberrant cellular processes, while having minimum effect on essential cellular processes, and healthy bystander cells. Following over 30 years of research, CRISPR technology has emerged as a biomedical tour de force with the potential to revolutionise the treatment of both neurological and cancer related brain pathologies. The aim of this review is to take stock of the progress made in CRISPR technology in relation to treating brain pathologies. Specifically, we will describe studies which look beyond design, synthesis, and theoretical application; and focus instead on in vivo studies with translation potential. Along with discussing the latest breakthrough techniques being applied within the CRISPR field, we aim to provide a prospective on the knowledge gaps that exist and challenges that still lay ahead for CRISPR technology prior to successful application in the brain disease treatment field.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Liwei Liu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin – Madison, Madison, WI, USA
| | - Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas P. Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
104
|
Labani N, Gbahou F, Noblet M, Masri B, Broussaud O, Liu J, Jockers R. Pistacia vera Extract Potentiates the Effect of Melatonin on Human Melatonin MT 1 and MT 2 Receptors with Functional Selectivity. Pharmaceutics 2023; 15:1845. [PMID: 37514032 PMCID: PMC10386454 DOI: 10.3390/pharmaceutics15071845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Melatonin is a tryptophan derivative synthesized in plants and animals. In humans, melatonin acts on melatonin MT1 and MT2 receptors belonging to the G protein-coupled receptor (GPCR) family. Synthetic melatonin receptor agonists are prescribed for insomnia and depressive and circadian-related disorders. Here, we tested 25 commercial plant extracts, reported to have beneficial properties in sleep disorders and anxiety, using cellular assays (2─[125I]iodomelatonin binding, cAMP inhibition, ERK1/2 activation and β-arrestin2 recruitment) in mock-transfected and HEK293 cells expressing MT1 or MT2. Various melatonin receptor-dependent and -independent effects were observed. Extract 18 (Ex18) from Pistacia vera dried fruits stood out with very potent effects in melatonin receptor expressing cells. The high content of endogenous melatonin in Ex18 (5.28 ± 0.46 mg/g extract) is consistent with this observation. Ex18 contains an additional active principle that potentiates the effect of melatonin on Gi protein-dependent pathways but not on β-arrestin2 recruitment. Further active principles potentiating exogenous melatonin were detected in several extracts. In conclusion, we identified plant extracts with various effects in GPCR-based binding and signalling assays and identified high melatonin levels and a melatonin-potentiating activity in Pistacia vera dried fruit extracts that might be of therapeutic potential.
Collapse
Affiliation(s)
- Nedjma Labani
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Institut Cochin, CNRS, INSERM, University of Paris, F-75014 Paris, France
| | - Florence Gbahou
- Institut Cochin, CNRS, INSERM, University of Paris, F-75014 Paris, France
| | - Marc Noblet
- Science Hub, Sanofi Consumer Healthcare, F-75017 Paris, France
| | - Bernard Masri
- Institut Cochin, CNRS, INSERM, University of Paris, F-75014 Paris, France
| | | | - Jianfeng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ralf Jockers
- Institut Cochin, CNRS, INSERM, University of Paris, F-75014 Paris, France
| |
Collapse
|
105
|
Li L, Tian Z, Chen J, Tan Z, Zhang Y, Zhao H, Wu X, Yao X, Wen W, Chen W, Guo L. Characterization of novel loci controlling seed oil content in Brassica napus by marker metabolite-based multi-omics analysis. Genome Biol 2023; 24:141. [PMID: 37337206 DOI: 10.1186/s13059-023-02984-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Seed oil content is an important agronomic trait of Brassica napus (B. napus), and metabolites are considered as the bridge between genotype and phenotype for physical traits. RESULTS Using a widely targeted metabolomics analysis in a natural population of 388 B. napus inbred lines, we quantify 2172 metabolites in mature seeds by liquid chromatography mass spectrometry, in which 131 marker metabolites are identified to be correlated with seed oil content. These metabolites are then selected for further metabolite genome-wide association study and metabolite transcriptome-wide association study. Combined with weighted correlation network analysis, we construct a triple relationship network, which includes 21,000 edges and 4384 nodes among metabolites, metabolite quantitative trait loci, genes, and co-expression modules. We validate the function of BnaA03.TT4, BnaC02.TT4, and BnaC05.UK, three candidate genes predicted by multi-omics analysis, which show significant impacts on seed oil content through regulating flavonoid metabolism in B. napus. CONCLUSIONS This study demonstrates the advantage of utilizing marker metabolites integrated with multi-omics analysis to dissect the genetic basis of agronomic traits in crops.
Collapse
Affiliation(s)
- Long Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhitao Tian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jie Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaowei Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
106
|
Chang CH, Wu HC, Hsieh YR, Lai WD, Tung TH, Huang JJ, Kao WY, Huang SY. Modulatory effect of n-3 polyunsaturated fatty acids on depressive-like behaviors in rats with chronic sleep deprivation: potential involvement of melatonin receptor pathway and brain lipidome. Food Funct 2023. [PMID: 37334912 DOI: 10.1039/d3fo01452e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Clinical evidence suggests that a bidirectional relationship is present between sleep loss and psychiatric disorders. Both melatonin receptor agonist ramelteon (RMT) and n-3 polyunsaturated fatty acids (n-3 PUFAs) exhibit antidepressant effects, while their underlying molecular mechanisms might be different. Thus, the present study aims to investigate the add-on effects and possible mechanisms of how RMT and different n-3 PUFAs modulate the melatonin receptor pathway as well as brain lipidome to ameliorate the neuropsychiatric behaviors displayed in rats under chronic sleep deprivation. Thirty-one 6-week-old male Wistar rats were divided into five groups: control (C), sleep deprivation (S), sleep deprivation treated with RMT (SR), sleep deprivation treated with RMT and eicosapentaenoic acid (C20:5n-3, EPA) (SRE), and sleep deprivation treated with RMT and docosahexaenoic acid (C22:6n-3, DHA) (SRD) groups. The results reveal that RMT plus EPA alleviated depressive-like behavior when the rats were subjected to the forced swimming test, whereas RMT plus DHA alleviated anxiety-like behavior when the rats were subjected to the elevated plus maze test. The results of a western blot analysis further revealed that compared with the rats in the S group, those in the SRE and SRD groups exhibited a significantly increased expression of MT2 in the prefrontal cortex, with greater benefits observed in the SRE group. In addition, decreased BDNF and TrkB expression levels were upregulated only in the SRE group. Lipidomic analysis further revealed possible involvement of aberrant lipid metabolism and neuropsychiatric behaviors. RMT plus EPA demonstrated promise as having the effects of reversing the levels of the potential biomarkers of depressive-like behaviors. RMT plus EPA or DHA could ameliorate depressive- and anxiety-like behaviors in sleep-deprived rats through the alteration of the lipidome and MT2 receptor pathway in the brain, whereas EPA and DHA exerted a differential effect.
Collapse
Affiliation(s)
- Chia-Hsuan Chang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.
- Diet and Nutrition Department, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Hua-Chien Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yin-Ru Hsieh
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.
| | - Wen-De Lai
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.
| | - Jun-Jie Huang
- Diet and Nutrition Department, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Wei-Yu Kao
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
107
|
Kudara M, Kato-Ishikura E, Ikegaya Y, Matsumoto N. Ramelteon administration enhances novel object recognition and spatial working memory in mice. J Pharmacol Sci 2023; 152:128-135. [PMID: 37169477 DOI: 10.1016/j.jphs.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Ramelteon is used to ameliorate sleep disorders that negatively affect memory performance; however, it remains unknown whether ramelteon strengthens neutral memories, which do not involve reward or punishment. To address this, we monitored behavior of mice treated with vehicle/ramelteon while they performed a novel object recognition task and a spontaneous alternation task. Object memory performance in the novel object recognition task was improved only if ramelteon was injected before training, suggesting that ramelteon specifically enhances the acquisition of object recognition memory. Ramelteon also enhanced spatial working memory in the spontaneous alternation task. Altogether, acute ramelteon treatment enhances memory in quasi-natural contexts.
Collapse
Affiliation(s)
- Mikuru Kudara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Eriko Kato-Ishikura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
108
|
Ramos E, Egea J, López-Muñoz F, Gil-Martín E, Romero A. Therapeutic Potential of Melatonin Counteracting Chemotherapy-Induced Toxicity in Breast Cancer Patients: A Systematic Review. Pharmaceutics 2023; 15:1616. [PMID: 37376065 DOI: 10.3390/pharmaceutics15061616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The purpose of this systematic review is to provide an overview of the existing knowledge on the therapeutic potential of melatonin to counteract the undesirable effects of chemotherapy in breast cancer patients. To this aim, we summarized and critically reviewed preclinical- and clinical-related evidence according to the PRISMA guidelines. Additionally, we developed an extrapolation of melatonin doses in animal studies to the human equivalent doses (HEDs) for randomized clinical trials (RCTs) with breast cancer patients. For the revision, 341 primary records were screened, which were reduced to 8 selected RCTs that met the inclusion criteria. We assembled the evidence drawn from these studies by analyzing the remaining gaps and treatment efficacy and suggested future translational research and clinical trials. Overall, the selected RCTs allow us to conclude that melatonin combined with standard chemotherapy lines would derive, at least, a better quality of life for breast cancer patients. Moreover, regular doses of 20 mg/day seemed to increase partial response and 1-year survival rates. Accordingly, this systematic review leads us to draw attention to the need for more RCTs to provide a comprehensive view of the promising actions of melatonin in breast cancer and, given the safety profile of this molecule, adequate translational doses should be established in further RCTs.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Institute Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute, 28041 Madrid, Spain
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
109
|
Hernández-Cerón M, Chavarria V, Ríos C, Pineda B, Palomares-Alonso F, Rojas-Tomé IS, Jung-Cook H. Melatonin in Combination with Albendazole or Albendazole Sulfoxide Produces a Synergistic Cytotoxicity against Malignant Glioma Cells through Autophagy and Apoptosis. Brain Sci 2023; 13:869. [PMID: 37371349 DOI: 10.3390/brainsci13060869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma is the most aggressive and lethal brain tumor in adults, presenting diffuse brain infiltration, necrosis, and drug resistance. Although new drugs have been approved for recurrent patients, the median survival rate is two years; therefore, new alternatives to treat these patients are required. Previous studies have reported the anticancer activity of albendazole, its active metabolite albendazole sulfoxide, and melatonin; therefore, the present study was performed to evaluate if the combination of melatonin with albendazole or with albendazole sulfoxide induces an additive or synergistic cytotoxic effect on C6 and RG2 rat glioma cells, as well as on U87 human glioblastoma cells. Drug interaction was determined by the Chou-Talalay method. We evaluated the mechanism of cell death by flow cytometry, immunofluorescence, and crystal violet staining. The cytotoxicity of the combinations was mainly synergistic. The combined treatments induced significantly more apoptotic and autophagic cell death on the glioma cell lines. Additionally, albendazole and albendazole sulfoxide inhibited proliferation independently of melatonin. Our data justify continuing with the evaluation of this proposal since the combinations could be a potential strategy to aid in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Miguel Hernández-Cerón
- Doctorate in Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Víctor Chavarria
- Neuroimmunology and Neuro-Oncology Unit, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico
| | - Camilo Ríos
- Doctorate in Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
- Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico
| | - Benjamin Pineda
- Neuroimmunology and Neuro-Oncology Unit, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico
| | | | - Irma Susana Rojas-Tomé
- Neuropsycopharmacology Lab, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico
| | - Helgi Jung-Cook
- Pharmacy Department, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
110
|
Milanowski J, Kozerawski K, Falęcka W, Dudek D, Lisewska B, Lisewski P, Nuszkiewicz J, Wesołowski R, Wojtasik J, Mila-Kierzenkowska C, Szewczyk-Golec K. Changes in the Secretion of Melatonin and Selected Adipokines during the Progression of Parkinson's Disease-Preliminary Studies. Metabolites 2023; 13:metabo13050668. [PMID: 37233709 DOI: 10.3390/metabo13050668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases affecting elderly people. Considering the gap in the literature on melatonin and adipokine levels in PD patients at various stages of the disease, we conducted a study to investigate the levels of selected parameters in PD patients at the disease's early (ES) and advanced (AS) stages. Melatonin, leptin, adiponectin, and resistin concentrations were measured in the blood serum of 20 PD patients without dyskinesia (ES), 24 PD patients with dyskinesia (AS), and 20 healthy volunteers as a control group (CG). The data were analyzed using ANOVA. Melatonin was significantly lower in ES (p < 0.05) and higher in AS patients (p < 0.05) compared to CG. The level of leptin was increased both in ES (p < 0.001) and AS (p < 0.001) versus CG, while resistin was increased only in patients with dyskinesia (p < 0.05). Higher melatonin (p < 0.001) and resistin (p < 0.05) and lower leptin (p < 0.05) levels were found in AS versus ES. The main findings of the study include the changes in inflammatory markers' levels during PD and a surprising increase in melatonin level in dyskinesia patients. Further research is necessary, which will be aimed at modulating the secretion of melatonin and adipokines as a treatment target for PD.
Collapse
Affiliation(s)
- Jan Milanowski
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Kamil Kozerawski
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Weronika Falęcka
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Dominik Dudek
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | | | | | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Roland Wesołowski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Jakub Wojtasik
- Centre for Statistical Analysis, Nicolaus Copernicus University in Toruń, Chopina 12/18 St., 87-100 Toruń, Poland
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| |
Collapse
|
111
|
Haduch A, Bromek E, Kuban W, Daniel WA. The Engagement of Cytochrome P450 Enzymes in Tryptophan Metabolism. Metabolites 2023; 13:metabo13050629. [PMID: 37233670 DOI: 10.3390/metabo13050629] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Tryptophan is metabolized along three main metabolic pathways, namely the kynurenine, serotonin and indole pathways. The majority of tryptophan is transformed via the kynurenine pathway, catalyzed by tryptophan-2,3-dioxygenase or indoleamine-2,3-dioxygenase, leading to neuroprotective kynurenic acid or neurotoxic quinolinic acid. Serotonin synthesized by tryptophan hydroxylase, and aromatic L-amino acid decarboxylase enters the metabolic cycle: serotonin → N-acetylserotonin → melatonin → 5-methoxytryptamine→serotonin. Recent studies indicate that serotonin can also be synthesized by cytochrome P450 (CYP), via the CYP2D6-mediated 5-methoxytryptamine O-demethylation, while melatonin is catabolized by CYP1A2, CYP1A1 and CYP1B1 via aromatic 6-hydroxylation and by CYP2C19 and CYP1A2 via O-demethylation. In gut microbes, tryptophan is metabolized to indole and indole derivatives. Some of those metabolites act as activators or inhibitors of the aryl hydrocarbon receptor, thus regulating the expression of CYP1 family enzymes, xenobiotic metabolism and tumorigenesis. The indole formed in this way is further oxidized to indoxyl and indigoid pigments by CYP2A6, CYP2C19 and CYP2E1. The products of gut-microbial tryptophan metabolism can also inhibit the steroid-hormone-synthesizing CYP11A1. In plants, CYP79B2 and CYP79B3 were found to catalyze N-hydroxylation of tryptophan to form indole-3-acetaldoxime while CYP83B1 was reported to form indole-3-acetaldoxime N-oxide in the biosynthetic pathway of indole glucosinolates, considered to be defense compounds and intermediates in the biosynthesis of phytohormones. Thus, cytochrome P450 is engaged in the metabolism of tryptophan and its indole derivatives in humans, animals, plants and microbes, producing biologically active metabolites which exert positive or negative actions on living organisms. Some tryptophan-derived metabolites may influence cytochrome P450 expression, affecting cellular homeostasis and xenobiotic metabolism.
Collapse
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| |
Collapse
|
112
|
Wang S, Chen K, Wang Y, Wang Z, Li Z, Guo J, Chen J, Liu W, Guo X, Yan G, Liang C, Yu H, Fang S, Yu B. Cardiac-targeted delivery of nuclear receptor RORα via ultrasound targeted microbubble destruction optimizes the benefits of regular dose of melatonin on sepsis-induced cardiomyopathy. Biomater Res 2023; 27:41. [PMID: 37147703 PMCID: PMC10163781 DOI: 10.1186/s40824-023-00377-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/09/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Large-dose melatonin treatment in animal experiments was hardly translated into humans, which may explain the dilemma that the protective effects against myocardial injury in animal have been challenged by clinical trials. Ultrasound-targeted microbubble destruction (UTMD) has been considered a promising drug and gene delivery system to the target tissue. We aim to investigate whether cardiac gene delivery of melatonin receptor mediated by UTMD technology optimizes the efficacy of clinically equivalent dose of melatonin in sepsis-induced cardiomyopathy. METHODS Melatonin and cardiac melatonin receptors in patients and rat models with lipopolysaccharide (LPS)- or cecal ligation and puncture (CLP)-induced sepsis were assessed. Rats received UTMD-mediated cardiac delivery of RORα/cationic microbubbles (CMBs) at 1, 3 and 5 days before CLP surgery. Echocardiography, histopathology and oxylipin metabolomics were assessed at 16-20 h after inducing fatal sepsis. RESULTS We observed that patients with sepsis have lower serum melatonin than healthy controls, which was observed in the blood and hearts of Sprague-Dawley rat models with LPS- or CLP-induced sepsis. Notably, a mild dose (2.5 mg/kg) of intravenous melatonin did not substantially improve septic cardiomyopathy. We found decreased nuclear receptors RORα, not melatonin receptors MT1/2, under lethal sepsis that may weaken the potential benefits of a mild dose of melatonin treatment. In vivo, repeated UTMD-mediated cardiac delivery of RORα/CMBs exhibited favorable biosafety, efficiency and specificity, significantly strengthening the effects of a safe dose of melatonin on heart dysfunction and myocardial injury in septic rats. The cardiac delivery of RORα by UTMD technology and melatonin treatment improved mitochondrial dysfunction and oxylipin profiles, although there was no significant influence on systemic inflammation. CONCLUSIONS These findings provide new insights to explain the suboptimal effect of melatonin use in clinic and potential solutions to overcome the challenges. UTMD technology may be a promisingly interdisciplinary pattern against sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Shanjie Wang
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Heilongjiang Key Laboratory for Accurate Diagnosis and Treatment of Coronary Heart Disease, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Kegong Chen
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ye Wang
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Heilongjiang Key Laboratory for Accurate Diagnosis and Treatment of Coronary Heart Disease, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Zeng Wang
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Heilongjiang Key Laboratory for Accurate Diagnosis and Treatment of Coronary Heart Disease, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Zhaoying Li
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Heilongjiang Key Laboratory for Accurate Diagnosis and Treatment of Coronary Heart Disease, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - JunChen Guo
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Heilongjiang Key Laboratory for Accurate Diagnosis and Treatment of Coronary Heart Disease, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Jianfeng Chen
- Laboratory Animal Center, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Wenhua Liu
- Department of Intensive Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xiaohui Guo
- Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Guangcan Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Chenchen Liang
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Heilongjiang Key Laboratory for Accurate Diagnosis and Treatment of Coronary Heart Disease, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Huai Yu
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Heilongjiang Key Laboratory for Accurate Diagnosis and Treatment of Coronary Heart Disease, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Shaohong Fang
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Heilongjiang Key Laboratory for Accurate Diagnosis and Treatment of Coronary Heart Disease, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China.
| | - Bo Yu
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Heilongjiang Key Laboratory for Accurate Diagnosis and Treatment of Coronary Heart Disease, Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China.
| |
Collapse
|
113
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
114
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
115
|
Belenichev IF, Aliyeva OG, Popazova OO, Bukhtiyarova NV. Involvement of heat shock proteins HSP70 in the mechanisms of endogenous neuroprotection: the prospect of using HSP70 modulators. Front Cell Neurosci 2023; 17:1131683. [PMID: 37138769 PMCID: PMC10150069 DOI: 10.3389/fncel.2023.1131683] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
This analytical review summarizes literature data and our own research on HSP70-dependent mechanisms of neuroprotection and discusses potential pharmacological agents that can influence HSP70 expression to improve neurological outcomes and effective therapy. The authors formed a systemic concepts of the role of HSP70-dependent mechanisms of endogenous neuroprotection aimed at stopping the formation of mitochondrial dysfunction, activation of apoptosis, desensitization of estrogen receptors, reduction of oxidative and nitrosative stress, prevention of morpho-functional changes in brain cells during cerebral ischemia, and experimentally substantiated new target links for neuroprotection. Heat shock proteins (HSPs) are an evolutionarily integral part of the functioning of all cells acting as intracellular chaperones that support cell proteostasis under normal and various stress conditions (hyperthermia, hypoxia, oxidative stress, radiation, etc.). The greatest curiosity in conditions of ischemic brain damage is the HSP70 protein, as an important component of the endogenous neuroprotection system, which, first of all, performs the function of intracellular chaperones and ensures the processes of folding, holding and transport of synthesized proteins, as well as their degradation, both under normoxic conditions and stress-induced denaturation. A direct neuroprotective effect of HSP70 has been established, which is realized through the regulation the processes of apoptosis and cell necrosis due to a long-term effect on the synthesis of antioxidant enzymes, chaperone activity, and stabilization of active enzymes. An increase in the level of HSP70 leads to the normalization of the glutathione link of the thiol-disulfide system and an increase in the resistance of cells to ischemia. HSP 70 is able to activate and regulate compensatory ATP synthesis pathways during ischemia. It was found that in response to the cerebral ischemia formation, HIF-1a is expressed, which initiates the launch of compensatory mechanisms for energy production. Subsequently, the regulation of these processes switches to HSP70, which "prolongs" the action of HIF-1a, and also independently maintains the expression of mitochondrial NAD-dependent malate dehydrogenase activity, thereby maintaining the activity of the malate-aspartate shuttle mechanism for a long time. During ischemia of organs and tissues, HSP70 performs a protective function, which is realized through increased synthesis of antioxidant enzymes, stabilization of oxidatively damaged macromolecules, and direct anti-apoptotic and mitoprotective action. Such a role of these proteins in cellular reactions during ischemia raises the question of the development of new neuroprotective agents which are able to provide modulation/protection of the genes encoding the synthesis of HSP 70 and HIF-1a proteins. Numerous studies of recent years have noted the important role of HSP70 in the implementation of the mechanisms of metabolic adaptation, neuroplasticity and neuroprotection of brain cells, so the positive modulation of the HSP70 system is a perspective concept of neuroprotection, which can improve the efficiency of the treatment of ischemic-hypoxic brain damage and be the basis for substantiating of the feasibility of using of HSP70 modulators as promising neuroprotectors.
Collapse
Affiliation(s)
- Igor F. Belenichev
- Department of Pharmacology and Medical Formulation With Course of Normal Physiology, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Olena G. Aliyeva
- Department of Medical Biology, Parasitology and Genetics, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Olena O. Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Nina V. Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| |
Collapse
|
116
|
Moreno-SanJuan S, Puentes-Pardo JD, Casado J, Escudero-Feliu J, Khaldy H, Arnedo J, Carazo Á, León J. Agomelatine, a Melatonin-Derived Drug, as a New Strategy for the Treatment of Colorectal Cancer. Antioxidants (Basel) 2023; 12:antiox12040926. [PMID: 37107301 PMCID: PMC10135458 DOI: 10.3390/antiox12040926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The potential use of agomelatine as an alternative treatment for colorectal cancer is evaluated in this work. The effect of agomelatine was studied in an in vitro model using two cell lines with different p53 statuses (HCT-116, wild-type p53, and HCT-116 p53 null) and an in vivo xenograft model. The inhibitory effects of agomelatine and melatonin were stronger in the cells harboring the wild-type p53, although in both cell lines, the effect of agomelatine was greater than that of the melatonin. In vivo, only agomelatine was able to reduce the volumes of tumors generated by the HCT-116-p53-null cells. Both treatments induced changes in the rhythmicity of the circadian-clock genes in vitro, albeit with some differences. Agomelatine and melatonin regulated the rhythmicity of Per1-3, Cry1, Sirt1, and Prx1 in the HCT-116 cells. In these cells, agomelatine also regulated Bmal1 and Nr1d2, while melatonin changed the rhythmicity of Clock. In the HCT-116-p53-null cells, agomelatine regulated Per1-3, Cry1, Clock, Nr1d2, Sirt1, and Prx1; however, melatonin only induced changes in Clock, Bmal1, and Sirt1. The differences found in the regulation of the clock genes may explain the greater oncostatic effect of agomelatine in CRC.
Collapse
Affiliation(s)
- Sara Moreno-SanJuan
- Cytometry and Microscopy Research Service, Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Jose D Puentes-Pardo
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- Department of Pharmacy, University of Granada, 18011 Granada, Spain
| | - Jorge Casado
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| | | | - Huda Khaldy
- Fundamental Biology Service, Scientific Instrument Center, University of Granada, 18071 Granada, Spain
| | - Javier Arnedo
- Department of Statistics and Operations Research, University of Granada, 18071 Granada, Spain
| | - Ángel Carazo
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- Clinical Management Unit of Microbiology, San Cecilio University Hospital, 18006 Granada, Spain
| | - Josefa León
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- Clinical Management Unit of Digestive Disease, San Cecilio University Hospital, 18006 Granada, Spain
| |
Collapse
|
117
|
Bell A, Hewins B, Bishop C, Fortin A, Wang J, Creamer JL, Collen J, Werner JK. Traumatic Brain Injury, Sleep, and Melatonin-Intrinsic Changes with Therapeutic Potential. Clocks Sleep 2023; 5:177-203. [PMID: 37092428 PMCID: PMC10123665 DOI: 10.3390/clockssleep5020016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of morbidity in the United States and is associated with numerous chronic sequelae long after the point of injury. One of the most common long-term complaints in patients with TBI is sleep dysfunction. It is reported that alterations in melatonin follow TBI and may be linked with various sleep and circadian disorders directly (via cellular signaling) or indirectly (via free radicals and inflammatory signaling). Work over the past two decades has contributed to our understanding of the role of melatonin as a sleep regulator and neuroprotective anti-inflammatory agent. Although there is increasing interest in the treatment of insomnia following TBI, a lack of standardization and rigor in melatonin research has left behind a trail of non-generalizable data and ambiguous treatment recommendations. This narrative review describes the underlying biochemical properties of melatonin as they are relevant to TBI. We also discuss potential benefits and a path forward regarding the therapeutic management of TBI with melatonin treatment, including its role as a neuroprotectant, a somnogen, and a modulator of the circadian rhythm.
Collapse
Affiliation(s)
- Allen Bell
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Bryson Hewins
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Courtney Bishop
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Amanda Fortin
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Jonathan Wang
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | | | - Jacob Collen
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - J. Kent Werner
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| |
Collapse
|
118
|
Deshpande SN, Simkin DR. Complementary and Integrative Approaches to Sleep Disorders in Children. Child Adolesc Psychiatr Clin N Am 2023; 32:243-272. [PMID: 37147039 DOI: 10.1016/j.chc.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sleep problems are very common in children and adolescents. Chronic insomnia is the leading cause of sleep disorders in children and adolescents. Adjunctive interventions that address low ferritin levels and vitamin D3 deficiency are helpful in children and adolescents. The addition of l-5-hydroxytryptophan, gabadone, l-theanine, Ashwagandha, omega 3 fatty acids, probiotics in bipolar disorder, and children with colic, meditation, and changing from a high-fat diet to a Mediterranean diet are also helpful adjunctive interventions. Actigraphy data should be collected in future sleep studies because subjective data may not indicate the true effect of the intervention.
Collapse
Affiliation(s)
- Swapna N Deshpande
- Department of Psychiatry and Behavioral Sciences, Oklahoma State University, 5310 East 31st Street, Tulsa, OK 74135, USA.
| | - Deborah R Simkin
- Department of Psychiatry, Emory University School of Medicine, 8955 Highway 98 West, Suite 204, Miramar Beach, FL 32550, USA
| |
Collapse
|
119
|
Yu CL, Carvalho AF, Thompson T, Tsai TC, Tseng PT, Tu YK, Yang SN, Yang FC, Chang CH, Hsu CW, Hsu TW, Liang CS. Ramelteon for delirium prevention in hospitalized patients: An updated meta-analysis and trial sequential analysis of randomized controlled trials. J Pineal Res 2023; 74:e12857. [PMID: 36726202 DOI: 10.1111/jpi.12857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023]
Abstract
Although ramelteon has been examined as a relatively new therapeutic option for delirium prevention, current evidence to evaluate its efficacy is limited. We conducted an updated meta-analysis and examine the reliability of existing evidence regarding the effect of ramelteon on delirium prevention in hospitalized patients. Seven major electronic databases were systematically searched to identify randomized controlled trials examining the efficacy of ramelteon in delirium prevention. Data were pooled using a frequentist-restricted maximum-likelihood random-effects model. A trial sequential analysis was performed using relative risk reduction thresholds of 50%. The primary outcome was the incidence of delirium (reported as odds ratio with 95% confidence intervals). The secondary outcomes were the days of delirium, all-cause mortality, and all-cause discontinuation. Of 187 potentially eligible studies identified, 8 placebo-controlled randomized controlled trials (n = 587) were included. This updated meta-analysis showed that ramelteon was associated with lower odds of delirium occurrence than placebo (0.50; 0.29-0.86; I2 = 17.48%). In trial sequential analysis, the effect of ramelteon across the superiority boundary when using a relative risk reduction threshold ranging from 40% to 60%. In subgroup analyses, ramelteon compared with placebo was associated with lower odds of delirium occurrence in the elderly group (k = 5; 0.28; 0.09-0.85; I2 = 27.93%) and multiple dosage group (k = 5; 0.34; 0.14-0.82; I2 = 44.24%) but not in the non-elderly and non-multiple dosage groups. When considering surgical patients and medical patients separately, ramelteon showed a trend in the treatment of delirium prevention in both groups, while these findings were not statistically significant. No significant between-group differences were found in the secondary outcomes. The current meta-analysis provides updated and reliable evidence that ramelteon, in comparison with placebo, reduces the risk of delirium among hospitalized patients.
Collapse
Affiliation(s)
- Chia-Ling Yu
- Department of Pharmacy, Chang-Gung Memorial Hospital, Linkou, Taiwan
| | - Andre F Carvalho
- IMPACT (Innovation in Mental and Physical Health and Clinical Treatment) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Trevor Thompson
- Centre for Chronic Illness and Ageing, University of Greenwich, London, UK
| | - Tzu-Cheng Tsai
- Department of Pharmacy, Chang-Gung Memorial Hospital, Linkou, Taiwan
| | - Ping-Tao Tseng
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung City, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Nian Yang
- Department of Psychiatry, National Defense Medical Centre Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan
- Department of Psychiatry, Armed Forces Taoyuan General Hospital, Taoyuan, Taiwan
- Graduate Institute of Health and Welfare Policy, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, National Defense Medical Centre, Tri-Service General Hospital, Taipei, Taiwan
| | - Cheng-Ho Chang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tien-Wei Hsu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, National Defense Medical Centre Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan
- Department of Psychiatry, National Defense Medical Centre, Taipei, Taiwan
| |
Collapse
|
120
|
Gao Y, Wang T, Cheng Y, Wu Y, Zhu L, Gu Z, Wu Y, Cai L, Wu Y, Zhang Y, Gao C, Li L, Li J, Li Q, Wang Z, Wang Y, Wang F, Luo C, Tao L. Melatonin ameliorates neurological deficits through MT2/IL-33/ferritin H signaling-mediated inhibition of neuroinflammation and ferroptosis after traumatic brain injury. Free Radic Biol Med 2023; 199:97-112. [PMID: 36805045 DOI: 10.1016/j.freeradbiomed.2023.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Although traumatic brain injury (TBI) is a common cause of death and disability worldwide, there is currently a lack of effective therapeutic drugs and targets. To reveal the complex pathophysiologic mechanisms of TBI, we performed transcriptome analysis of the mouse cerebral cortex and immunohistochemical analysis of human cerebral tissues. The genes Mt1, Mt2, Il33, and Fth1 were upregulated post-TBI and enriched in pathways associated with the inflammatory response, oxidative phosphorylation, and ferroptosis. As an agonist of MT1/2, melatonin (MLT) confers anti-oxidant, anti-inflammatory, and anti-ferroptosis effects after TBI. However, whether these upregulated genes and their corresponding pathways are involved in the neuroprotective effect of MLT remains unclear. In this study, interventions to inhibit MT1/2, IL-33, and ferroptosis (i.e., ferritin H (Fth)-KO) were applied post-TBI. The results showed that MLT attenuated TBI-induced cerebral edema and neurological outcomes by inhibiting inflammation and ferroptosis. Mechanistically, MLT mainly suppressed inflammatory responses and ferroptosis via the activation of MT2 and IL-33 pathways. Building on the previous finding that Fth deletion increases susceptibility to ferroptosis post-TBI, we demonstrated that Fth depletion remarkably exacerbated the post-TBI inflammatory response, and abolished the anti-inflammatory effects of MLT both in vivo and in vitro. Furthermore, the post-TBI anti-inflammatory effect of MLT, which occurs by promoting the polarization of CD206+ macrophages, was dependent on Fth. Taken together, these results clarified that MLT alleviates inflammation- and ferroptosis-mediated brain edema and neurological deficits by activating the MT2/IL-33/Fth pathway, which provides a novel target and theoretical basis for MLT to treat TBI patients.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China; Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Ying Cheng
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yumin Wu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Luwen Zhu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhiya Gu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Youzhuang Wu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Luwei Cai
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yimin Wu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yidan Zhang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Cheng Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Lili Li
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Zufeng Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Ying Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China; The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China.
| | - Luyang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
121
|
Xia AY, Zhu H, Zhao ZJ, Liu HY, Wang PH, Ji LD, Xu J. Molecular Mechanisms of the Melatonin Receptor Pathway Linking Circadian Rhythm to Type 2 Diabetes Mellitus. Nutrients 2023; 15:nu15061406. [PMID: 36986139 PMCID: PMC10052080 DOI: 10.3390/nu15061406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Night-shift work and sleep disorders are associated with type 2 diabetes (T2DM), and circadian rhythm disruption is intrinsically involved. Studies have identified several signaling pathways that separately link two melatonin receptors (MT1 and MT2) to insulin secretion and T2DM occurrence, but a comprehensive explanation of the molecular mechanism to elucidate the association between these receptors to T2DM, reasonably and precisely, has been lacking. This review thoroughly explicates the signaling system, which consists of four important pathways, linking melatonin receptors MT1 or MT2 to insulin secretion. Then, the association of the circadian rhythm with MTNR1B transcription is extensively expounded. Finally, a concrete molecular and evolutionary mechanism underlying the macroscopic association between the circadian rhythm and T2DM is established. This review provides new insights into the pathology, treatment, and prevention of T2DM.
Collapse
Affiliation(s)
- An-Yu Xia
- Department of Clinical Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hui Zhu
- Department of Internal Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Zhi-Jia Zhao
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hong-Yi Liu
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Peng-Hao Wang
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Lin-Dan Ji
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo 315211, China
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
- Correspondence: (L.-D.J.); (J.X.)
| | - Jin Xu
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
- Correspondence: (L.-D.J.); (J.X.)
| |
Collapse
|
122
|
Markowska M, Niemczyk S, Romejko K. Melatonin Treatment in Kidney Diseases. Cells 2023; 12:cells12060838. [PMID: 36980179 PMCID: PMC10047594 DOI: 10.3390/cells12060838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Melatonin is a neurohormone that is mainly secreted by the pineal gland. It coordinates the work of the superior biological clock and consequently affects many processes in the human body. Disorders of the waking and sleeping period result in nervous system imbalance and generate metabolic and endocrine derangements. The purpose of this review is to provide information regarding the potential benefits of melatonin use, particularly in kidney diseases. The impact on the cardiovascular system, diabetes, and homeostasis causes melatonin to be indirectly connected to kidney function and quality of life in people with chronic kidney disease. Moreover, there are numerous reports showing that melatonin plays a role as an antioxidant, free radical scavenger, and cytoprotective agent. This means that the supplementation of melatonin can be helpful in almost every type of kidney injury because inflammation, apoptosis, and oxidative stress occur, regardless of the mechanism. The administration of melatonin has a renoprotective effect and inhibits the progression of complications connected to renal failure. It is very important that exogenous melatonin supplementation is well tolerated and that the number of side effects caused by this type of treatment is low.
Collapse
|
123
|
Zhang S, Yao X. Mechanism of action and promising clinical application of melatonin from a dermatological perspective. J Transl Autoimmun 2023; 6:100192. [PMID: 36860771 PMCID: PMC9969269 DOI: 10.1016/j.jtauto.2023.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/28/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Melatonin is the main neuroendocrine product in the pineal gland. Melatonin can regulate circadian rhythm-related physiological processes. Evidence indicates an important role of melatonin in hair follicles, skin, and gut. There appears to be a close association between melatonin and skin disorders. In this review, we focus on the latest research of the biochemical activities of melatonin (especially in the skin) and its promising clinical applications.
Collapse
Key Words
- 5HT, Serotonin
- AAD, Aromatic amino acid decarboxylase
- AANAT/NAT, serotonin-N-acetyltransferase(s)
- Anti-Inflammation
- Antioxidation
- CAT, catalase
- COX-2, Cyclooxygenase-2
- CYP450, cytochrome P450
- Casp-1/3, caspase 1/3
- DNCB, 2,4-dinitrochlorobenzene
- GPx, Glutathione peroxidase
- GSH, Glutathione
- HIOMT, 4-hydroxyindole-O-methyl transferase
- HO-1, heme oxygenase-1
- HSP 70, Heat Shock Protein 70
- IKK-α, IkB kinase-α
- IL-1β, interleukin-1 β
- IL-6, interleukin- 6
- IkB, NF-κ-B inhibitor
- Immunoregulation
- MT, Melatonin
- MT1/2, Melatonin receptor
- Melatonin
- NF-κB, Nuclear factor kappa-B
- NQO1, NAD(P), quinone oxidoreductase 1
- NQO2, NRH, Quinone oxidoreductase 2
- Nrf2, Nuclear erythroid 2-related factor
- Oncostatic mechanism
- PEPT1/2, oligopeptide transporter 1/2
- RNS, Reactive nitrogen species
- ROS, Reactive oxygen species
- RZR-α, Retinoid Z receptor α
- SOD, superoxide dismutase
- Skin barrier
- TPH, tryptophan5-hydroxylase enzymes, including dominant TPH1 and TPH2
- Trp, Tryptophan
- iNOS, Inducible nitric oxide synthase
- γ-GCS, c-glutamylcysteine synthetase
Collapse
Affiliation(s)
| | - Xu Yao
- Corresponding author. Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| |
Collapse
|
124
|
Hu X, Li J, Wang X, Liu H, Wang T, Lin Z, Xiong N. Neuroprotective Effect of Melatonin on Sleep Disorders Associated with Parkinson's Disease. Antioxidants (Basel) 2023; 12:396. [PMID: 36829955 PMCID: PMC9952101 DOI: 10.3390/antiox12020396] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Parkinson's disease (PD) is a complex, multisystem disorder with both neurologic and systemic manifestations, which is usually associated with non-motor symptoms, including sleep disorders. Such associated sleep disorders are commonly observed as REM sleep behavior disorder, insomnia, sleep-related breathing disorders, excessive daytime sleepiness, restless legs syndrome and periodic limb movements. Melatonin has a wide range of regulatory effects, such as synchronizing circadian rhythm, and is expected to be a potential new circadian treatment of sleep disorders in PD patients. In fact, ongoing clinical trials with melatonin in PD highlight melatonin's therapeutic effects in this disease. Mechanistically, melatonin plays its antioxidant, anti-inflammatory, anti-excitotoxity, anti-synaptic dysfunction and anti-apoptotic activities. In addition, melatonin attenuates the effects of genetic variation in the clock genes of Baml1 and Per1 to restore the circadian rhythm. Together, melatonin exerts various therapeutic effects in PD but their specific mechanisms require further investigations.
Collapse
Affiliation(s)
- Xinyu Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinyi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hanshu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
125
|
Dehdari Ebrahimi N, Shojaei-Zarghani S, Taherifard E, Dastghaib S, Parsa S, Mohammadi N, Sabet Sarvestani F, Moayedfard Z, Hosseini N, Safarpour H, Sadeghi A, Azarpira N, Safarpour AR. Protective effects of melatonin against physical injuries to testicular tissue: A systematic review and meta-analysis of animal models. Front Endocrinol (Lausanne) 2023; 14:1123999. [PMID: 36798664 PMCID: PMC9927015 DOI: 10.3389/fendo.2023.1123999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Background Modern societies face infertility as a global challenge. There are certain environmental conditions and disorders that damage testicular tissue and may cause male infertility. Melatonin, as a potential antioxidant, may protect testicular tissue. Therefore, we conducted this systematic review and meta-analysis to evaluate the effects of melatonin in animal models against physical, heat, and ischemic damage to the testicular tissue. Methods PubMed, Scopus, and Web of Science were systematically searched to identify animal trials evaluating the protective effect of melatonin therapy on rodent testicular tissue when it is exposed to physical, thermal, ischemic, or hypobaric oxygen stress. Random-effect modeling was used to estimate the standardized mean difference and 95% confidence intervals based on the pooled data. Additionally, the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool was used to assess the risk of bias. The study protocol was prospectively registered in PROSPERO (CRD42022354599). Results A total of 41 studies were eligible for review out of 10039 records. Studies employed direct heat, cryptorchidism, varicocele, torsion-detorsion, testicular vascular occlusion, hypobaric hypoxia, ischemia-reperfusion, stress by excessive or restraint activity, spinal cord injury, and trauma to induce stress in the subjects. The histopathological characteristics of testicular tissue were generally improved in rodents by melatonin therapy. Based on the pooled data, sperm count, morphology, forward motility, viability, Johnsen's biopsy score, testicular tissue glutathione peroxidase, and superoxide dismutase levels were higher in the melatonin treatment rodent arms. In contrast, the malondialdehyde level in testicular tissue was lower in the treatment rodent arms. The included studies suffered from a high risk of bias in most of the SYRCLE domains. Conclusion This study concludes that melatonin therapy was associated with improved testicular histopathological characteristics, reproductive hormonal panel, and tissue markers of oxidative stress in male rodents with physical, ischemic, and thermal testicular injuries. In this regard, melatonin deserves scientific investigations as a potential protective drug against rodent male infertility. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022354599.
Collapse
Affiliation(s)
| | - Sara Shojaei-Zarghani
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Taherifard
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Parsa
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Mohammadi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zahra Moayedfard
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Hosseini
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heidar Safarpour
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Sadeghi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
126
|
Cui W, Dong J, Wang S, Vogel H, Zou R, Yuan S. Molecular basis of ligand selectivity for melatonin receptors. RSC Adv 2023; 13:4422-4430. [PMID: 36760312 PMCID: PMC9891099 DOI: 10.1039/d2ra06693a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Sleep disorders in adults are related to adverse health effects such as reduced quality of life and increased mortality. About 30-40% of adults are suffering from different sleep disorders. The human melatonin receptors (MT1 and MT2) are family A G protein-coupled receptors that respond to the neurohormone melatonin MEL which regulates circadian rhythm and sleep. Many efforts have been made to develop drugs targeting melatonin receptors to treat insomnia, circadian rhythm disorders, and even cancer. However, designing subtype-selective melatonergic drugs remains challenging due to their high similarities in both sequences and structures. MEL (a function-selective compound with a bulky β-naphthyl group) behaves as an MT2-selective antagonist, whereas it is an agonist of MT1. Here, molecular dynamics simulations were used to investigate the ligand selectivity of MT receptors at the atomic level. We found that the binding conformation of MEL differs in different melatonin receptors. In MT1, the naphthalene ring of MEL forms a structure perpendicular to the membrane surface. In contrast, there is a 130° angle between the naphthalene ring of MEL and the membrane surface in MT2. Because of this conformational difference, the MEL leads to a constant water channel in MT1 which activates the receptor. However, MEL hinders the formation of continuous water channels, resulting in an inactive state of MT2. Furthermore, we found that A1173.29 in MT2 is a crucial amino acid capable of hindering the conformational flip of the MEL molecule. These results, coupled with previous functional data, reveal that although MT1 and MT2 share highly similar orthosteric ligand-binding pockets, they also display distinctive features that could be used to design selective compounds. Our findings provide new insights into functionally selective melatonergic drug development for sleep disorders.
Collapse
Affiliation(s)
- Wenqiang Cui
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Junlin Dong
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Shiyu Wang
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Horst Vogel
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Rongfeng Zou
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Shuguang Yuan
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
127
|
Liu W, Chen Z, Li R, Zheng M, Pang X, Wen A, Yang B, Wang S. High and low dose of luzindole or 4-phenyl-2-propionamidotetralin (4-P-PDOT) reverse bovine granulosa cell response to melatonin. PeerJ 2023; 11:e14612. [PMID: 36684672 PMCID: PMC9851050 DOI: 10.7717/peerj.14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/30/2022] [Indexed: 01/18/2023] Open
Abstract
Background Communication between oocytes and granulosa cells ultimately dictate follicle development or atresia. Melatonin is also involved in follicle development. This study aimed to investigate the effects of melatonin and its receptor antagonists on hormone secretion, as well as gene expression related to hormone synthesis, TGF-β superfamily, and follicle development in bovine granulosa cells, and assess the effects of melatonin in the presence of 4-P-PDOT and luzindole. Methods Bovine ovaries were collected from a local abattoir and follicular fluid (follicle diameter 5-8 mm) was collected for granulosa cell isolation and culture. Granulosa cells and culture medium were collected 48 h after treatment with melatonin at high dose concentrations (10-5 M) and low dose concentrations (10-9 M) in the absence/presence of 4-P-PDOT and luzindole (10-5 M or 10-9 M). Furthermore, the expression level of genes related to hormonal synthesis (CYP11A1, CYP19A1, StAR, and RUNX2), TGF-β superfamily (BMP6, INHA, INHBA, INHBB, and TGFBR3), and development (EGFR, DNMT1A, and FSHR) were detected in each experimental group by real-time quantitative PCR. In addition, the level of hormones in culture medium were detected using ELISA. Results Both 10-5 M and 10-9 M melatonin doses promoted the secretion of inhibin A and progesterone without affecting the production of inhibin B and estradiol. In addition, both promoted the gene expression of INHA, StAR, RUNX2, TGFBR3, EGFR, and DNMT1A, and inhibited the expression of BMP6, INHBB, CYP11A1, CYP19A1, and FSHR. When combined with different doses of 4-P-PDOT and luzindole, they exhibited different effects on the secretion of inhibin B, estradiol, inhibin A, and progesterone, and the expression of CYP19A1, RUNX2, BMP6, INHBB, EGFR, and DNMT1A induced by melatonin. Conclusion High and low dose melatonin receptor antagonists exhibited different effects in regulating hormone secretion and the expression of various genes in response to melatonin. Therefore, concentration effects must be considered when using luzindole or 4-P-PDOT.
Collapse
Affiliation(s)
- Wenju Liu
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, China,Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Chen
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Rui Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Menghao Zheng
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Xunsheng Pang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China,Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
| |
Collapse
|
128
|
Aiello G, Cuocina M, La Via L, Messina S, Attaguile GA, Cantarella G, Sanfilippo F, Bernardini R. Melatonin or Ramelteon for Delirium Prevention in the Intensive Care Unit: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Clin Med 2023; 12:jcm12020435. [PMID: 36675363 PMCID: PMC9863078 DOI: 10.3390/jcm12020435] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Melatonin modulates the circadian rhythm and has been studied as a preventive measure against the development of delirium in hospitalized patients. Such an effect may be more evident in patients admitted to the ICU, but findings from the literature are conflicting. We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs). We assessed whether melatonin or ramelteon (melatonin agonist) reduce delirium incidence as compared to a placebo in ICU patients. Secondary outcomes were ICU length of stay, duration of mechanical ventilation (MV) and mortality. Estimates are presented as risk ratio (RR) or mean differences (MD) with 95% confidence interval (CI). Nine RCTs were included, six of them reporting delirium incidence. Neither melatonin nor ramelteon reduced delirium incidence (RR 0.76 (0.54, 1.07), p = 0.12; I2 = 64%), although a sensitivity analysis conducted adding other four studies showed a reduction in the risk of delirium (RR = 0.67 (95%CI 0.48, 0.92), p = 0.01; I2 = 67). Among the secondary outcomes, we found a trend towards a reduction in the duration of MV (MD -2.80 (-6.06, 0.47), p = 0.09; I2 = 94%) but no differences in ICU-LOS (MD -0.26 (95%CI -0.89, 0.37), p = 0.42; I2 = 75%) and mortality (RR = 0.85 (95%CI 0.63, 1.15), p = 0.30; I2 = 0%). Melatonin and ramelteon do not seem to reduce delirium incidence in ICU patients but evidence is weak. More studies are needed to confirm this finding.
Collapse
Affiliation(s)
- Giuseppe Aiello
- Department Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Micol Cuocina
- Department Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Luigi La Via
- Department of Anesthesiology and Intensive Care, AOU “Policlinico-San Marco”, 95123 Catania, Italy
| | - Simone Messina
- School of Specialization in Anesthesiology and Intensive Care, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Giuseppe A. Attaguile
- Department Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Giuseppina Cantarella
- Department Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Correspondence:
| | - Filippo Sanfilippo
- Department of Anesthesiology and Intensive Care, AOU “Policlinico-San Marco”, 95123 Catania, Italy
| | - Renato Bernardini
- Department Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| |
Collapse
|
129
|
Antitumor effect of melatonin on breast cancer in experimental models: A systematic review. Biochim Biophys Acta Rev Cancer 2023; 1878:188838. [PMID: 36403922 DOI: 10.1016/j.bbcan.2022.188838] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Breast cancer is the most frequent malignant neoplasm in females. While conventional treatments such as chemotherapy and radiotherapy are available, they are highly invasive and toxic to oncological patients. Melatonin is a promising molecule for the treatment of breast cancer with antitumor effects on tumorigenesis and tumor progression. The aim of this systematic review was to synthesize knowledge about the antitumor effect of melatonin on breast cancer in experimental models and propose the main mechanisms of action already described in relation to the processes regulated by melatonin. PubMed, Web of Science, and Embase databases were used. The inclusion criteria were in vitro and in vivo experimental studies that used different formulations of melatonin as a treatment for breast cancer, without year or language restrictions. Risk of bias for studies was assessed using the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool. Data from selected articles were presented as narrative descriptions and tables. Seventy-five articles on different breast cancer cell lines and experimental models treated with melatonin alone, or in combination with other compounds were included. Melatonin showed antitumor effects on proliferative pathways related to the cell cycle and tumorigenesis, tumor death, angiogenesis, and tumor metastasis, as well as on oxidative stress and immune regulatory pathways. These effects were either dependent or independent of melatonin receptors. Herein, we clarify the antitumor action of melatonin on different tumorigenic processes in breast cancer in experimental models. Systematic review registration: PROSPERO database (CRD42022309822/https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022309822).
Collapse
|
130
|
Hirayama J, Hattori A, Takahashi A, Furusawa Y, Tabuchi Y, Shibata M, Nagamatsu A, Yano S, Maruyama Y, Matsubara H, Sekiguchi T, Suzuki N. Physiological consequences of space flight, including abnormal bone metabolism, space radiation injury, and circadian clock dysregulation: Implications of melatonin use and regulation as a countermeasure. J Pineal Res 2023; 74:e12834. [PMID: 36203395 DOI: 10.1111/jpi.12834] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022]
Abstract
Exposure to the space environment induces a number of pathophysiological outcomes in astronauts, including bone demineralization, sleep disorders, circadian clock dysregulation, cardiovascular and metabolic dysfunction, and reduced immune system function. A recent report describing experiments aboard the Space Shuttle mission, STS-132, showed that the level of melatonin, a hormone that provides the biochemical signal of darkness, was decreased during microgravity in an in vitro culture model. Additionally, abnormal lighting conditions in outer space, such as low light intensity in orbital spacecraft and the altered 24-h light-dark cycles, may result in the dysregulation of melatonin rhythms and the misalignment of the circadian clock from sleep and work schedules in astronauts. Studies on Earth have demonstrated that melatonin regulates various physiological functions including bone metabolism. These data suggest that the abnormal regulation of melatonin in outer space may contribute to pathophysiological conditions of astronauts. In addition, experiments with high-linear energy transfer radiation, a ground-based model of space radiation, showed that melatonin may serve as a protectant against space radiation. Gene expression profiling using an in vitro culture model exposed to space flight during the STS-132 mission, showed that space radiation alters the expression of DNA repair and oxidative stress response genes, indicating that melatonin counteracts the expression of these genes responsive to space radiation to promote cell survival. These findings implicate the use of exogenous melatonin and the regulation of endogenous melatonin as countermeasures for the physiological consequences of space flight.
Collapse
Affiliation(s)
- Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences & Division of Health Sciences, Graduate School of Sustainable Systems Science, Komatsu University, Komatsu, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | | | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Masahiro Shibata
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | | | - Sachiko Yano
- Japan Aerospace Exploration Agency, Tsukuba, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University, Noto-cho, Ishikawa, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Japan
| |
Collapse
|
131
|
Banerjee S, Ray S. Circadian medicine for aging attenuation and sleep disorders: Prospects and challenges. Prog Neurobiol 2023; 220:102387. [PMID: 36526042 DOI: 10.1016/j.pneurobio.2022.102387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/17/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Aging causes progressive deterioration of daily rhythms in behavioral and metabolic processes and disruption in the regular sleep-wake cycle. Circadian disruption is directly related to diverse age-induced health abnormalities. Rising evidence from various organisms shows that core clock gene mutations cause premature aging, reduced lifespan, and sleeping irregularities. Improving the clock functions and correcting its disruption by pharmacological interventions or time-regulated feeding patterns could be a novel avenue for effective clinical management of aging and sleep disorders. To this end, many drugs for sleep disorders and anti-aging compounds interact with the core clock machinery and alter the circadian output. Evaluation of dosing time-dependency and circadian regulation of drug metabolism for therapeutic improvement of the existing drugs is another fundamental facet of chronomedicine. Multiple studies have demonstrated dose-dependent manipulation of the circadian period and phase-shifting by pharmacologically active compounds. The chronobiology research field is gradually moving towards the development of novel therapeutic strategies based on targeting the molecular clock or dosing time-oriented medications. However, such translational research ventures would require more experimental evidence from studies on humans. This review discusses the impact of circadian rhythms on aging and sleep, emphasizing the potentiality of circadian medicine in aging attenuation and sleep disorders.
Collapse
Affiliation(s)
- Srishti Banerjee
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
132
|
Wu H, Yi Q, Ma W, Yan L, Guan S, Wang L, Yang G, Tan X, Ji P, Liu G. Genome-wide analysis for the melatonin trait associated genes and SNPs in dairy goat ( Capra hircus) as the molecular breeding markers. Front Genet 2023; 14:1118367. [PMID: 37021000 PMCID: PMC10067595 DOI: 10.3389/fgene.2023.1118367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
Previous studies have reported that the endogenous melatonin level is positively associated with the quality and yield of milk of cows. In the current study, a total of 34,921 SNPs involving 1,177 genes were identified in dairy goats by using the whole genome resequencing bulked segregant analysis (BSA) analysis. These SNPs have been used to match the melatonin levels of the dairy goats. Among them, 3 SNPs has been identified to significantly correlate with melatonin levels. These 3 SNPs include CC genotype 147316, GG genotype 147379 and CC genotype 1389193 which all locate in the exon regions of ASMT and MT2 genes. Dairy goats with these SNPs have approximately 5-fold-higher melatonin levels in milk and serum than the average melatonin level detected in the current goat population. If the melatonin level impacts the milk production in goats as in cows, the results strongly suggest that these 3 SNPs can serve as the molecular markers to select the goats having the improved milk quality and yield. This is a goal of our future study.
Collapse
Affiliation(s)
- Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Qi Yi
- Sanya Institute of China Agricultural University, Sanya, China
| | - Wenkui Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Laiqing Yan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengyu Guan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Likai Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guang Yang
- Sanya Institute of China Agricultural University, Sanya, China
| | - Xinxing Tan
- Inner Mongolia Grassland Hongbao Food Co., Ltd., Bayannaoer, China
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
- *Correspondence: Guoshi Liu,
| |
Collapse
|
133
|
Cruz-Sanabria F, Carmassi C, Bruno S, Bazzani A, Carli M, Scarselli M, Faraguna U. Melatonin as a Chronobiotic with Sleep-promoting Properties. Curr Neuropharmacol 2023; 21:951-987. [PMID: 35176989 PMCID: PMC10227911 DOI: 10.2174/1570159x20666220217152617] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
The use of exogenous melatonin (exo-MEL) as a sleep-promoting drug has been under extensive debate due to the lack of consistency of its described effects. In this study, we conduct a systematic and comprehensive review of the literature on the chronobiotic, sleep-inducing, and overall sleep-promoting properties of exo-MEL. To this aim, we first describe the possible pharmacological mechanisms involved in the sleep-promoting properties and then report the corresponding effects of exo-MEL administration on clinical outcomes in: a) healthy subjects, b) circadian rhythm sleep disorders, c) primary insomnia. Timing of administration and doses of exo-MEL received particular attention in this work. The exo-MEL pharmacological effects are hereby interpreted in view of changes in the physiological properties and rhythmicity of endogenous melatonin. Finally, we discuss some translational implications for the personalized use of exo-MEL in the clinical practice.
Collapse
Affiliation(s)
- Francy Cruz-Sanabria
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa - Italy
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa - Italy
| | - Simone Bruno
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa - Italy
| | - Andrea Bazzani
- Institute of Management, Scuola Superiore Sant’Anna, Pisa – Italy
| | - Marco Carli
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa - Italy
| | - Marco Scarselli
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa - Italy
| | - Ugo Faraguna
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa - Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Pisa, Italy
| |
Collapse
|
134
|
Granado MDJ, Pinato L, Santiago J, Barbalho SM, Parmezzan JEL, Suzuki LM, Cabrini ML, Spressão DRMS, Carneiro de Camargo AL, Guissoni Campos LM. Melatonin receptors and Per1 expression in the inferior olivary nucleus of the Sapajus apella monkey. Front Neurosci 2022; 16:1072772. [PMID: 36605547 PMCID: PMC9809291 DOI: 10.3389/fnins.2022.1072772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Melatonin is a transducer of photic environmental information and participates in the synchronization of various physiological and behavioral phenomena. Melatonin can act directly in several areas of the central nervous system through its membrane receptors coupled to G protein, called MT1 and MT2 receptors. In some structures, such as the retina, hypothalamus and pars tuberalis, the expression of both melatonin receptors shows circadian variations. Melatonin can act in the synchronization of the clock proteins rhythm in these areas. Using the immunohistochemistry technique, we detected the immunoexpression of the melatonin receptors and clock genes clock protein Per1 in the inferior olivary nucleus (ION) of the Sapajus apella monkey at specific times of the light-dark phase. The mapping performed by immunohistochemistry showed expressive immunoreactivity (IR) Per1 with predominance during daytime. Both melatonin receptors were expressed in the ION without a day/night difference. The presence of both melatonin receptors and the Per1 protein in the inferior olivary nucleus can indicate a functional role not only in physiological, as in sleep, anxiety, and circadian rhythm, but also a chronobiotic role in motor control mechanisms.
Collapse
Affiliation(s)
- Marcos Donizete Junior Granado
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | - Luciana Pinato
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marília, Brazil
| | - Jeferson Santiago
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | - Jessica Ellen Lima Parmezzan
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | - Lenita Mayumi Suzuki
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | - Mayara Longui Cabrini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | | | - Ana Letícia Carneiro de Camargo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | - Leila Maria Guissoni Campos
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil,*Correspondence: Leila Maria Guissoni Campos,
| |
Collapse
|
135
|
Ngai ZN, Chok KC, Ng KY, Koh RY, Chye SM. Potential role of melatonin in prevention and treatment of lung cancer. Horm Mol Biol Clin Investig 2022; 43:485-503. [PMID: 35728260 DOI: 10.1515/hmbci-2022-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/14/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer is the second most common cancer and the most lethal cancer worldwide. Melatonin, an indoleamine produced in the pineal gland, shows anticancer effects on a variety of cancers, especially lung cancer. Herein, we clarify the pathophysiology of lung cancer, the association of circadian rhythm with lung, and the relationship between shift work and the incidence of lung cancer. Special focus is placed on the role of melatonin receptors in lung cancer, the relationship between inflammation and lung cancer, control of cell proliferation, apoptosis, autophagy, and immunomodulation in lung cancer by melatonin. A review of the drug synergy of melatonin with other anticancer drugs suggests its usefulness in combination therapy. In summary, the information compiled may serve as a comprehensive reference for the various mechanisms of action of melatonin against lung cancer, as a guide for the design of future experimental research and for advancing melatonin as a therapeutic agent for lung cancer.
Collapse
Affiliation(s)
- Zi Ni Ngai
- School of Health Science, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Kian Chung Chok
- School of Health Science, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
136
|
Wang J, Gao S, Lenahan C, Gu Y, Wang X, Fang Y, Xu W, Wu H, Pan Y, Shao A, Zhang J. Melatonin as an Antioxidant Agent in Stroke: An Updated Review. Aging Dis 2022; 13:1823-1844. [PMID: 36465183 PMCID: PMC9662272 DOI: 10.14336/ad.2022.0405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/05/2022] [Indexed: 08/22/2023] Open
Abstract
Stroke is a devastating disease associated with high mortality and disability worldwide, and is generally classified as ischemic or hemorrhagic, which share certain similar pathophysiological processes. Oxidative stress is a critical factor involved in stroke-induced injury, which not only directly damages brain tissue, but also enhances a series of pathological signaling cascades, contributing to inflammation, brain edema, and neuronal death. To alleviate these serious secondary brain injuries, neuroprotective agents targeting oxidative stress inhibition may serve as a promising treatment strategy. Melatonin is a hormone secreted by the pineal gland, and has various properties, such as antioxidation, anti-inflammation, circadian rhythm modulation, and promotion of tissue regeneration. Numerous animal experiments studying stroke have confirmed that melatonin exerts considerable neuroprotective effects, partially via anti-oxidative stress. In this review, we introduce the possible role of melatonin as an antioxidant in the treatment of stroke based on the latest published studies of animal experiments and clinical research.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Cameron Lenahan
- Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA.
| | - Yichen Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yuanbo Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
137
|
Kim RE, Mabunga DF, Kim HJ, Han SH, Kim HY, Shin CY, Kwon KJ. Novel Therapeutics for Treating Sleep Disorders: New Perspectives on Maydis stigma. Int J Mol Sci 2022; 23:ijms232314612. [PMID: 36498940 PMCID: PMC9740493 DOI: 10.3390/ijms232314612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 11/24/2022] Open
Abstract
Sleep is a restorative period that plays a crucial role in the physiological functioning of the body, including that of the immune system, memory processing, and cognition. Sleep disturbances can be caused by various physical, mental, and social problems. Recently, there has been growing interest in sleep. Maydis stigma (MS, corn silk) is a female maize flower that is traditionally used as a medicinal plant to treat many diseases, including hypertension, edema, and diabetes. It is also used as a functional food in tea and other supplements. β-Sitosterol (BS) is a phytosterol and a natural micronutrient in higher plants, and it has a similar structure to cholesterol. It is a major component of MS and has anti-inflammatory, antidepressive, and sedative effects. However, the potential effects of MS on sleep regulation remain unclear. Here, we investigated the effects of MS on sleep in mice. The effects of MS on sleep induction were determined using pentobarbital-induced sleep and caffeine-induced sleep disruption mouse models. MS extracts decreased sleep latency and increased sleep duration in both the pentobarbital-induced sleep induction and caffeine-induced sleep disruption models compared to the positive control, valerian root extract. The butanol fraction of MS extracts decreased sleep latency time and increased sleep duration. In addition, β-sitosterol enhances sleep latency and sleep duration. Both MS extract and β-sitosterol increased alpha activity in the EEG analysis. We measured the mRNA expression of melatonin receptors 1 and 2 (MT1/2) using qRT-PCR. The mRNA expression of melatonin receptors 1 and 2 was increased by MS extract and β-sitosterol treatment in rat primary cultured neurons and the brain. In addition, MS extract increased the expression of clock genes including per1/2, cry1/2, and Bmal1 in the brain. MS extract and β-sitosterol increased the phosphorylation of ERK1/2 and αCaMKII. Our results demonstrate for the first time that MS has a sleep-promoting effect via melatonin receptor expression, which may provide new scientific evidence for its use as a potential therapeutic agent for the treatment and prevention of sleep disturbance.
Collapse
Affiliation(s)
- Ryeong-Eun Kim
- Department of Neuroscience, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Darine Froy Mabunga
- Department of Neuroscience, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hee Jin Kim
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Seol-Heui Han
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea
| | - Hahn Young Kim
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyoung Ja Kwon
- Department of Neuroscience, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea
- Correspondence: ; Tel.: +82-2-454-5630; Fax: +82-2030-7899
| |
Collapse
|
138
|
Rodríguez-Giraldo M, González-Reyes RE, Ramírez-Guerrero S, Bonilla-Trilleras CE, Guardo-Maya S, Nava-Mesa MO. Astrocytes as a Therapeutic Target in Alzheimer's Disease-Comprehensive Review and Recent Developments. Int J Mol Sci 2022; 23:13630. [PMID: 36362415 PMCID: PMC9654484 DOI: 10.3390/ijms232113630] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/20/2023] Open
Abstract
Alzheimer's disease (AD) is a frequent and disabling neurodegenerative disorder, in which astrocytes participate in several pathophysiological processes including neuroinflammation, excitotoxicity, oxidative stress and lipid metabolism (along with a critical role in apolipoprotein E function). Current evidence shows that astrocytes have both neuroprotective and neurotoxic effects depending on the disease stage and microenvironmental factors. Furthermore, astrocytes appear to be affected by the presence of amyloid-beta (Aβ), with alterations in calcium levels, gliotransmission and proinflammatory activity via RAGE-NF-κB pathway. In addition, astrocytes play an important role in the metabolism of tau and clearance of Aβ through the glymphatic system. In this review, we will discuss novel pharmacological and non-pharmacological treatments focused on astrocytes as therapeutic targets for AD. These interventions include effects on anti-inflammatory/antioxidant systems, glutamate activity, lipid metabolism, neurovascular coupling and glymphatic system, calcium dysregulation, and in the release of peptides which affects glial and neuronal function. According to the AD stage, these therapies may be of benefit in either preventing or delaying the progression of the disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauricio O. Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia
| |
Collapse
|
139
|
Hamid K, Tran VH, Duke RK, Duke CC. Three Australian Lepidosperma Labill. Species as sources of prenylated and oxyprenylated derivatives of piceatannol, resveratrol and pinosylvin: Melatoninergic binding and inhibition of quinone reductase 2. PHYTOCHEMISTRY 2022; 203:113396. [PMID: 35998831 DOI: 10.1016/j.phytochem.2022.113396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Prenylated and hydroxyprenylated piceatannol, resveratrol and pinosylvin derivatives were isolated from resin produced by three Australian Lepidosperma Labill. Species (Cyperaceae). From L. congestum R.Br. one known compound, 3',5'-bis-prenyl-E-resveratrol, and five undescribed compounds were isolated, 3'-O-prenyl-5'-prenyl-E-piceatannol, 5',6'-bis-prenyl-E-piceatannol, 5'-prenyl-E-piceatannol, 3',5'-bis(3-hydroxy-3-methylbutyl)-E-resveratrol and 3',5'-bis-E-hydroxyprenyl-E-resveratrol. From L. gunnii Boeckeler one undescribed compound was isolated, 3'-E-hydroxyprenyl-5'-Z-hydroxyprenyl-E-resveratrol. From L. laterale R.Br. six undescribed compounds were isolated, 3-O-prenyl-E-pinosylvin, 3-O-Z-hydroxyprenyl-E-pinosylvin, 3'-Z-hydroxyprenyl-E-resveratrol, 3-O-Z-hydroxyprenyl-E-resveratrol, 3-O-Z-hydroxyprenyl-4'-O-methyl-E-resveratrol, and 3-O-prenyl-3'-δ,δ'-dihydroxyprenyl-E-resveratrol. Compounds, including a reference compound 3-O-prenyl-3'-O-methyl-E-piceatannol, were screened in an assay for melatoninergic binding to MT1 and MT2 receptors and binding to QR2/MT3 enzyme, and for inhibition of QR2/MT3 in a functional assay. Strong binding was observed for 3-O-Z-hydroxyprenyl-E-resveratrol with a Ki of 0.022 nM and the strongest inhibition of QR2/MT3 observed was for the reference compound, 3-O-prenyl-3'-O-methyl-E-piceatannol, with an inhibition of 61% at 1 μM and 95% at 10 μM. The three most active binders and inhibitors of QR2/MT3 were found to have a common substructure corresponding to 3-O-prenylresveratrol.
Collapse
Affiliation(s)
- Kaiser Hamid
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Van H Tran
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Rujee K Duke
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Colin C Duke
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.
| |
Collapse
|
140
|
Intestinal Flora Affect Alzheimer's Disease by Regulating Endogenous Hormones. Neurochem Res 2022; 47:3565-3582. [DOI: 10.1007/s11064-022-03784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022]
|
141
|
Li TZ, Hu J, Sun JJ, Huang XY, Geng CA, Liu SB, Zhang XM, Chen JJ. Synthesis and biological evaluation of paeoveitol D derivatives as new melatonin receptor agonists with antidepressant activities. RSC Med Chem 2022; 13:1212-1224. [PMID: 36325395 PMCID: PMC9579922 DOI: 10.1039/d2md00156j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/26/2022] [Indexed: 08/01/2023] Open
Abstract
Our previous study demonstrated that paeoveitol D, a benzofuran compound isolated from Paeonia veitchii, displayed activity on MT1 and MT2 receptors with agonistic ratios of 57.5% and 51.6% at a concentration of 1 mM. To explore the structure-activity relationships, 34 paeoveitol D derivatives were synthesized and evaluated for their MT1 and MT2 agonistic activities using the Fluo-8 calcium assay. Among them, 16 and 18 derivatives increased agonistic activities on the MT1 and MT2 receptors, respectively. Compound 18 indicated EC50 values of 21.0 and 298.9 μM on MT1 and MT2 receptors in agonistic dose response curves with Tango assays and shortened immobility time in the forced swim test. The preliminary mechanism-of-action investigation manifested that the antidepressant activity of compound 18 may be mediated by promoting serotonin (5-HT) and dopamine (DA) levels in the mice brain. Compound 18 also showed favorable pharmacokinetic profiles and low toxicity in vivo. These results suggest that compound 18 could be a potential antidepressant agent.
Collapse
Affiliation(s)
- Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming 650201 People's Republic of China
| | - Jing Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming 650201 People's Republic of China
| | - Jin-Jin Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming 650201 People's Republic of China
| | - Xiao-Yan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming 650201 People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming 650201 People's Republic of China
| | - Shu-Bai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming 650201 People's Republic of China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming 650201 People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming 650201 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|
142
|
Abstract
The pineal gland is a interface between light-dark cycle and shows neuro-endocrine functions. Melatonin is the primary hormone of pineal gland, secreted at night. The night-time melatonin peak regulates the physiological functions at dark. Melatonin has several unique features as it synchronises internal rhythm with daily and seasonal variations, regulates circadian rhythm and sleep-wake cycle. Physiologically melatonin involves in detoxification of free radicals, immune functions, neuro-protection, oncostatic effects, cardiovascular functions, reproduction, and foetal development. The precise functions of melatonin are exhibited by specific receptors. In relation to pathophysiology, impaired melatonin secretion promotes sleep disorder, cancer progression, type-2 diabetes, and neurodegenerative diseases. Several reports have highlighted the therapeutic benefits of melatonin specially related to cancer protection, sleep disorder, psychiatric disorders, and jet lag problems. This review will touch the most of the area of melatonin-oriented health impacts and its therapeutic aspects.
Collapse
|
143
|
Bai L, Sun S, Su W, Chen C, Lv Y, Zhang J, Zhao J, Li M, Qi Y, Zhang W, Wang Y. Melatonin inhibits HCC progression through regulating the alternative splicing of NEMO. Front Pharmacol 2022; 13:1007006. [PMID: 36225557 PMCID: PMC9548564 DOI: 10.3389/fphar.2022.1007006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary cancers with limited therapeutic options. Melatonin, a neuroendocrine hormone produced primarily by the pineal gland, demonstrates an anti-cancer effect on a myriad of cancers including HCC. However, whether melatonin could suppress tumor growth through regulating RNA alternative splicing remains largely unknown. Here we demonstrated that melatonin could inhibit the growth of HCC. Mechanistically, melatonin induced transcriptional alterations of genes, which are involved in DNA replication, DNA metabolic process, DNA repair, response to wounding, steroid metabolic process, and extracellular matrix functions. Importantly, melatonin controlled numerous cancer-related RNA alternative splicing events, regulating mitotic cell cycle, microtubule-based process, kinase activity, DNA metabolic process, GTPase regulator activity functions. The regulatory effect of melatonin on alternative splicing is partially mediated by melatonin receptor MT1. Specifically, melatonin regulates the splicing of IKBKG (NEMO), an essential modulator of NF-κB. In brief, melatonin increased the production of the long isoform of NEMO-L with exon 5 inclusion, thereby inhibiting the growth of HepG2 cells. Collectively, our study provides a novel mechanism of melatonin in regulating RNA alternative splicing, and offers a new perspective for melatonin in the inhibition of cancer progression.
Collapse
Affiliation(s)
- Lu Bai
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Siwen Sun
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenmei Su
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chaoqun Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuesheng Lv
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Man Li
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yangfan Qi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- *Correspondence: Yangfan Qi, ; Wenjing Zhang, ; Yang Wang,
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- *Correspondence: Yangfan Qi, ; Wenjing Zhang, ; Yang Wang,
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Yangfan Qi, ; Wenjing Zhang, ; Yang Wang,
| |
Collapse
|
144
|
Hart DA, Zernicke RF, Shrive NG. Homo sapiens May Incorporate Daily Acute Cycles of “Conditioning–Deconditioning” to Maintain Musculoskeletal Integrity: Need to Integrate with Biological Clocks and Circadian Rhythm Mediators. Int J Mol Sci 2022; 23:ijms23179949. [PMID: 36077345 PMCID: PMC9456265 DOI: 10.3390/ijms23179949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Human evolution required adaptation to the boundary conditions of Earth, including 1 g gravity. The bipedal mobility of Homo sapiens in that gravitational field causes ground reaction force (GRF) loading of their lower extremities, influencing the integrity of the tissues of those extremities. However, humans usually experience such loading during the day and then a period of relative unloading at night. Many studies have indicated that loading of tissues and cells of the musculoskeletal (MSK) system can inhibit their responses to biological mediators such as cytokines and growth factors. Such findings raise the possibility that humans use such cycles of acute conditioning and deconditioning of the cells and tissues of the MSK system to elaborate critical mediators and responsiveness in parallel with these cycles, particularly involving GRF loading. However, humans also experience circadian rhythms with the levels of a number of mediators influenced by day/night cycles, as well as various levels of biological clocks. Thus, if responsiveness to MSK-generated mediators also occurs during the unloaded part of the daily cycle, that response must be integrated with circadian variations as well. Furthermore, it is also possible that responsiveness to circadian rhythm mediators may be regulated by MSK tissue loading. This review will examine evidence for the above scenario and postulate how interactions could be both regulated and studied, and how extension of the acute cycles biased towards deconditioning could lead to loss of tissue integrity.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone & Joint Health Research, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
- Correspondence:
| | - Ronald F. Zernicke
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109-5328, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48108-1048, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2099, USA
| | - Nigel G. Shrive
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone & Joint Health Research, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 4V8, Canada
| |
Collapse
|
145
|
Sundram S, Malviya R, Awasthi R. Genetic Causes of Alzheimer's Disease and the Neuroprotective Role of Melatonin in its Management. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-126085. [PMID: 36056839 DOI: 10.2174/1871527321666220901125730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Dementia is a global health concern owing to its complexity, which also poses a great challenge to pharmaceutical scientists and neuroscientists. The global dementia prevalence is approximately 47 million, which may increase by three times by 2050. Alzheimer's disease (AD) is the most common cause of dementia. AD is a severe age-related neurodegenerative disorder characterized by short-term memory loss, aphasia, mood imbalance, and executive function. The etiology of AD is still unknown, and the exact origin of the disease is still under investigation. Aggregation of Amyloid β (Aβ) plaques or neurotoxic Aβo oligomers outside the neuron is the most common cause of AD development. Amyloid precursor protein (APP) processing by β secretase and γ secretase produces abnormal Aβ monomers. This aggregation of Aβ and NFT is promoted by various genes like BACE1, ADAM10, PIN1, GSK-3, APOE, PPARα, etc. Identification of these genes can discover several therapeutic targets that can be useful in studying pathogenesis and underlying treatments. Melatonin modulates the activities of these genes, thereby reducing Aβ production and increasing its clearance. Melatonin also reduces the expression of APP by attenuating cAMP, thereby enhancing the non-amyloidogenic process. Present communication explored and discussed the neuroprotective role of melatonin against Aβ-dependent AD pathogenesis. The manuscript also discussed potential molecular and genetic mechanisms of melatonin in the production and clearance of Aβ that could ameliorate neurotoxicity.
Collapse
Affiliation(s)
- Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Science and Technology, University of Petroleum and Energy Studies (UPES), Energy Acres, Bidholi, Via-Prem Nagar, Dehradun - 248 007, Uttarakhand, India
| |
Collapse
|
146
|
Dujardin S, Pijpers A, Pevernagie D. Prescription Drugs Used in Insomnia. Sleep Med Clin 2022; 17:315-328. [PMID: 36150797 DOI: 10.1016/j.jsmc.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In insomnia, the subjective aspects of the sleep complaint are paramount in the diagnostic criteria. Epidemiologic studies increasingly point to a link between insomnia and somatic morbidity and mortality, but until now, only in the subgroup of objectively poor sleepers. Although pharmacologic treatment might offer some benefits to this subgroup of insomnia patients, to date, there is no evidence that hypnotics can ameliorate their health risks. Further unraveling of the neurobiology and genetics of sleep regulation and the pathophysiology of insomnia will help the development of drugs that not only improve subjective sleep complaints but also objective health outcomes.
Collapse
Affiliation(s)
- Sylvie Dujardin
- Sleep Medicine Center Kempenhaeghe, PO Box 61, Heeze 5590 AB, the Netherlands
| | - Angelique Pijpers
- Sleep Medicine Center Kempenhaeghe, PO Box 61, Heeze 5590 AB, the Netherlands
| | - Dirk Pevernagie
- Sleep Medicine Center Kempenhaeghe, PO Box 61, Heeze 5590 AB, the Netherlands; Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium.
| |
Collapse
|
147
|
Poza JJ, Pujol M, Ortega-Albás JJ, Romero O. Melatonin in sleep disorders. Neurologia 2022; 37:575-585. [PMID: 30466801 DOI: 10.1016/j.nrl.2018.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/06/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022] Open
Abstract
Melatonin is the main hormone involved in the control of the sleep-wake cycle. It is easily synthesisable and can be administered orally, which has led to interest in its use as a treatment for insomnia. Moreover, as production of the hormone decreases with age, in inverse correlation with the frequency of poor sleep quality, it has been suggested that melatonin deficit is at least partly responsible for sleep disorders. Treating this age-related deficit would therefore appear to be a natural way of restoring sleep quality, which is lost as patients age. However, despite the undeniable theoretical appeal of this approach to insomnia, little scientific evidence is available that supports any benefit of this substitutive therapy. Furthermore, the most suitable dose ranges and pharmaceutical preparations for melatonin administration are yet to be clearly defined. This review addresses the physiology of melatonin, the different pharmaceutical preparations, and data on its clinical usefulness.
Collapse
Affiliation(s)
- J J Poza
- Servicio de Neurología, Hospital Universitario Donostia, San Sebastián, España.
| | - M Pujol
- Unidad Multidisciplinar de Sueño, Hospital Universitario de Santa María, Lleida, España
| | - J J Ortega-Albás
- Unidad de Sueño, Hospital General Universitario de Castellón, Castellón, España
| | - O Romero
- Unidad Multidisciplinar de Sueño, Hospital Universitario Vall d́Hebron, Barcelona, España
| |
Collapse
|
148
|
Dana PM, Sadoughi F, Reiter RJ, Mohammadi S, Heidar Z, Mirzamoradi M, Asemi Z. Melatonin as an adjuvant treatment modality with doxorubicin [Biochimie 200 (2022) 1-7]. Biochimie 2022; 200:1-7. [PMID: 35569703 DOI: 10.1016/j.biochi.2022.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Sotoudeh Mohammadi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Heidar
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Mirzamoradi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| |
Collapse
|
149
|
Somalo-Barranco G, Serra C, Lyons D, Piggins HD, Jockers R, Llebaria A. Design and Validation of the First Family of Photo-Activatable Ligands for Melatonin Receptors. J Med Chem 2022; 65:11229-11240. [PMID: 35930058 PMCID: PMC9421648 DOI: 10.1021/acs.jmedchem.2c00717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
Melatonin is a neurohormone released in a circadian manner
with
peak levels at night. Melatonin mediates its effects mainly through
G protein-coupled MT1 and MT2 receptors. Drugs
acting on melatonin receptors are indicated for circadian rhythm-
and sleep-related disorders. Tools to study the activation of these
receptors with high temporal resolution are lacking. Here, we synthesized
a family of light-activatable caged compounds by attaching o-nitrobenzyl (o-NB) or coumarin photocleavable
groups to melatonin indolic nitrogen. All caged compounds showed the
expected decrease in binding affinity for MT1 and MT2. The o-NB derivative MCS-0382 showed the
best uncaging and biological properties, with 250-fold increase in
affinity and potency upon illumination. Generation of melatonin from
MCS-0382 was further demonstrated by its ability to modulate the excitation
of SCN neurons in rat brain slices. MCS-0382 is available to study
melatonin effects in a temporally controlled manner in cellular and
physiological settings.
Collapse
Affiliation(s)
- Gloria Somalo-Barranco
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France.,MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Carme Serra
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain.,SIMChem, Synthesis of High Added Value Molecules, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - David Lyons
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, BS8 1TD Bristol, U.K
| | - Hugh D Piggins
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, BS8 1TD Bristol, U.K
| | - Ralf Jockers
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| |
Collapse
|
150
|
Duffy JF, Wang W, Ronda JM, Czeisler CA. High dose melatonin increases sleep duration during nighttime and daytime sleep episodes in older adults. J Pineal Res 2022; 73:e12801. [PMID: 35436355 PMCID: PMC9288519 DOI: 10.1111/jpi.12801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
Aging is associated with changes in sleep, and improving sleep may have important consequences for the health, cognition, and quality of life of older adults. Many prescription sleep aids increase the risk of nighttime falls, have adverse effects on next-day cognition, and are associated with increased mortality. Melatonin, a hormone secreted at night, increases sleep duration in young adults but only when administered during the day when endogenous levels are low. In a month-long cross-over study, we randomized 24 healthy older (age >55, mean 64.2 ± 6.3 years) participants to receive 2 weeks of placebo and 2 weeks of either a low (0.3 mg) or high (5.0 mg) dose of melatonin 30 min before lights out. Sleep was polysomnographically recorded and was scheduled during both the biological day and night using a forced desynchrony design. Although 0.3 mg melatonin had a trend towards increasing sleep efficiency (SE) overall, this was due to its effects on sleep during the biological day. In contrast, 5 mg melatonin significantly increased SE during both biological day and night, mainly by increasing the duration of Stage 2 non-rapid eye movement sleep and slightly shortening awakenings. Melatonin should be further explored as a sleep aid for older adults.
Collapse
Affiliation(s)
- Jeanne F. Duffy
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA
| | - Wei Wang
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA
| | - Joseph M. Ronda
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA
| | - Charles A. Czeisler
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|