101
|
Keshavarz Shahbaz S, Pourrezagholi F, Nafar M, Ahmadpoor P, Barabadi M, Foroughi F, Hosseinzadeh M, Yekaninejad MS, Amirzargar A. Dynamic variation of kidney injury molecule-1 mRNA and protein expression in blood and urine of renal transplant recipients: a cohort study. Clin Exp Nephrol 2019; 23:1235-1249. [PMID: 31302846 DOI: 10.1007/s10157-019-01765-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/14/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Acute renal dysfunction still constitutes a highly significant obstacle to renal transplantation outcome. Kidney injury molecule-1 is highly upregulated in proximal tubular cells and shed into the urine and blood circulation following kidney injury. The aim of current cohort study was to evaluate the urine KIM-1 (uKIM-1) mRNA expression level and its protein concentration in blood and urine samples to determine whether sequential monitoring of KIM-1 in renal allograft recipients is a reliable biomarker for predicting the clinical status and outcome. METHODS Both uKIM-1 mRNA expression level and the level of serum and uKIM-1 protein concentration in the 52 renal transplant recipients were respectively quantified using real-time PCR and ELISA methods at 2, 90 and 180 days after transplantation. RESULT KIM-1 mRNA and protein expression level in the blood and urine samples of patients with graft dysfunction was significantly higher than patients with well-functioning graft on days 2, 90 and 180 after transplantation. Receiver-operating characteristic curve analysis of mRNA and protein expression levels showed that urinary and blood KIM-1 at months 3 and 6 could predict acute renal dysfunction at 6 months and 1 year after transplantation. CONCLUSION Sequential monitoring of uKIM-1 mRNA expression level and its protein concentration in the serum and urine samples of renal transplant patients suggests that KIM-1 could be a sensitive and specific biomarker for early diagnosis and prognosis of kidney allograft injury.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Building No. 7, Poursina Ave, Tehran, Iran
| | - Fatemeh Pourrezagholi
- Department of Nephrology, Chronic Kidney Disease Research Center, Shahid Labbafinejad Medical Center and Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohesn Nafar
- Department of Nephrology, Chronic Kidney Disease Research Center, Shahid Labbafinejad Medical Center and Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pedram Ahmadpoor
- Department of Nephrology, Chronic Kidney Disease Research Center, Shahid Labbafinejad Medical Center and Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehri Barabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Building No. 7, Poursina Ave, Tehran, Iran
| | - Farshad Foroughi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Morteza Hosseinzadeh
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Building No. 7, Poursina Ave, Tehran, Iran.
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
102
|
A study of the utility of novel non-invasive urinary and serum biomarkers of blunt kidney injury in a rat model: NGAL, KIM-1, and IL-18. Cent Eur J Immunol 2019; 44:219-225. [PMID: 31871414 PMCID: PMC6925560 DOI: 10.5114/ceji.2019.89592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 05/08/2017] [Indexed: 12/05/2022] Open
Abstract
This study investigated changes in the concentrations of serum and urine neutrophil gelatinase lipocalin (NGAL), kidney injury molecule 1 (KIM-1), interleukin 18 (IL-18), and cystatin-C (Cys-C) induced by parenchymal and tubular damage following blunt kidney trauma, as well as their potential utility as biomarkers in the detection and follow-up of patients with suspected blunt renal trauma. Three-month-old male Sprague-Dawley rats (n = 18) were divided into three groups (n = 6 in each): group 1: control group (no intervention); group 2: sham group (explorative surgery and exposure of the left kidneys); and group 3: trauma group (explorative surgery and induction of blunt renal trauma of the left kidneys). Serum and urine samples were collected before and 12-24, 36-48, and 60-72 hours later for NGAL, KIM-1, IL-18, and Cys-C measurements. In the trauma group, there was a statistically significant increase in post-operative NGAL, KIM-1, and IL-18 values after 12-24 h and 36-48 h, as compared with pre-operative values. There was also a statistically significant increase in post-operative serum and urine Cys-C values after 60-72 h, as compared with pre-operative values. NGAL, KIM-1, and IL-18 may represent novel non-invasive descriptive candidate biomarkers of early-stage tubular damage in children with renal trauma.
Collapse
|
103
|
Bullen AL, Katz R, Lee AK, Anderson CAM, Cheung AK, Garimella PS, Jotwani V, Haley WE, Ishani A, Lash JP, Neyra JA, Punzi H, Rastogi A, Riessen E, Malhotra R, Parikh CR, Rocco MV, Wall BM, Bhatt UY, Shlipak MG, Ix JH, Estrella MM. The SPRINT trial suggests that markers of tubule cell function in the urine associate with risk of subsequent acute kidney injury while injury markers elevate after the injury. Kidney Int 2019; 96:470-479. [PMID: 31262489 PMCID: PMC6650383 DOI: 10.1016/j.kint.2019.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 01/19/2023]
Abstract
Urine markers can quantify tubular function including reabsorption (α-1 microglobulin [α1m]) and β-2-microglobulin [β2m]) and protein synthesis (uromodulin). Individuals with tubular dysfunction may be less able to compensate to insults than those without, despite similar estimated glomerular filtration rate (eGFR) and albuminuria. Among Systolic Blood Pressure Intervention Trial (SPRINT) participants with an eGFR under 60 ml/min/1.73m2, we measured urine markers of tubular function and injury (neutrophil gelatinase-associated lipocalin [NGAL], kidney injury molecule-1 [KIM-1], interleukin-18 [IL-18], monocyte chemoattractant protein-1, and chitinase-3-like protein [YKL-40]) at baseline. Cox models evaluated associations with subsequent acute kidney injury (AKI) risk, adjusting for clinical risk factors, baseline eGFR and albuminuria, and the tubular function and injury markers. In a random subset, we remeasured biomarkers after four years, and compared changes in biomarkers in those with and without intervening AKI. Among 2351 participants, 184 experienced AKI during 3.8 years mean follow-up. Lower uromodulin (hazard ratio per two-fold higher (0.68, 95% confidence interval [0.56, 0.83]) and higher α1m (1.20; [1.01, 1.44]) were associated with subsequent AKI, independent of eGFR and albuminuria. None of the five injury markers were associated with eventual AKI. In the random subset of 947 patients with repeated measurements, the 59 patients with intervening AKI versus without had longitudinal increases in urine NGAL, IL-19, and YKL-40 and only 1 marker of tubule function (α1m). Thus, joint evaluation of tubule function and injury provided novel insights to factors predisposing to AKI, and responses to kidney injury.
Collapse
Affiliation(s)
- Alexander L Bullen
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Ronit Katz
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Alexandra K Lee
- Kidney Health Research Collaborative, Department of Medicine, University of California, San Francisco, California, USA
| | - Cheryl A M Anderson
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, San Diego, California, USA; Division of Preventive Medicine, Department of Family Medicine and Public Health, University of California-San Diego, San Diego, California, USA
| | - Alfred K Cheung
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA; Medical Service, Veterans Affairs, Salt Lake City Healthcare System, Salt Lake City, Utah, USA
| | - Pranav S Garimella
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Vasantha Jotwani
- Department of Medicine, San Francisco VA Medical Center, San Francisco, California, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - William E Haley
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | - Areef Ishani
- Division of Medicine, Minneapolis Veterans Affairs Health Care System, Minneapolis, Minnesota, USA
| | - James P Lash
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Javier A Neyra
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky Medical Center, Lexington, Kentucky, USA; Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern, Dallas, Texas, USA
| | - Henry Punzi
- UT Southwestern Medical Center, Carrollton, Texas, USA
| | - Anjay Rastogi
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Erik Riessen
- Medical Service, Veterans Affairs, Salt Lake City Healthcare System, Salt Lake City, Utah, USA
| | - Rakesh Malhotra
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Chirag R Parikh
- Department of Medicine, Section of Nephrology, Yale University, New Haven, Connecticut, USA
| | - Michael V Rocco
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Barry M Wall
- Division of Nephrology, Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Udayan Y Bhatt
- Division of Nephrology, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Michael G Shlipak
- Kidney Health Research Collaborative, Department of Medicine, University of California, San Francisco, California, USA; Department of Medicine, San Francisco VA Medical Center, San Francisco, California, USA
| | - Joachim H Ix
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, San Diego, California, USA; Nephrology Section, Veterans Affairs, San Diego Healthcare System, La Jolla, California, USA
| | - Michelle M Estrella
- Kidney Health Research Collaborative, Department of Medicine, University of California, San Francisco, California, USA; Department of Medicine, San Francisco VA Medical Center, San Francisco, California, USA.
| |
Collapse
|
104
|
Thongprayoon C, Cheungpasitporn W, Lertjitbanjong P, Aeddula NR, Bathini T, Watthanasuntorn K, Srivali N, Mao MA, Kashani K. Incidence and Impact of Acute Kidney Injury in Patients Receiving Extracorporeal Membrane Oxygenation: A Meta-Analysis. J Clin Med 2019; 8:jcm8070981. [PMID: 31284451 PMCID: PMC6678289 DOI: 10.3390/jcm8070981] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/23/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although acute kidney injury (AKI) is a frequent complication in patients receiving extracorporeal membrane oxygenation (ECMO), the incidence and impact of AKI on mortality among patients on ECMO remain unclear. We conducted this systematic review to summarize the incidence and impact of AKI on mortality risk among adult patients on ECMO. METHODS A literature search was performed using EMBASE, Ovid MEDLINE, and Cochrane Databases from inception until March 2019 to identify studies assessing the incidence of AKI (using a standard AKI definition), severe AKI requiring renal replacement therapy (RRT), and the impact of AKI among adult patients on ECMO. Effect estimates from the individual studies were obtained and combined utilizing random-effects, generic inverse variance method of DerSimonian-Laird. The protocol for this systematic review is registered with PROSPERO (no. CRD42018103527). RESULTS 41 cohort studies with a total of 10,282 adult patients receiving ECMO were enrolled. Overall, the pooled estimated incidence of AKI and severe AKI requiring RRT were 62.8% (95%CI: 52.1%-72.4%) and 44.9% (95%CI: 40.8%-49.0%), respectively. Meta-regression showed that the year of study did not significantly affect the incidence of AKI (p = 0.67) or AKI requiring RRT (p = 0.83). The pooled odds ratio (OR) of hospital mortality among patients receiving ECMO with AKI on RRT was 3.73 (95% CI, 2.87-4.85). When the analysis was limited to studies with confounder-adjusted analysis, increased hospital mortality remained significant among patients receiving ECMO with AKI requiring RRT with pooled OR of 3.32 (95% CI, 2.21-4.99). There was no publication bias as evaluated by the funnel plot and Egger's regression asymmetry test with p = 0.62 and p = 0.17 for the incidence of AKI and severe AKI requiring RRT, respectively. CONCLUSION Among patients receiving ECMO, the incidence rates of AKI and severe AKI requiring RRT are high, which has not changed over time. Patients who develop AKI requiring RRT while on ECMO carry 3.7-fold higher hospital mortality.
Collapse
Affiliation(s)
- Charat Thongprayoon
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Wisit Cheungpasitporn
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | - Narothama Reddy Aeddula
- Division of Nephrology, Department of Medicine, Deaconess Health System, Evansville, IN 47747, USA
| | - Tarun Bathini
- Department of Internal Medicine, University of Arizona, Tucson, AZ 85721, USA
| | | | - Narat Srivali
- Division of Pulmonary and Critical Care Medicine, St. Agnes Hospital, Baltimore, MD 21229, USA
| | - Michael A Mao
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kianoush Kashani
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
105
|
Marrazzo F, Spina S, Zadek F, Lama T, Xu C, Larson G, Rezoagli E, Malhotra R, Zheng H, Bittner EA, Shelton K, Melnitchouk S, Roy N, Sundt TM, Riley WD, Williams P, Fisher D, Kacmarek RM, Thompson TB, Bonventre J, Zapol W, Ichinose F, Berra L. Protocol of a randomised controlled trial in cardiac surgical patients with endothelial dysfunction aimed to prevent postoperative acute kidney injury by administering nitric oxide gas. BMJ Open 2019; 9:e026848. [PMID: 31278097 PMCID: PMC6615910 DOI: 10.1136/bmjopen-2018-026848] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 06/02/2019] [Accepted: 06/06/2019] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Postoperative acute kidney injury (AKI) is a common complication in cardiac surgery. Levels of intravascular haemolysis are strongly associated with postoperative AKI and with prolonged (>90 min) use of cardiopulmonary bypass (CPB). Ferrous plasma haemoglobin released into the circulation acts as a scavenger of nitric oxide (NO) produced by endothelial cells. Consequently, the vascular bioavailability of NO is reduced, leading to vasoconstriction and impaired renal function. In patients with cardiovascular risk factors, the endothelium is dysfunctional and cannot replenish the NO deficit. A previous clinical study in young cardiac surgical patients with rheumatic fever, without evidence of endothelial dysfunction, showed that supplementation of NO gas decreases AKI by converting ferrous plasma haemoglobin to ferric methaemoglobin, thus preserving vascular NO. In this current trial, we hypothesised that 24 hours administration of NO gas will reduce AKI following CPB in patients with endothelial dysfunction. METHODS This is a single-centre, randomised (1:1) controlled, parallel-arm superiority trial that includes patients with endothelial dysfunction, stable kidney function and who are undergoing cardiac surgery procedures with an expected CPB duration >90 min. After randomisation, 80 parts per million (ppm) NO (intervention group) or 80 ppm nitrogen (N2, control group) are added to the gas mixture. Test gases (N2 or NO) are delivered during CPB and for 24 hours after surgery. The primary study outcome is the occurrence of AKI among study groups. Key secondary outcomes include AKI severity, occurrence of renal replacement therapy, major adverse kidney events at 6 weeks after surgery and mortality. We are recruiting 250 patients, allowing detection of a 35% AKI relative risk reduction, assuming a two-sided error of 0.05. ETHICS AND DISSEMINATION The Partners Human Research Committee approved this trial. Recruitment began in February 2017. Dissemination plans include presentations at scientific conferences, scientific publications and advertising flyers and posters at Massachusetts General Hospital. TRIAL REGISTRATION NUMBER NCT02836899.
Collapse
Affiliation(s)
- Francesco Marrazzo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stefano Spina
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Francesco Zadek
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tenzing Lama
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Changhan Xu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Grant Larson
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emanuele Rezoagli
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rajeev Malhotra
- Department of Medicine, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hui Zheng
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Edward A Bittner
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kenneth Shelton
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Serguei Melnitchouk
- Department of Cardiac surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nathalie Roy
- Department of Cardiac surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thoralf M Sundt
- Department of Cardiac surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - William D Riley
- Department of Surgery, Cardiac Surgery, Perfusion Services, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Purris Williams
- Respiratory Care Services, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel Fisher
- Respiratory Care Services, Boston Medical Center, Boston, Massachusetts, USA
| | - Robert M Kacmarek
- Department of Respiratory Care, Massachusetts General Hospital, Boston, USA
- Department of Anesthesiology, Harvard University, Boston, USA
| | - Taylor B Thompson
- Department of Medicine, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joseph Bonventre
- Department of Medicine, Division of Renal Medicine, Brigham and Women’s Hospital Department of Medicine, Boston, Massachusetts, USA
| | - Warren Zapol
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
106
|
Rehman MU, Rashid SM, Rasool S, Shakeel S, Ahmad B, Ahmad SB, Madkhali H, Ganaie MA, Majid S, Bhat SA. Zingerone (4-(4-hydroxy-3-methylphenyl)butan-2-one) ameliorates renal function via controlling oxidative burst and inflammation in experimental diabetic nephropathy. Arch Physiol Biochem 2019. [PMID: 29537332 DOI: 10.1080/13813455.2018.1448422] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of diabetic nephropathy (DN) is directly linked to oxidative stress and inflammation. In this context, inflammatory and oxidative markers have gained much attention as targets for therapeutic intervention. We studied the effect of zingerone in a streptozotocin/high fat diet (STZ/HFD)-induced type 2 diabetic Wistar rat model. Zingerone also known as vanillyl acetone is a pharmacologically active compound present usually in dry ginger. STZ/HFD caused excessive increase in ROS and inflammation in experimental animals. The treatment with zingerone markedly abrogated ROS levels, inhibited the NF-кB activation and considerably reduced level of other downstream inflammatory molecules (TNF-α, IL-6, IL-1β), furthermore, zingerone treatment improved renal functioning by significantly decreasing the levels of kidney toxicity markers KIM-1, BUN, creatinine, and LDH and suppressed TGF-β. Collectively, these findings indicate that zingerone treatment improved renal function by anti-hyperglycaemic, anti-oxidant, and anti-inflammatory effects, suggesting the efficacy of zingerone in the treatment of DN.
Collapse
Affiliation(s)
- Muneeb U Rehman
- a Molecular Biology Lab, Division of Veterinary Biochemistry , Sheri Kashmir University of Agricultural Science & Technology (SKUAST-K) , Srinagar , India
| | - Shahzada Mudasir Rashid
- a Molecular Biology Lab, Division of Veterinary Biochemistry , Sheri Kashmir University of Agricultural Science & Technology (SKUAST-K) , Srinagar , India
| | - Saiema Rasool
- b Department of Forest ManagementForest Biotech Lab , Universiti Putra Malaysia , Serdang , Malaysia
| | - Sheeba Shakeel
- c Department of Pharmaceutical Sciences , University of Kashmir , Srinagar , India
| | - Bilal Ahmad
- a Molecular Biology Lab, Division of Veterinary Biochemistry , Sheri Kashmir University of Agricultural Science & Technology (SKUAST-K) , Srinagar , India
| | - Sheikh Bilal Ahmad
- a Molecular Biology Lab, Division of Veterinary Biochemistry , Sheri Kashmir University of Agricultural Science & Technology (SKUAST-K) , Srinagar , India
| | - Hassan Madkhali
- d Department of Pharmacology, College of Pharmacy , Prince Sattam Bin Abdulaziz University , Al-Kharj , Kingdom of Saudi Arabia
| | - Majid Ahmad Ganaie
- d Department of Pharmacology, College of Pharmacy , Prince Sattam Bin Abdulaziz University , Al-Kharj , Kingdom of Saudi Arabia
| | - Sabiya Majid
- e Department of Biochemistry , Govt. Medical College , Srinagar , India
| | | |
Collapse
|
107
|
Yao Y, Hu X, Feng X, Zhao Y, Song M, Wang C, Fan H. Dexmedetomidine alleviates lipopolysaccharide-induced acute kidney injury by inhibiting the NLRP3 inflammasome activation via regulating the TLR4/NOX4/NF-κB pathway. J Cell Biochem 2019; 120:18509-18523. [PMID: 31243816 DOI: 10.1002/jcb.29173] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
Dexmedetomidine (DEX) prevents kidney damage caused by sepsis, but the mechanism of this effect remains unclear. In this study, the protective molecular mechanism of DEX in lipopolysaccharide (LPS)-induced acute kidney injury was investigated and its potential pharmacological targets from the perspective of inhibiting oxidative stress damage and the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome activation. Intraperitoneal injection of DEX (30 μg/kg) significantly improved LPS (10 mg/kg) induced renal pathological damage and renal dysfunction. DEX also ameliorated oxidative stress damage by reducing the contents of reactive oxygen species, malondialdehyde and hydrogen peroxide, and increasing the level of glutathione, as well as the activity of superoxide dismutase and catalase. In addition, DEX prevented nuclear factor-kappa B (NF-κB) activation and I-kappa B (IκB) phosphorylation, as well as the expressions of NLRP3 inflammasome-associated protein and downstream IL-18 and IL-1β. The messengerRNA (mRNA) and protein expressions of toll-like receptor 4 (TLR4), NADPH oxidase-4 (NOX4), NF-κB, and NLRP3 were also significantly reduced by DEX. Their expressions were further evaluated by immunohistochemistry, yielding results were consistent with the results of mRNA and protein detection. Interestingly, the protective effects of DEX were reversed by atipamezole-an alpha 2 adrenal receptor (α2 AR) inhibitor, whereas idazoxan-an imidazoline receptor (IR) inhibitor failed to reverse this change. In conclusion, DEX attenuated LPS-induced AKI by inhibiting oxidative stress damage and NLRP3 inflammasome activation via regulating the TLR4/NOX4/NF-κB pathway, mainly acting on the α2 AR rather than IR.
Collapse
Affiliation(s)
- Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiujing Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuan Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Manyu Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chaoran Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Honggang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,College of Veterinary Medicine, Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| |
Collapse
|
108
|
Karaali HF, Fahmi RR, Borjac JM. Effect of Ocimum basilicum leaves extract on acetaminophen-induced nephrotoxicity in BALB/c mice. ACTA ACUST UNITED AC 2019; 16:/j/jcim.ahead-of-print/jcim-2018-0111/jcim-2018-0111.xml. [DOI: 10.1515/jcim-2018-0111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/05/2018] [Indexed: 12/25/2022]
Abstract
Abstract
Background
Acetaminophen (APAP) is one of the most widely used drugs to treat pain. Its overdose is lethal causing liver and kidney failure. Nephrotoxicity and hepatotoxicity are mostly due to the overproduction of reactive oxygen species. Ocimum basilicum, known as basil, is a commonly used medicinal plant due to its versatile role as antibacterial, antifungal, and anti-oxidative. We aim in this study to investigate the preventive and protective effect of basil leaves aqueous extract against APAP-induced hepatorenal toxicity in BALB/c mice.
Methods
Acute kidney injury (AKI) was induced in mice using APAP. Mice were treated with basils extract pre and post AKI induction. Kidney and liver functions were assessed by measuring creatinine, urea, alanine transaminase, and aspartate transaminase levels in serum. Superoxide dismutase, catalase (CAT), and malondialdehyde levels of renal and hepatic tissues were assayed using Elisa. Kidney injury molecule (KIM-1) was quantified in kidney homogenate. Histopathological analysis of kidney and liver were examined.
Results
Significant increase in all serum parameters, in hepatic and renal MDA, and in renal KIM-1 levels was observed post AKI induction. Treatment with basils post AKI induction minimized APAP damage by reducing serum markers and MDA in both organs and by increasing SOD and CAT. However, pretreatment with basils extract caused additional increase in serum ALT and AST and MDA in liver, with a significant increase in renal antioxidant enzymes. These results were confirmed by histopathological examination.
Conclusion
Basil extract may act as a natural antioxidant to treat APAP-induced acute hepato-renal toxicity when used as a post-treatment.
Collapse
|
109
|
Al-Nedawi K, Haas-Neill S, Gangji A, Ribic CM, Kapoor A, Margetts P. Circulating microvesicle protein is associated with renal transplant outcome. Transpl Immunol 2019; 55:101210. [PMID: 31226423 DOI: 10.1016/j.trim.2019.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/20/2022]
Abstract
Renal transplantation is an effective therapy with improved long-term outcomes compared with other therapies for end stage renal disease. Present methods for evaluating kidney allograft function, such as serum creatinine or allograft biopsy, are not sensitive and identify pathological changes only after any potential intervention would be effective. Thus, there is a necessity for biomarkers that would provide early prognostic information about kidney transplant outcomes. Circulating microvesicles represent an attractive source of biomarkers for different diseases including renal failure. We have studied the proteins of the circulating microvesicles from two populations of kidney transplant recipients (n = 20) with poor transplant outcomes (n = 10) or good transplant outcome (n = 10), according to their estimated glomerular filtration rate (eGFR). Microvesicles from age-matched healthy subjects (n = 10) were used as a control. Also, we performed a pilot study to assess the microvesicle protein in kidney transplant recipients before and six months after kidney transplant (n = 6), compared to healthy subjects. Proteomic analysis of microvesicles could discriminate between transplant recipients and healthy subjects, and between transplant patients based on eGFR. Our results shed light on the potential of blood microvesicles to provide a novel tool for the prediction of the outcome of kidney transplants.
Collapse
Affiliation(s)
- Khalid Al-Nedawi
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; St. Joseph's Healthcare Research Institute & Hamilton Center for Kidney Research, Canada.
| | - Sandor Haas-Neill
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; St. Joseph's Healthcare Research Institute & Hamilton Center for Kidney Research, Canada
| | - Azim Gangji
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; St. Joseph's Healthcare Research Institute & Hamilton Center for Kidney Research, Canada
| | - Christine M Ribic
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; St. Joseph's Healthcare Research Institute & Hamilton Center for Kidney Research, Canada
| | - Anil Kapoor
- St. Joseph's Healthcare Research Institute & Hamilton Center for Kidney Research, Canada; Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Peter Margetts
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; St. Joseph's Healthcare Research Institute & Hamilton Center for Kidney Research, Canada
| |
Collapse
|
110
|
Gauvin DV, Zimmermann ZJ, Yoder J, Tapp R, Baird TJ. Predicting the Need for a Tier II Ototoxicity Study From Early Renal Function Data. Int J Toxicol 2019; 38:265-278. [PMID: 31220989 DOI: 10.1177/1091581819851232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
History has established that many drugs, such as the antibiotics, chemotherapies, and loop diuretics, are capable of inducing both nephrotoxicity and ototoxicity. The exact mechanisms by which cellular damage occurs remain to be fully elucidated. Monitoring the indices of renal function conducted in the Food and Drug Administration's prescribed set of early investigational new drug (IND)-enabling studies may be the first signs of ototoxicity properties of the new drug candidate. In developing improved and efficacious new molecular entities, it is critically necessary to understand the cellular and molecular mechanisms underlying the potential ototoxic effects as early in the drug development program as possible. Elucidation of these mechanisms will facilitate the development of safe and effective clinical approaches for the prevention and amelioration of drug-induced ototoxicity prior to the first dose in man. Biomarkers for nephrotoxicity in early tier I or tier II nonclinical IND-enabling studies should raise an inquiry as to the need to conduct a full auditory function assay early in the game to clear the pipeline with a safer candidate that has a higher probability of continued therapeutic compliance once approved for distribution.
Collapse
Affiliation(s)
- David V Gauvin
- 1 Neurobehavioral Sciences Department, Charles River Laboratories, Inc, Mattawan, MI, USA
| | - Zachary J Zimmermann
- 1 Neurobehavioral Sciences Department, Charles River Laboratories, Inc, Mattawan, MI, USA
| | - Joshua Yoder
- 1 Neurobehavioral Sciences Department, Charles River Laboratories, Inc, Mattawan, MI, USA
| | - Rachel Tapp
- 1 Neurobehavioral Sciences Department, Charles River Laboratories, Inc, Mattawan, MI, USA
| | - Theodore J Baird
- 2 Safety Assessment, Charles River Laboratories, Inc, Mattawan, MI, USA
| |
Collapse
|
111
|
Kim SE, Lee H, Kim J, Lee YK, Kang M, Hijioka Y, Kim H. Temperature as a risk factor of emergency department visits for acute kidney injury: a case-crossover study in Seoul, South Korea. Environ Health 2019; 18:55. [PMID: 31200714 PMCID: PMC6570878 DOI: 10.1186/s12940-019-0491-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Previous studies show that escalations in ambient temperature are among the risk factors for acute kidney injury (AKI). However, it has not been adequately studied in our location, Seoul, South Korea. In this study, we aimed to examine the association between ambient temperatures and AKI morbidity using emergency department (ED) visit data. METHODS We obtained data on ED visits from the National Emergency Medical Center for 21,656 reported cases of AKI from 2010 to 2014. Time-stratified case-crossover design analysis based on conditional logistic regression was used to analyze short-term effects of ambient temperature on AKI after controlling for relevant covariates. The shape of the exposure-response curve, effect modification by individual demographic characteristics, season, and comorbidities, as well as lag effects, were investigated. RESULTS The odds ratio (OR) per 1 °C increase at lag 0 was 1.0087 (95% confidence interval [CI]: 1.0041-1.0134). Risks were higher during the warm season (OR = 1.0149; 95% CI: 1.0065-1.0234) than during the cool season (OR = 1.0059; 95% CI: 1.0003-1.0116) and even higher above 22.3 °C (OR = 1.0235; 95% CI: 1.0230-1.0239). CONCLUSIONS This study provides evidence that ED visits for AKI were associated with ambient temperature. Early detection and treatment of patients at risk is important in both clinical and economic concerns related to AKI.
Collapse
Affiliation(s)
- Satbyul Estella Kim
- Center for Climate Change Adaptation, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan
- Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyewon Lee
- Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jayeun Kim
- Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young Kyu Lee
- Division of Nephrology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Minjin Kang
- Research and Analysis Team, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Yasuaki Hijioka
- Center for Climate Change Adaptation, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan.
| | - Ho Kim
- Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Department of Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
112
|
Neyra JA, Hu MC, Minhajuddin A, Nelson GE, Ahsan SA, Toto RD, Jessen ME, Moe OW, Fox AA. Kidney Tubular Damage and Functional Biomarkers in Acute Kidney Injury Following Cardiac Surgery. Kidney Int Rep 2019; 4:1131-1142. [PMID: 31440703 PMCID: PMC6698294 DOI: 10.1016/j.ekir.2019.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/23/2019] [Accepted: 05/07/2019] [Indexed: 11/25/2022] Open
Abstract
Background Cardiac surgery–associated acute kidney injury (AKI) is associated with increased morbidity and mortality. We examined the utility of combining biomarkers of kidney function loss (serum cystatin C) and kidney tubular damage (urine neutrophil gelatinase-associated lipocalin [NGAL] and Kidney Injury Molecule-1 [KIM-1]) for the prediction of post–cardiac surgery AKI. Methods Single-center prospective cohort study of 106 adults undergoing coronary artery bypass grafting and/or valve surgery with cardiopulmonary bypass (CPB). Primary outcome was postoperative in-hospital AKI defined by serum creatinine (SCr)–Kidney Disease: Improving Global Outcomes criteria. Biomarkers were measured preoperatively, 6 hours after CPB and on postoperative days (PODs) 1 to 4. Results A total of 23 subjects (21.7%) developed AKI. After adjusting for preoperative left ventricular ejection fraction, body mass index >30 kg/m2, and estimated glomerular filtration rate (eGFR) <60 ml/min per 1.73 m2, the combination of peak serum cystatin C and peak urine KIM-1/creatinine (Cr) (6 hours post-CPB to POD 1) above optimal cutoff significantly associated with postoperative AKI (odds ratio [OR]: 5.32; 95% confidence interval [CI]: 1.31–21.67; P = 0.020). This biomarker combination significantly improved the performance of the clinical model for the prediction of postoperative AKI (area under the curve [AUC]: 0.77, 95% CI: 0.65–0.90 for the clinical model alone versus 0.83, 95% CI: 0.73–0.93 for the clinical model with the addition of biomarker data, P = 0.049). Conclusions Combining biomarkers of postoperative kidney function loss and postoperative kidney tubular damage significantly improved prediction of in-hospital AKI following cardiac surgery. Future large, multicenter studies are warranted to assess whether panels of biomarkers reflecting distinct pathobiology can be used to guide interventions and improve short- and long-term outcomes in patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Javier A Neyra
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Ming-Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Abu Minhajuddin
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Geoffrey E Nelson
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Syed A Ahsan
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert D Toto
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael E Jessen
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amanda A Fox
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
113
|
Treacy O, Brown NN, Dimeski G. Biochemical evaluation of kidney disease. Transl Androl Urol 2019; 8:S214-S223. [PMID: 31236339 PMCID: PMC6559936 DOI: 10.21037/tau.2018.10.02] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
Different biochemical markers exist in both blood and urine for assessing renal function. Most of these biomarkers have advantages and limitations associated with their use, which is important to consider when ordering and utilising them in the clinical setting. The ideal marker should be able to detect acute kidney injury (AKI) at the onset and be used for the diagnosis and ongoing monitoring and management of kidney disease. The search for such a marker is ongoing, as all potential candidates thus far are associated with certain limitations. This article will attempt to compare and contrast established and emerging kidney disease markers.
Collapse
Affiliation(s)
- Oliver Treacy
- Department of Chemical Pathology, Pathology Queensland, Princess Alexandra Hospital Ipswich Road, Woolloongabba, Queensland, Australia
| | - Nigel N. Brown
- Department of Chemical Pathology, Pathology Queensland, Princess Alexandra Hospital Ipswich Road, Woolloongabba, Queensland, Australia
| | - Goce Dimeski
- Department of Chemical Pathology, Pathology Queensland, Princess Alexandra Hospital Ipswich Road, Woolloongabba, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
114
|
Abstract
Blood urea nitrogen and serum creatinine are imperfect markers of kidney function because they are influenced by many renal and nonrenal factors independent of kidney function. A biomarker that is released directly into the blood or urine by the kidney in response to injury may be a better early marker of drug-induced kidney toxicity than blood urea nitrogen and serum creatinine. Urine albumin and urine protein, as well as urinary markers kidney injury molecule-1 (KIM-1), β2-microglobulin (B2M), cystatin C, clusterin, and trefoil factor-3 (TFF-3) have been accepted by the Food and Drug Administration and European Medicines Agency as highly sensitive and specific urinary biomarkers to monitor drug-induced kidney injury in preclinical studies and on a case-by-case basis in clinical trials. Other biomarkers of drug-induced kidney toxicity that have been detected in the urine of rodents or patients include IL-18, neutrophil gelatinase-associated lipocalin, netrin-1, liver-type fatty acid-binding protein (L-FABP), urinary exosomes, and TIMP2 (insulin-like growth factor-binding protein 7)/IGFBP7 (insulin-like growth factor-binding protein 7), also known as NephroCheck, the first Food and Drug Administration-approved biomarker testing platform to detect acute kidney injury in patients. In the future, a combined use of functional and damage markers may advance the field of biomarkers of drug-induced kidney toxicity. Earlier detection of drug-induced kidney toxicity with a kidney-specific biomarker may result in the avoidance of nephrotoxic agents in clinical studies and may allow for earlier intervention to repair damaged kidneys.
Collapse
Affiliation(s)
- Benjamin R Griffin
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, Colorado
| | | | | |
Collapse
|
115
|
Begum S, Ahmed N, Mubarak M, Mateen SM, Khalid N, Rizvi SAH. Modulation of Renal Parenchyma in Response to Allogeneic Adipose-Derived Mesenchymal Stem Cells Transplantation in Acute Kidney Injury. Int J Stem Cells 2019; 12:125-138. [PMID: 30836723 PMCID: PMC6457705 DOI: 10.15283/ijsc18091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/29/2018] [Accepted: 01/08/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES In regenerative medicine, mesenchymal stem cells derived from adipose tissues (Ad-MSCs) are a very attractive target to treat many diseases. In relation to nephrology, the aim of the current study is to investigate the effects of Ad-MSCs for the amelioration of acute kidney injury and to explore the mechanism of renal parenchymal changes in response to allogeneic transplantation of Ad-MSCs. METHODS AND RESULTS The nephrotoxicity was induced by cisplatin (CP) in balb/c mice according to RIFLE Class and AKIN Stage 3. PCR, qRT-PCR and fluorescent labeled cells infusion, histopathology, immunohistochemistry, functional analyses were used for genes and proteins expressions data acquisition respectively. We demonstrated that single intravenous infusion of 2.5×107/kg mAd-MSCs in mice pre-injected with CP recruited to the kidney, restored the renal structure, and function, which resulted in progressive survival of mice. The renal tissue morphology was recovered in terms of diminished necrosis or epithelial cells damage, protein casts formation, infiltration of inflammatory cells, tubular dilatation, and restoration of brush border protein; Megalin and decreased Kim-1 expressions in mAd-MSCs transplanted mice. Significant reduction in serum creatinine with slashed urea and urinary protein levels were observed. Anti-BrdU staining displayed enhanced tubular cells proliferation. Predominantly, downgrade expressions of TNF-α and TGF-β1 were observed post seven days in mAd-MSCs transplanted mice. CONCLUSIONS Ad-MSCs exerts pro-proliferative, anti-inflammatory, and anti-fibrotic effects. Ad-MSCs transplantation without any chemical or genetic manipulation can provide the evidence of therapeutic strategy for the origin of regeneration and overall an improved survival of the system in functionally deprived failed kidneys.
Collapse
Affiliation(s)
- Sumreen Begum
- Stem Cells Research Laboratory (SCRL), Karachi,
Pakistan
| | - Nazia Ahmed
- Stem Cells Research Laboratory (SCRL), Karachi,
Pakistan
| | | | | | - Nida Khalid
- Stem Cells Research Laboratory (SCRL), Karachi,
Pakistan
| | - Syed Adibul Hasan Rizvi
- Department of Urology, Sindh Institute of Urology and Transplantation (SIUT), Karachi,
Pakistan
| |
Collapse
|
116
|
Baseline urinary KIM-1 concentration in detecting acute kidney injury should be interpreted with patient pre-existing nephropathy. Pract Lab Med 2019; 15:e00118. [PMID: 30989103 PMCID: PMC6447747 DOI: 10.1016/j.plabm.2019.e00118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 11/22/2022] Open
Abstract
Objectives To determine whether pre-existing nephropathy impacts urinary KIM-1 levels, urinary KIM-1 were measured in patients with normal kidney filtration function but either with or without proteinuria. The reference intervals of urinary KIM-1 in adults with normal kidney filtration function but without urine proteinuria were established. Design and methods 188 urine samples were obtained from adults with normal kidney filtration. 83 of the 188 showed negative urine protein, erythrocytes and leucocytes were used as normal controls. The remaining 105 samples showed at least one abnormal result suggesting possible pre-existing nephropathy. Urinary KIM-1 concentrations were measured using an enzyme-linked immunosorbent assay. Urinary KIM-1 was normalized with urine creatinine concentration. The reference interval for urinary KIM-1 was determined by non-parametric methodology on 147 individuals. Results The results showed significantly increased urinary KIM-1 concentration in protein positive (protein +, erythrocyte +/−, leucocyte+/-) samples compared to controls (protein-, erythrocyte -, leucocyte -). Urinary KIM-1 concentrations were significantly higher when proteinuria was at trace concentration (0.25 g/L) and correlated with the severity of proteinuria. The creatinine normalized urinary KIM-1 was significantly higher when urine protein was 1 + to 3+ (0.75–5 g/L). The reference interval for urinary KIM-1 was 0.00 (90%CI: 0-0) to 4.19 (90%CI: 3.11–5.62) μg/L, and for creatinine normalized urinary KIM-1 0.00 (90%CI: 0-0) to 0.58 (90%CI: 0.44–0.74) μg/mmol. Conclusions Baseline urinary KIM-1 concentrations were increased when there was detectable urine protein and correlated with its severity. The urinary KIM-1 concentrations should be interpreted with consideration of urine protein levels in individual patients. The correlation of urinary KIM-1 with pre-existing evidence of nephropathy such as proteinuria, hematuria and pyuria was investigated. Urinary KIM-1 was normalized to urine creatinine concentration. Urinary KIM-1 reference intervals for healthy adults with normal kidney filtration and without proteinuria were established. Age and sex effects on the urinary KIM-1 concentration were investigated.
Collapse
|
117
|
Jacquet A, Barbeau D, Arnaud J, Hijazi S, Hazane-Puch F, Lamarche F, Quiclet C, Couturier K, Fontaine E, Moulis JM, Demeilliers C. Impact of maternal low-level cadmium exposure on glucose and lipid metabolism of the litter at different ages after weaning. CHEMOSPHERE 2019; 219:109-121. [PMID: 30537584 DOI: 10.1016/j.chemosphere.2018.11.137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) is a metal which may participate in the development of type II diabetes even if Cd exposure levels are mild. However, experimental studies focusing on daily environmentally relevant doses are scarce, particularly for glucose metabolism of the offspring of chronically exposed mothers. The aim is to measure the impact of maternal low level Cd exposure on glucose and lipid metabolism of offspring. Female rats were exposed to 0, 50 or 500 μg.kg-1.d-1 of CdCl2, 21 days before mating and during 21 days of gestation and 21 days of lactation. Pups exposure was organized in 3 groups (control, Cd1, Cd2) according to renal dams' Cd burden. Parameters of glucose and lipid metabolisms were measured for the pups on post-natal day 21, 26 and 60. Maternal Cd exposure led to significant amounts of Cd in the liver and kidney of pups. At weaning, insulin secretion upon glucose stimulation was unchanged, but the removal of circulating glucose was slower for pups born from the lowest impregnated dams (Cd1). Five days after, glucose tolerance of all groups was identical. Thus, this loss of insulin sensitivity was reversed, in part by increased adiponectin secretion for the Cd1 group. Furthermore, pups from dams accumulating the highest levels of Cd (Cd2) exhibited a compensatory increased insulin pancreatic secretion, together with increased circulating non-esterified fatty acids, indicating the establishment of insulin resistance, 2 months after birth. This study has demonstrated the influence of maternal exposure to low levels of Cd on glucose homeostasis in the offspring that might increase the risk of developing type II diabetes later in life.
Collapse
Affiliation(s)
- Adeline Jacquet
- Univ. Grenoble Alpes, Inserm U1055, LBFA, 38000 Grenoble, France
| | - Damien Barbeau
- Grenoble University Hospital, Institute of Biology and Pathology, Grenoble, France; EPSP-TIMC UMR CNRS 5525, Grenoble, France
| | - Josiane Arnaud
- Univ. Grenoble Alpes, Inserm U1055, LBFA, 38000 Grenoble, France; Grenoble University Hospital, Institute of Biology and Pathology, Grenoble, France
| | - Samer Hijazi
- Univ. Grenoble Alpes, Inserm U1055, LBFA, 38000 Grenoble, France
| | - Florence Hazane-Puch
- Grenoble University Hospital, Institute of Biology and Pathology, Grenoble, France
| | | | - Charline Quiclet
- Univ. Grenoble Alpes, Inserm U1055, LBFA, 38000 Grenoble, France
| | - Karine Couturier
- Univ. Grenoble Alpes, Inserm U1055, LBFA, 38000 Grenoble, France
| | - Eric Fontaine
- Univ. Grenoble Alpes, Inserm U1055, LBFA, 38000 Grenoble, France; Grenoble University Hospital, Institute of Biology and Pathology, Grenoble, France
| | - Jean-Marc Moulis
- Univ. Grenoble Alpes, Inserm U1055, LBFA, 38000 Grenoble, France; CEA-DRF-BIG, Grenoble, France
| | | |
Collapse
|
118
|
Gibbs KM, Izer JM, Reeves WB, Wilson RP, Cooper TK. Effects of General Anesthesia on 2 Urinary Biomarkers of Kidney Injury-Hepatitis A Virus Cellular Receptor 1 and Lipocalin 2-in Male C57BL/6J Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2018; 58:21-29. [PMID: 30538007 DOI: 10.30802/aalas-jaalas-18-000062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Urinary biomarkers are used increasingly for sensitive prediction of kidney injury in preclinical and clinical studies. Given the frequent requirement of anesthesia in various animal models of disease, it is important to define the effects of anesthesia on kidney injury biomarkers to guide the appropriate selection of anesthetic agents and to avoid potential confounders in the interpretation of data. Therefore, we performed a prospective study using male C57BL/6J mice (n = 45) exposed to a single anesthetic episode to determine the effects several common anesthesia regimens on the urinary excretion of 2 commonly used kidney injury biomarkers: hepatitis A virus cellular receptor 1 (HAVCR1, also known as KIM1) and lipocalin 2 (LCN2, also known as NGAL). We evaluated 3 injectable regimens (ketamine-xylazine, tiletamine-zolazepam, and pentobarbital) and 2 inhalational agents (isoflurane and sevoflurane). Concentrations of HAVCR1 and LCN2 in urine collected at various time points after anesthesia were measured by using ELISA. Administration of ketamine-xylazine resulted in a significant increase in HAVCR1 levels at 6 h after anesthesia but a decrease in LCN2 levels compared with baseline. LCN2 levels steadily increased over the first 24 h after inhalant anesthesia, with a significant increase at 24 h after sevoflurane. These results suggest that injectable anesthesia had early effects on HAVCR1 and LCN2 levels, whereas inhalational agents increased these biomarkers over prolonged time.
Collapse
Affiliation(s)
- Krista M Gibbs
- Department of Comparative Medicine, Penn State University College of Medicine, Milton S Hershey Medical Center, Hershey, Pennsylvania;,
| | - Jenelle M Izer
- Department of Comparative Medicine, Penn State University College of Medicine, Milton S Hershey Medical Center, Hershey, Pennsylvania
| | - W Brian Reeves
- Department of Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Ronald P Wilson
- Department of Comparative Medicine, Penn State University College of Medicine, Milton S Hershey Medical Center, Hershey, Pennsylvania
| | - Timothy K Cooper
- Department of Comparative Medicine, Penn State University College of Medicine, Milton S Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
119
|
Singh A, Kamal R, Tiwari R, Gaur VK, Bihari V, Satyanarayana G, Patel DK, Azeez PA, Srivastava V, Ansari A, Kesavachandran CN. Association between PAHs biomarkers and kidney injury biomarkers among kitchen workers with microalbuminuria: A cross-sectional pilot study. Clin Chim Acta 2018; 487:349-356. [DOI: 10.1016/j.cca.2018.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
|
120
|
Udupa V, Prakash V. Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats. Toxicol Rep 2018; 6:91-99. [PMID: 30581763 PMCID: PMC6297903 DOI: 10.1016/j.toxrep.2018.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 01/25/2023] Open
Abstract
Gentamicin induced dose dependent and temporal change in urinary biomarkers. Histological changes were minimal to severe on Day 4 & 8 respectively at both doses. Several fold increase in urinary biomarkers on Day 4 and 8 at both doses. On Day 8, increase in urinary and serum markers and histological changes. Clusterin is highly sensitive urinary biomarkers.
Consistent, sensitive biomarkers of acute kidney injury in animal models and humans have historically represented a poorly met need for investigators and clinicians. Detection of early kidney damage using urinary biomarkers is essential to assess the adversity in preclinical toxicology studies, which will help in reducing attrition of lead candidates in drug development. This study was undertaken to evaluate recently identified urinary biomarkers use in identifying acute kidney injury compared to traditional serum markers in experimentally induced nephrotoxicity in male Sprague Dawley (SD) rats. Gentamicin induced nephrotoxicity in Sprague Dawley rats is commonly detected using serum markers and histological evaluation of kidneys. Gentamicin, an aminoglycoside was administered at 30 and 100 mg/kg/day dose (subcutaneous) for seven consecutive days to induce nephrotoxicity. On day 4 and day 8 post treatment, serum and urine samples from these rats were analyzed for traditional serum/urine and novel urinary biomarkers and microscopic evaluation of kidneys. On Day 4, no statistically significant change in serum BUN and creatinine level, but increase in urinary microalbumin (mALB) and urinary protein (UP) noticed in both doses of Gentamicin treated rats. On Day 8 significant increase in serum blood urea nitrogen (BUN), serum creatinine, UP and urinary mALB at 100 mg/kg/day, increase in total protein and decrease in albumin in 30 and 100 mg/kg/day and decrease in BUN and creatinine at 100 mg/kg of Gentamicin treated rats. The BUN and creatinine levels or fold change was comparable between control and 30 mg/kg of Gentamicin on Day 8, however, there was 5.6 and 3.4 fold change in BUN and Creatinine level noticed at 100 mg/kg/day of Gentamicin. On Day 4 and 8, significant increase in urinary levels of Clusterin was noted with animals administered both doses of Gentamicin. Similarly, significant increase in urinary levels of kidney injury molecule 1 (Kim-1), Cystatin C and neutrophil gelatinase-associated lipocalin (NGAL) were noticed with animals administered Gentamicin at 100 mg/kg/day on both Day 4 and 8. All these markers have shown dose-dependent change. Histological changes seen on Day 4 and Day 8 were of minimal to mild and moderate to severe in nature at both doses, respectively. The results demonstrated the sensitiveness and accuracy of detecting acute renal damage with novel urinary biomarkers, and their use in diagnosing early kidney damage. This helps in adversity assessment in animal toxicology studies and advocating right treatment to patients who have early renal injury which otherwise can only be diagnosed by elevated levels of traditional biomarkers in blood only after >30% of kidneys is damaged.
Collapse
Affiliation(s)
- Venkatesha Udupa
- Department of Toxicology, Glenmark Pharmaceuticals Limited, A607, TTC Industrial Area, MIDC, Mahape, Navi Mumbai, 400 709, Maharashtra, India
| | - Veeru Prakash
- Department of Biochemistry and Biochemical Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211 007, Uttar Pradesh, India
| |
Collapse
|
121
|
Nabofa WEE, Alashe OO, Oyeyemi OT, Attah AF, Oyagbemi AA, Omobowale TO, Adedapo AA, Alada ARA. Cardioprotective Effects of Curcumin-Nisin Based Poly Lactic Acid Nanoparticle on Myocardial Infarction in Guinea Pigs. Sci Rep 2018; 8:16649. [PMID: 30413767 PMCID: PMC6226538 DOI: 10.1038/s41598-018-35145-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/31/2018] [Indexed: 01/05/2023] Open
Abstract
Myocardial infarction (MI) is the most prevalent cause of cardiovascular death. A possible way of preventing MI maybe by dietary supplements. The present study was thus designed to ascertain the cardio-protective effect of a formulated curcumin and nisin based poly lactic acid nanoparticle (CurNisNp) on isoproterenol (ISO) induced MI in guinea pigs. Animals were pretreated for 7 days as follows; Groups A and B animals were given 0.5 mL/kg of normal saline, group C metoprolol (2 mg/kg), groups D and E CurNisNp 10 and 21 mg/kg respectively (n = 5). MI was induced on the 7th day in groups B-E animals. On the 9th day electrocardiogram (ECG) was recorded, blood samples and tissue biopsies were collected for analyses. Toxicity studies on CurNisNp were carried out. MI induction caused atrial fibrillation which was prevented by pretreatment of metoprolol or CurNisNp. MI induction was also associated with increased expressions of cardiac troponin I (CTnI) and kidney injury molecule-1 (KIM-1) which were significantly reduced in guinea pig's pretreated with metoprolol or CurNisNp (P < 0.05). The LC50 of CurNisNp was 3258.2 μg/mL. This study demonstrated that the formulated curcumin-nisin based nanoparticle confers a significant level of cardio-protection in the guinea pig and is nontoxic.
Collapse
Affiliation(s)
- Williams E E Nabofa
- Department of Physiology, Bencarson (Snr) School of Medicine, Babcock University, Ilishan-Remo, Nigeria.
| | - Oluwadamilola O Alashe
- Department of Physiology, Bencarson (Snr) School of Medicine, Babcock University, Ilishan-Remo, Nigeria
| | - Oyetunde T Oyeyemi
- Department of Biological Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria
| | - Alfred F Attah
- Department of Pharmacognosy, University of Ibadan, Ibadan, Nigeria
| | - Ademola A Oyagbemi
- Department of Veterinary Physiologv and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo O Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu A Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Akinola R A Alada
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
122
|
Abd-Elhamid TH, Elgamal DA, Ali SS, Ali FEM, Hassanein EHM, El-Shoura EAM, Hemeida RAM. Reno-protective effects of ursodeoxycholic acid against gentamicin-induced nephrotoxicity through modulation of NF-κB, eNOS and caspase-3 expressions. Cell Tissue Res 2018; 374:367-387. [PMID: 30078101 DOI: 10.1007/s00441-018-2886-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Abstract
Gentamicin (GNT) is a potent aminoglycoside antibiotic widely used to treat life-threatening bacterial infections. We aim to investigate the potential protective effect of ursodeoxycholic acid (UDCA) against GNT-induced nephrotoxicity. In this study, 24 male Wistar rats were used and randomly divided into four groups of six animals each. Control group received 0.5% carboxymethyl cellulose orally for 15 days, GNT group received GNT 100 mg/kg/day i.p. for 8 days, UDCA group received UDCA orally for 15 consecutive days at a dose of 60 mg/kg/day suspended in 0.5% carboxymethyl cellulose and UDCA-pretreated group received UDCA orally for 7 days then co-administered with GNT i.p. for 8 days at the same fore-mentioned doses. Serum levels of kidney function parameters (urea, creatinine, uric acid and albumin) were measured. Renal tissues were used to evaluate oxidative stress markers; malonaldehyde (MDA), reduced glutathione (GSH) and the anti-oxidant enzyme superoxide dismutase (SOD) activities and nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) and kidney injury molecule-1 (KIM-1) mRNA levels. Immunohistochemical expression of endothelial nitric oxide synthase (eNOS) and caspase-3 and histological and ultrastructural examination were performed. Treatment with GNT increased the serum levels of renal function parameters and renal MDA, NF-κB and KIM-1 mRNA levels, while it decreased GSH and SOD activities. Marked immunohistochemical expression of caspase-3 was observed after GNT administration while it decreased eNOS expression. Histological and ultrastructural alterations were also evident in renal corpuscles and tubules. In contrast, pretreatment with UDCA reversed changes caused by GNT administration. These results suggest that UDCA ameliorates GNT-induced kidney injury via inhibition of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Dalia A Elgamal
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Safaa S Ali
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ehab A M El-Shoura
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
123
|
Bostan Gayret Ö, Taşdemir M, Erol M, Tekin Nacaroğlu H, Zengi O, Yiğit Ö. Are there any new reliable markers to detect renal injury in obese children? Ren Fail 2018; 40:416-422. [PMID: 30035656 PMCID: PMC6060377 DOI: 10.1080/0886022x.2018.1489284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIM The aim of this study was to examine the serum and urine levels of kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), osteopontin (OPN), matrix metalloproteinase-9 (MMP-9), and serum Cystatin-C to determine the renal effect of obesity in obese children. METHODS Seventy-two obese and 35 non-obese healthy children were included in this study. Blood pressure (BP) was evaluated with office measurement. Creatinine, cystatin C, lipids, fasting glucose, and insulin levels were measured, and homeostasis model assessment -insulin resistance (HOMA-IR) was calculated. The urine albumin/creatinine ratio was calculated. The serum and urine KIM-1, NGAL, OPN, and MMP-9 levels were measured. RESULTS Serum cystatin-C, triglyceride, and homeostasis model assessment-insulin resistance (HOMA-IR) index were found to be significantly higher in the obese group (p = .0001), and high-density lipoprotein (HDL) cholesterol was found to be significantly lower (p = .019) in the obese group. No significant differences were found in serum KIM-1, NGAL, OPN or MMP-9 levels between groups (p > .05). No significant differences were found in urine KIM-1 and MMP-9 levels (p > .05), Urine NGAL, and OPN levels were found significantly higher in obese groups (p < .05). CONCLUSIONS According to our results, although serum KIM-1, NGAL, OPN, MMP-9, and urine MMP-9, urine KIM-1 do not appear to be ideal markers to evaluate renal injury in the early period of obesity, the serum levels of cystatin C and urine NGAL, urine OPN can be used as a good marker for assessing the renal effect of obesity which can lead end stage renal disease in pediatric population.
Collapse
Affiliation(s)
- Özlem Bostan Gayret
- a Department of Pediatrics , Ministry of Health, Bağcılar Training and Research Hospital , Istanbul , Turkey
| | - Mehmet Taşdemir
- b Department of Pediatrics, Division of Pediatric Nephrology , Koc University Hospital , Istanbul , Turkey
| | - Meltem Erol
- a Department of Pediatrics , Ministry of Health, Bağcılar Training and Research Hospital , Istanbul , Turkey
| | | | - Oğuzhan Zengi
- d Department of Biochemistry , Ministry of Health, Bağcılar Training and Research Hospital , Istanbul , Turkey
| | - Özgül Yiğit
- a Department of Pediatrics , Ministry of Health, Bağcılar Training and Research Hospital , Istanbul , Turkey
| |
Collapse
|
124
|
Haque ME, Khan F, Chi L, Gurung S, Vadevoo SMP, Park RW, Kim DK, Kim SK, Lee B. A Phage Display-Identified Peptide Selectively Binds to Kidney Injury Molecule-1 (KIM-1) and Detects KIM-1-Overexpressing Tumors in vivo. Cancer Res Treat 2018; 51:861-875. [PMID: 30282451 PMCID: PMC6639206 DOI: 10.4143/crt.2018.214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/26/2018] [Indexed: 01/05/2023] Open
Abstract
PURPOSE This study was carried out to identify a peptide that selectively binds to kidney injury molecule-1 (KIM-1) by screening a phage-displayed peptide library and to use the peptide for the detection of KIM-1overexpressing tumors in vivo. MATERIALS AND METHODS Biopanning of a phage-displayed peptide library was performed on KIM-1-coated plates. The binding of phage clones, peptides, and a peptide multimer to the KIM-1 protein and KIM-1-overexpressing and KIM-1-low expressing cells was examined by enzyme-linked immunosorbent assay, fluorometry, and flow cytometry. A biotin-peptide multimer was generated using NeutrAvidin. In vivo homing of the peptide to KIM-1-overexpressing and KIM1-low expressing tumors in mice was examined by whole-body fluorescence imaging. RESULTS A phage clone displaying the CNWMINKEC peptide showed higher binding affinity to KIM-1 and KIM-1-overexpressing 769-P renal tumor cells compared to other phage clones selected after biopanning. The CNWMINKEC peptide and a NeutrAvidin/biotin-CNWMINKEC multimer selectively bound to KIM-1 over albumin and to KIM-1-overexpressing 769-P cells and A549 lung tumor cells compared to KIM-1-low expressing HEK293 normal cells. Co-localization and competition assays using an anti-KIM-1 antibody demonstrated that the binding of the CNWMINKEC peptide to 769-P cells was specifically mediated by KIM-1. The CNWMINKEC peptide was not cytotoxic to cells and was stable for up to 24 hours in the presence of serum. Whole-body fluorescence imaging demonstrated selective homing of the CNWM-INKEC peptide to KIM-1-overexpressing A498 renal tumor compared to KIM1-low expressing HepG2 liver tumor in mice. CONCLUSION The CNWMINKEC peptide is a promising probe for in vivo imaging and detection of KIM-1‒overexpressing tumors.
Collapse
Affiliation(s)
- Md Enamul Haque
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Korea.,CMRI, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Fatima Khan
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Lianhua Chi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Smriti Gurung
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
| | | | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Dong-Kyu Kim
- Laboratory Animal Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Sang Kyoon Kim
- Laboratory Animal Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Korea.,CMRI, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
125
|
Fan H, Zhao Y, Sun M, Zhu JH. Urinary neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, N-acetyl-β-D-glucosaminidase levels and mortality risk in septic patients with acute kidney injury. Arch Med Sci 2018; 14:1381-1386. [PMID: 30393493 PMCID: PMC6209703 DOI: 10.5114/aoms.2018.79006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/30/2016] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION The aim of the study was to confirm whether higher levels of urinary neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1) and N-acetyl-β-D-glucosaminidase (NAG) are associated with mortality risk scores in severe septic patients with acute kidney injury (AKI). MATERIAL AND METHODS A prospective observational study was performed in an adult critical care unit. A total of 135 patients were included. The levels of urinary NGAL, KIM-1 and NAG were compared between patients with acute physiology and chronic health evaluation (APACHE II) score > 25 (group A, n = 31) and APACHE II score ≤ 25 (group B, n = 104). RESULTS Median level of NGAL was 105.1 ng/ml (77.6-132.5) in group A versus 40.0 ng/ml (18.6-60.5) in group B (p < 0.001), KIM-1 was 16.2 ng/ml (10.2-22.3) versus 3.3 ng/ml (1.8-4.6) (p < 0.001), and NAG was 32.0 U/l (17.5-46.4) versus 15.0 U/l (7.7-22.3) (p < 0.001). The area under the receiver operating characteristic curve for NGAL was 0.70 (95% CI: 0.60-0.79), KIM-1 was 0.75 (95% CI: 0.66-0.83), and NAG was 0.69 (95% CI: 0.60-0.79). A NGAL level > 102.5 ng/ml had 95% sensitivity and 76% specificity, KIM-1 > 7.3 ng/ml had 96% sensitivity and 61% specificity, and NAG > 15.4 U/l had 86% sensitivity and 74% specificity. CONCLUSIONS In severe septic AKI patients, high levels of NGAL, KIM-1 and NAG are associated with mortality risk scores. Urinary NGAL, KIM-1 and NAG concentrations higher than 102.5 ng/ml, 7.3 ng/ml and 15.4 U/l respectively may be used to predict increased of death risk scores.
Collapse
Affiliation(s)
- Heng Fan
- Department of Intensive Care Unit, Ningbo First Hospital, Ningbo, China
| | - Yu Zhao
- Department of Nephrology, Ningbo Urology and Nephrology Hospital, Ningbo, China
| | - Min Sun
- Department of Intensive Care Unit, Ningbo First Hospital, Ningbo, China
| | - Jian-Hua Zhu
- Department of Intensive Care Unit, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
126
|
Potential Novel Biomarkers of Obstructive Nephropathy in Children with Hydronephrosis. DISEASE MARKERS 2018; 2018:1015726. [PMID: 30327688 PMCID: PMC6171252 DOI: 10.1155/2018/1015726] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/09/2018] [Indexed: 01/12/2023]
Abstract
Obstructive nephropathy (ON) secondary to the congenital hydronephrosis (HN) is one of the most common causes of chronic kidney disease in children. Neither currently used imaging techniques nor conventional laboratory parameters are sufficient to assess the onset and outcome of this condition; hence, there is a need to prove the usefulness of newly discovered biomarkers of kidney injury in this respect. The purpose of the study was to assess the urinary excretion of alpha-GST, pi-GST, NGAL, and KIM-1 and the serum level of NGAL in children with congenital unilateral hydronephrosis secondary to ureteropelvic junction obstruction. The results were evaluated in relation to severity of HN, the presence of ON, relative function of an obstructed kidney, and the presence of proteinuria. The study comprised 45 children with HN of different grades and 21 healthy controls. Urinary and serum concentrations of biomarkers were measured using specific ELISA kits. Urinary biomarker excretions were expressed as a biomarker/creatinine (Cr) ratio. Patients with the highest grades of HN showed significantly increased values of all measured biomarkers, whereas those with the lowest grades of HN displayed only significant elevation of urinary alpha-GST and the serum NGAL. Urinary NGAL positively correlated with percentage loss of relative function of an obstructed kidney in renal scintigraphy. In patients with proteinuria, significantly higher urinary alpha-GST excretion was revealed as compared to those without this symptom. The ROC curve analysis showed the best diagnostic profile for urinary alpha-GST/Cr and NGAL/Cr ratios in the detection of ON. In conclusion, the results of the study showed that urinary alpha-GST and NGAL are promising biomarkers of ON. Ambiguous results of the remaining biomarkers, i.e., urinary pi-GST and KIM-1, and serum NGAL level may be related to a relatively small study group. Their utility in an early diagnosis of ON should be reevaluated.
Collapse
|
127
|
Ronco C, Bellasi A, Di Lullo L. Cardiorenal Syndrome: An Overview. Adv Chronic Kidney Dis 2018; 25:382-390. [PMID: 30309455 DOI: 10.1053/j.ackd.2018.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/12/2018] [Indexed: 02/06/2023]
Abstract
It is well established that a large number of patients with acute decompensated heart failure present with various degrees of heart and kidney dysfunction usually primary disease of heart or kidney often involve dysfunction or injury to the other. The term cardiorenal syndrome increasingly had been used without a consistent or well-accepted definition. To include the vast array of interrelated derangements and to stress the bidirectional nature of heart-kidney interactions, a new classification of the cardiorenal syndrome with 5 subtypes that reflect the pathophysiology, the time frame, and the nature of concomitant cardiac and renal dysfunction was proposed. Cardiorenal syndrome can generally be defined as a pathophysiological disorder of the heart and kidneys, in which acute or chronic dysfunction of one organ may induce acute or chronic dysfunction to the other. Although cardiorenal syndrome was usually referred to as acute kidney dysfunction following acute cardiac disease, it is now clearly established that impaired kidney function can have an adverse impact on cardiac function.
Collapse
|
128
|
Highly sensitive electrochemiluminescence immunosensor based on ABEI/H2O2 system with PFO dots as enhancer for detection of kidney injury molecule-1. Biosens Bioelectron 2018; 116:16-22. [DOI: 10.1016/j.bios.2018.05.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/02/2018] [Accepted: 05/21/2018] [Indexed: 11/20/2022]
|
129
|
iRhom2 loss alleviates renal injury in long-term PM2.5-exposed mice by suppression of inflammation and oxidative stress. Redox Biol 2018; 19:147-157. [PMID: 30165303 PMCID: PMC6118040 DOI: 10.1016/j.redox.2018.08.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022] Open
Abstract
Particulate matter (PM2.5) is a risk factor for organ injury and disease progression, such as lung, brain and liver. However, its effects on renal injury and the underlying molecular mechanism have not been understood. The inactive rhomboid protein 2 (iRhom2), also known as rhomboid family member 2 (Rhbdf2), is a necessary modulator for shedding of tumor necrosis factor-α (TNF-α) in immune cells, and has been explored in the pathogenesis of chronic renal diseases. In the present study, we found that compared to the wild type (iRhom2+/+) mice, iRhom2 knockout (iRhom2-/-) protected PM2.5-exposed mice from developing severe renal injury, accompanied with improved renal pathological changes and functions. iRhom2-/- mice exhibited reduced inflammatory response, as evidenced by the reduction of interleukin 1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α) and IL-18 in kidney samples, which might be, at least partly, through inactivating TNF-α converting enzyme/TNF-α receptors (TACE/TNFRs) and inhibitor of α/nuclear factor κ B (IκBα/NF-κB) signaling pathways. In addition, oxidative stress was also restrained by iRhom2-/- in kidney of PM2.5-exposed mice by enhancing heme oxygenase/nuclear factor erythroid 2-related factor 2 (HO-1/Nrf-2) expressions, and reducing phosphorylated c-Jun N-terminal kinase (JNK). In vitro, blockage of HO-1 or Nrf-2 rescued the inflammatory response and oxidative stress that were reduced by iRhom2 knockdown in PM2.5-incubated RAW264.7 cells. Similar results were observed in JNK activator-treated cells. Taken together, our findings indicated that iRhom2 played an essential role in regulating PM2.5-induced chronic renal damage, thus revealing a potential target for preventing chronic kidney diseases development. Suppression of iRhom2 negatively regulates inflammatory response in mouse macrophages RAW264.7 cells. iRhom2 deficiency alleviates PM2.5-induced renal injury by reducing inflammatory infiltration. iRhom2 inhibition reduces oxidative stress and JNK activation in PM2.5-induced renal injury in vitro and in vivo. PM2.5-induced renal injury via iRhom2-regulated oxidative stress and inflammation.
Collapse
|
130
|
Wnt4 is significantly upregulated during the early phases of cisplatin-induced acute kidney injury. Sci Rep 2018; 8:10555. [PMID: 30002385 PMCID: PMC6043520 DOI: 10.1038/s41598-018-28595-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Wnt4 is a secreted growth factor associated with renal tubulogenesis. Our previous studies identified that renal and urinary Wnt4 are upregulated following ischemia-reperfusion injury in mice, but the roles of Wnt4 in other forms of acute kidney injury (AKI) remain unclear. Here, we investigated the changes in Wnt4 expression using a cisplatin-induced AKI model. We found that renal and urinary Wnt4 expression increased as early as 12 hours, peaked at day 4 following cisplatin-induced AKI and was closely correlated with histopathological alterations. By contrast, the serum creatinine level was significantly elevated until day 3, indicating that Wnt4 is more sensitive to early tubular injury than serum creatinine. In addition, renal Wnt4 was co-stained with aquaporin-1 and thiazide-sensitive NaCl cotransporter, suggesting that Wnt4 can detect both proximal and distal tubular injuries. These data were further confirmed in a clinical study. Increased urinary Wnt4 expression was detected earlier than serum creatinine and eGFR in patients with contrast-induced AKI after vascular intervention. This study is the first to demonstrate that increased expression of renal and urinary Wnt4 can be detected earlier than serum creatinine after drug-induced AKI. In particular, urinary Wnt4 can potentially serve as a noninvasive biomarker for monitoring patients with tubular injury.
Collapse
|
131
|
Tian M, Tang L, Wu Y, Beddhu S, Huang Y. Adiponectin attenuates kidney injury and fibrosis in deoxycorticosterone acetate-salt and angiotensin II-induced CKD mice. Am J Physiol Renal Physiol 2018; 315:F558-F571. [PMID: 29873514 DOI: 10.1152/ajprenal.00137.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Adiponectin (ApN) is a multifunctional adipokine. However, high, rather than low, concentrations of ApN are unexpectedly found in patients with chronic kidney disease (CKD) via an as yet unknown mechanism, and the role of ApN in CKD is unclear. Herein, we investigated the effect of ApN overexpression on progressive renal injury resulting from deoxycorticosterone acetate-salt (DOCA) and angiotensin II (ANG II) infusion using a transgenic, inducible ApN-overexpressing mouse model. Three groups of mice [wild type receiving no infusion (WT) and WT and cytochrome P450 1a1 (cyp1a1)-ApN transgenic mice (ApN-Tg) receiving DOCA+ANG II infusion (WT/DOCA+ANG II and ApN-Tg/DOCA+ANG II)] were assigned to receive normal food containing 0.15% of the transgene inducer indole-3-carbinol (I3C) for 3 wk. In the I3C-induced ApN-Tg/DOCA+ANG II mice, not the WT or WT/DOCA+ANG II mice, overexpression of ApN in liver resulted in 3.15-fold increases in circulating ApN compared with nontransgenic controls. Of note, the transgenic mice receiving DOCA+ANG II infusion were still hypertensive but had much less albuminuria and glomerular and tubulointerstitial fibrosis, which were associated with ameliorated podocyte injury determined by ameliorated podocyte loss and foot process effacement, and alleviated tubular injury determined by ameliorated mRNA overexpression of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin and mRNA decreases of cubilin and megalin in tubular cells, compared with WT/DOCA+ANG II mice. In addition, renal production of NF-κB-p65, NAPDH oxidase 2, and p47 phox and MAPK-related cellular proliferation, which were induced in WT/DOCA+ANG II mice, were markedly reduced in ApN-Tg/DOCA+ANG II mice. These results indicate that elevated ApN in the CKD mouse model is renal protective. Enhancing ApN production or signaling may have therapeutic potential for CKD.
Collapse
Affiliation(s)
- Mi Tian
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health , Salt Lake City, Utah.,Division of Nephrology, Department of Internal Medicine, Shengjing Hospital, China Medical University , Shenyang , China
| | - Li Tang
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health , Salt Lake City, Utah.,Center of Kidney Transplantation, Ningbo Urology and Nephrology Hospital , Ningbo , China
| | - Yuanyuan Wu
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health , Salt Lake City, Utah
| | - Srinivasan Beddhu
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health , Salt Lake City, Utah
| | - Yufeng Huang
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health , Salt Lake City, Utah
| |
Collapse
|
132
|
Soo JYC, Jansen J, Masereeuw R, Little MH. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat Rev Nephrol 2018; 14:378-393. [PMID: 29626199 PMCID: PMC6013592 DOI: 10.1038/s41581-018-0003-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In vitro screens for nephrotoxicity are currently poorly predictive of toxicity in humans. Although the functional proteins that are expressed by nephron tubules and mediate drug susceptibility are well known, current in vitro cellular models poorly replicate both the morphology and the function of kidney tubules and therefore fail to demonstrate injury responses to drugs that would be nephrotoxic in vivo. Advances in protocols to enable the directed differentiation of pluripotent stem cells into multiple renal cell types and the development of microfluidic and 3D culture systems have opened a range of potential new platforms for evaluating drug nephrotoxicity. Many of the new in vitro culture systems have been characterized by the expression and function of transporters, enzymes, and other functional proteins that are expressed by the kidney and have been implicated in drug-induced renal injury. In vitro platforms that express these proteins and exhibit molecular biomarkers that have been used as readouts of injury demonstrate improved functional maturity compared with static 2D cultures and represent an opportunity to model injury to renal cell types that have hitherto received little attention. As nephrotoxicity screening platforms become more physiologically relevant, they will facilitate the development of safer drugs and improved clinical management of nephrotoxicants.
Collapse
Affiliation(s)
- Joanne Y-C Soo
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Jitske Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Melissa H Little
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.
- Murdoch Children's Research Institute, Parkville, Victoria, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
133
|
Chen R, Sanyal S, Thompson A, Ix JH, Haskins K, Muldowney L, Amur S. Evaluating the Use of KIM-1 in Drug Development and Research Following FDA Qualification. Clin Pharmacol Ther 2018; 104:1175-1181. [PMID: 29761868 DOI: 10.1002/cpt.1093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 11/10/2022]
Abstract
The Biomarker Qualification Program was established at the Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA) to expedite the integration of promising biomarkers across multiple drug development programs. The first set of biomarkers qualified in 2008 consisted of seven nonclinical safety biomarkers for the detection of acute drug-induced nephrotoxicity in rats, and included urinary kidney injury molecule-1 (KIM-1). This article discusses the use of KIM-1 in drug development and research before and after CDER's qualification of KIM-1. Use was determined by analyzing relevant documents identified by keyword searches using three databases: 1) an FDA internal database, Document Archiving, Reporting, and Regulatory Tracking System (DARRTS); 2) ClinicalTrials.gov; and 3) PubMed. The results indicate increased use of KIM-1 as a biomarker for detection of kidney injury in drug development programs reviewed by CDER, as well as in research following qualification.
Collapse
Affiliation(s)
- Ru Chen
- Immediate Office, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sarmistha Sanyal
- Immediate Office, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Aliza Thompson
- Division of Cardiovascular and Renal Products, Office of Drug Evaluation I, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Joachim H Ix
- Division of Nephrology-Hypertension, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Kylie Haskins
- Immediate Office, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Laurie Muldowney
- Immediate Office, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shashi Amur
- Immediate Office, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
134
|
Khan A. Prevalence, pathophysiological mechanisms and factors affecting urolithiasis. Int Urol Nephrol 2018; 50:799-806. [PMID: 29569213 DOI: 10.1007/s11255-018-1849-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
Abstract
The formation of urinary stone, urolithiasis, is one the oldest known disease affecting human throughout different civilizations and times. The exact pathophysiological mechanism of urolithiasis is not yet clear, as these calculi are of various types and too complex for simple understanding. A single theory cannot explain its formation; therefore, different theories are presented in various times for its explanation like free particle, fixed particle, Randall's plaque theory. In addition, various factors and components are identified that play an important role in the formation of these urinary calculi. In this review, composition of kidney stones, its prevalence/incidence, explanation of pathophysiological mechanisms and role of various factors; urinary pH, uric acid, parathyroid hormone, citrate, oxalate, calcium and macromolecules; osteopontin, matrix Gla protein, kidney injury molecules, urinary prothrombin fragment-1, Tamm-Horsfall protein, inter-α-inhibitors, have been discussed in detail.
Collapse
Affiliation(s)
- Aslam Khan
- Basic Sciences Department, College of Science and Health Professions-(COSHP-J), King Saud bin Abdulaziz University for Health Sciences, Mail Code: 6666, P.O. Box 9515, Jeddah, 21423, Kingdom of Saudi Arabia.
| |
Collapse
|
135
|
Biomarkers of Sepsis-Induced Acute Kidney Injury. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6937947. [PMID: 29854781 PMCID: PMC5941779 DOI: 10.1155/2018/6937947] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/19/2018] [Indexed: 12/29/2022]
Abstract
Sepsis, an infection-induced systemic disease, leads to pathological, physiological, and biochemical abnormalities in the body. Organ dysfunction is caused by a dysregulated host response to infection during sepsis which is a major contributing factor to acute kidney injury (AKI) and the mortality rate for sepsis doubles due to coincidence of AKI. Sepsis-induced AKI is strongly associated with increased mortality and other adverse outcomes. More timely diagnosis would allow for earlier intervention and could improve patient outcomes. Sepsis-induced AKI is characterized by a distinct pathophysiology compared with other diseases and may also have unique patterns of plasma and urinary biomarkers. This concise review summarizes properties and perspectives of the biomarkers for their individual clinical utilization.
Collapse
|
136
|
Identification of Urinary Activin A as a Novel Biomarker Reflecting the Severity of Acute Kidney Injury. Sci Rep 2018; 8:5176. [PMID: 29581558 PMCID: PMC5980079 DOI: 10.1038/s41598-018-23564-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) is a common but complex condition that is associated with increased morbidity and mortality. In the present study, we examined whether urinary activin A, a member of the TGF-beta superfamily, is present in mice with ischemia-reperfusion injury and in humans with AKI, as well as its potential as a biomarker for AKI. Expression of activin A was markedly increased in ischemic mouse kidneys. In situ hybridization demonstrated that activin mRNA was expressed in tubular cells of ischemic kidneys but not of normal kidneys. Immunoreactive activin A, which was absent in normal kidneys, was detected in the cytoplasm of proximal tubular cells in ischemic kidneys. Activin A was undetectable in the urine of normal mice. In contrast, activin A was significantly increased in the urine of ischemic mice at 3 h after reperfusion. Urinary activin A levels increased according to the period of ischemia. In humans, urinary activin A was almost undetectable in healthy volunteers and in patients with pre-renal AKI, but was significantly increased in patients with renal AKI. There was no significant correlation between urinary activin A and serum activin A. Collectively, urinary activin A might be a useful biomarker reflecting the severity of AKI.
Collapse
|
137
|
Zou X, Jiang K, Puranik AS, Jordan KL, Tang H, Zhu X, Lerman LO. Targeting Murine Mesenchymal Stem Cells to Kidney Injury Molecule-1 Improves Their Therapeutic Efficacy in Chronic Ischemic Kidney Injury. Stem Cells Transl Med 2018; 7:394-403. [PMID: 29446551 PMCID: PMC5905229 DOI: 10.1002/sctm.17-0186] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSC) have been experimentally used for kidney repair, but modest retention limits their efficacy. Cell‐surface coating allows modulating MSC homing and interaction with target cells. We coated mouse adipose tissue‐derived MSC with antibodies directed against kidney injury molecule‐1 (ab‐KIM1), which is upregulated in injured kidneys, and tested the hypothesis that this would enhance their therapeutic effects in ischemic kidney injury. Untreated MSC, ab‐KIM1‐coated MSC (KIM‐MSC), or vehicle, were injected systemically into the carotid artery of 2‐kidneys, 1‐clip mice 2 weeks after surgery. MSC retention in different organs was explored 24 hours, 48 hours, or 2 weeks after injection. Renal volume, perfusion, and oxygenation were studied 2 weeks after injection using magnetic resonance imaging in vivo, and renal inflammation, apoptosis, capillary density, and fibrosis ex vivo. The ab‐KIM1 coating had little effect on MSC viability or proliferation. The stenotic kidney showed upregulated KIM1 expression, selective homing, and greater retention of KIM‐MSC compared to untreated MSC and compared to other organs. KIM‐MSC‐injected mice improved renal perfusion and capillary density, and attenuated oxidative damage, apoptosis, and fibrosis compared to mice treated with vehicle or with native MSC. In conclusion, MSC coating with ab‐KIM1 increased their retention in the ischemic kidney and enhanced their therapeutic efficacy. This novel method may be useful to selectively target injured kidneys, and supports further development of strategies to enhance cell‐based treatment of ischemic kidney injury. Stem Cells Translational Medicine2018;7:394–403
Collapse
Affiliation(s)
- Xiangyu Zou
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.,Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Amrutesh S Puranik
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Kyra L Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
138
|
Skube SJ, Katz SA, Chipman JG, Tignanelli CJ. Acute Kidney Injury and Sepsis. Surg Infect (Larchmt) 2018; 19:216-224. [DOI: 10.1089/sur.2017.261] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Steven J. Skube
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Stephen A. Katz
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
| | | | | |
Collapse
|
139
|
Zhou Y, Yu J, Liu J, Cao R, Su W, Li S, Ye S, Zhu C, Zhang X, Xu H, Chen H, Zhang X, Guan Y. Induction of cytochrome P450 4A14 contributes to angiotensin II-induced renal fibrosis in mice. Biochim Biophys Acta Mol Basis Dis 2017; 1864:860-870. [PMID: 29277328 DOI: 10.1016/j.bbadis.2017.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/13/2023]
Abstract
Angiotensin II (AngII) plays an important role in the pathogenesis of hypertension and associated renal injuries. To elucidate the molecular mechanism by which AngII induces renal damage, we found that AngII infusion significantly induced CYP4A14 expression in renal proximal tubule cells (RPTCs) with marked increases in blood pressure and proteinuria. Renal production of the major CYP4A metabolite, 20-HETE, was also significantly increased in the AngII-treated mice. Compared to wild-type (WT) mice, CYP4A14 knockout (CYP4A14-/-) mice exhibited significantly lower levels of blood pressure, renal 20-HETE production, proteinuria and renal fibrosis following AngII infusion. Furthermore, AngII-induced renal expression of profibrotic genes and proinflammatory genes was significantly attenuated in CYP4A14-/- mice. In vitro studies using cultured RPTCs demonstrated that AngII significantly induced CYP4A14 expression and 20-HETE production via the MAPK signaling pathway. AngII treatment increased TGF-β and collagen expression, which was attenuated by the CYP4A inhibitor, TS-011. Moreover, 20-HETE treatment potently induced CYP4A14 expression and TGF-β and collagen levels. Collectively, these findings suggest that attenuated renal fibrosis in AngII-treated CYP4A14-/- mice may result from both reduced systemic blood pressure and renal 20-HETE production. Therefore, CYP4A14 may represent a useful target for the treatment of AngII-associated renal damage.
Collapse
Affiliation(s)
- Yunfeng Zhou
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jingwei Yu
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jia Liu
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Rong Cao
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen 518060, China; Department of Nephrology, the First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Wen Su
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Sha Li
- Department of Pathophysiology, Medical College of Hebei University of Engineering, Handan 056002, China
| | - Shiqi Ye
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Chenggang Zhu
- Asia & Emerging Markets Innovative Medicines, AstraZeneca R&D, Shanghai 201203, China
| | - Xiaolin Zhang
- Asia & Emerging Markets Innovative Medicines, AstraZeneca R&D, Shanghai 201203, China
| | - Hu Xu
- Advanced Institute of Medical Sciences (AIMS), Dalian Medical University, Dalian 116044, China
| | - Hua Chen
- Advanced Institute of Medical Sciences (AIMS), Dalian Medical University, Dalian 116044, China
| | - Xiaoyan Zhang
- Advanced Institute of Medical Sciences (AIMS), Dalian Medical University, Dalian 116044, China.
| | - Youfei Guan
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen 518060, China; Advanced Institute of Medical Sciences (AIMS), Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
140
|
Oh SM, Park G, Lee SH, Seo CS, Shin HK, Oh DS. Assessing the recovery from prerenal and renal acute kidney injury after treatment with single herbal medicine via activity of the biomarkers HMGB1, NGAL and KIM-1 in kidney proximal tubular cells treated by cisplatin with different doses and exposure times. Altern Ther Health Med 2017; 17:544. [PMID: 29258482 PMCID: PMC5738030 DOI: 10.1186/s12906-017-2055-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022]
Abstract
Background Acute kidney injury (AKI) is an initial factor in many kidney disorders. Pre- and intra-renal AKI biomarkers have recently been reported. Recovery from AKI by herbal medicine has rarely been reported. Thus, this study aimed to investigate the dose- and time-dependent effects of herbal medicines to protect against AKI in cisplatin-induced human kidney 2 (HK-2) cells by assessing the activities of high-mobility group box protein 1 (HMGB1), neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1). Methods Proximal tubular HK-2 cell lines were treated with either 400 μM of cisplatin for 6 h or 10 μM of cisplatin for 24 h and then exposed to ten types of single herbal medicines, including Nelumbo nymphaea (NY) at a dose of 100 μg/mL. The AKI biomarkers HMGB1, NGAL and KIM-1 were repeatedly measured by an ELISA assay at 2, 4, and 6 h in the group treated with 400 μM of cisplatin to confirm necrotic cell death and at 6, 24, and 48 h in the group treated with 10 μM of cisplatin to examine apoptotic cell death. Recovery confirm was conducted through in vivo study using ICR mice for 3 day NY or Paeonia suffruticosa intake. Results Cisplatin treatment at a concentration of 10 μM decreased cell viability. Treatment with 400 μM of cisplatin reduced HMBG1 activity and resulted in lactate dehydrogenase release. In longer exposure durations (up to 48 h), NGAL and KIM-1 exhibited activity from 24 h onward. Additionally, NY treatment resulted in an approximately 50% change in all three biomarkers. The time-dependent profiles of HMGB1, NGAL and KIM-1 activities up to 48 h were notably different; HMGB1 exhibited a 7-fold change at 6 h, and NGAL and KIM-1 exhibited 1.7-fold changes at 24 h, respectively. Consistently, serum and urine NGAL and KIM-1 activities were all reduced in ICR mice. Conclusions Several single herbal medicines, including NY, have a potential as effectors of AKI due to their ability to inhibit the activation of HMGB1, NGAL and KIM-1 in an in vitro AKI-mimicked condition and simple in vivo confirm. Furthermore, an in vivo proof-of-concept study is needed. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-2055-y) contains supplementary material, which is available to authorized users.
Collapse
|
141
|
Collier JB, Schnellmann RG. Extracellular Signal-Regulated Kinase 1/2 Regulates Mouse Kidney Injury Molecule-1 Expression Physiologically and Following Ischemic and Septic Renal Injury. J Pharmacol Exp Ther 2017; 363:419-427. [PMID: 29074644 PMCID: PMC5698947 DOI: 10.1124/jpet.117.244152] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/27/2017] [Indexed: 01/31/2023] Open
Abstract
The upregulation of kidney injury molecule-1 (KIM-1) has been extensively studied in various renal diseases and following acute injury; however, the initial mechanisms controlling KIM-1 expression remain limited. In this study, KIM-1 expression was examined in mouse renal cell cultures and in two different models of acute kidney injury (AKI), ischemia reperfusion (IR)-induced and lipopolysaccharide (LPS)-induced sepsis. KIM-1 mRNA increased in both AKI models, and pharmacological inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling attenuated injury-induced KIM-1 expression in the renal cortex. Toll-like receptor 4 knockout (TLR4KO) mice exhibited reduced ERK1/2 phosphorylation and attenuated KIM-1 mRNA after LPS exposure. TLR4KO mice were not protected from IR-induced ERK1/2 phosphorylation and upregulation of KIM-1 mRNA. Following renal IR injury, phosphorylation of signal transducer and activator of transcription 3 (STAT3) at serine 727 and tyrosine 705 increased downstream from ERK1/2 activation. Because phosphorylated STAT3 is a transcriptional upregulator of KIM-1 and inhibition of ERK1/2 attenuated increases in STAT3 phosphorylation, we suggest an ERK1/2-STAT3-KIM-1 pathway following renal injury. Finally, ERK1/2 inhibition in naive mice decreased KIM-1 mRNA and nuclear STAT3 phosphorylation in the cortex, indicating homeostatic regulation of KIM-1. These findings reveal renal ERK1/2 as an important initial regulator of KIM-1 expression in IR and septic AKI and at a physiologic level.Visual Abstract.Proposed mechanism of IR, LPS, and ROS-induced renal damage that initiates ERK1/2 and STAT3 phosphorylation. STAT3 then binds to the KIM-1 promoter and increases KIM-1 mRNA. By preventing ERK1/2 phosphorylation following renal injury, STAT3 phosphorylation is decreased, leading to less phosphorylated STAT3 within the nucleus, and subsequently less KIM-1 mRNA increases post injury.
Collapse
Affiliation(s)
- Justin B Collier
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (J.B.C.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (R.G.S.)
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (J.B.C.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (R.G.S.)
| |
Collapse
|
142
|
Press AT, Butans MJ, Haider TP, Weber C, Neugebauer S, Kiehntopf M, Schubert US, Clemens MG, Bauer M, Kortgen A. Fast simultaneous assessment of renal and liver function using polymethine dyes in animal models of chronic and acute organ injury. Sci Rep 2017; 7:15397. [PMID: 29133918 PMCID: PMC5684357 DOI: 10.1038/s41598-017-14987-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022] Open
Abstract
Simultaneous assessment of excretory liver and kidney function is still an unmet need in experimental stress models as well as in critical care. The aim of the study was to characterize two polymethine-dyes potentially suitable for this purpose in vivo. Plasma disappearance rate and elimination measurements of simultaneously injected fluorescent dyes DY-780 (hepato-biliary elimination) and DY-654(renal elimination) were conducted using catheter techniques and intravital microscopy in animals subjected to different organ injuries, i.e. polymicrobial sepsis by peritoneal contamination and infection, ischemia-reperfusion-injury and glycerol-induced acute kidney-injury. DY-780 and DY-654 showed organ specific and determined elimination routes in both healthy and diseased animals. They can be measured simultaneously using near-infrared imaging and spectrophotometry. Plasma-disappearance rates of DY-780 and DY-654 are superior to conventional biomarkers in indicating hepatic or kidney dysfunction in different animal models. Greatest impact on liver function was found in animals with polymicrobial sepsis whereas glomerular damage due to glycerol-induced kidney-injury had strongest impact on DY-654 elimination. We therefore conclude that hepatic elimination and renal filtration can be assessed in rodents measuring plasma-disappearance rates of both dyes. Further, assessment of organ dysfunction by polymethine dyes correlates with, but outperforms conventional biomarkers regarding sensitivity and the option of spatial resolution if biophotonic strategies are applied. Polymethine-dye clearance thereby allows sensitive point-of-care assessment of both organ functions simultaneously.
Collapse
Affiliation(s)
- A T Press
- Department for Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis and Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - M J Butans
- Department for Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis and Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - T P Haider
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - C Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - S Neugebauer
- Center for Sepsis and Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Department for Clinical chemistry and Laboratory Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - M Kiehntopf
- Center for Sepsis and Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Department for Clinical chemistry and Laboratory Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - U S Schubert
- Center for Sepsis and Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - M G Clemens
- Department of Biological Sciences and Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - M Bauer
- Department for Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis and Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - A Kortgen
- Department for Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Center for Sepsis and Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
143
|
Zhang Z, Qi D, Wang X, Gao Z, Li P, Liu W, Tian X, Liu Y, Yang M, Liu K, Fan H. Protective effect of Salvianolic acid A on ischaemia-reperfusion acute kidney injury in rats through protecting against peritubular capillary endothelium damages. Phytother Res 2017; 32:103-114. [DOI: 10.1002/ptr.5954] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/13/2017] [Accepted: 09/21/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Zuokai Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Dong Qi
- Department of Nephrology; Yu-Huang-Ding Hospital/Qingdao University; 264000 Yantai Shandong P.R. China
| | - Xuekai Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Zhenfang Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Peng Li
- Department of Nephrology; Yu-Huang-Ding Hospital/Qingdao University; 264000 Yantai Shandong P.R. China
| | - Wenbo Liu
- Medical Research Center; Binzhou Medical University; 264003 Yantai Shandong China
| | - Xiao Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Yue Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Mingyan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Ke Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| | - Huaying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong; Yantai University; Yantai 264005 P.R. China
| |
Collapse
|
144
|
24-Hour Pharmacokinetic Relationships for Vancomycin and Novel Urinary Biomarkers of Acute Kidney Injury. Antimicrob Agents Chemother 2017; 61:AAC.00416-17. [PMID: 28807910 DOI: 10.1128/aac.00416-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/05/2017] [Indexed: 01/13/2023] Open
Abstract
Vancomycin has been associated with acute kidney injury in preclinical and clinical settings; however, the precise exposure profiles associated with vancomycin-induced acute kidney injury have not been defined. We sought to determine pharmacokinetic/pharmacodynamics indices associated with the development of acute kidney injury using sensitive urinary biomarkers. Male Sprague-Dawley rats received clinical-grade vancomycin or normal saline as an intraperitoneal injection. Total daily doses between 0 and 400 mg/kg of body weight were administered as a single dose or 2 divided doses over a 24-h period. At least five rats were utilized for each dosing protocol. A maximum of 8 plasma samples per rat were obtained, and urine was collected over the 24-h period. Kidney injury molecule-1 (KIM-1), clusterin, osteopontin, cystatin C, and neutrophil gelatinase-associated lipocalin levels were determined using Milliplex multianalyte profiling rat kidney panels. Vancomycin plasma concentrations were determined via a validated high-performance liquid chromatography methodology. Pharmacokinetic analyses were conducted using the Pmetrics package for R. Bayesian maximal a posteriori concentrations were generated and utilized to calculate the 24-h area under the concentration-time curve (AUC), the maximum concentration (Cmax), and the minimum concentration. Spearman's rank correlation coefficient (rs ) was used to assess the correlations between exposure parameters, biomarkers, and histopathological damage. Forty-seven rats contributed pharmacokinetic and toxicodynamic data. KIM-1 was the only urinary biomarker that correlated with both composite histopathological damage (rs = 0.348, P = 0.017) and proximal tubule damage (rs = 0.342, P = 0.019). The vancomycin AUC and Cmax were most predictive of increases in KIM-1 levels (rs = 0.438 and P = 0.002 for AUC and rs = 0.451 and P = 0.002 for Cmax). Novel urinary biomarkers demonstrate that kidney injury can occur within 24 h of vancomycin exposure as a function of either AUC or Cmax.
Collapse
|
145
|
Moledina DG, Hall IE, Thiessen-Philbrook H, Reese PP, Weng FL, Schröppel B, Doshi MD, Wilson FP, Coca SG, Parikh CR. Performance of Serum Creatinine and Kidney Injury Biomarkers for Diagnosing Histologic Acute Tubular Injury. Am J Kidney Dis 2017; 70:807-816. [PMID: 28844586 DOI: 10.1053/j.ajkd.2017.06.031] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/23/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND The diagnosis of acute kidney injury (AKI), which is currently defined as an increase in serum creatinine (Scr) concentration, provides little information on the condition's actual cause. To improve phenotyping of AKI, many urinary biomarkers of tubular injury are being investigated. Because AKI cases are not frequently biopsied, the diagnostic accuracy of concentrations of Scr and urinary biomarkers for histologic acute tubular injury is unknown. STUDY DESIGN Cross-sectional analysis from multicenter prospective cohort. SETTINGS & PARTICIPANTS Hospitalized deceased kidney donors on whom kidney biopsies were performed at the time of organ procurement for histologic evaluation. PREDICTORS (1) AKI diagnosed by change in Scr concentration during donor hospitalization and (2) concentrations of urinary biomarkers (neutrophil gelatinase-associated lipocalin [NGAL], liver-type fatty acid-binding protein [L-FABP], interleukin 18 [IL-18], and kidney injury molecule 1 [KIM-1]) measured at organ procurement. OUTCOME Histologic acute tubular injury. RESULTS Of 581 donors, 98 (17%) had mild acute tubular injury and 57 (10%) had severe acute tubular injury. Overall, Scr-based AKI had poor diagnostic performance for identifying histologic acute tubular injury and 49% of donors with severe acute tubular injury did not have AKI. The area under the receiver operating characteristic curve (AUROC) of change in Scr concentration for diagnosing severe acute tubular injury was 0.58 (95% CI, 0.49-0.67) and for any acute tubular injury was 0.52 (95% CI, 0.45-0.58). Compared with Scr concentration, NGAL concentration demonstrated higher AUROC for diagnosing both severe acute tubular injury (0.67; 95% CI, 0.60-0.74; P=0.03) and any acute tubular injury (0.60; 95% CI, 0.55-0.66; P=0.005). In donors who did not have Scr-based AKI, NGAL concentrations were higher with increasing severities of acute tubular injury (subclinical AKI). However, compared with Scr concentration, AUROCs for acute tubular injury diagnosis were not significantly higher for urinary L-FABP, IL-18, or KIM-1. LIMITATIONS The spectrum of AKI cause in deceased donors may be different from that of a general hospitalized population. CONCLUSIONS Concentrations of Scr and kidney injury biomarkers (L-FABP, IL-18, and KIM-1) lack accuracy for diagnosing acute tubular injury in hospitalized deceased donors. Although urinary NGAL concentration had slightly higher discrimination for acute tubular injury than did Scr concentration, its overall AUROC was still modest.
Collapse
Affiliation(s)
- Dennis G Moledina
- Program of Applied Translational Research, Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, CT
| | - Isaac E Hall
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT
| | - Heather Thiessen-Philbrook
- Program of Applied Translational Research, Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, CT
| | - Peter P Reese
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, Philadelphia, PA
| | | | | | | | - F Perry Wilson
- Program of Applied Translational Research, Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, CT; Veterans Affairs Connecticut Healthcare System, New Haven, CT
| | - Steven G Coca
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Chirag R Parikh
- Program of Applied Translational Research, Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, CT; Veterans Affairs Connecticut Healthcare System, New Haven, CT.
| |
Collapse
|
146
|
O'Donnell JN, Rhodes NJ, Miglis CM, Catovic L, Liu J, Cluff C, Pais G, Avedissian S, Joshi MD, Griffin B, Prozialeck W, Gulati A, Lodise TP, Scheetz MH. Dose, duration, and animal sex predict vancomycin-associated acute kidney injury in preclinical studies. Int J Antimicrob Agents 2017; 51:239-243. [PMID: 28803934 DOI: 10.1016/j.ijantimicag.2017.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/25/2017] [Accepted: 08/03/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Although the exposure-dependent efficacy thresholds of vancomycin have been probed, less is known about acute kidney injury (AKI) thresholds for this drug. Sensitive urinary biomarkers, such as kidney injury molecule 1 (KIM-1), have shown high sensitivity and specificity for vancomycin-associated AKI. The aims of the study were to determine if there were dose-response curves with urinary KIM-1, and to evaluate the impact of therapy duration and sex on observed relationships. METHODS A systematic review was conducted via PubMed/MEDLINE. Data were compiled from preclinical studies that reported individual subject data for urinary KIM-1 concentrations, vancomycin dose (mg/kg), duration of treatment, and sex. Sigmoidal Hill-type models were fit to the individual dose-response data. RESULTS A total of 15 studies were identified, 6 of which reported vancomycin dose and KIM-1 data. Of these, three included individual animal-level data suitable for analysis. For all pooled rats, increasing total daily vancomycin doses displayed a dose-response curve with urinary KIM-1 concentrations (50% maximal toxic response=130.4 mg/kg/day). Dose-response curves were shifted left for females vs. males (P = 0.05) and for long (i.e. ≥7 days) vs. short (i.e. <4 days) duration of vancomycin therapy (P=0.02). CONCLUSIONS The collective findings demonstrate a clear dose-response relationship between vancomycin dose and AKI. As these analyses focused exclusively on dose-response relationships, additional preclinical data are needed to more clearly define vancomycin exposures that predict the onset of AKI.
Collapse
Affiliation(s)
- J Nicholas O'Donnell
- Department of Pharmacy Practice, Midwestern University Chicago College of Pharmacy, Downers Grove, IL, USA
| | - Nathaniel J Rhodes
- Department of Pharmacy Practice, Midwestern University Chicago College of Pharmacy, Downers Grove, IL, USA
| | - Cristina M Miglis
- Department of Pharmacy Practice, Midwestern University Chicago College of Pharmacy, Downers Grove, IL, USA
| | - Lejla Catovic
- Midwestern University Chicago College of Pharmacy, Downers Grove, IL, USA
| | - Jiajun Liu
- Midwestern University Chicago College of Pharmacy, Downers Grove, IL, USA
| | - Cameron Cluff
- Midwestern University Chicago College of Pharmacy, Downers Grove, IL, USA
| | - Gwendolyn Pais
- Midwestern University Chicago College of Pharmacy, Downers Grove, IL, USA
| | - Sean Avedissian
- Department of Pharmacy Practice, Midwestern University Chicago College of Pharmacy, Downers Grove, IL, USA
| | - Medha D Joshi
- Midwestern University Chicago College of Pharmacy, Downers Grove, IL, USA
| | - Brooke Griffin
- Department of Pharmacy Practice, Midwestern University Chicago College of Pharmacy, Downers Grove, IL, USA
| | - Walter Prozialeck
- Midwestern University Department of Pharmacology, Downers Grove, IL, USA
| | - Anil Gulati
- Midwestern University Chicago College of Pharmacy, Downers Grove, IL, USA
| | - Thomas P Lodise
- Albany College of Pharmacy, Department of Pharmacy Practice, Albany, NY, USA
| | - Marc H Scheetz
- Department of Pharmacy Practice, Midwestern University Chicago College of Pharmacy, Downers Grove, IL, USA.
| |
Collapse
|
147
|
Shahbaz SK, Pourrezagholi F, Barabadi M, Foroughi F, Hosseinzadeh M, Ahmadpoor P, Nafar M, Yekaninejad MS, Amirzargar A. High expression of TIM-3 and KIM-1 in blood and urine of renal allograft rejection patients. Transpl Immunol 2017; 43-44:11-20. [PMID: 28757398 DOI: 10.1016/j.trim.2017.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND T cell immunoglobulin and mucin domain 3 (TIM-3) is involved in alloimmune and autoimmune responses, as well as tolerance induction in kidney transplantation. Kidney injury molecule-1 (KIM-1) is highly expressed in epithelial cells of the injured proximal tubule. In this study, we have investigated both urinary and blood TIM-3 mRNA expressions, urinary KIM-1 mRNA expression, and urinary and serum KIM-1 proteins in renal allograft recipients diagnosed with acute allograft rejection (AR) and chronic allograft dysfunction (CAD), as well as those with well-functioning transplants (WFG). METHODS We divided 85 patients into the following groups: AR (n=24), CAD (n=19), and WFG (n=42). TIM-3 and KIM-1 mRNA expressions were quantified using real-time reverse-transcription TaqMan probe polymerase chain reaction (RT-PCR). An ELISA test was used to measure the amount of KIM-1 protein in serum and urine samples. RESULTS AR and CAD patients had significantly greater urinary and blood TIM-3 mRNA expressions, urinary KIM-1 mRNA expression, and urinary and serum KIM-1 proteins compared to WFG patients. Receiver operating characteristic (ROC) analysis showed that these molecules discriminated Allograft rejections from WFG. CONCLUSION Quantification of TIM-3 and KIM-1 mRNA expressions, along with KIM-1 protein measurements in urine and blood could be employed as promising tools for noninvasive diagnosis of allograft dysfunction.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Pourrezagholi
- Chronic Kidney Disease Research Center, Department of Nephrology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehri Barabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Foroughi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Morteza Hosseinzadeh
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Pedram Ahmadpoor
- Chronic Kidney Disease Research Center, Department of Nephrology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohesn Nafar
- Chronic Kidney Disease Research Center, Department of Nephrology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
148
|
Nephroprotective Effects of Saponins from Leaves of Panax quinquefolius against Cisplatin-Induced Acute Kidney Injury. Int J Mol Sci 2017; 18:ijms18071407. [PMID: 28703736 PMCID: PMC5535899 DOI: 10.3390/ijms18071407] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 11/17/2022] Open
Abstract
Although cisplatin is an anticancer drug that has activity against malignant tumor, it often causes nephrotoxicity. Previous reports have confirmed that the saponins from the leaves of P. quinquefolium (PQS) exerted many pharmacological activities. However, the renoprotective effects of PQS were still unknown. The purpose of the present research was to discuss renoprotective effect of PQS in a mouse model of cisplatin-induced acute kidney injury (AKI). The levels of blood urea nitrogen (BUN) and serum creatinine (CRE) were evidently increased in cisplatin-intoxicated mice, which were reversed by PQS. Renal oxidative stress, evidenced by increased malondialdehyde (MDA) level and decline of glutathione (GSH) and superoxide dismutase (SOD) activities, was significantly alleviated by PQS pretreatment. The suppression of inflammatory response by PQS was realized through the decrease the mRNA expression levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in kidney tissues, which were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Simultaneously, the overexpression of cytochrome P450 E1 (CYP2E1) and heme oxygenase-1 (HO-1) were attenuated by PQS. Furthermore, the effects of Western blotting demonstrated that PQS administration significantly suppressed the protein expression levels of nicotinamide adenine dinucleotide phosphate oxidase type 4 (Nox4), cleaved Caspase-3, cleaved Caspase-9, Bax, nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), suggesting the inhibition of apoptosis and inflammation response. Overall, PQS may possess protective effects in cisplatin-induced AKI through suppression of oxidative stress, inflammation and apoptosis.
Collapse
|
149
|
Urinary biomarkers in the early detection and follow-up of tubular injury in childhood urolithiasis. Clin Exp Nephrol 2017; 22:133-141. [PMID: 28653226 DOI: 10.1007/s10157-017-1436-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/21/2017] [Indexed: 01/31/2023]
Abstract
BACKGROUND To investigate relationships among urinary biomarkers [kidney injury molecule-1 (KIM-1), N-acetyl-β-glucosaminidase (NAG)], neutrophil gelatinase-associated lipocalin (NGAL) levels and renal tubular injury in childhood urolithiasis. METHODS Seventy children [36 girls, mean age: 7.3 ± 5.0 years (0.5-18.2)] with urolithiasis/microlithiasis and 42 controls [18 girls, mean age: 8.5 ± 3.8 years (0.9-16.2)] were included in this multicenter, controlled, prospective cohort study. Patients were evaluated three times in 6-month intervals (0, 6 and 12th months). Anthropometric data, urinary symptoms, family history and diagnostic studies were recorded. Urine samples were analyzed for metabolic risk factors (urinary calcium, uric acid, oxalate, citrate, cystine, magnesium, and creatinine excretion), and the urinary KIM-1, NAG, and NGAL levels were measured. RESULTS Stones were mostly located in the upper urinary system (82.9%), and six patients (8.6%) had hydronephrosis. Thirty patients (42.9%) had several metabolic risk factors, and the most common metabolic risk factor was hypocitraturia (22.9%). Urinary KIM-1/Cr, NAG/Cr and NGAL/Cr ratios were not significantly different between patients and controls. Furthermore, no significant changes in their excretion were shown during follow-up. Notably, the urinary KIM-1/Cr, NAG/Cr, and NGAL/Cr levels were significantly higher in children under 2 years of age (p = 0.011, p = 0.006, and 0.015, respectively). NAG/Cr and NGAL/Cr ratios were significantly increased in patients with hydronephrosis (n = 6, p = 0.031 and 0.023, respectively). CONCLUSIONS The results of this study suggest that none of the aforementioned urinary biomarkers (KIM-1, NAG and NGAL levels) may be useful for the early detection and/or follow-up of renal tubular injury and/or dysfunction in childhood urolithiasis.
Collapse
|
150
|
Abstract
Acute kidney injury (AKI) is characterized by an acute decline in renal function and is associated to increased mortality rate, hospitalization time, and total health-related costs. The severity of this ‘fearsome’ clinical complication might depend on, or even be worsened by, the late detection of AKI, when the diagnosis is based on the elevation of serum creatinine (SCr). For these reasons, in recent years a great number of new tools, biomarkers and predictive models have been proposed to clinicians in order to improve diagnosis and prevent the development of AKI. The purpose of this narrative paper is to review the current state of the art in prediction and early detection of AKI and outline future challenges.
Collapse
Affiliation(s)
- Simona Pozzoli
- Chair of Nephrology - IRCCS San Raffaele Scientific Institute, Genomics of Renal Diseases and Hypertension Unit, Università Vita Salute San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Marco Simonini
- Chair of Nephrology - IRCCS San Raffaele Scientific Institute, Genomics of Renal Diseases and Hypertension Unit, Università Vita Salute San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| | - Paolo Manunta
- Chair of Nephrology - IRCCS San Raffaele Scientific Institute, Genomics of Renal Diseases and Hypertension Unit, Università Vita Salute San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| |
Collapse
|