101
|
Hoischen C, Bolshoy A, Gerdes K, Diekmann S. Centromere parC of plasmid R1 is curved. Nucleic Acids Res 2004; 32:5907-15. [PMID: 15528638 PMCID: PMC528805 DOI: 10.1093/nar/gkh920] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The centromere sequence parC of Escherichia coli low-copy-number plasmid R1 consists of two sets of 11 bp iterated sequences. Here we analysed the intrinsic sequence-directed curvature of parC by its migration anomaly in polyacrylamide gels. The 159 bp long parC is strongly curved with anomaly values (k-factors) close to 2. The properties of the parC curvature agree with those of other curved DNA sequences. parC contains two regions of 5-fold repeated iterons separated by 39 bp. We modified 4 bp within this intermediate sequence so that we could analyse the two 5-fold repeated regions independently. The analysis shows that the two repeat regions are not independently curved parts of parC but that the overall curvature is a property of the whole fragment. Since the centromere sequence of an E.coli plasmid as well as eukaryotic centromere sequences show DNA curvature, we speculate that curvature might be a general property of centromeres.
Collapse
Affiliation(s)
- Christian Hoischen
- Institute for Molecular Biotechnology e.V., Beutenbergstr. 11, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
102
|
Gilmour MW, Thomson NR, Sanders M, Parkhill J, Taylor DE. The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid 2004; 52:182-202. [PMID: 15518875 DOI: 10.1016/j.plasmid.2004.06.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Indexed: 11/25/2022]
Abstract
Horizontal transfer of resistance determinants amongst bacteria can be achieved by conjugative plasmid DNA elements. We have determined the complete 274,762 bp sequence of the incompatibility group H (IncH) plasmid R478, originally isolated from the Gram negative opportunistic pathogen Serratia marcescens. This self-transferable extrachromosomal genetic element contains 295 predicted genes, of which 144 are highly similar to coding sequences of IncH plasmids R27 and pHCM1. The regions of similarity among these three IncH plasmids principally encode core plasmid determinants (i.e., replication, partitioning and stability, and conjugative transfer) and we conducted a comparative analysis to define the minimal IncHI plasmid backbone determinants. No resistance determinants are included in the backbone and most of the sequences unique to R478 were contained in a large contiguous region between the two transfer regions. These findings indicate that plasmid evolution occurs through gene acquisition/loss predominantly in regions outside of the core determinants. Furthermore, a modular evolution for R478 was signified by the presence of gene neighbors or operons that were highly related to sequences from a wide range of chromosomal, transposon, and plasmid elements. The conjugative transfer regions are most similar to sequences encoded on SXT, Rts1, pCAR1, R391, and pRS241d. The dual partitioning modules encoded on R478 resemble numerous sequences; including pMT1, pCTX-M3, pCP301, P1, P7, and pB171. R478 also codes for resistance to tetracycline (Tn10), chloramphenicol (cat), kanamycin (aphA), mercury (similar to Tn21), silver (similar to pMG101), copper (similar to pRJ1004), arsenic (similar to pYV), and tellurite (two separate regions similar to IncHI2 ter determinants and IncP kla determinants). Other R478-encoded sequences are related to Tn7, IS26, tus, mucAB, and hok, where the latter is surrounded by insLKJ, and could potentially be involved in post-segregation killing. The similarity to a diverse set of bacterial sequences highlights the ability of horizontally transferable DNA elements to acquire and disseminate genetic traits through the bacterial gene pool.
Collapse
Affiliation(s)
- Matthew W Gilmour
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alta., Canada T6G 2R3
| | | | | | | | | |
Collapse
|
103
|
Engelberg-Kulka H, Sat B, Reches M, Amitai S, Hazan R. Bacterial programmed cell death systems as targets for antibiotics. Trends Microbiol 2004; 12:66-71. [PMID: 15036322 DOI: 10.1016/j.tim.2003.12.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Growing experimental evidence has revealed the existence of programmed cell death (PCD) systems in bacteria. Among these is the mazEF system, which is a regulable suicide module located on the chromosome of E. coli and of some other bacteria, including pathogens. Several well-known antibiotics have recently been found to cause cell death in E. coli by indirectly activating this built-in suicide module. These antibiotics belong to two groups: (i) inhibitors of transcription and/or translation; and (ii) inhibitors of folic acid metabolism resulting in thymine starvation. These data, together with the recent elucidation of the crystal structure of mazEF-directed components, hold promise for a rational chemical design of a new class of antibiotics that directly activate chromosomal suicide modules by interacting with their components. Because multi-drug resistance among bacterial pathogens is becoming more widespread, the results obtained might be useful as a basis for producing alternative drugs.
Collapse
Affiliation(s)
- Hanna Engelberg-Kulka
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | | | | | |
Collapse
|
104
|
Møller-Jensen J, Borch J, Dam M, Jensen RB, Roepstorff P, Gerdes K. Bacterial mitosis: ParM of plasmid R1 moves plasmid DNA by an actin-like insertional polymerization mechanism. Mol Cell 2004; 12:1477-87. [PMID: 14690601 DOI: 10.1016/s1097-2765(03)00451-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacterial DNA segregation takes place in an active and ordered fashion. In the case of Escherichia coli plasmid R1, the partitioning system (par) separates paired plasmid copies and moves them to opposite cell poles. Here we address the mechanism by which the three components of the R1 par system act together to generate the force required for plasmid movement during segregation. ParR protein binds cooperatively to the centromeric parC DNA region, thereby forming a complex that interacts with the filament-forming actin-like ParM protein in an ATP-dependent manner, suggesting that plasmid movement is powered by insertional polymerization of ParM. Consistently, we find that segregating plasmids are positioned at the ends of extending ParM filaments. Thus, the process of R1 plasmid segregation in E. coli appears to be mechanistically analogous to the actin-based motility operating in eukaryotic cells. In addition, we find evidence suggesting that plasmid pairing is required for ParM polymerization.
Collapse
Affiliation(s)
- Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | | | | | |
Collapse
|
105
|
|
106
|
Carpousis AJ. Degradation of targeted mRNAs in Escherichia coli: regulation by a small antisense RNA. Genes Dev 2003; 17:2351-5. [PMID: 14522943 DOI: 10.1101/gad.1147003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaire (CNRS, UMR 5100) and Paul Sabatier Université, 31062 Toulouse, France.
| |
Collapse
|
107
|
Affiliation(s)
- Ronald Micura
- University of Innsbruck, Institute of Organic Chemistry, Innrain 52a, Innsbruck, Austria.
| | | |
Collapse
|
108
|
Abstract
Antibiotic resistance, virulence, and other plasmids in bacteria use toxin-antitoxin gene pairs to ensure their persistence during host replication. The toxin-antitoxin system eliminates plasmid-free cells that emerge as a result of segregation or replication defects and contributes to intra- and interspecies plasmid dissemination. Chromosomal homologs of toxin-antitoxin genes are widely distributed in pathogenic and other bacteria and induce reversible cell cycle arrest or programmed cell death in response to starvation or other adverse conditions. The dissection of the interaction of the toxins with intracellular targets and the elucidation of the tertiary structures of toxin-antitoxin complexes have provided exciting insights into toxin-antitoxin behavior.
Collapse
Affiliation(s)
- Finbarr Hayes
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, UK.
| |
Collapse
|
109
|
Slagter-Jäger JG, Wagner EGH. Loop swapping in an antisense RNA/target RNA pair changes directionality of helix progression. J Biol Chem 2003; 278:35558-63. [PMID: 12819201 DOI: 10.1074/jbc.m304867200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding pathway of the natural antisense RNA CopA to its target CopT proceeds through a hierarchical order of steps. It initiates by reversible loop-loop contacts followed by unidirectional helix progression into the upper stems. This involves extensive breakage of intramolecular base pairs and the subsequent formation of two intermolecular helices, B and B'. Based on the known tRNA anticodon loop structure and on results from the Sok/Hok antisense/target RNA system, it had been suggested that a U-turn (or pi-turn) in the loop of CopT might determine the directionality of helix progression. Data presented here show that the putative U-turn is one of the structural elements of antisense/target RNA pairs required to achieve fast binding kinetics. Swapping of the hypothetical U-turn structure from the target RNA to the antisense RNA retained regulatory performance in vivo and binding rates in vitro but altered the binding pathway by changing the direction in which the initiating helix was extended. In addition, our data indicate that a helical stem immediately adjacent to the target loop sequence is required to provide a scaffold for the U-turn.
Collapse
Affiliation(s)
- Jacoba G Slagter-Jäger
- Institute of Cell and Molecular Biology, Department of Microbiology, Biomedical Center, Uppsala University, Box 596, Husargatan 3, S-75124 Uppsala, Sweden
| | | |
Collapse
|
110
|
Abstract
Extrachromosomal or chromosomally integrated genetic elements are common among prokaryotic and eukaryotic cells. These elements exhibit a variety of 'selfish' strategies to ensure their replication and propagation during the growth of their host cells. To establish long-term persistence, they have to moderate the degree of selfishness so as not to imperil the fitness of their hosts. Earlier genetic and biochemical studies together with more recent cell biological investigations have revealed details of the partitioning mechanisms employed by low copy bacterial plasmids. At least some bacterial chromosomes also appear to rely on similar mechanisms for their own segregation. The 2 mm plasmid of Saccharomyces cerevisiae and related yeast plasmids provide models for optimized eukaryotic selfish DNA elements. Selfish DNA elements exploit the genetic endowments of their hosts without imposing an undue metabolic burden on them. The partitioning systems of these plasmids appear to make use of a molecular trick by which the plasmids feed into the segregation pathway established for the host chromosomes.
Collapse
|
111
|
Abstract
Small RNAs can act to regulate both the synthesis of proteins, by affecting mRNA transcription, translation and stability, and the activity of specific proteins by binding to them. As a result of recent genome-wide screens, around 50 small RNAs have now been identified in Escherichia coli. These include many that require the RNA-binding protein Hfq for their activity; most of these RNAs act by pairing with their target mRNAs. Small RNAs can both positively and negatively regulate translation, can simultaneously regulate multiple mRNA targets, and can change the pattern of polarity within an operon.
Collapse
Affiliation(s)
- Eric Massé
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
112
|
Weaver KE, Weaver DM, Wells CL, Waters CM, Gardner ME, Ehli EA. Enterococcus faecalis plasmid pAD1-encoded Fst toxin affects membrane permeability and alters cellular responses to lantibiotics. J Bacteriol 2003; 185:2169-77. [PMID: 12644486 PMCID: PMC151501 DOI: 10.1128/jb.185.7.2169-2177.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fst is a peptide toxin encoded by the par toxin-antitoxin stability determinant of Enterococcus faecalis plasmid pAD1. Intracellular overproduction of Fst resulted in simultaneous inhibition of all cellular macromolecular synthesis concomitant with cell growth inhibition and compromised the integrity of the cell membrane. Cells did not lyse or noticeably leak intracellular contents but had specific defects in chromosome partitioning and cell division. Extracellular addition of synthetic Fst had no effect on cell growth. Spontaneous Fst-resistant mutants had a phenotype consistent with changes in membrane composition. Interestingly, overproduction of Fst sensitized cells to the lantibiotic nisin, and Fst-resistant mutants were cross-resistant to nisin and the pAD1-encoded cytolysin.
Collapse
Affiliation(s)
- Keith E Weaver
- Division of Basic Biomedical Sciences, School of Medicine, University of South Dakota, Vermillion, South Dakota 57069, USA.
| | | | | | | | | | | |
Collapse
|
113
|
Westwater C, Kasman LM, Schofield DA, Werner PA, Dolan JW, Schmidt MG, Norris JS. Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrob Agents Chemother 2003; 47:1301-7. [PMID: 12654662 PMCID: PMC152521 DOI: 10.1128/aac.47.4.1301-1307.2003] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2002] [Revised: 11/04/2002] [Accepted: 12/27/2002] [Indexed: 11/20/2022] Open
Abstract
The emergence and increasing prevalence of multidrug-resistant bacterial pathogens emphasizes the need for new and innovative antimicrobial strategies. Lytic phages, which kill their host following amplification and release of progeny phage into the environment, may offer an alternative strategy for combating bacterial infections. In this study, however, we describe the use of a nonlytic phage to specifically target and deliver DNA encoding bactericidal proteins to bacteria. To test the concept of using phage as a lethal-agent delivery vehicle, we used the M13 phagemid system and the addiction toxins Gef and ChpBK. Phage delivery of lethal-agent phagemids reduced target bacterial numbers by several orders of magnitude in vitro and in a bacteremic mouse model of infection. Given the powerful genetic engineering tools available and the present knowledge in phage biology, this technology may have potential use in antimicrobial therapies and DNA vaccine development.
Collapse
Affiliation(s)
- Caroline Westwater
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29403, USA.
| | | | | | | | | | | | | |
Collapse
|
114
|
Grady R, Hayes F. Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Mol Microbiol 2003; 47:1419-32. [PMID: 12603745 DOI: 10.1046/j.1365-2958.2003.03387.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enterococcal species of bacteria are now acknowledged as leading causes of bacteraemia and other serious nosocomial infections. However, surprisingly little is known about the molecular mechanisms that promote the segregational stability of antibiotic resistance and other plasmids in these bacteria. Plasmid pRUM (24 873 bp) is a multidrug resistance plasmid identified in a clinical isolate of Enterococcus faecium. A novel proteic-based toxin-antitoxin cassette identified on pRUM was demonstrated to be a functional segregational stability module in both its native host and evolutionarily diverse bacterial species. Induced expression of the toxin protein (Txe) of this system resulted in growth inhibition in Escherichia coli. The toxic effect of Txe was alleviated by co-expression of the antitoxin protein, Axe. Homologues of the axe and txe genes are present in the genomes of a diversity of Eubacteria. These homologues (yefM-yoeB) present in the E. coli chromosome function as a toxin-antitoxin mechanism, although the Axe and YefM antitoxin components demonstrate specificity for their cognate toxin proteins in vivo. Axe-Txe is one of the first functional proteic toxin-antitoxin systems to be accurately described for Gram-positive bacteria.
Collapse
Affiliation(s)
- Ruth Grady
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), PO Box 88, Manchester M60 1QD, UK
| | | |
Collapse
|
115
|
|
116
|
Höbartner C, Micura R. Bistable secondary structures of small RNAs and their structural probing by comparative imino proton NMR spectroscopy. J Mol Biol 2003; 325:421-31. [PMID: 12498793 DOI: 10.1016/s0022-2836(02)01243-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigate 25-34 nucleotide RNA sequences, that have been rationally designed to adopt two different secondary structures that are in thermodynamic equilibrium. Experimental evidence for the co-existence of the two conformers results from the NH...N 1H NMR spectra. When compared to the NH...N 1H NMR spectra of appropriate reference sequences the equilibrium position is easily quantifiable even without the assignment of the individual NH resonances. The reference sequences represent several Watson-Crick base-paired double helical segments, each encountered in either of the two conformers of the bistable target sequence. In addition, we rationalize the influence of nucleotide mutations on the equilibrium position of one of the bistable RNA sequences. The approach further allows a detailed thermodynamic analysis and the evaluation of secondary structure predictions for multistable RNAs obtained by computational methods.
Collapse
Affiliation(s)
- Claudia Höbartner
- Institute of Organic Chemistry, Leopold Franzens University, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | |
Collapse
|
117
|
Affiliation(s)
- Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA.
| |
Collapse
|
118
|
Abstract
The search for small RNAs which might act as riboregulators became successful over the past two years both in prokaryotes and in eukaryotes. Moreover, artificially designed antisense RNAs have become powerful tools to downregulate the expression of targeted genes. It seems that antisense RNAs as regulatory molecules are most likely to be found everywhere. However, the first naturally occuring antisense RNAs were identified in plasmids and other prokaryotic accessory DNA elements. The thorough and detailed analyses of these systems have provided deep insights into structure and function of prokaryotic antisense RNAs and the kinetics of antisense/sense RNA interaction. Here, I focus on the role of antisense RNAs in plasmid replication and maintenance.
Collapse
Affiliation(s)
- Sabine Brantl
- Institut für Molekularbiologie, Friedrich-Schiller-Universität Jena, Winzerlaer Str. 10, Jena D-07745, Germany.
| |
Collapse
|
119
|
Camacho AG, Misselwitz R, Behlke J, Ayora S, Welfle K, Meinhart A, Lara B, Saenger W, Welfle H, Alonso JC. In vitro and in vivo stability of the epsilon2zeta2 protein complex of the broad host-range Streptococcus pyogenes pSM19035 addiction system. Biol Chem 2002; 383:1701-13. [PMID: 12530535 DOI: 10.1515/bc.2002.191] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Streptococcus pyogenes pSM19035-encoded epsilon (10.7 kDa) and zeta (32.4 kDa) proteins are necessary to secure stable plasmid inheritance in bacteria, with zeta acting as toxin that kills plasmid-deprived cells and epsilon as an antitoxin that neutralises the activity of zeta. The epsilon and zeta proteins co-purify as a stable complex that, according to analytical ultracentrifugation and gel filtration, exists as epsilon2zeta2 heterotetramer in solution. Co-crystals of the epsilon2zeta2 complex contain epsilon and zeta in 1:1 molar ratio. Unfolding studies monitoring circular dichroic and fluorescence changes show that the zeta protein has a significantly lower thermodynamic stability than the epsilon protein both in free state and in the complex. Proteolytic studies indicate that zeta protein is more stable in the epsilon2zeta2 complex than in the free state. In vivo studies reveal a short half-life of the epsilon antitoxin (-18 min) and a long lifetime of the zeta toxin (>60 min). When transcription-translation of a plasmid containing the epsilon and zeta genes was inhibited, cell death was observed after a short lag phase that correlates with the disappearance of the epsilon protein from the background.
Collapse
Affiliation(s)
- Ana G Camacho
- Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnología, C.S.I.C., E-28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
Many biologically active RNAs show a switch in their secondary structure, which is accompanied by changes in their function. Such changes in secondary structure often require trans-acting factors, e.g. RNA chaperones. However, several biologically active RNAs do not require trans-acting factors for this structural switch, which is therefore indicated here as a "self-induced switch". These self-induced structural switches have several characteristics in common. They all start from a metastable structure, which is maintained for some time allowing or blocking a particular function of the RNA. Hereafter, a structural element becomes available, e.g. during transcription, triggering a rapid transition into a stable conformation, which again is accompanied by either a gain or loss of function. A further common element of this type of switches is the involvement of a branch migration or strand displacement reaction, which lowers the energy barrier of the reaction sufficiently to allow rapid refolding. Here, we review a number of these self-induced switches in RNA secondary structure as proposed for several systems. A general model for this type of switches is presented, showing its importance in the biology of functionally active RNAs.
Collapse
Affiliation(s)
- Jord H A Nagel
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
121
|
Kawano M, Oshima T, Kasai H, Mori H. Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli. Mol Microbiol 2002; 45:333-49. [PMID: 12123448 DOI: 10.1046/j.1365-2958.2002.03042.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genome sequence analyses of Escherichia coli K-12 revealed four copies of long repetitive elements. These sequences are designated as long direct repeat (LDR) sequences. Three of the repeats (LDR-A, -B, -C), each approximately 500 bp in length, are located as tandem repeats at 27.4 min on the genetic map. Another copy (LDR-D), 450 bp in length and nearly identical to LDR-A, -B and -C, is located at 79.7 min, a position that is directly opposite the position of LDR-A, -B and -C. In this study, we demonstrate that LDR-D encodes a 35-amino-acid peptide, LdrD, the overexpression of which causes rapid cell killing and nucleoid condensation of the host cell. Northern blot and primer extension analysis showed constitutive transcription of a stable mRNA (approximately 370 nucleotides) encoding LdrD and an unstable cis-encoded antisense RNA (approximately 60 nucleotides), which functions as a trans-acting regulator of ldrD translation. We propose that LDR encodes a toxin-antitoxin module. LDR-homologous sequences are not pre-sent on any known plasmids but are conserved in Salmonella and other enterobacterial species.
Collapse
Affiliation(s)
- Mitsuoki Kawano
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | |
Collapse
|
122
|
Nagel JHA, Gultyaev AP, Oistämö KJ, Gerdes K, Pleij CWA. A pH-jump approach for investigating secondary structure refolding kinetics in RNA. Nucleic Acids Res 2002; 30:e63. [PMID: 12087188 PMCID: PMC117070 DOI: 10.1093/nar/gnf057] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been shown that premature translation of the plasmid-mediated toxin in hok/sok of plasmid R1 and pnd/pndB of plasmid R483 is prevented during transcription of the hok and pnd mRNAs by the formation of metastable hairpins at the 5'-end of the mRNA. Here, an experimental approach is presented, which allows the accurate measurement of the refolding kinetics of the 5'-end RNA fragments in vitro without chemically modifying the RNA. The method is based on acid denaturation followed by a pH-jump to neutral pH as a novel way to trap kinetically favoured RNA secondary structures, allowing the measurement of a wide range of biologically relevant refolding rates, with or without the use of standard stopped-flow equipment. The refolding rates from the metastable to the stable conformation in both the hok74 and pnd58 5'-end RNA fragments were determined by using UV absorbance changes corresponding to the structural rearrangements. The measured energy barriers showed that the refolding path does not need complete unfolding of the metastable structures before the formation of the final structures. Two alternative models of such a pathway are discussed.
Collapse
Affiliation(s)
- J H A Nagel
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
123
|
Abstract
For a long time, RNA has been merely regarded as a molecule that can either function as a messenger (mRNA) or as part of the translational machinery (tRNA, rRNA). Meanwhile, it became clear that RNAs are versatile molecules that do not only play key roles in many important biological processes like splicing, editing, protein export and others, but can also--like enzymes--act catalytically. Two important aspects of RNA function--antisense-RNA control and RNA interference (RNAi)--are emphasized in this review. Antisense-RNA control functions in all three kingdoms of life--although the majority of examples are known from bacteria. In contrast, RNAi, gene silencing triggered by double-stranded RNA, the oldest and most ubiquitous antiviral system, is exclusively found in eukaryotes. Our current knowledge about occurrence, biological roles and mechanisms of action of antisense RNAs as well as the recent findings about involved genes/enzymes and the putative mechanism of RNAi are summarized. An interesting intersection between both regulatory mechanisms is briefly discussed.
Collapse
Affiliation(s)
- Sabine Brantl
- Institut für Molekularbiologie, Friedrich Schiller Univ. Jena, Winzerlaer Str. 10, D-07745 Jena, Germany.
| |
Collapse
|
124
|
Van Melderen L. Molecular interactions of the CcdB poison with its bacterial target, the DNA gyrase. Int J Med Microbiol 2002; 291:537-44. [PMID: 11890555 DOI: 10.1078/1438-4221-00164] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ccd poison/antidote system of the F plasmid encodes CcdB, a toxin targeting the essential DNA gyrase of E. coli, and CcdA, the unstable antidote that interacts with CcdB to neutralise its toxicity. Gyrase belongs to the topoisomerase II class of enzymes and is a well-validated target for efficient therapeutic drugs, i. e. the quinolones. CcdB acts on gyrase in a similar way as quinolones do, both compounds induce double-strand breaks in DNA. Interestingly, the CcdB-binding domain of gyrase is different than that of quinolones. Therefore, novel classes of therapeutic drugs could be derived from the analysis of the interaction between CcdB and gyrase.
Collapse
Affiliation(s)
- Laurence Van Melderen
- Laboratoire de Génétique des Procaryotes, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium.
| |
Collapse
|
125
|
Greenfield TJ, Franch T, Gerdes K, Weaver KE. Antisense RNA regulation of the par post-segregational killing system: structural analysis and mechanism of binding of the antisense RNA, RNAII and its target, RNAI. Mol Microbiol 2001; 42:527-37. [PMID: 11703673 DOI: 10.1046/j.1365-2958.2001.02663.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The par stability determinant of the Enterococcus faecalis plasmid pAD1 is the first antisense RNA regulated post-segregational killing system (PSK) identified in a Gram-positive organism. Par encodes two small, convergently transcribed RNAs, designated RNAI and RNAII, which are the toxin and antitoxin of the par PSK system respectively. RNAI encodes an open reading frame for a 33 amino acid toxin called Fst. Expression of fst is regulated post-transcriptionally by RNAII. RNAII interacts with RNAI by a unique antisense RNA mechanism involving binding at the 5' and 3' ends of both RNAs. Par RNA interaction requires a complementary transcriptional terminator stem-loop and a set of direct repeat sequences, DRa and DRb, located at the 5' end of both RNAs. The secondary structures of RNAI, RNAII and the RNAI-RNAII complex were analysed by partial digestion with Pb(II) and ribonucleases. Probing data for RNAI and RNAII are consistent with previously reported computer generated models, and also confirm that complementary direct repeat and terminator sequences are involved in the formation of the RNAI-RNAII complex. Mutant par RNAs were used to show that the binding reaction occurs in at least two steps. The first step is the formation of an initial kissing interaction between the transcriptional terminator stem-loops of both RNAs. The subsequent step(s) involves an initial pairing of the complementary direct repeat sequences followed by complete hybridization of the 5' nucleotides to stabilize the RNAI-RNAII complex.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Binding Sites
- Binding, Competitive
- Enterococcus faecalis/genetics
- Gene Expression Regulation, Bacterial
- Molecular Sequence Data
- Mutation/genetics
- Nuclease Protection Assays
- Nucleic Acid Conformation
- Nucleic Acid Hybridization
- Open Reading Frames/genetics
- Plasmids/genetics
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Small Interfering
- Ribonucleases/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- T J Greenfield
- Division of Basic Biomedical Sciences, School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | | | | | |
Collapse
|
126
|
Møller-Jensen J, Franch T, Gerdes K. Temporal translational control by a metastable RNA structure. J Biol Chem 2001; 276:35707-13. [PMID: 11461923 DOI: 10.1074/jbc.m105347200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Programmed cell death by the hok/sok locus of plasmid R1 relies on a complex translational control mechanism. The highly stable hok mRNA is activated by 3'-end exonucleolytical processing. Removal of the mRNA 3' end releases a 5'-end sequence that triggers refolding of the mRNA. The refolded hok mRNA is translatable but can also bind the inhibitory Sok antisense RNA. Binding of Sok RNA leads to irreversible mRNA inactivation by an RNase III-dependent mechanism. A coherent model predicts that during transcription hok mRNA must be refractory to translation and antisense RNA binding. Here we provide genetic evidence for the existence of a 5' metastable structure in hok mRNA that locks the nascent transcript in an inactive configuration in vivo. Consistently, the metastable structure reduces the rate of Sok RNA binding and completely blocks hok translation in vitro. Structural analyses of native RNAs strongly support that the 5' metastable structure exists in the nascent transcript. Further structural analyses reveal that the mRNA 3' end triggers refolding of the mRNA 5' end into the more stable tac-stem conformation. These results provide a profound understanding of an unusual and intricate post-transcriptional control mechanism.
Collapse
Affiliation(s)
- J Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense University, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
127
|
Kobayashi I. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 2001; 29:3742-56. [PMID: 11557807 PMCID: PMC55917 DOI: 10.1093/nar/29.18.3742] [Citation(s) in RCA: 395] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2001] [Revised: 07/12/2001] [Accepted: 07/23/2001] [Indexed: 11/14/2022] Open
Abstract
Restriction-modification (RM) systems are composed of genes that encode a restriction enzyme and a modification methylase. RM systems sometimes behave as discrete units of life, like viruses and transposons. RM complexes attack invading DNA that has not been properly modified and thus may serve as a tool of defense for bacterial cells. However, any threat to their maintenance, such as a challenge by a competing genetic element (an incompatible plasmid or an allelic homologous stretch of DNA, for example) can lead to cell death through restriction breakage in the genome. This post-segregational or post-disturbance cell killing may provide the RM complexes (and any DNA linked with them) with a competitive advantage. There is evidence that they have undergone extensive horizontal transfer between genomes, as inferred from their sequence homology, codon usage bias and GC content difference. They are often linked with mobile genetic elements such as plasmids, viruses, transposons and integrons. The comparison of closely related bacterial genomes also suggests that, at times, RM genes themselves behave as mobile elements and cause genome rearrangements. Indeed some bacterial genomes that survived post-disturbance attack by an RM gene complex in the laboratory have experienced genome rearrangements. The avoidance of some restriction sites by bacterial genomes may result from selection by past restriction attacks. Both bacteriophages and bacteria also appear to use homologous recombination to cope with the selfish behavior of RM systems. RM systems compete with each other in several ways. One is competition for recognition sequences in post-segregational killing. Another is super-infection exclusion, that is, the killing of the cell carrying an RM system when it is infected with another RM system of the same regulatory specificity but of a different sequence specificity. The capacity of RM systems to act as selfish, mobile genetic elements may underlie the structure and function of RM enzymes.
Collapse
Affiliation(s)
- I Kobayashi
- Department of Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
128
|
Shapiro BA, Bengali D, Kasprzak W, Wu JC. RNA folding pathway functional intermediates: their prediction and analysis. J Mol Biol 2001; 312:27-44. [PMID: 11545583 DOI: 10.1006/jmbi.2001.4931] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The massively parallel genetic algorithm (GA) for RNA structure prediction uses the concepts of mutation, recombination, and survival of the fittest to evolve a population of thousands of possible RNA structures toward a solution structure. As described below, the properties of the algorithm are ideally suited to use in the prediction of possible folding pathways and functional intermediates of RNA molecules given their sequences. Utilizing Stem Trace, an interactive visualization tool for RNA structure comparison, analysis of not only the solution ensembles developed by the algorithm, but also the stages of development of each of these solutions, can give strong insight into these folding pathways. The GA allows the incorporation of information from biological experiments, making it possible to test the influence of particular interactions between structural elements on the dynamics of the folding pathway. These methods are used to reveal the folding pathways of the potato spindle tuber viroid (PSTVd) and the host killing mechanism of Escherichia coli plasmid R1, both of which are successfully explored through the combination of the GA and Stem Trace. We also present novel intermediate folds of each molecule, which appear to be phylogenetically supported, as determined by use of the methods described below.
Collapse
Affiliation(s)
- B A Shapiro
- Laboratory of Experimental and Computational Biology, NCI Center for Cancer Research, NCI-Frederick, National Institutes of Health, Building 469, Room 150, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
129
|
Peters M, Jõgi E, Suitso I, Punnisk T, Nurk A. Features of the replicon of plasmid pAM10.6 of Pseudomonas fluorescens. Plasmid 2001; 46:25-36. [PMID: 11535033 DOI: 10.1006/plas.2001.1524] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe features of the basic replicon of the 10.6-kb medium-copy-number plasmid pAM10.6. pAM10.6 was able to replicate in various Pseudomonas strains but was maintained in Escherichia coli only after the p15A origin of replication was inserted. Deletion analysis suggests that the pAM10.6 origin of replication is located in a 0.5-kb region that includes inverted and direct repeats upstream of the repA gene. RepA (204 aa) has a clear homology to plasmid replication proteins of some other gram-negative bacteria. The pas (plasmid addiction system) (genes encoded in the region of 480-bp) stabilizes plasmid maintenance in P. putida cells under nonselective conditions for at least 200 generations. A 3.75-kb PstI fragment of pAM10.6 joined to a Km(r) gene was shown to be a minimal plasmid unit maintained in P. putida as a monomer. Further deletions of this 3.75-kb fragment caused a drive to form stable head-to-tail dimeric plasmids in P. putida.
Collapse
Affiliation(s)
- M Peters
- Institute of Molecular and Cell Biology, University of Tartu, Estonia.
| | | | | | | | | |
Collapse
|
130
|
Ranganath RM, Nagashree NR. Role of programmed cell death in development. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 202:159-242. [PMID: 11061565 DOI: 10.1016/s0074-7696(01)02005-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Programmed cell death (PCD) is an integral part of both animal and plant development. In animals, model systems such as Caenorhabditis elegans, Drosophila melanogaster, and mice have shown a general cell death profile of induction, caspase mediation, cell death, and phagocytosis. Tremendous strides have been made in cell death research in animals in the past decade. The ordering of the C. elegans genes Ced-3, 4 and 9, identification of caspase-activated DNase that degrades nuclear DNA during PCD, identification of signal transduction modules involving caspases as well as the caspase-independent pathway, and the involvement of mitochondria are some of the findings of immense value in understanding animal PCDs. Similarly, the caspase inactivation mechanisms of infecting viruses to stall host cell death give a new dimension to the viral infection process. However, plant cell death profiles provide an entirely different scenario. The presence of a cell wall that cannot be phagocytosed, absence of the hallmarks of animal PCDs such as DNA laddering, formation of apoptotic bodies, a cell-death-specific nuclease, a biochemical machinery of killer enzymes such as caspases all point to novel ways of cell elimination. Large gaps in our understanding of plant cell death have prompted speculative inferences and comparisons with animal cell death mechanisms. This paper deals with both animals and plants for a holistic view on cell death in eukaryotes.
Collapse
Affiliation(s)
- R M Ranganath
- Department of Botany, Bangalore University, Jnanabharathi, India
| | | |
Collapse
|
131
|
Tian QB, Ohnishi M, Murata T, Nakayama K, Terawaki Y, Hayashi T. Specific protein-DNA and protein-protein interaction in the hig gene system, a plasmid-borne proteic killer gene system of plasmid Rts1. Plasmid 2001; 45:63-74. [PMID: 11322821 DOI: 10.1006/plas.2000.1506] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hig (host inhibition of growth) gene system of plasmid Rts1 belongs to the plasmid-encoded proteic killer gene family. Among the proteic killer genes described so far, hig is unique in that the toxin gene (higB) exists upstream of the antidote gene (higA). There are two promoters in the hig locus, Phig and PhigA, and only the former, which expresses both higB and higA genes, is negatively controlled by HigA and HigB proteins. In this study, we purified HigA protein by means of GST fusion. The electrophoretic mobility shift assay using the purified protein revealed that HigA specifically bound to the Phig region, but not to PhigA. The HigA-binding sequence was determined by DNase I footprinting assay to be a 56-bp sequence that completely covered the -35 and -10 boxes of Phig. The presence of two inverted repeats in the binding sequence and the identification of a dimer form of HigA by cross-linking experiment suggested that the protein bound to the Phig region as a dimer. HigB was purified as a GST fusion protein as well, though it was achieved only in the presence of HigA. HigA and GST-HigB formed a highly stable complex where the two proteins were present in an equimolar ratio.
Collapse
Affiliation(s)
- Q B Tian
- Department of Bacteriology, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | | | | | | | | | | |
Collapse
|
132
|
Cooper TF, Heinemann JA. Postsegregational killing does not increase plasmid stability but acts to mediate the exclusion of competing plasmids. Proc Natl Acad Sci U S A 2000; 97:12643-8. [PMID: 11058151 PMCID: PMC18817 DOI: 10.1073/pnas.220077897] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2000] [Indexed: 11/18/2022] Open
Abstract
Postsegregational killing (PSK) systems consist of a tightly linked toxin-antitoxin pair. Antitoxin must be continually produced to prevent the longer lived toxin from killing the cell. PSK systems on plasmids are widely believed to benefit the plasmid by ensuring its stable vertical inheritance. However, experimental tests of this "stability" hypothesis were not consistent with its predictions. We suggest an alternative hypothesis to explain the evolution of PSK: that PSK systems have been selected through benefiting host plasmids in environments where plasmids must compete during horizontal reproduction. In this "competition" hypothesis, success of PSK systems is a consequence of plasmid-plasmid competition, rather than from an adaptive plasmid-host relationship. In support of this hypothesis, a plasmid-encoded parDE PSK system mediated the exclusion of an isogenic DeltaparDE plasmid. An understanding of how PSK systems influence plasmid success may provide insight into the evolution of other determinants (e.g., antibiotic resistance and virulence) also rendering a cell potentially dependent on an otherwise dispensable plasmid.
Collapse
Affiliation(s)
- T F Cooper
- Department of Plant and Microbial Sciences, Private Bag 4800, University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
133
|
|
134
|
Greenfield TJ, Ehli E, Kirshenmann T, Franch T, Gerdes K, Weaver KE. The antisense RNA of the par locus of pAD1 regulates the expression of a 33-amino-acid toxic peptide by an unusual mechanism. Mol Microbiol 2000; 37:652-60. [PMID: 10931358 DOI: 10.1046/j.1365-2958.2000.02035.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The par stability determinant of the Enterococcus faecalis plasmid pAD1 is the first antisense RNA-regulated post-segregational killing system (PSK) identified in a Gram-positive organism. Par encodes two small, convergently transcribed RNAs, designated RNA I and RNA II, which are the toxin and antidote of the par PSK system respectively. RNA I encodes an open reading frame of 33 codons designated fst. The results presented here demonstrate that the peptide encoded by fst is the par toxin. The fst sequence was shown to be sufficient for cell killing, and removal of the final codon inactivated the toxin. In vitro translation reactions of purified RNA I transcript produced a product of the expected size for the fst-encoded peptide. This product was not produced when purified RNA II transcript was added to the translation reaction. Toeprint analysis demonstrated that purified RNA II was able to inhibit ribosome binding to RNA I. These data suggest that fst expression is regulated by RNA II via an antisense RNA mechanism. In vitro translation studies and toeprint analyses also indicated that fst expression is internally regulated by a stem-loop structure at the 5' end of RNA I. Removal of this structure resulted in better ribosome binding to RNA I and a 300-fold increase in production of the fst-encoded peptide. Finally, RNA II was shown to be less stable than RNA I in vivo, providing a basis for the selective expression of fst in plasmid-free cells.
Collapse
Affiliation(s)
- T J Greenfield
- Division of Basic Biomedical Sciences, School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | | | | | | | | | |
Collapse
|
135
|
Greenfield TJ, Weaver KE. Antisense RNA regulation of the pAD1 par post-segregational killing system requires interaction at the 5' and 3' ends of the RNAs. Mol Microbiol 2000; 37:661-70. [PMID: 10931359 DOI: 10.1046/j.1365-2958.2000.02034.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The par stability determinant of the Enterococcus faecalis plasmid pAD1 is the first antisense RNA-regulated post-segregational killing system (PSK) identified in a Gram-positive organism. Par encodes two small, convergently transcribed RNAs, designated RNA I and RNA II, which are the toxin and antidote of the par PSK system respectively. RNA I encodes an open reading frame for a 33-amino-acid toxin called Fst. Expression of fst is regulated post-transcriptionally by RNA II. In this paper, RNA II is shown to interact with RNA I by a unique antisense RNA mechanism. RNA I and RNA II contain complementary direct repeats at their 5' ends and a complementary transcriptional terminator stem-loop at their 3' ends. Deletion of the terminator or mutations within the terminator loop of RNA II severely reduced the rate of interaction in vitro. Mutations in the 5' direct repeats of RNA II prevented the RNAs from interacting in vitro. For these mutations in RNA II, complementary mutations in RNA I were shown to restore interaction. The reduced binding efficiency of the RNA II mutants was paralleled by the failure of these mutants to suppress par-mediated killing in vivo. These results indicate that regions at both the 5' and the 3' ends of the par transcripts are important for RNA I-RNA II interaction.
Collapse
Affiliation(s)
- T J Greenfield
- Division of Basic Biomedical Sciences, School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
136
|
Abstract
Plasmids are extrachromosomal elements built from a selection of generally quite well understood survival and propagation functions, including replication, partitioning, multimer resolution, post-segregational killing and conjugative transfer. Evolution has favoured clustering of these modules to form plasmid cores or backbones. Co-regulation of these core genes can also provide advantages that favour retention of the backbone organization. Tumour-inducing and symbiosis-determining plasmids appear to co-regulate replication and transfer in response to cell density, both being stimulated at high density. Broad-host-range plasmids of the IncP-1 group, on the other hand, have autogenous control circuits, which allow a burst of expression during establishment in a new host, but a minimum of expression during maintenance. The lessons that plasmids have for clustering and co-regulation may explain the logic and organization of many small bacterial genomes currently being investigated.
Collapse
Affiliation(s)
- C M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
137
|
Abstract
Recent major advances in the understanding of prokaryotic DNA segregation have been achieved by using fluorescence microscopy to visualize the localization of cellular components. Plasmids and bacterial chromosomes are partitioned in a highly dynamic fashion, suggesting the presence of a mitotic-like apparatus in prokaryotes. The identification of chromosomal homologues of the well-characterized plasmid partitioning genes indicates that there could be a general mechanism of bacterial DNA partitioning.
Collapse
Affiliation(s)
- J Møller-Jensen
- Dept of Biochemistry and Molecular Biology, SDU-Odense University, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
138
|
Abstract
Conventional antisense RNAs, such as those controlling plasmid replication and maintenance, inhibit the function of their target RNAs rapidly and efficiently. Novel findings show that a common U-turn loop structure mediates fast RNA pairing in the majority of these RNA controlled systems. Usually, an antisense RNA regulates a single, cognate target RNA only. Recent reports, however, show that antisense RNAs can act as promiscuous regulators that control multiple genes in concert to integrate complex physiological responses in Escherichia coli.
Collapse
MESH Headings
- Base Pairing/genetics
- Base Sequence
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial/genetics
- Genes, Bacterial/genetics
- Genes, Regulator/genetics
- Genes, Regulator/physiology
- Nucleic Acid Conformation
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
Collapse
Affiliation(s)
- T Franch
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, 5230, Denmark
| | | |
Collapse
|
139
|
Fernández De Henestrosa AR, Ogi T, Aoyagi S, Chafin D, Hayes JJ, Ohmori H, Woodgate R. Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 2000; 35:1560-72. [PMID: 10760155 DOI: 10.1046/j.1365-2958.2000.01826.x] [Citation(s) in RCA: 432] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exposure of Escherichia coli to a variety of DNA-damaging agents results in the induction of the global 'SOS response'. Expression of many of the genes in the SOS regulon are controlled by the LexA protein. LexA acts as a transcriptional repressor of these unlinked genes by binding to specific sequences (LexA boxes) located within the promoter region of each LexA-regulated gene. Alignment of 20 LexA binding sites found in the E. coli chromosome reveals a consensus of 5'-TACTG(TA)5CAGTA-3'. DNA sequences that exhibit a close match to the consensus are said to have a low heterology index and bind LexA tightly, whereas those that are more diverged have a high heterology index and are not expected to bind LexA. By using this heterology index, together with other search criteria, such as the location of the putative LexA box relative to a gene or to promoter elements, we have performed computational searches of the entire E. coli genome to identify novel LexA-regulated genes. These searches identified a total of 69 potential LexA-regulated genes/operons with a heterology index of <15 and included all previously characterized LexA-regulated genes. Probes were made to the remaining genes, and these were screened by Northern analysis for damage-inducible gene expression in a wild-type lexA+ cell, constitutive expression in a lexA(Def) cell and basal expression in a non-inducible lexA(Ind-) cell. These experiments have allowed us to identify seven new LexA-regulated genes, thus bringing the present number of genes in the E. coli LexA regulon to 31. The potential function of each newly identified LexA-regulated gene is discussed.
Collapse
Affiliation(s)
- A R Fernández De Henestrosa
- Section on DNA Replication, Repair and Mutagenesis, Building 6, Room 1A13, National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2725, USA
| | | | | | | | | | | | | |
Collapse
|
140
|
Gerdes K. Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J Bacteriol 2000; 182:561-72. [PMID: 10633087 PMCID: PMC94316 DOI: 10.1128/jb.182.3.561-572.2000] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- K Gerdes
- Department of Molecular Biology, Odense University, SDU, DK-5230 Odense M, Denmark.
| |
Collapse
|
141
|
Franch T, Petersen M, Wagner EG, Jacobsen JP, Gerdes K. Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn loop structure. J Mol Biol 1999; 294:1115-25. [PMID: 10600370 DOI: 10.1006/jmbi.1999.3306] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Efficient gene control by antisense RNA requires rapid bi-molecular interaction with a cognate target RNA. A comparative analysis revealed that a YUNR motif (Y=pyrimidine, R=purine) is ubiquitous in RNA recognition loops in antisense RNA-regulated gene systems. The (Y)UNR sequence motif specifies two intraloop hydrogen bonds forming U-turn structures in many anticodon-loops and all T-loops of tRNAs, the hammerhead ribozyme and in other conserved RNA loops. This structure creates a sharp bend in the RNA phosphate-backbone and presents the following three to four bases in a solvent-exposed, stacked configuration providing a scaffold for rapid interaction with complementary RNA. Sok antisense RNA from plasmid R1 inhibits translation of the hok mRNA by preventing ribosome entry at the mok Shine & Dalgarno element. The 5' single-stranded region of Sok-RNA recognizes a loop in the hok mRNA. We show here, that the initial pairing between Sok antisense RNA and its target in hok mRNA occurs with an observed second-order rate-constant of 2 x 10(6) M(-1) s(-1). Mutations that eliminate the YUNR motif in the target loop of hok mRNA resulted in reduced antisense RNA pairing kinetics, whereas mutations maintaining the YUNR motif were silent. In addition, RNA phosphate-backbone accessibility probing by ethylnitrosourea was consistent with a U-turn structure formation promoted by the YUNR motif. Since the YUNR U-turn motif is present in the recognition units of many antisense/target pairs, the motif is likely to be a generally employed enhancer of RNA pairing rates. This suggestion is consistent with the re-interpretation of the mutational analyses of several antisense control systems including RNAI/RNAII of ColE1, CopA/CopT of R1 and RNA-IN/RNA-OUT of IS10.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Toxins
- Base Pairing/genetics
- Base Sequence
- Escherichia coli Proteins
- Ethylnitrosourea/metabolism
- Gene Expression Regulation, Bacterial/genetics
- Hydrogen Bonding
- Kinetics
- Models, Molecular
- Mutation/genetics
- Nucleic Acid Conformation
- Prokaryotic Cells/metabolism
- RNA
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Alignment
Collapse
Affiliation(s)
- T Franch
- Department of Molecular Biology, Odense University Campusvej, Denmark
| | | | | | | | | |
Collapse
|
142
|
Galen JE, Nair J, Wang JY, Wasserman SS, Tanner MK, Sztein MB, Levine MM. Optimization of plasmid maintenance in the attenuated live vector vaccine strain Salmonella typhi CVD 908-htrA. Infect Immun 1999; 67:6424-33. [PMID: 10569759 PMCID: PMC97051 DOI: 10.1128/iai.67.12.6424-6433.1999] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The broad objective of the research presented here is to develop a noncatalytic plasmid maintenance system for the stabilization of multicopy expression plasmids encoding foreign antigens in a Salmonella typhi live-vector vaccine strain such as CVD 908-htrA. We have enhanced the maintenance of expression plasmids at two independent levels. First, we removed dependence upon balanced-lethal maintenance systems that involve catalytic enzymes expressed from multicopy plasmids; we accomplished this through incorporation into expression plasmids of a postsegregational killing system based on the noncatalytic hok-sok plasmid addiction system from the antibiotic resistance factor pR1. We also included at least one naturally occurring plasmid partition function in our expression plasmids, which eliminates random segregation of these plasmids, thereby enhancing their inheritance and stability; to accomplish this, we incorporated either the par locus from pSC101, the parA locus from pR1, or both. We monitored the stability of optimized expression plasmids within CVD 908-htrA by quantitating expression of a variant of green fluorescent protein (GFPuv) by using flow cytometry. In this report, we demonstrate the utility of this novel plasmid maintenance system in enhancing the stability of our expression plasmids and go on to show that as the copy number of stabilized plasmids increases, the toxicity of GFPuv synthesis also increases. The implications of these observations for the rational design of immunogenic and protective bacterial live vector vaccines are discussed.
Collapse
Affiliation(s)
- J E Galen
- Center for Vaccine Development, Division of Geographic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
143
|
van Marle G, Dobbe JC, Gultyaev AP, Luytjes W, Spaan WJ, Snijder EJ. Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc Natl Acad Sci U S A 1999; 96:12056-61. [PMID: 10518575 PMCID: PMC18411 DOI: 10.1073/pnas.96.21.12056] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To generate an extensive set of subgenomic (sg) mRNAs, nidoviruses (arteriviruses and coronaviruses) use a mechanism of discontinuous transcription. During this process, mRNAs are generated that represent the genomic 5' sequence, the so-called leader RNA, fused at specific positions to different 3' regions of the genome. The fusion of the leader to the mRNA bodies occurs at a short, conserved sequence element, the transcription-regulating sequence (TRS), which precedes every transcription unit in the genome and is also present at the 3' end of the leader sequence. Here, we have used site-directed mutagenesis of the infectious cDNA clone of the arterivirus equine arteritis virus to show that sg mRNA synthesis requires a base-pairing interaction between the leader TRS and the complement of a body TRS in the viral negative strand. Mutagenesis of the body TRS of equine arteritis virus RNA7 reduced sg RNA7 transcription severely or abolished it completely. Mutations in the leader TRS dramatically influenced the synthesis of all sg mRNAs. The construction of double mutants in which a mutant leader TRS was combined with the corresponding mutant RNA7 body TRS resulted in the specific restoration of mRNA7 synthesis. The analysis of the mRNA leader-body junctions of a number of mutants with partial transcriptional activity provided support for a mechanism of discontinuous minus-strand transcription that resembles similarity-assisted, copy-choice RNA recombination.
Collapse
Affiliation(s)
- G van Marle
- Department of Virology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
144
|
Abstract
Renewed interest in the relationships between viability and culturability in bacteria stems from three sources: (1) the recognition that there are many bacteria in the biosphere that have never been propagated or characterized in laboratory culture; (2) the proposal that some readily culturable bacteria may respond to certain stimuli by entering a temporarily non-culturable state termed 'viable but non-culturable' (VBNC) by some authors; and (3) the development of new techniques that facilitate demonstration of activity, integrity and composition of non-culturable bacterial cells. We review the background to these areas of interest emphasizing the view that, in an operational context, the term VBNC is self-contradictory (Kell et al., 1998) and the likely distinctions between temporarily non-culturable bacteria and those that have never been cultured. We consider developments in our knowledge of physiological processes in bacteria that may influence the outcome of a culturability test (injury and recovery, ageing, adaptation and differentiation, substrate-accelerated death and other forms of metabolic self-destruction, prophages, toxin-antitoxin systems and cell-to-cell communication). Finally, we discuss whether it is appropriate to consider the viability of individual bacteria or whether, in some circumstances, it may be more appropriate to consider viability as a property of a community of bacteria.
Collapse
Affiliation(s)
- M R Barer
- Department of Microbiology and Immunology, Medical School, Newcastle upon Tyne
| | | |
Collapse
|
145
|
Franch T, Thisted T, Gerdes K. Ribonuclease III processing of coaxially stacked RNA helices. J Biol Chem 1999; 274:26572-8. [PMID: 10473621 DOI: 10.1074/jbc.274.37.26572] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNase III family of endoribonucleases participates in maturation and decay of cellular and viral transcripts by processing of double-stranded RNA. RNase III degradation is inherent to most antisense RNA-regulated gene systems in Escherichia coli. In the hok/sok system from plasmid R1, Sok antisense RNA targets the hok mRNA for RNase III-mediated degradation. An intermediate in the pairing reaction between Sok RNA and hok mRNA forms a three-way junction. A complex between a chimeric antisense RNA and hok mRNA that mimics the three-way junction was cleaved by RNase III both in vivo and in vitro. Footprinting using E117A RNase III binding to partially complementary RNAs showed protection of the 13 base pairs of interstrand duplex and of the bottom part of the transcriptional terminator hairpin of the antisense RNA. This suggests that the 13 base pairs of RNA duplex are coaxially stacked on the antisense RNA terminator stem-loop and that each stem forms a monomer half-site, allowing symmetrical binding of the RNase III dimer. This processing scheme shows an unanticipated diversity in RNase III substrates and may have a more general implication for RNA metabolism.
Collapse
Affiliation(s)
- T Franch
- Department of Molecular Biology, Odense University, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
146
|
Rawlings DE. Proteic toxin-antitoxin, bacterial plasmid addiction systems and their evolution with special reference to the pas system of pTF-FC2. FEMS Microbiol Lett 1999; 176:269-77. [PMID: 10427709 DOI: 10.1111/j.1574-6968.1999.tb13672.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Genes encoding toxin-antitoxin proteins are frequently found on plasmids where they serve to stabilize the plasmid within a bacterial population. The toxin-antitoxin proteins do not increase the likelihood of a progeny cell receiving a plasmid but rather function as post-segregational killing mechanisms which decrease the proportion of cells that survive after losing the plasmid. These toxin-antitoxin couples therefore act as plasmid addiction systems. Several new proteic toxin-antitoxin systems have been identified and these systems appear to be ubiquitous on the chromosomes of bacteria and archaea. When placed on plasmids, these chromosomal systems also have the ability to stabilize plasmids and in at least one case, chromosomal- and plasmid-based toxin-antitoxin systems have been shown to interact. Recent findings regarding toxin-antitoxin systems and questions that have arisen as a result of these findings are reviewed.
Collapse
Affiliation(s)
- D E Rawlings
- Department of Microbiology, University of Stellenbosch, Matieland, South Africa.
| |
Collapse
|
147
|
Abstract
The hok/sok locus of plasmid R1 mediates plasmid stabilization by the killing of plasmid-free cells. Many bacterial plasmids carry similar loci. For example, the F plasmid carries two hok homologues, flm and srnB, that mediate plasmid stabilization by this specialized type of programmed cell death. Here, we show that the chromosome of E. coli K-12 codes for five hok homologous loci, all of which specify Hok-like toxins. Three of the loci appear to be inactivated by the insertion elements IS150 or IS186 located close to but not in the toxin-encoding reading frames (i.e. hokA, hokC and hokE), one system is probably inactivated by point mutation (hokB), whereas the fifth system is inactivated by a major genetic rearrangement (hokD). In the ECOR collection of wild-type E. coli strains, we identified hokA and hokC loci without IS elements. A molecular and a genetic analysis show that the hokA and hokC loci specify unstable antisense RNAs and stable toxin-encoding mRNAs that are processed at their 3' ends. An alignment of the mRNA sequences reveals all the regulatory elements known to be required for correct folding and refolding of the plasmid-encoded mRNAs. The conserved elements include fbi that ensure a long-range interaction in the full-length mRNAs, and tac and antisense RNA target stem-loops that are required for translation and rapid antisense RNA binding of the processed mRNAs. Consistently, we find that the chromosome-encoded mRNAs are processed at their 3' ends, resulting in the presumed translationally active mRNAs. Despite the presence of all of the regulatory elements, the chromosome-encoded loci do not mediate plasmid stabilization by killing of plasmid-free cells. The chromosome-encoded mRNAs are poorly translated in vitro, thus yielding an explanation for the lacking phenotype. These observations suggest that the chromosomal hok-like genes may be induced by an as yet unknown signal.
Collapse
Affiliation(s)
- K Pedersen
- Department of Molecular Biology, Odense University, Campusvej 55, DK-5230 Odense M, Denmark
| | | |
Collapse
|
148
|
Abstract
The entire nucleotide sequence of the first DNA segment of the conjugative F plasmid to enter the recipient cell, the leading region, is described. Analysis of the sequence provides further evidence that products encoded within the 13.2-kb leading region are likely to be expressed and perform functions associated with the transferred strand in the recipient cell.
Collapse
Affiliation(s)
- N P Manwaring
- School of Biological Sciences, University of Sydney, New South Wales, 2006, Australia
| | | | | |
Collapse
|
149
|
Grønlund H, Gerdes K. Toxin-antitoxin systems homologous with relBE of Escherichia coli plasmid P307 are ubiquitous in prokaryotes. J Mol Biol 1999; 285:1401-15. [PMID: 9917385 DOI: 10.1006/jmbi.1998.2416] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Toxin-antitoxin systems encoded by bacterial plasmids and chromosomes specify two proteins, a cytotoxin and an antitoxin. The antitoxins neutralize the cognate toxins by forming tight complexes with them. The antitoxins are unstable due to degradation by cellular proteases (Lon or Clp), whereas the toxins are stable. Here we show that orf7 (denoted relBP307) and orf6 (denoted relEP307) of Escherichia coli plasmid P307 are homologous to the relBE genes of E. coli and constitute a two-component toxin-antitoxin system: (i) relEP307 encodes a cytotoxin lethal or inhibitory to host cells; (ii) relBP307 encodes an antitoxin that prevents the lethal action of the relE-encoded toxin; (iii) RelBP307 antitoxin is degraded by Lon protease; (iv) RelBP307 antitoxin autoregulates the relBE operon of P307 at the level of transcription; (v) RelEP307 toxin acts as a co-repressor of transcription; and (vi) the relBE system stabilizes a mini-P307 replicon by the killing of plasmid-free cells. Using database searching, we found relBE homologues on the chromosomes of many Gram-negative and Gram-positive bacteria. Even more surprising, numerous relBE-homologous gene systems are present on the chromosomes of Archae. Thus, toxin-antitoxin systems homologous with relBE of E. coli are ubiquitous in prokaryotic organisms.
Collapse
Affiliation(s)
- H Grønlund
- Department of Molecular Biology, Odense University, Campusvej 55, Odense M, DK-5230, Denmark
| | | |
Collapse
|
150
|
Hayes F. A family of stability determinants in pathogenic bacteria. J Bacteriol 1998; 180:6415-8. [PMID: 9829958 PMCID: PMC107735 DOI: 10.1128/jb.180.23.6415-6418.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/1998] [Accepted: 09/23/1998] [Indexed: 11/20/2022] Open
Abstract
A novel segregational stability system was identified on plasmid R485, which originates from Morganella morganii. The system is composed of two overlapping genes, stbD and stbE, which potentially encode proteins of 83 and 93 amino acids, respectively. Homologs of the stbDE genes were identified on the enterotoxigenic plasmid P307 from Escherichia coli and on the chromosomes of Vibrio cholerae and Haemophilus influenzae biogroup aegyptius. The former two homologs also promote plasmid stability in E. coli. Furthermore, the stbDE genes share homology with components of the relBEF operon and with the dnaT gene of E. coli. The organization of the stbDE cassette is reminiscent of toxin-antitoxin stability cassettes.
Collapse
Affiliation(s)
- F Hayes
- Microbiology Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England, UK.
| |
Collapse
|