101
|
Miyamoto D, Hirai D, Murayama M. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation. Front Neural Circuits 2017; 11:92. [PMID: 29213231 PMCID: PMC5703076 DOI: 10.3389/fncir.2017.00092] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 11/08/2017] [Indexed: 11/19/2022] Open
Abstract
Sleep plays important roles in sensory and motor memory consolidation. Sleep oscillations, reflecting neural population activity, involve the reactivation of learning-related neurons and regulate synaptic strength and, thereby affect memory consolidation. Among sleep oscillations, slow waves (0.5–4 Hz) are closely associated with memory consolidation. For example, slow-wave power is regulated in an experience-dependent manner and correlates with acquired memory. Furthermore, manipulating slow waves can enhance or impair memory consolidation. During slow wave sleep, inter-areal interactions between the cortex and hippocampus (HC) have been proposed to consolidate declarative memory; however, interactions for non-declarative (HC-independent) memory remain largely uninvestigated. We recently showed that the directional influence in a slow-wave range through a top-down cortical long-range circuit is involved in the consolidation of non-declarative memory. At the synaptic level, the average cortical synaptic strength is known to be potentiated during wakefulness and depressed during sleep. Moreover, learning causes plasticity in a subset of synapses, allocating memory to them. Sleep may help to differentiate synaptic strength between allocated and non-allocated synapses (i.e., improving the signal-to-noise ratio, which may facilitate memory consolidation). Herein, we offer perspectives on inter-areal interactions and synaptic plasticity for memory consolidation during sleep.
Collapse
Affiliation(s)
- Daisuke Miyamoto
- Laboratory for Behavioral Neurophysiology, RIKEN Brain Science Institute, Wako, Japan.,Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Daichi Hirai
- Laboratory for Behavioral Neurophysiology, RIKEN Brain Science Institute, Wako, Japan
| | - Masanori Murayama
- Laboratory for Behavioral Neurophysiology, RIKEN Brain Science Institute, Wako, Japan
| |
Collapse
|
102
|
Wang T, Jones RT, Whippen JM, Davis GW. α2δ-3 Is Required for Rapid Transsynaptic Homeostatic Signaling. Cell Rep 2017; 16:2875-2888. [PMID: 27626659 DOI: 10.1016/j.celrep.2016.08.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/12/2016] [Accepted: 08/09/2016] [Indexed: 11/18/2022] Open
Abstract
The homeostatic modulation of neurotransmitter release, termed presynaptic homeostatic potentiation (PHP), is a fundamental type of neuromodulation, conserved from Drosophila to humans, that stabilizes information transfer at synaptic connections throughout the nervous system. Here, we demonstrate that α2δ-3, an auxiliary subunit of the presynaptic calcium channel, is required for PHP. The α2δ gene family has been linked to chronic pain, epilepsy, autism, and the action of two psychiatric drugs: gabapentin and pregabalin. We demonstrate that loss of α2δ-3 blocks both the rapid induction and sustained expression of PHP due to a failure to potentiate presynaptic calcium influx and the RIM-dependent readily releasable vesicle pool. These deficits are independent of α2δ-3-mediated regulation of baseline calcium influx and presynaptic action potential waveform. α2δ proteins reside at the extracellular face of presynaptic release sites throughout the nervous system, a site ideal for mediating rapid, transsynaptic homeostatic signaling in health and disease.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ryan T Jones
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jenna M Whippen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
103
|
Wang X, Rich MM. Homeostatic synaptic plasticity at the neuromuscular junction in myasthenia gravis. Ann N Y Acad Sci 2017; 1412:170-177. [PMID: 28981978 DOI: 10.1111/nyas.13472] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 11/30/2022]
Abstract
A number of studies in the past 20 years have shown that perturbation of activity of the nervous system leads to compensatory changes in synaptic strength that serve to return network activity to its original level. This response has been termed homeostatic synaptic plasticity. Despite the intense interest in homeostatic synaptic plasticity, little attention has been paid to its role in the prototypic synaptic disease, myasthenia gravis. In this review, we discuss mechanisms that have been shown to mediate homeostatic synaptic plasticity at the mammalian neuromuscular junction. A subset of these mechanisms have been shown to occur in myasthenia gravis. The homeostatic changes occurring in myasthenia gravis appear to involve the presynaptic nerve terminal and may even involve changes in the excitability of motor neurons within the spinal cord. The finding of presynaptic homeostatic synaptic plasticity in myasthenia gravis leads us to propose that changes in the motor unit in myasthenia gravis may be more widespread than previously appreciated.
Collapse
Affiliation(s)
- Xueyong Wang
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio
| |
Collapse
|
104
|
McKiernan EC, Marrone DF. CA1 pyramidal cells have diverse biophysical properties, affected by development, experience, and aging. PeerJ 2017; 5:e3836. [PMID: 28948109 PMCID: PMC5609525 DOI: 10.7717/peerj.3836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/31/2017] [Indexed: 12/04/2022] Open
Abstract
Neuron types (e.g., pyramidal cells) within one area of the brain are often considered homogeneous, despite variability in their biophysical properties. Here we review literature demonstrating variability in the electrical activity of CA1 hippocampal pyramidal cells (PCs), including responses to somatic current injection, synaptic stimulation, and spontaneous network-related activity. In addition, we describe how responses of CA1 PCs vary with development, experience, and aging, and some of the underlying ionic currents responsible. Finally, we suggest directions that may be the most impactful in expanding this knowledge, including the use of text and data mining to systematically study cellular heterogeneity in more depth; dynamical systems theory to understand and potentially classify neuron firing patterns; and mathematical modeling to study the interaction between cellular properties and network output. Our goals are to provide a synthesis of the literature for experimentalists studying CA1 PCs, to give theorists an idea of the rich diversity of behaviors models may need to reproduce to accurately represent these cells, and to provide suggestions for future research.
Collapse
Affiliation(s)
- Erin C McKiernan
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Diano F Marrone
- Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada.,McKnight Brain Institute, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
105
|
Arumugam S, Garcera A, Soler RM, Tabares L. Smn-Deficiency Increases the Intrinsic Excitability of Motoneurons. Front Cell Neurosci 2017; 11:269. [PMID: 28928636 PMCID: PMC5591959 DOI: 10.3389/fncel.2017.00269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
During development, motoneurons experience significant changes in their size and in the number and strength of connections that they receive, which requires adaptive changes in their passive and active electrical properties. Even after reaching maturity, motoneurons continue to adjust their intrinsic excitability and synaptic activity for proper functioning of the sensorimotor circuit in accordance with physiological demands. Likewise, if some elements of the circuit become dysfunctional, the system tries to compensate for the alterations to maintain appropriate function. In Spinal Muscular Atrophy (SMA), a severe motor disease, spinal motoneurons receive less excitation from glutamatergic sensory fibers and interneurons and are electrically hyperexcitable. Currently, the origin and relationship among these alterations are not completely established. In this study, we investigated whether Survival of Motor Neuron (SMN), the ubiquitous protein defective in SMA, regulates the excitability of motoneurons before and after the establishment of the synaptic contacts. To this end, we performed patch-clamp recordings in embryonic spinal motoneurons forming complex synaptic networks in primary cultures, and in differentiated NSC-34 motoneuron-like cells in the absence of synaptic contacts. Our results show that in both conditions, Smn-deficient cells displayed lower action potential threshold, greater action potential amplitudes, and larger density of voltage-dependent sodium currents than cells with normal Smn-levels. These results indicate that Smn participates in the regulation of the cell-autonomous excitability of motoneurons at an early stage of development. This finding may contribute to a better understanding of motoneuron excitability in SMA during the development of the disease.
Collapse
Affiliation(s)
- Saravanan Arumugam
- Department of Medical Physiology and Biophysics, School of Medicine University of SevilleSeville, Spain
| | - Ana Garcera
- Unitat de Senyalització Neuronal, Departament de Medicina Experimental, Universitat de Lleida-IRBLLEIDALleida, Spain
| | - Rosa M Soler
- Unitat de Senyalització Neuronal, Departament de Medicina Experimental, Universitat de Lleida-IRBLLEIDALleida, Spain
| | - Lucía Tabares
- Department of Medical Physiology and Biophysics, School of Medicine University of SevilleSeville, Spain
| |
Collapse
|
106
|
Pecoraro-Bisogni F, Lignani G, Contestabile A, Castroflorio E, Pozzi D, Rocchi A, Prestigio C, Orlando M, Valente P, Massacesi M, Benfenati F, Baldelli P. REST-Dependent Presynaptic Homeostasis Induced by Chronic Neuronal Hyperactivity. Mol Neurobiol 2017; 55:4959-4972. [PMID: 28786015 DOI: 10.1007/s12035-017-0698-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
Abstract
Homeostatic plasticity is a regulatory feedback response in which either synaptic strength or intrinsic excitability can be adjusted up or down to offset sustained changes in neuronal activity. Although a growing number of evidences constantly provide new insights into these two apparently distinct homeostatic processes, a unified molecular model remains unknown. We recently demonstrated that REST is a transcriptional repressor critical for the downscaling of intrinsic excitability in cultured hippocampal neurons subjected to prolonged elevation of electrical activity. Here, we report that, in the same experimental system, REST also participates in synaptic homeostasis by reducing the strength of excitatory synapses by specifically acting at the presynaptic level. Indeed, chronic hyperactivity triggers a REST-dependent decrease of the size of synaptic vesicle pools through the transcriptional and translational repression of specific presynaptic REST target genes. Together with our previous report, the data identify REST as a fundamental molecular player for neuronal homeostasis able to downscale simultaneously both intrinsic excitability and presynaptic efficiency in response to elevated neuronal activity. This experimental evidence adds new insights to the complex activity-dependent transcriptional regulation of the homeostatic plasticity processes mediated by REST.
Collapse
Affiliation(s)
- F Pecoraro-Bisogni
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV 3, 16132, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Gabriele Lignani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy. .,Institute of Neurology, University College of London, WC1N 3BG, London, UK.
| | - A Contestabile
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - E Castroflorio
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - D Pozzi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,Pharmacology and Brain Pathology Lab, Humanitas Clinical and Research Center, Humanitas University, Via Manzoni 56, Rozzano, Milan, Italy
| | - A Rocchi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - C Prestigio
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV 3, 16132, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - M Orlando
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,Neurocure NWFZ, Charite Universitaetsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - P Valente
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - M Massacesi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,Laboratory of Neurosciences and Neurogenetics, Department of Head and Neck Diseases, "G. Gaslini" Institute, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - F Benfenati
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV 3, 16132, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV 3, 16132, Genoa, Italy. .,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
107
|
Mauger O, Lemoine F, Scheiffele P. Targeted Intron Retention and Excision for Rapid Gene Regulation in Response to Neuronal Activity. Neuron 2017; 92:1266-1278. [PMID: 28009274 DOI: 10.1016/j.neuron.2016.11.032] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 10/14/2016] [Accepted: 11/18/2016] [Indexed: 01/03/2023]
Abstract
Activity-dependent transcription has emerged as a major source of gene products that regulate neuronal excitability, connectivity, and synaptic properties. However, the elongation rate of RNA polymerases imposes a significant temporal constraint for transcript synthesis, in particular for long genes where new synthesis requires hours. Here we reveal a novel, transcription-independent mechanism that releases transcripts within minutes of neuronal stimulation. We found that, in the mouse neocortex, polyadenylated transcripts retain select introns and are stably accumulated in the cell nucleus. A subset of these intron retention transcripts undergoes activity-dependent splicing, cytoplasmic export, and ribosome loading, thus acutely releasing mRNAs in response to stimulation. This process requires NMDA receptor- and calmodulin-dependent kinase pathways, and it is particularly prevalent for long transcripts. We conclude that regulated intron retention in fully transcribed RNAs represents a mechanism to rapidly mobilize a pool of mRNAs in response to neuronal activity.
Collapse
Affiliation(s)
- Oriane Mauger
- Biozentrum of the University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Frédéric Lemoine
- GenoSplice Technology, iPEPS-ICM, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Peter Scheiffele
- Biozentrum of the University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland.
| |
Collapse
|
108
|
Kirst C, Modes CD, Magnasco MO. Shifting attention to dynamics: Self-reconfiguration of neural networks. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
109
|
Krystal JH, Anticevic A, Yang GJ, Dragoi G, Driesen NR, Wang XJ, Murray JD. Impaired Tuning of Neural Ensembles and the Pathophysiology of Schizophrenia: A Translational and Computational Neuroscience Perspective. Biol Psychiatry 2017; 81:874-885. [PMID: 28434616 PMCID: PMC5407407 DOI: 10.1016/j.biopsych.2017.01.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/14/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
The functional optimization of neural ensembles is central to human higher cognitive functions. When the functions through which neural activity is tuned fail to develop or break down, symptoms and cognitive impairments arise. This review considers ways in which disturbances in the balance of excitation and inhibition might develop and be expressed in cortical networks in association with schizophrenia. This presentation is framed within a developmental perspective that begins with disturbances in glutamate synaptic development in utero. It considers developmental correlates and consequences, including compensatory mechanisms that increase intrinsic excitability or reduce inhibitory tone. It also considers the possibility that these homeostatic increases in excitability have potential negative functional and structural consequences. These negative functional consequences of disinhibition may include reduced working memory-related cortical activity associated with the downslope of the "inverted-U" input-output curve, impaired spatial tuning of neural activity and impaired sparse coding of information, and deficits in the temporal tuning of neural activity and its implication for neural codes. The review concludes by considering the functional significance of noisy activity for neural network function. The presentation draws on computational neuroscience and pharmacologic and genetic studies in animals and humans, particularly those involving N-methyl-D-aspartate glutamate receptor antagonists, to illustrate principles of network regulation that give rise to features of neural dysfunction associated with schizophrenia. While this presentation focuses on schizophrenia, the general principles outlined in the review may have broad implications for considering disturbances in the regulation of neural ensembles in psychiatric disorders.
Collapse
Affiliation(s)
- John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT USA,Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Department of Psychology, Yale University
| | - Genevieve J. Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - George Dragoi
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - Naomi R. Driesen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT USA
| | | | - John D. Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
110
|
Yildirim V, Bertram R. Calcium Oscillation Frequency-Sensitive Gene Regulation and Homeostatic Compensation in Pancreatic β-Cells. Bull Math Biol 2017; 79:1295-1324. [PMID: 28497293 DOI: 10.1007/s11538-017-0286-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/27/2017] [Indexed: 02/03/2023]
Abstract
Pancreatic islet [Formula: see text]-cells are electrically excitable cells that secrete insulin in an oscillatory fashion when the blood glucose concentration is at a stimulatory level. Insulin oscillations are the result of cytosolic [Formula: see text] oscillations that accompany bursting electrical activity of [Formula: see text]-cells and are physiologically important. ATP-sensitive [Formula: see text] channels (K(ATP) channels) play the key role in setting the overall activity of the cell and in driving bursting, by coupling cell metabolism to the membrane potential. In humans, when there is a defect in K(ATP) channel function, [Formula: see text]-cells fail to respond appropriately to changes in the blood glucose level, and electrical and [Formula: see text] oscillations are lost. However, mice compensate for K(ATP) channel defects in islet [Formula: see text]-cells by employing alternative mechanisms to maintain electrical and [Formula: see text] oscillations. In a recent study, we showed that in mice islets in which K(ATP) channels are genetically knocked out another [Formula: see text] current, provided by inward-rectifying [Formula: see text] channels, is increased. With mathematical modeling, we demonstrated that a sufficient upregulation in these channels can account for the paradoxical electrical bursting and [Formula: see text] oscillations observed in these [Formula: see text]-cells. However, the question of determining the correct level of upregulation that is necessary for this compensation remained unanswered, and this question motivates the current study. [Formula: see text] is a well-known regulator of gene expression, and several examples have been shown of genes that are sensitive to the frequency of the [Formula: see text] signal. In this mathematical modeling study, we demonstrate that a [Formula: see text] oscillation frequency-sensitive gene transcription network can adjust the gene expression level of a compensating [Formula: see text] channel so as to rescue electrical bursting and [Formula: see text] oscillations in a model [Formula: see text]-cell in which the key K(ATP) current is removed. This is done without the prescription of a target [Formula: see text] level, but evolves naturally as a consequence of the feedback between the [Formula: see text]-dependent enzymes and the cell's electrical activity. More generally, the study indicates how [Formula: see text] can provide the link between gene expression and cellular electrical activity that promotes wild-type behavior in a cell following gene knockout.
Collapse
Affiliation(s)
- Vehpi Yildirim
- Department of Mathematics, Florida State University, Tallahassee, FL, 32306, USA
| | - Richard Bertram
- Department of Mathematics and Programs in Molecular Biophysics and Neuroscience, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
111
|
Genç Ö, Dickman DK, Ma W, Tong A, Fetter RD, Davis GW. MCTP is an ER-resident calcium sensor that stabilizes synaptic transmission and homeostatic plasticity. eLife 2017; 6. [PMID: 28485711 PMCID: PMC5449185 DOI: 10.7554/elife.22904] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/08/2017] [Indexed: 12/26/2022] Open
Abstract
Presynaptic homeostatic plasticity (PHP) controls synaptic transmission in organisms from Drosophila to human and is hypothesized to be relevant to the cause of human disease. However, the underlying molecular mechanisms of PHP are just emerging and direct disease associations remain obscure. In a forward genetic screen for mutations that block PHP we identified mctp (Multiple C2 Domain Proteins with Two Transmembrane Regions). Here we show that MCTP localizes to the membranes of the endoplasmic reticulum (ER) that elaborate throughout the soma, dendrites, axon and presynaptic terminal. Then, we demonstrate that MCTP functions downstream of presynaptic calcium influx with separable activities to stabilize baseline transmission, short-term release dynamics and PHP. Notably, PHP specifically requires the calcium coordinating residues in each of the three C2 domains of MCTP. Thus, we propose MCTP as a novel, ER-localized calcium sensor and a source of calcium-dependent feedback for the homeostatic stabilization of neurotransmission.
Collapse
Affiliation(s)
- Özgür Genç
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Dion K Dickman
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States.,Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Wenpei Ma
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Amy Tong
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Richard D Fetter
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
112
|
Queenan BN, Ryan TJ, Gazzaniga M, Gallistel CR. On the research of time past: the hunt for the substrate of memory. Ann N Y Acad Sci 2017; 1396:108-125. [PMID: 28548457 PMCID: PMC5448307 DOI: 10.1111/nyas.13348] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/20/2022]
Abstract
The search for memory is one of the oldest quests in written human history. For at least two millennia, we have tried to understand how we learn and remember. We have gradually converged on the brain and looked inside it to find the basis of knowledge, the trace of memory. The search for memory has been conducted on multiple levels, from the organ to the cell to the synapse, and has been distributed across disciplines with less chronological or intellectual overlap than one might hope. Frequently, the study of the mind and its memories has been severely restricted by technological or philosophical limitations. However, in the last few years, certain technologies have emerged, offering new routes of inquiry into the basis of memory. The 2016 Kavli Futures Symposium was devoted to the past and future of memory studies. At the workshop, participants evaluated the logic and data underlying the existing and emerging theories of memory. In this paper, written in the spirit of the workshop, we briefly review the history of the hunt for memory, summarizing some of the key debates at each level of spatial resolution. We then discuss the exciting new opportunities to unravel the mystery of memory.
Collapse
Affiliation(s)
- Bridget N. Queenan
- Neuroscience Research Institute, Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California
| | - Tomás J. Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael Gazzaniga
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| | - Charles R. Gallistel
- Rutgers Center for Cognitive Science, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
113
|
Zenke F, Gerstner W, Ganguli S. The temporal paradox of Hebbian learning and homeostatic plasticity. Curr Opin Neurobiol 2017; 43:166-176. [DOI: 10.1016/j.conb.2017.03.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 11/16/2022]
|
114
|
Kim EZ, Vienne J, Rosbash M, Griffith LC. Nonreciprocal homeostatic compensation in Drosophila potassium channel mutants. J Neurophysiol 2017; 117:2125-2136. [PMID: 28298298 DOI: 10.1152/jn.00002.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/06/2017] [Accepted: 03/11/2017] [Indexed: 01/30/2023] Open
Abstract
Homeostatic control of intrinsic excitability is important for long-term regulation of neuronal activity. In conjunction with many other forms of plasticity, intrinsic homeostasis helps neurons maintain stable activity regimes in the face of external input variability and destabilizing genetic mutations. In this study, we report a mechanism by which Drosophila melanogaster larval motor neurons stabilize hyperactivity induced by the loss of the delayed rectifying K+ channel Shaker cognate B (Shab), by upregulating the Ca2+-dependent K+ channel encoded by the slowpoke (slo) gene. We also show that loss of SLO does not trigger a reciprocal compensatory upregulation of SHAB, implying that homeostatic signaling pathways utilize compensatory pathways unique to the channel that was mutated. SLO upregulation due to loss of SHAB involves nuclear Ca2+ signaling and dCREB, suggesting that the slo homeostatic response is transcriptionally mediated. Examination of the changes in gene expression induced by these mutations suggests that there is not a generic transcriptional response to increased excitability in motor neurons, but that homeostatic compensations are influenced by the identity of the lost conductance.NEW & NOTEWORTHY The idea that activity-dependent homeostatic plasticity is driven solely by firing has wide credence. In this report we show that homeostatic compensation after loss of an ion channel conductance is tailored to identity of the channel lost, not its properties.
Collapse
Affiliation(s)
- Eugene Z Kim
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts; and
| | - Julie Vienne
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts; and
| | - Michael Rosbash
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts; and.,Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts
| | - Leslie C Griffith
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts; and
| |
Collapse
|
115
|
Kugathasan P, Waller J, Westrich L, Abdourahman A, Tamm JA, Pehrson AL, Dale E, Gulinello M, Sanchez C, Li Y. In vivo and in vitro effects of vortioxetine on molecules associated with neuroplasticity. J Psychopharmacol 2017; 31:365-376. [PMID: 27678087 DOI: 10.1177/0269881116667710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroplasticity is fundamental for brain functions, abnormal changes of which are associated with mood disorders and cognitive impairment. Neuroplasticity can be affected by neuroactive medications and by aging. Vortioxetine, a multimodal antidepressant, has shown positive effects on cognitive functions in both pre-clinical and clinical studies. In rodent studies, vortioxetine increases glutamate neurotransmission, promotes dendritic branching and spine maturation, and elevates hippocampal expression of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) at the transcript level. The present study aims to assess the effects of vortioxetine on several neuroplasticity-related molecules in different experimental systems. Chronic (1 month) vortioxetine increased Arc/Arg3.1 protein levels in the cortical synaptosomes of young and middle-aged mice. In young mice, this was accompanied by an increase in actin-depolymerizing factor (ADF)/cofilin serine 3 phosphorylation without altering the total ADF/cofilin protein level, and an increase in the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor phosphorylation at serine 845 (S845) without altering serine 831 (S831) GluA1 phosphorylation nor the total GluA1 protein level. Similar effects were detected in cultured rat hippocampal neurons: Acute vortioxetine increased S845 GluA1 phosphorylation without changing S831 GluA1 phosphorylation or the total GluA1 protein level. These changes were accompanied by an increase in α subunit of Ca2+/calmodulin-dependent kinase (CaMKIIα) phosphorylation (at threonine 286) without changing the total CaMKIIα protein level in cultured neurons. In addition, chronic (1 month) vortioxetine, but not fluoxetine, restored the age-associated reduction in Arc/Arg3.1 and c-Fos transcripts in the frontal cortex of middle-aged mice. Taken together, these results demonstrated that vortioxetine modulates molecular targets that are related to neuroplasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yan Li
- 1 Lundbeck Research, Paramus, NJ, USA
| |
Collapse
|
116
|
Neural plasticity and network remodeling: From concepts to pathology. Neuroscience 2017; 344:326-345. [PMID: 28069532 DOI: 10.1016/j.neuroscience.2016.12.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 11/22/2022]
Abstract
Neuroplasticity has been subject to a great deal of research in the last century. Recently, significant emphasis has been placed on the global effect of localized plastic changes throughout the central nervous system, and on how these changes integrate in a pathological context. Specifically, alterations of network functionality have been described in various pathological contexts to which corresponding structural alterations have been proposed. However, considering the amount of literature and the different pathological contexts, an integration of this information is still lacking. In this paper we will review the concepts of neural plasticity as well as their repercussions on network remodeling and provide a possible explanation to how these two concepts relate to each other. We will further examine how alterations in different pathological contexts may relate to each other and will discuss the concept of plasticity diseases, its models and implications.
Collapse
|
117
|
|
118
|
Carrillo-Medina JL, Latorre R. Implementing Signature Neural Networks with Spiking Neurons. Front Comput Neurosci 2016; 10:132. [PMID: 28066221 PMCID: PMC5167754 DOI: 10.3389/fncom.2016.00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/30/2016] [Indexed: 11/17/2022] Open
Abstract
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data—to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence of inhibitory connections. These parameters also modulate the memory capabilities of the network. The dynamical modes observed in the different informational dimensions in a given moment are independent and they only depend on the parameters shaping the information processing in this dimension. In view of these results, we argue that plasticity mechanisms inside individual cells and multicoding strategies can provide additional computational properties to spiking neural networks, which could enhance their capacity and performance in a wide variety of real-world tasks.
Collapse
Affiliation(s)
- José Luis Carrillo-Medina
- Departamento de Eléctrica y Electrónica, Universidad de las Fuerzas Armadas - ESPE Sangolquí, Ecuador
| | - Roberto Latorre
- Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
119
|
Zhou J, Zou Y, Guan S, Liu Z, Boccaletti S. Synchronization in slowly switching networks of coupled oscillators. Sci Rep 2016; 6:35979. [PMID: 27779253 PMCID: PMC5078792 DOI: 10.1038/srep35979] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/07/2016] [Indexed: 11/17/2022] Open
Abstract
Networks whose structure of connections evolves in time constitute a big challenge in the study of synchronization, in particular when the time scales for the evolution of the graph topology are comparable with (or even longer than) those pertinent to the units’ dynamics. We here focus on networks with a slow-switching structure, and show that the necessary conditions for synchronization, i.e. the conditions for which synchronization is locally stable, are determined by the time average of the largest Lyapunov exponents of transverse modes of the switching topologies. Comparison between fast- and slow-switching networks allows elucidating that slow-switching processes prompt synchronization in the cases where the Master Stability Function is concave, whereas fast-switching schemes facilitate synchronization for convex curves. Moreover, the condition of slow-switching enables the introduction of a control strategy for inducing synchronization in networks with arbitrary structure and coupling strength, which is of evident relevance for broad applications in real world systems.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Physics, East China Normal University, Shanghai 200241, China
| | - Yong Zou
- Department of Physics, East China Normal University, Shanghai 200241, China
| | - Shuguang Guan
- Department of Physics, East China Normal University, Shanghai 200241, China
| | - Zonghua Liu
- Department of Physics, East China Normal University, Shanghai 200241, China
| | - S Boccaletti
- CNR-Institute of Complex Systems, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Florence, Italy.,The Embassy of Italy in Tel Aviv, 25 Hamered street, 68125 Tel Aviv, Israel
| |
Collapse
|
120
|
Lee SH, Kim YJ, Choi SY. BMP signaling modulates the probability of neurotransmitter release and readily releasable pools in Drosophila neuromuscular junction synapses. Biochem Biophys Res Commun 2016; 479:440-446. [DOI: 10.1016/j.bbrc.2016.09.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022]
|
121
|
Tighilet B, Dutheil S, Siponen MI, Noreña AJ. Reactive Neurogenesis and Down-Regulation of the Potassium-Chloride Cotransporter KCC2 in the Cochlear Nuclei after Cochlear Deafferentation. Front Pharmacol 2016; 7:281. [PMID: 27630564 PMCID: PMC5005331 DOI: 10.3389/fphar.2016.00281] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/16/2016] [Indexed: 12/26/2022] Open
Abstract
While many studies have been devoted to investigating the homeostatic plasticity triggered by cochlear hearing loss, the cellular and molecular mechanisms involved in these central changes remain elusive. In the present study, we investigated the possibility of reactive neurogenesis after unilateral cochlear nerve section in the cochlear nucleus (CN) of cats. We found a strong cell proliferation in all the CN sub-divisions ipsilateral to the lesion. Most of the newly generated cells survive up to 1 month after cochlear deafferentation in all cochlear nuclei (except the dorsal CN) and give rise to a variety of cell types, i.e., microglial cells, astrocytes, and neurons. Interestingly, many of the newborn neurons had an inhibitory (GABAergic) phenotype. This result is intriguing since sensory deafferentation is usually accompanied by enhanced excitation, consistent with a reduction in central inhibition. The membrane potential effect of GABA depends, however, on the intra-cellular chloride concentration, which is maintained at low levels in adults by the potassium chloride co-transporter KCC2. The KCC2 density on the plasma membrane of neurons was then assessed after cochlear deafferentation in the cochlear nuclei ipsilateral and contralateral to the lesion. Cochlear deafferentation is accompanied by a strong down-regulation of KCC2 ipsilateral to the lesion at 3 and 30 days post-lesion. This study suggests that reactive neurogenesis and down-regulation of KCC2 is part of the vast repertoire involved in homeostatic plasticity triggered by hearing loss. These central changes may also play a role in the generation of tinnitus and hyperacusis.
Collapse
Affiliation(s)
- Brahim Tighilet
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260 - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition) - Aix-Marseille Université - Centre National de la Recherche Scientifique Marseille, France
| | - Sophie Dutheil
- Department of Psychiatry, School of Medicine, Yale University, New Haven CT, USA
| | - Marina I Siponen
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260 - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition) - Aix-Marseille Université - Centre National de la Recherche Scientifique Marseille, France
| | - Arnaud J Noreña
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260 - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition) - Aix-Marseille Université - Centre National de la Recherche Scientifique Marseille, France
| |
Collapse
|
122
|
Lauritzen JS, Sigulinsky CL, Anderson JR, Kalloniatis M, Nelson NT, Emrich DP, Rapp C, McCarthy N, Kerzner E, Meyer M, Jones BW, Marc RE. Rod-cone crossover connectome of mammalian bipolar cells. J Comp Neurol 2016; 527:87-116. [PMID: 27447117 PMCID: PMC5823792 DOI: 10.1002/cne.24084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/08/2016] [Accepted: 06/30/2016] [Indexed: 11/11/2022]
Abstract
The basis of cross-suppression between rod and cone channels has long been an enigma. Using rabbit retinal connectome RC1, we show that all cone bipolar cell (BC) classes inhibit rod BCs via amacrine cell (AC) motifs (C1-6); that all cone BC classes are themselves inhibited by AC motifs (R1-5, R25) driven by rod BCs. A sparse symmetric AC motif (CR) is presynaptic and postsynaptic to both rod and cone BCs. ON cone BCs of all classes drive inhibition of rod BCs via motif C1 wide-field GABAergic ACs (γACs) and motif C2 narrow field glycinergic ON ACs (GACs). Each rod BC receives ≈10 crossover AC synapses and each ON cone BC can target ≈10 or more rod BCs via separate AC processes. OFF cone BCs mediate monosynaptic inhibition of rod BCs via motif C3 driven by OFF γACs and GACs and disynaptic inhibition via motifs C4 and C5 driven by OFF wide-field γACs and narrow-field GACs, respectively. Motifs C4 and C5 form halos of 60-100 inhibitory synapses on proximal dendrites of AI γACs. Rod BCs inhibit surrounding arrays of cone BCs through AII GAC networks that access ON and OFF cone BC patches via motifs R1, R2, R4, R5 and a unique ON AC motif R3 that collects rod BC inputs and targets ON cone BCs. Crossover synapses for motifs C1, C4, C5, and R3 are 3-4× larger than typical feedback synapses, which may be a signature for synaptic winner-take-all switches. J. Comp. Neurol. 527:87-116, 2019. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Crystal L Sigulinsky
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - James R Anderson
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Michael Kalloniatis
- Department of Optometry and Vision Science and Centre for Eye Health, University of New South Wales, Sydney, Australia
| | - Noah T Nelson
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Daniel P Emrich
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Christopher Rapp
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Nicholas McCarthy
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Ethan Kerzner
- Scientific Computing and Imaging Institute, University of Utah School of Computing, Salt Lake City Utah, USA
| | - Miriah Meyer
- Scientific Computing and Imaging Institute, University of Utah School of Computing, Salt Lake City Utah, USA
| | - Bryan W Jones
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Robert E Marc
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
123
|
Hannan S, Gerrow K, Triller A, Smart TG. Phospho-dependent Accumulation of GABABRs at Presynaptic Terminals after NMDAR Activation. Cell Rep 2016; 16:1962-73. [PMID: 27498877 PMCID: PMC4987283 DOI: 10.1016/j.celrep.2016.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/19/2016] [Accepted: 07/09/2016] [Indexed: 11/24/2022] Open
Abstract
Here, we uncover a mechanism for regulating the number of active presynaptic GABAB receptors (GABABRs) at nerve terminals, an important determinant of neurotransmitter release. We find that GABABRs gain access to axon terminals by lateral diffusion in the membrane. Their relative accumulation is dependent upon agonist activation and the presence of the two distinct sushi domains that are found only in alternatively spliced GABABR1a subunits. Following brief activation of NMDA receptors (NMDARs) using glutamate, GABABR diffusion is reduced, causing accumulation at presynaptic terminals in a Ca(2+)-dependent manner that involves phosphorylation of GABABR2 subunits at Ser783. This signaling cascade indicates how synaptically released glutamate can initiate, via a feedback mechanism, increased levels of presynaptic GABABRs that limit further glutamate release and excitotoxicity.
Collapse
Affiliation(s)
- Saad Hannan
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Kim Gerrow
- Biologie Cellulaire de la Synapse, Inserm U1024, Institute of Biology, École Normale Supérieure (ENS), 46 rue d'Ulm, Paris 75005, France
| | - Antoine Triller
- Biologie Cellulaire de la Synapse, Inserm U1024, Institute of Biology, École Normale Supérieure (ENS), 46 rue d'Ulm, Paris 75005, France
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
124
|
Braegelmann KM, Streeter KA, Fields DP, Baker TL. Plasticity in respiratory motor neurons in response to reduced synaptic inputs: A form of homeostatic plasticity in respiratory control? Exp Neurol 2016; 287:225-234. [PMID: 27456270 DOI: 10.1016/j.expneurol.2016.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/16/2016] [Accepted: 07/20/2016] [Indexed: 12/31/2022]
Abstract
For most individuals, the respiratory control system produces a remarkably stable and coordinated motor output-recognizable as a breath-from birth until death. Very little is understood regarding the processes by which the respiratory control system maintains network stability in the presence of changing physiological demands and network properties that occur throughout life. An emerging principle of neuroscience is that neural activity is sensed and adjusted locally to assure that neurons continue to operate in an optimal range, yet to date, it is unknown whether such homeostatic plasticity is a feature of the neurons controlling breathing. Here, we review the evidence that local mechanisms sense and respond to perturbations in respiratory neural activity, with a focus on plasticity in respiratory motor neurons. We discuss whether these forms of plasticity represent homeostatic plasticity in respiratory control. We present new analyses demonstrating that reductions in synaptic inputs to phrenic motor neurons elicit a compensatory enhancement of phrenic inspiratory motor output, a form of plasticity termed inactivity-induced phrenic motor facilitation (iPMF), that is proportional to the magnitude of activity deprivation. Although the physiological role of iPMF is not understood, we hypothesize that it has an important role in protecting the drive to breathe during conditions of prolonged or intermittent reductions in respiratory neural activity, such as following spinal cord injury or during central sleep apnea.
Collapse
Affiliation(s)
- K M Braegelmann
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States
| | - K A Streeter
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States
| | - D P Fields
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States
| | - T L Baker
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|
125
|
Naro A, Leo A, Filoni S, Bramanti P, Calabrò RS. Visuo-motor integration in unresponsive wakefulness syndrome: A piece of the puzzle towards consciousness detection? Restor Neurol Neurosci 2016; 33:447-60. [PMID: 26409404 PMCID: PMC4923741 DOI: 10.3233/rnn-150525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE The unresponsive wakefulness syndrome (UWS) is characterized by either a profound unawareness or an impairment of large-scale cortico/subcortical connectivity. Nevertheless, some individuals with UWS could show residual markers of consciousness and cognition. In this study, we applied an electrophysiological approach aimed to identify the residual visuomotor connectivity patterns that are thought to be linked to awareness, in patients with chronic disorder of consciousness (DOC). METHODS We measured some markers of visuomotor and premotor-motor integration in 14 patients affected by DOC, before and after the application of transcranial direct current stimulation, delivered over the dorsolateral prefrontal cortex and the parieto-occipital area, paired to transorbital alterning current stimulation. RESULTS Our protocol induced a potentiation of the electrophysiological markers of visuomotor and premotor-motor connectivity, paired to a clinical improvement, in all of the patients with minimally conscious state and in one individual affected by UWS. CONCLUSIONS Our protocol could be a promising approach to potentiate the functional connectivity within large-scale visuomotor networks, thus allowing identifying the patients suffering from a functional locked-in syndrome (i.e. individuals showing an extreme behavioral motor dysfunction although with somehow preserved cognitive functions that can be identified only through para-clinical tests) within individuals with UWS.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi "Bonino-Pulejo" Messina, S.S, Contrada Casazza, Messina, Italy
| | - Antonino Leo
- IRCCS Centro Neurolesi "Bonino-Pulejo" Messina, S.S, Contrada Casazza, Messina, Italy
| | - Serena Filoni
- Fondazione Centri di Riabilitazione Padre Pio Onlus, Viale Cappuccini, San Giovanni Rotondo (FG), Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo" Messina, S.S, Contrada Casazza, Messina, Italy
| | | |
Collapse
|
126
|
Reyskens KMSE, Arthur JSC. Emerging Roles of the Mitogen and Stress Activated Kinases MSK1 and MSK2. Front Cell Dev Biol 2016; 4:56. [PMID: 27376065 PMCID: PMC4901046 DOI: 10.3389/fcell.2016.00056] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/30/2016] [Indexed: 01/17/2023] Open
Abstract
Mitogen- and stress-activated kinases (MSK) 1 and 2 are nuclear proteins activated downstream of the ERK1/2 or p38 MAPK pathways. MSKs phosphorylate multiple substrates, including CREB and Histone H3, and their major role is the regulation of specific subsets of Immediate Early genes (IEG). While MSKs are expressed in multiple tissues, their levels are high in immune and neuronal cells and it is in these systems most is known about their function. In immunity, MSKs have predominantly anti-inflammatory roles and help regulate production of the anti-inflammatory cytokine IL-10. In the CNS they are implicated in neuronal proliferation and synaptic plasticity. In this review we will focus on recent advances in understanding the roles of MSKs in the innate immune system and neuronal function.
Collapse
Affiliation(s)
- Kathleen M S E Reyskens
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee Dundee, UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee Dundee, UK
| |
Collapse
|
127
|
Gjorgjieva J, Evers JF, Eglen SJ. Homeostatic Activity-Dependent Tuning of Recurrent Networks for Robust Propagation of Activity. J Neurosci 2016; 36:3722-34. [PMID: 27030758 PMCID: PMC4812132 DOI: 10.1523/jneurosci.2511-15.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 01/31/2016] [Accepted: 02/09/2016] [Indexed: 11/21/2022] Open
Abstract
Developing neuronal networks display spontaneous bursts of action potentials that are necessary for circuit organization and tuning. While spontaneous activity has been shown to instruct map formation in sensory circuits, it is unknown whether it plays a role in the organization of motor networks that produce rhythmic output. Using computational modeling, we investigate how recurrent networks of excitatory and inhibitory neuronal populations assemble to produce robust patterns of unidirectional and precisely timed propagating activity during organism locomotion. One example is provided by the motor network inDrosophilalarvae, which generates propagating peristaltic waves of muscle contractions during crawling. We examine two activity-dependent models, which tune weak network connectivity based on spontaneous activity patterns: a Hebbian model, where coincident activity in neighboring populations strengthens connections between them; and a homeostatic model, where connections are homeostatically regulated to maintain a constant level of excitatory activity based on spontaneous input. The homeostatic model successfully tunes network connectivity to generate robust activity patterns with appropriate timing relationships between neighboring populations. These timing relationships can be modulated by the properties of spontaneous activity, suggesting its instructive role for generating functional variability in network output. In contrast, the Hebbian model fails to produce the tight timing relationships between neighboring populations required for unidirectional activity propagation, even when additional assumptions are imposed to constrain synaptic growth. These results argue that homeostatic mechanisms are more likely than Hebbian mechanisms to tune weak connectivity based on spontaneous input in a recurrent network for rhythm generation and robust activity propagation. SIGNIFICANCE STATEMENT How are neural circuits organized and tuned to maintain stable function and produce robust output? This task is especially difficult during development, when circuit properties change in response to variable environments and internal states. Many developing circuits exhibit spontaneous activity, but its role in the synaptic organization of motor networks that produce rhythmic output is unknown. We studied a model motor network, that when appropriately tuned, generates propagating activity as during crawling inDrosophilalarvae. Based on experimental evidence of activity-dependent tuning of connectivity, we examined plausible mechanisms by which appropriate connectivity emerges. Our results suggest that activity-dependent homeostatic mechanisms are better suited than Hebbian mechanisms for organizing motor network connectivity, and highlight an important difference from sensory areas.
Collapse
Affiliation(s)
- Julijana Gjorgjieva
- Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom,
| | - Jan Felix Evers
- Heidelberg University, Centre for Organismal Studies, Heidelberg D-69120, Germany, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, and
| | - Stephen J Eglen
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom, Cambridge Computational Biology Institute, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
128
|
Kidd S, Lieber T. Mechanism of Notch Pathway Activation and Its Role in the Regulation of Olfactory Plasticity in Drosophila melanogaster. PLoS One 2016; 11:e0151279. [PMID: 26986723 PMCID: PMC4795742 DOI: 10.1371/journal.pone.0151279] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/25/2016] [Indexed: 12/20/2022] Open
Abstract
The neural plasticity of sensory systems is being increasingly recognized as playing a role in learning and memory. We have previously shown that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila melanogaster olfactory receptor neurons (ORNs) for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. In this paper we address how long-term exposure to odor activates Notch and how Notch in conjunction with chronic odor mediates olfactory plasticity. We show that upon chronic odor exposure a non-canonical Notch pathway mediates an increase in the volume of glomeruli by a mechanism that is autonomous to ORNs. In addition to activating a pathway that is autonomous to ORNs, chronic odor exposure also activates the Notch ligand Delta in second order projection neurons (PNs), but this does not appear to require acetylcholine receptor activation in PNs. Delta on PNs then feeds back to activate canonical Notch signaling in ORNs, which restricts the extent of the odor induced increase in glomerular volume. Surprisingly, even though the pathway that mediates the increase in glomerular volume is autonomous to ORNs, nonproductive transsynaptic Delta/Notch interactions that do not activate the canonical pathway can block the increase in volume. In conjunction with chronic odor, the canonical Notch pathway also enhances cholinergic activation of PNs. We present evidence suggesting that this is due to increased acetylcholine release from ORNs. In regulating physiological plasticity, Notch functions solely by the canonical pathway, suggesting that there is no direct connection between morphological and physiological plasticity.
Collapse
Affiliation(s)
- Simon Kidd
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, New York, United States of America
| | - Toby Lieber
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, New York, United States of America
| |
Collapse
|
129
|
Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity. Neural Plast 2016; 2016:7969272. [PMID: 27019755 PMCID: PMC4785275 DOI: 10.1155/2016/7969272] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/31/2016] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β (Aβ) peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβ oligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβ levels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets.
Collapse
|
130
|
Dopamine neurons share common response function for reward prediction error. Nat Neurosci 2016; 19:479-86. [PMID: 26854803 PMCID: PMC4767554 DOI: 10.1038/nn.4239] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/07/2016] [Indexed: 02/07/2023]
Abstract
Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically-identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found striking homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we could describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal.
Collapse
|
131
|
Iijima T, Hidaka C, Iijima Y. Spatio-temporal regulations and functions of neuronal alternative RNA splicing in developing and adult brains. Neurosci Res 2016; 109:1-8. [PMID: 26853282 DOI: 10.1016/j.neures.2016.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 10/25/2022]
Abstract
Alternative pre-mRNA splicing is a fundamental mechanism that generates molecular diversity from a single gene. In the central nervous system (CNS), key neural developmental steps are thought to be controlled by alternative splicing decisions, including the molecular diversity underlying synaptic wiring, plasticity, and remodeling. Significant progress has been made in understanding the molecular mechanisms and functions of alternative pre-mRNA splicing in neurons through studies in invertebrate systems; however, recent studies have begun to uncover the potential role of neuronal alternative splicing in the mammalian CNS. This article provides an overview of recent findings regarding the regulation and function of neuronal alternative splicing. In particular, we focus on the spatio-temporal regulation of neurexin, a synaptic adhesion molecule, by neuronal cell type-specific factors and neuronal activity, which are thought to be especially important for characterizing neural development and function within the mammalian CNS. Notably, there is increasing evidence that implicates the dysregulation of neuronal splicing events in several neurological disorders. Therefore, understanding the detailed mechanisms of neuronal alternative splicing in the mammalian CNS may provide plausible treatment strategies for these diseases.
Collapse
Affiliation(s)
- Takatoshi Iijima
- Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan; Tokai University Institute of Innovative Science and Technology, 4-1-1 Kitakaname, Hiratsuka City, Kanagawa 259-1292, Japan; School of Medicine, Tokai University, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan.
| | - Chiharu Hidaka
- Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan; Tokai University Institute of Innovative Science and Technology, 4-1-1 Kitakaname, Hiratsuka City, Kanagawa 259-1292, Japan; School of Medicine, Tokai University, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan
| | - Yoko Iijima
- Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan; Tokai University Institute of Innovative Science and Technology, 4-1-1 Kitakaname, Hiratsuka City, Kanagawa 259-1292, Japan; School of Medicine, Tokai University, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan
| |
Collapse
|
132
|
Sulkowski MJ, Han TH, Ott C, Wang Q, Verheyen EM, Lippincott-Schwartz J, Serpe M. A Novel, Noncanonical BMP Pathway Modulates Synapse Maturation at the Drosophila Neuromuscular Junction. PLoS Genet 2016; 12:e1005810. [PMID: 26815659 PMCID: PMC4729469 DOI: 10.1371/journal.pgen.1005810] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
At the Drosophila NMJ, BMP signaling is critical for synapse growth and homeostasis. Signaling by the BMP7 homolog, Gbb, in motor neurons triggers a canonical pathway—which modulates transcription of BMP target genes, and a noncanonical pathway—which connects local BMP/BMP receptor complexes with the cytoskeleton. Here we describe a novel noncanonical BMP pathway characterized by the accumulation of the pathway effector, the phosphorylated Smad (pMad), at synaptic sites. Using genetic epistasis, histology, super resolution microscopy, and electrophysiology approaches we demonstrate that this novel pathway is genetically distinguishable from all other known BMP signaling cascades. This novel pathway does not require Gbb, but depends on presynaptic BMP receptors and specific postsynaptic glutamate receptor subtypes, the type-A receptors. Synaptic pMad is coordinated to BMP’s role in the transcriptional control of target genes by shared pathway components, but it has no role in the regulation of NMJ growth. Instead, selective disruption of presynaptic pMad accumulation reduces the postsynaptic levels of type-A receptors, revealing a positive feedback loop which appears to function to stabilize active type-A receptors at synaptic sites. Thus, BMP pathway may monitor synapse activity then function to adjust synapse growth and maturation during development. Synaptic activity and synapse development are intimately linked, but our understanding of the coupling mechanisms remains limited. Anterograde and retrograde signals together with trans-synaptic complexes enable intercellular communications. How synapse activity status is monitored and relayed across the synaptic cleft remains poorly understood. The Drosophila NMJ is a very powerful genetic system to study synapse development. BMP signaling modulates NMJ growth via a canonical, Smad-dependent pathway, but also synapse stability, via a noncanonical, Smad-independent pathway. Here we describe a novel, noncanonical BMP pathway, which is genetically distinguishable from all other known BMP pathways. This pathway does not contribute to NMJ growth and instead influences synapse formation and maturation in an activity-dependent manner. Specifically, phosphorylated Smad (pMad in flies) accumulates at active zone in response to active postsynaptic type-A glutamate receptors, a specific receptor subtype. In turn, synaptic pMad functions to promote the recruitment of type-A receptors at synaptic sites. This positive feedback loop provides a molecular switch controlling which flavor of glutamate receptors will be stabilized at synaptic locations as a function of synapse status. Since BMP signaling also controls NMJ growth and stability, BMP pathway offers an exquisite means to monitor the status of synapse activity and coordinate NMJ growth with synapse maturation and stabilization.
Collapse
Affiliation(s)
- Mikolaj J. Sulkowski
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Tae Hee Han
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Carolyn Ott
- Cellular Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Qi Wang
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jennifer Lippincott-Schwartz
- Cellular Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Mihaela Serpe
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
133
|
MicroRNA miR124 is required for the expression of homeostatic synaptic plasticity. Nat Commun 2015; 6:10045. [PMID: 26620774 PMCID: PMC4686673 DOI: 10.1038/ncomms10045] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022] Open
Abstract
Homeostatic synaptic plasticity is a compensatory response to alterations in neuronal activity. Chronic deprivation of neuronal activity results in an increase in synaptic AMPA receptors (AMPARs) and postsynaptic currents. The biogenesis of GluA2-lacking, calcium-permeable AMPARs (CP-AMPARs) plays a crucial role in the homeostatic response; however, the mechanisms leading to CP-AMPAR formation remain unclear. Here we show that the microRNA, miR124, is required for the generation of CP-AMPARs and homeostatic plasticity. miR124 suppresses GluA2 expression via targeting its 3′-UTR, leading to the formation of CP-AMPARs. Blockade of miR124 function abolishes the homeostatic response, whereas miR124 overexpression leads to earlier induction of homeostatic plasticity. miR124 transcription is controlled by an inhibitory transcription factor EVI1, acting by association with the deacetylase HDAC1. Our data support a cellular cascade in which inactivity relieves EVI1/HDAC-mediated inhibition of miR124 gene transcription, resulting in enhanced miR124 expression, formation of CP-AMPARs and subsequent induction of homeostatic synaptic plasticity. GluA2-lacking AMPA receptors are known to play a role in homeostatic plasticity. Here, the authors show that spiking activity blockade disinhibits mir124 transcription, which in turn suppresses GluA2 mRNA translation, thereby contributing to synaptic upscaling in hippocampal cells.
Collapse
|
134
|
Nelson SB, Valakh V. Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders. Neuron 2015; 87:684-98. [PMID: 26291155 DOI: 10.1016/j.neuron.2015.07.033] [Citation(s) in RCA: 730] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autism spectrum disorders (ASDs) and related neurological disorders are associated with mutations in many genes affecting the ratio between neuronal excitation and inhibition. However, understanding the impact of these mutations on network activity is complicated by the plasticity of these networks, making it difficult in many cases to separate initial deficits from homeostatic compensation. Here we explore the contrasting evidence for primary defects in inhibition or excitation in ASDs and attempt to integrate the findings in terms of the brain's ability to maintain functional homeostasis.
Collapse
Affiliation(s)
- Sacha B Nelson
- Department of Biology and Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | - Vera Valakh
- Department of Biology and Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
135
|
Smeal RM, Fujinami R, White HS, Wilcox KS. Decrease in CA3 inhibitory network activity during Theiler's virus encephalitis. Neurosci Lett 2015; 609:210-5. [PMID: 26477780 PMCID: PMC4867493 DOI: 10.1016/j.neulet.2015.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/25/2015] [Accepted: 10/11/2015] [Indexed: 11/16/2022]
Abstract
Viral infections of the central nervous system are often associated with seizures, and while patients usually recover from the infection and the seizures cease, there is an increased lifetime incidence of epilepsy. These viral infections can result in mesial temporal sclerosis, and, subsequently, a type of epilepsy that is difficult to treat. In previous work, we have shown that Theiler's murine encephalomyelitis virus (TMEV) infections in C57B/6 mice, an animal model of virus-induced epilepsy, results in changes in excitatory currents of CA3 neurons both during the acute infection and two months later, at a time when seizure thresholds are reduced and when spontaneous seizures can occur. The changes in the excitatory system differ at these two time points, suggesting different mechanisms for seizure generation. In the present paper, we examine GABAergic mediated inhibition in CA3 pyramidal cells at these two time points following TMEV infection. We found that amplitudes of sIPSCs and mIPSCs were reduced during the acute infection, but recovered at the two-month time point. These observations are consistent with previous measurements of excitatory currents suggesting different mechanisms of seizure generation during the acute infection and during chronic epilepsy.
Collapse
Affiliation(s)
- R M Smeal
- University of Utah, Department of Pharmacology and Toxicology, United States.
| | - R Fujinami
- University of Utah, Department of Microbiology and Immunology, United States
| | - H S White
- University of Utah, Department of Pharmacology and Toxicology, United States
| | - K S Wilcox
- University of Utah, Department of Pharmacology and Toxicology, United States
| |
Collapse
|
136
|
Yger P, Gilson M. Models of Metaplasticity: A Review of Concepts. Front Comput Neurosci 2015; 9:138. [PMID: 26617512 PMCID: PMC4639700 DOI: 10.3389/fncom.2015.00138] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/27/2015] [Indexed: 11/16/2022] Open
Abstract
Part of hippocampal and cortical plasticity is characterized by synaptic modifications that depend on the joint activity of the pre- and post-synaptic neurons. To which extent those changes are determined by the exact timing and the average firing rates is still a matter of debate; this may vary from brain area to brain area, as well as across neuron types. However, it has been robustly observed both in vitro and in vivo that plasticity itself slowly adapts as a function of the dynamical context, a phenomena commonly referred to as metaplasticity. An alternative concept considers the regulation of groups of synapses with an objective at the neuronal level, for example, maintaining a given average firing rate. In that case, the change in the strength of a particular synapse of the group (e.g., due to Hebbian learning) affects others' strengths, which has been coined as heterosynaptic plasticity. Classically, Hebbian synaptic plasticity is paired in neuron network models with such mechanisms in order to stabilize the activity and/or the weight structure. Here, we present an oriented review that brings together various concepts from heterosynaptic plasticity to metaplasticity, and show how they interact with Hebbian-type learning. We focus on approaches that are nowadays used to incorporate those mechanisms to state-of-the-art models of spiking plasticity inspired by experimental observations in the hippocampus and cortex. Making the point that metaplasticity is an ubiquitous mechanism acting on top of classical Hebbian learning and promoting the stability of neural function over multiple timescales, we stress the need for incorporating it as a key element in the framework of plasticity models. Bridging theoretical and experimental results suggests a more functional role for metaplasticity mechanisms than simply stabilizing neural activity.
Collapse
Affiliation(s)
- Pierre Yger
- Sorbonne Université, UPMC Univ Paris06 UMRS968 Paris, France ; Institut de la Vision, INSERM, U968, Centre National de la Recherche Scientifique, UMR7210 Paris, France
| | - Matthieu Gilson
- Computational Neurosciences Group, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra Barcelona, Spain
| |
Collapse
|
137
|
Suppa A, Rocchi L, Li Voti P, Papazachariadis O, Casciato S, Di Bonaventura C, Giallonardo A, Berardelli A. The Photoparoxysmal Response Reflects Abnormal Early Visuomotor Integration in the Human Motor Cortex. Brain Stimul 2015; 8:1151-61. [DOI: 10.1016/j.brs.2015.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 04/23/2015] [Accepted: 05/22/2015] [Indexed: 11/29/2022] Open
|
138
|
Morphological Differentiation Towards Neuronal Phenotype of SH-SY5Y Neuroblastoma Cells by Estradiol, Retinoic Acid and Cholesterol. Neurochem Res 2015; 41:731-47. [PMID: 26518675 PMCID: PMC4824837 DOI: 10.1007/s11064-015-1743-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/16/2015] [Accepted: 10/17/2015] [Indexed: 12/29/2022]
Abstract
Human SH-SY5Y neuroblastoma cells maintain their potential for differentiation and regression in culture conditions. The induction of differentiation could serve as a strategy to inhibit cell proliferation and tumor growth. Previous studies have shown that differentiation of SH-SY5Y cells can be induced by all-trans-retinoic-acid (RA) and cholesterol (CHOL). However, signaling pathways that lead to terminal differentiation of SH-SY5Y cells are still largely unknown. The goal of this study was to examine in the RA and CHOL treated SH-SY5Y cells the additive impacts of estradiol (E2) and brain-derived neurotrophic factor (BDNF) on cell morphology, cell population growth, synaptic vesicle recycling and presence of neurofilaments. The above features indicate a higher level of neuronal differentiation. Our data show that treatment for 10 days in vitro (DIV) with RA alone or when combined with E2 (RE) or CHOL (RC), but not when combined with BDNF (RB), significantly (p < 0.01) inhibited the cell population growth. Synaptic vesicle recycling, induced by high-K(+) depolarization, was significantly increased in all treatments where RA was included (RE, RC, RB, RCB), and when all agents were added together (RCBE). Specifically, our results show for the first time that E2 treatment can alone increase synaptic vesicle recycling in SH-SY5Y cells. This work contributes to the understanding of the ways to improve suppression of neuroblastoma cells' population growth by inducing maturation and differentiation.
Collapse
|
139
|
Krenz WD, Parker AR, Rodgers E, Baro DJ. Monoaminergic tone supports conductance correlations and stabilizes activity features in pattern generating neurons of the lobster, Panulirus interruptus. Front Neural Circuits 2015; 9:63. [PMID: 26539083 PMCID: PMC4611060 DOI: 10.3389/fncir.2015.00063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/02/2015] [Indexed: 12/30/2022] Open
Abstract
Experimental and computational studies demonstrate that different sets of intrinsic and synaptic conductances can give rise to equivalent activity patterns. This is because the balance of conductances, not their absolute values, defines a given activity feature. Activity-dependent feedback mechanisms maintain neuronal conductance correlations and their corresponding activity features. This study demonstrates that tonic nM concentrations of monoamines enable slow, activity-dependent processes that can maintain a correlation between the transient potassium current (IA) and the hyperpolarization activated current (Ih) over the long-term (i.e., regulatory change persists for hours after removal of modulator). Tonic 5 nM DA acted through an RNA interference silencing complex (RISC)- and RNA polymerase II-dependent mechanism to maintain a long-term positive correlation between IA and Ih in the lateral pyloric neuron (LP) but not in the pyloric dilator neuron (PD). In contrast, tonic 5 nM 5HT maintained a RISC-dependent positive correlation between IA and Ih in PD but not LP over the long-term. Tonic 5 nM OCT maintained a long-term negative correlation between IA and Ih in PD but not LP; however, it was only revealed when RISC was inhibited. This study also demonstrated that monoaminergic tone can also preserve activity features over the long-term: the timing of LP activity, LP duty cycle and LP spike number per burst were maintained by tonic 5 nM DA. The data suggest that low-level monoaminergic tone acts through multiple slow processes to permit cell-specific, activity-dependent regulation of ionic conductances to maintain conductance correlations and their corresponding activity features over the long-term.
Collapse
Affiliation(s)
| | - Anna R Parker
- Department of Biology, Georgia State University Atlanta, GA, USA
| | - Edmund Rodgers
- Department of Biology, Georgia State University Atlanta, GA, USA
| | - Deborah J Baro
- Department of Biology, Georgia State University Atlanta, GA, USA
| |
Collapse
|
140
|
John D, Berg DK. Long-lasting changes in neural networks to compensate for altered nicotinic input. Biochem Pharmacol 2015; 97:418-424. [PMID: 26206188 PMCID: PMC4600434 DOI: 10.1016/j.bcp.2015.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/07/2015] [Indexed: 11/21/2022]
Abstract
The nervous system must balance excitatory and inhibitory input to constrain network activity levels within a proper dynamic range. This is a demanding requirement during development, when networks form and throughout adulthood as networks respond to constantly changing environments. Defects in the ability to sustain a proper balance of excitatory and inhibitory activity are characteristic of numerous neurological disorders such as schizophrenia, Alzheimer's disease, and autism. A variety of homeostatic mechanisms appear to be critical for balancing excitatory and inhibitory activity in a network. These are operative at the level of individual neurons, regulating their excitability by adjusting the numbers and types of ion channels, and at the level of synaptic connections, determining the relative numbers of excitatory versus inhibitory connections a neuron receives. Nicotinic cholinergic signaling is well positioned to contribute at both levels because it appears early in development, extends across much of the nervous system, and modulates transmission at many kinds of synapses. Further, it is known to influence the ratio of excitatory-to-inhibitory synapses formed on neurons during development. GABAergic inhibitory neurons are likely to be key for maintaining network homeostasis (limiting excitatory output), and nicotinic signaling is known to prominently regulate the activity of several GABAergic neuronal subtypes. But how nicotinic signaling achieves this and how networks may compensate for the loss of such input are important questions remaining unanswered. These issues are reviewed.
Collapse
Affiliation(s)
- Danielle John
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0357, United States; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093-0357, United States
| | - Darwin K Berg
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0357, United States; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093-0357, United States.
| |
Collapse
|
141
|
New Insights on Retrieval-Induced and Ongoing Memory Consolidation: Lessons from Arc. Neural Plast 2015; 2015:184083. [PMID: 26380114 PMCID: PMC4561316 DOI: 10.1155/2015/184083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 01/08/2023] Open
Abstract
The mainstream view on the neurobiological mechanisms underlying memory formation states that memory traces reside on the network of cells activated during initial acquisition that becomes active again upon retrieval (reactivation). These activation and reactivation processes have been called "conjunctive trace." This process implies that singular molecular events must occur during acquisition, strengthening the connection between the implicated cells whose synchronous activity must underlie subsequent reactivations. The strongest experimental support for the conjunctive trace model comes from the study of immediate early genes such as c-fos, zif268, and activity-regulated cytoskeletal-associated protein. The expressions of these genes are reliably induced by behaviorally relevant neuronal activity and their products often play a central role in long-term memory formation. In this review, we propose that the peculiar characteristics of Arc protein, such as its optimal expression after ongoing experience or familiar behavior, together with its versatile and central functions in synaptic plasticity could explain how familiarization and recognition memories are stored and preserved in the mammalian brain.
Collapse
|
142
|
Barber CN, Coppola DM. Compensatory plasticity in the olfactory epithelium: age, timing, and reversibility. J Neurophysiol 2015; 114:2023-32. [PMID: 26269548 DOI: 10.1152/jn.00076.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/02/2015] [Indexed: 11/22/2022] Open
Abstract
Like other biological systems, olfaction responds "homeostatically" to enduring change in the stimulus environment. This adaptive mechanism, referred to as compensatory plasticity, has been studied almost exclusively in developing animals. Thus it is unknown if this phenomenon is limited to ontogenesis and irreversible, characteristics common to some other forms of plasticity. Here we explore the effects of odor deprivation on the adult mouse olfactory epithelium (OE) using nasal plugs to eliminate nasal airflow unilaterally. Plugs were in place for 2-6 wk after which electroolfactograms (EOGs) were recorded from the occluded and open sides of the nasal cavity. Mean EOG amplitudes were significantly greater on the occluded than on the open side. The duration of plugging did not affect the results, suggesting that maximal compensation occurs within 2 wk or less. The magnitude of the EOG difference between the open and occluded side in plugged mice was comparable to adults that had undergone surgical naris occlusion as neonates. When plugs were removed after 4 wk followed by 2 wk of recovery, mean EOG amplitudes were not significantly different between the always-open and previously plugged sides of the nasal cavity suggesting that this form of plasticity is reversible. Taken together, these results suggest that compensatory plasticity is a constitutive mechanism of olfactory receptor neurons that allows these cells to recalibrate their stimulus-response relationship to fit the statistics of their current odor environment.
Collapse
Affiliation(s)
- Casey N Barber
- Department of Biology, Randolph-Macon College, Ashland, Virginia
| | - David M Coppola
- Department of Biology, Randolph-Macon College, Ashland, Virginia
| |
Collapse
|
143
|
Li Y, Pehrson AL, Waller JA, Dale E, Sanchez C, Gulinello M. A critical evaluation of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1)'s putative role in regulating dendritic plasticity, cognitive processes, and mood in animal models of depression. Front Neurosci 2015; 9:279. [PMID: 26321903 PMCID: PMC4530346 DOI: 10.3389/fnins.2015.00279] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/23/2015] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is primarily conceptualized as a mood disorder but cognitive dysfunction is also prevalent, and may limit the daily function of MDD patients. Current theories on MDD highlight disturbances in dendritic plasticity in its pathophysiology, which could conceivably play a role in the production of both MDD-related mood and cognitive symptoms. This paper attempts to review the accumulated knowledge on the basic biology of the activity-regulated cytoskeleton-associated protein (Arc or Arg3.1), its effects on neural plasticity, and how these may be related to mood or cognitive dysfunction in animal models of MDD. On a cellular level, Arc plays an important role in modulating dendritic spine density and remodeling. Arc also has a close, bidirectional relationship with postsynaptic glutamate neurotransmission, since it is stimulated by multiple glutamatergic receptor mechanisms but also modulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization. The effects on AMPA receptor trafficking are likely related to Arc's ability to modulate phenomena such as long-term potentiation, long-term depression, and synaptic scaling, each of which are important for maintaining proper cognitive function. Chronic stress models of MDD in animals show suppressed Arc expression in the frontal cortex but elevation in the amygdala. Interestingly, cognitive tasks depending on the frontal cortex are generally impaired by chronic stress, while those depending on the amygdala are enhanced, and antidepressant treatments stimulate cortical Arc expression with a timeline that is reminiscent of the treatment efficacy lag observed in the clinic or in preclinical models. However, pharmacological treatments that stimulate regional Arc expression do not universally improve relevant cognitive functions, and this highlights a need to further refine our understanding of Arc on a subcellular and network level.
Collapse
Affiliation(s)
- Yan Li
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Alan L Pehrson
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Jessica A Waller
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Elena Dale
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Connie Sanchez
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Maria Gulinello
- Behavioral Core Facility, Department of Neuroscience, Albert Einstein College of Medicine Bronx, NY, USA
| |
Collapse
|
144
|
Impaired Focal Adhesion Kinase-Grb2 Interaction during Elevated Activity in Hippocampal Neurons. Int J Mol Sci 2015; 16:15659-69. [PMID: 26184168 PMCID: PMC4519918 DOI: 10.3390/ijms160715659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/25/2015] [Accepted: 07/07/2015] [Indexed: 11/16/2022] Open
Abstract
Excitatory/inhibitory imbalances are implicated in many neurological disorders. Previously, we showed that chronically elevated network activity induces vulnerability in neurons due to loss of signal transducer and activator of transcription 3 (STAT3) signaling in response to the impairment of the serine/threonine kinase, extracellular-signal-regulated kinases 1/2 (Erk1/2) activation. However, how phosphorylation of Erk1/2 decreases during elevated neuronal activity was unknown. Here I show the pErk1/2 decrease induced by 4-aminopyridine (4-AP), an A-type potassium channel inhibitor can be blocked by a broad-spectrum matrix-metalloproteinase (MMP) inhibitor, FN-439. Surface expression levels of integrin β1 dramatically decrease when neurons are challenged by chronically elevated activity, which is reversed by FN-439. Treatment with 4-AP induces degradation of focal adhesion kinase (FAK), the mediator of integrin signaling. As a result, interactions between FAK and growth factor receptor-bound protein 2 (Grb2), the adaptor protein that mediates Erk1/2 activation by integrin, are severely impaired. Together, these data suggest the loss of integrin signaling during elevated activity causes vulnerability in neurons.
Collapse
|
145
|
Stability of Neuronal Networks with Homeostatic Regulation. PLoS Comput Biol 2015; 11:e1004357. [PMID: 26154297 PMCID: PMC4495932 DOI: 10.1371/journal.pcbi.1004357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 05/28/2015] [Indexed: 11/19/2022] Open
Abstract
Neurons are equipped with homeostatic mechanisms that counteract long-term perturbations of their average activity and thereby keep neurons in a healthy and information-rich operating regime. While homeostasis is believed to be crucial for neural function, a systematic analysis of homeostatic control has largely been lacking. The analysis presented here analyses the necessary conditions for stable homeostatic control. We consider networks of neurons with homeostasis and show that homeostatic control that is stable for single neurons, can destabilize activity in otherwise stable recurrent networks leading to strong non-abating oscillations in the activity. This instability can be prevented by slowing down the homeostatic control. The stronger the network recurrence, the slower the homeostasis has to be. Next, we consider how non-linearities in the neural activation function affect these constraints. Finally, we consider the case that homeostatic feedback is mediated via a cascade of multiple intermediate stages. Counter-intuitively, the addition of extra stages in the homeostatic control loop further destabilizes activity in single neurons and networks. Our theoretical framework for homeostasis thus reveals previously unconsidered constraints on homeostasis in biological networks, and identifies conditions that require the slow time-constants of homeostatic regulation observed experimentally. Despite their apparent robustness many biological system work best in controlled environments, the tightly regulated mammalian body temperature being a good example. Biological homeostatic control systems, not unlike those used in engineering, ensure that the right operating conditions are met. Similarly, neurons appear to adjust the amount of activity they produce to be neither too high nor too low by, among other ways, regulating their excitability. However, for no apparent reason the neural homeostatic processes are very slow, taking hours or even days to regulate the neuron. Here we use results from mathematical control theory to examine under which conditions such slow control is necessary to prevent instabilities that lead to strong, sustained oscillations in the activity. Our results lead to a deeper understanding of neural homeostasis and can help the design of artificial neural systems.
Collapse
|
146
|
Further insights into the effect of BDNF genotype on non-invasive brain stimulation. Clin Neurophysiol 2015; 126:1281-3. [DOI: 10.1016/j.clinph.2014.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 11/18/2022]
|
147
|
GABAB receptor deficiency causes failure of neuronal homeostasis in hippocampal networks. Proc Natl Acad Sci U S A 2015; 112:E3291-9. [PMID: 26056260 DOI: 10.1073/pnas.1424810112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stabilization of neuronal activity by homeostatic control systems is fundamental for proper functioning of neural circuits. Failure in neuronal homeostasis has been hypothesized to underlie common pathophysiological mechanisms in a variety of brain disorders. However, the key molecules regulating homeostasis in central mammalian neural circuits remain obscure. Here, we show that selective inactivation of GABAB, but not GABA(A), receptors impairs firing rate homeostasis by disrupting synaptic homeostatic plasticity in hippocampal networks. Pharmacological GABA(B) receptor (GABA(B)R) blockade or genetic deletion of the GB(1a) receptor subunit disrupts homeostatic regulation of synaptic vesicle release. GABA(B)Rs mediate adaptive presynaptic enhancement to neuronal inactivity by two principle mechanisms: First, neuronal silencing promotes syntaxin-1 switch from a closed to an open conformation to accelerate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly, and second, it boosts spike-evoked presynaptic calcium flux. In both cases, neuronal inactivity removes tonic block imposed by the presynaptic, GB(1a)-containing receptors on syntaxin-1 opening and calcium entry to enhance probability of vesicle fusion. We identified the GB(1a) intracellular domain essential for the presynaptic homeostatic response by tuning intermolecular interactions among the receptor, syntaxin-1, and the Ca(V)2.2 channel. The presynaptic adaptations were accompanied by scaling of excitatory quantal amplitude via the postsynaptic, GB(1b)-containing receptors. Thus, GABA(B)Rs sense chronic perturbations in GABA levels and transduce it to homeostatic changes in synaptic strength. Our results reveal a novel role for GABA(B)R as a key regulator of population firing stability and propose that disruption of homeostatic synaptic plasticity may underlie seizure's persistence in the absence of functional GABA(B)Rs.
Collapse
|
148
|
Somvanshi PR, Patel AK, Bhartiya S, Venkatesh KV. Implementation of integral feedback control in biological systems. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:301-16. [DOI: 10.1002/wsbm.1307] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 04/01/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Sharad Bhartiya
- Department of Chemical Engineering; IIT Bombay; Mumbai India
| | - K. V. Venkatesh
- Department of Chemical Engineering; IIT Bombay; Mumbai India
| |
Collapse
|
149
|
Faghihi F, Moustafa AA. The dependence of neuronal encoding efficiency on Hebbian plasticity and homeostatic regulation of neurotransmitter release. Front Cell Neurosci 2015; 9:164. [PMID: 25972786 PMCID: PMC4412074 DOI: 10.3389/fncel.2015.00164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/14/2015] [Indexed: 11/26/2022] Open
Abstract
Synapses act as information filters by different molecular mechanisms including retrograde messenger that affect neuronal spiking activity. One of the well-known effects of retrograde messenger in presynaptic neurons is a change of the probability of neurotransmitter release. Hebbian learning describe a strengthening of a synapse between a presynaptic input onto a postsynaptic neuron when both pre- and postsynaptic neurons are coactive. In this work, a theory of homeostatic regulation of neurotransmitter release by retrograde messenger and Hebbian plasticity in neuronal encoding is presented. Encoding efficiency was measured for different synaptic conditions. In order to gain high encoding efficiency, the spiking pattern of a neuron should be dependent on the intensity of the input and show low levels of noise. In this work, we represent spiking trains as zeros and ones (corresponding to non-spike or spike in a time bin, respectively) as words with length equal to three. Then the frequency of each word (here eight words) is measured using spiking trains. These frequencies are used to measure neuronal efficiency in different conditions and for different parameter values. Results show that neurons that have synapses acting as band-pass filters show the highest efficiency to encode their input when both Hebbian mechanism and homeostatic regulation of neurotransmitter release exist in synapses. Specifically, the integration of homeostatic regulation of feedback inhibition with Hebbian mechanism and homeostatic regulation of neurotransmitter release in the synapses leads to even higher efficiency when high stimulus intensity is presented to the neurons. However, neurons with synapses acting as high-pass filters show no remarkable increase in encoding efficiency for all simulated synaptic plasticity mechanisms. This study demonstrates the importance of cooperation of Hebbian mechanism with regulation of neurotransmitter release induced by rapid diffused retrograde messenger in neurons with synapses as low and band-pass filters to obtain high encoding efficiency in different environmental and physiological conditions.
Collapse
Affiliation(s)
- Faramarz Faghihi
- Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| | - Ahmed A Moustafa
- Department of Veterans Affairs, New Jersey Health Care System East Orange, NJ, USA ; School of Social Sciences and Psychology and Marcs Institute for Brain and Behavior, University of Western Sydney Sydney, NSW, Australia
| |
Collapse
|
150
|
Lu CS, Zhai B, Mauss A, Landgraf M, Gygi S, Van Vactor D. MicroRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0517. [PMID: 25135978 PMCID: PMC4142038 DOI: 10.1098/rstb.2013.0517] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuronal connectivity and specificity rely upon precise coordinated deployment of multiple cell-surface and secreted molecules. MicroRNAs have tremendous potential for shaping neural circuitry by fine-tuning the spatio-temporal expression of key synaptic effector molecules. The highly conserved microRNA miR-8 is required during late stages of neuromuscular synapse development in Drosophila. However, its role in initial synapse formation was previously unknown. Detailed analysis of synaptogenesis in this system now reveals that miR-8 is required at the earliest stages of muscle target contact by RP3 motor axons. We find that the localization of multiple synaptic cell adhesion molecules (CAMs) is dependent on the expression of miR-8, suggesting that miR-8 regulates the initial assembly of synaptic sites. Using stable isotope labelling in vivo and comparative mass spectrometry, we find that miR-8 is required for normal expression of multiple proteins, including the CAMs Fasciclin III (FasIII) and Neuroglian (Nrg). Genetic analysis suggests that Nrg and FasIII collaborate downstream of miR-8 to promote accurate target recognition. Unlike the function of miR-8 at mature larval neuromuscular junctions, at the embryonic stage we find that miR-8 controls key effectors on both sides of the synapse. MiR-8 controls multiple stages of synapse formation through the coordinate regulation of both pre- and postsynaptic cell adhesion proteins.
Collapse
Affiliation(s)
- Cecilia S Lu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Bo Zhai
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alex Mauss
- Department of Zoology, University of Cambridge, Cambridge, UK Max Planck Institute of Neurobiology, Martinsried, Germany
| | | | - Stephen Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David Van Vactor
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|