101
|
Affiliation(s)
- Alan L Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY.,Department of Medicine Weill Cornell Medical College, New York City, NY
| |
Collapse
|
102
|
Structural overview and perspectives of the nuclear receptors, a major family as the direct targets for small-molecule drugs. Acta Biochim Biophys Sin (Shanghai) 2021; 54:12-24. [PMID: 35130630 PMCID: PMC9909358 DOI: 10.3724/abbs.2021001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The nuclear receptors (NRs) are an evolutionarily related family of transcription factors, which share certain common structural characteristics and regulate the expressions of various genes by recognizing different response elements. NRs play important roles in cell differentiation, proliferation, survival and apoptosis, rendering them indispensable in many physiological activities including growth and metabolism. As a result, dysfunctions of NRs are closely related to a variety of diseases, such as diabetes, obesity, infertility, inflammation, the Alzheimer's disease, cardiovascular diseases, prostate and breast cancers. Meanwhile, small-molecule drugs directly targeting NRs have been widely used in the treatment of above diseases. Here we summarize recent progress in the structural biology studies of NR family proteins. Compared with the dozens of structures of isolated DNA-binding domains (DBDs) and the striking more than a thousand of structures of isolated ligand-binding domains (LBDs) accumulated in the Protein Data Bank (PDB) over thirty years, by now there are only a small number of multi-domain NR complex structures, which reveal the integration of different NR domains capable of the allosteric signal transduction, or the detailed interactions between NR and various coregulator proteins. On the other hand, the structural information about several orphan NRs is still totally unavailable, hindering the further understanding of their functions. The fast development of new technologies in structural biology will certainly help us gain more comprehensive information of NR structures, inspiring the discovery of novel NR-targeting drugs with a new binding site beyond the classic LBD pockets and/or a new mechanism of action.
Collapse
|
103
|
Calderon-Aparicio A, Wang BD. Prostate cancer: Alternatively spliced mRNA transcripts in tumor progression and their uses as therapeutic targets. Int J Biochem Cell Biol 2021; 141:106096. [PMID: 34653618 PMCID: PMC8639776 DOI: 10.1016/j.biocel.2021.106096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Prostate cancer is the most frequently diagnosed cancer and second leading cause of cancer deaths among American men. Current therapies show early antitumor responses, but ultimately lead to treatment resistance, relapse and poorer survival in patients. Alternative RNA splicing, a cell mechanism increasing the proteome diversity by producing multiple transcripts from a single gene, has been associated with prostate cancer development/progression. Reports showed that many aberrant mRNA splice variants are upregulated in prostate cancer, promoting malignancy through enhanced proliferation, metastasis, tumor growth, anti-apoptosis, and/or treatment resistance. Here, we discuss the oncogenic properties of aberrant splicing mechanisms underlying prostate cancer pathogenesis, as well as the uses of the splicing variants as potential diagnostics and treatment targets. Finally, we discuss the pharmacologic and molecular approaches for targeting aberrant splicing mechanisms as effective therapies to correct the splicing errors and overcome the drug resistance, ultimately improving the clinical outcome of prostate cancer patients.
Collapse
Affiliation(s)
- Ali Calderon-Aparicio
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA.
| |
Collapse
|
104
|
A phase 1 study to assess the safety, pharmacokinetics, and anti-tumor activity of the androgen receptor n-terminal domain inhibitor epi-506 in patients with metastatic castration-resistant prostate cancer. Invest New Drugs 2021; 40:322-329. [PMID: 34843005 DOI: 10.1007/s10637-021-01202-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND EPI-506 is the first of a new class of drugs targeting the N-terminal domain (NTD) of the androgen receptor (AR), potentially overcoming known resistance mechanisms to androgen receptor pathway inhibitors (ARPIs) among men with metastatic castration resistant prostate cancer (mCRPC). METHODS Patients with mCRPC who had progressed on prior ARPI were enrolled in this phase 1 open-label, adaptive 3 + 3 dose escalation study. The primary outcome was safety and tolerability of oral EPI-506. Secondary objectives included determination of the maximal tolerated dose (MTD), pharmacokinetic profile, and antitumor efficacy. RESULTS 28 mCRPC patients were enrolled into 7 dose cohorts of EPI-506 ranging from 80-3600 mg given once daily and 1800 mg given twice daily. Six DLTs occurred in 4 patients; Grade 4 elevated amylase; Grade 3 abdominal pain; Grade 3 elevated ALT and Grade 3 elevated AST; Grade 2 nausea and Grade 1 vomiting which resulted in study drug intake of < 75% of the expected dose during the DLT assessment period. The most common drug-related adverse events included diarrhea, nausea and fatigue. Six patients had a PSA decline not meeting PSA response criteria. The study was terminated prior to reaching the MTD due to poor oral bioavailability. CONCLUSIONS This phase 1 trial established the safety of EPI-506 and provides proof of concept for targeting the AR NTD. Next generation compounds with improved bioavailability and potency are in clinical development.
Collapse
|
105
|
Sekine Y, Nakayama H, Miyazawa Y, Arai S, Koike H, Matsui H, Shibata Y, Ito K, Suzuki K. Ratio of the expression levels of androgen receptor splice variant 7 to androgen receptor in castration refractory prostate cancer. Oncol Lett 2021; 22:831. [PMID: 34691258 PMCID: PMC8527558 DOI: 10.3892/ol.2021.13092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 09/16/2021] [Indexed: 01/06/2023] Open
Abstract
In clinical samples, the expression of androgen receptor (AR) and of AR splice variant 7 (AR-V7) is higher in castration-resistant prostate cancer (CRPC) compared with that in hormone-sensitive prostate cancer (PCa). However, there are only a few reports on the ratio of the expression levels of AR-V7 to AR (AR-V7/AR) in prostate tissue. The present study evaluated AR-V7/AR expression in various types of human prostate tissues and CRPC cells. Pretreatment prostate tissue samples from patients with benign prostatic hyperplasia (BPH; n=18), Gleason score 7 (n=17), and Gleason score 8–10 (n=26) were collected at the time of prostate biopsy, and tissue samples from CRPC patients (n=10) were collected at the time of transurethral resection of the prostate. Furthermore, androgen-independent LNCaP cells were established. The mRNA expression levels of AR and AR-V7, cell proliferation and prostate-specific antigen (PSA) production were evaluated by reverse transcription quantitative PCR, MTS assay and chemiluminescent enzyme immunoassay, respectively. There was a significant difference in AR-V7/AR expression ratios between the CRPC group and the BPH and pre-treatment PCa groups (CRPC, 7%; BPH and pre-treatment PCa, 1%). Subsequently, we compared the AR and AR-V7 expression levels in CRPC samples with those in the pretreatment prostate tissues from the same patients. The results demonstrated that the AR-V7/AR ratio increased from 3 to 9% after CRPC onset. Furthermore, in vitro experiment demonstrated that AR-V7 expression in LNCaP cells was increased after transforming into CRPC cells. The AR-V7/AR ratio also increased from 0.05 to 0.3%. In addition, small interfering (si)-RNA-mediated knockdown of AR inhibited the proliferation of and PSA production from androgen-independent LNCaP cells; however, AR-V7 knockdown had no effect. Conversely, siRNA-mediated knockdown of both AR and AR-V7 inhibited the proliferation of VCAP cells. In summary, the findings from the present study demonstrated that AR-V7 expression and AR-V7/AR ratio were increased after the onset of CRPC, which had a limited role in CRPC cell proliferation. Further investigation is required to clarify the roles of AR other splice variants and AR-V7 in CRPC.
Collapse
Affiliation(s)
- Yoshitaka Sekine
- Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroshi Nakayama
- Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Yoshiyuki Miyazawa
- Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Seiji Arai
- Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hidekazu Koike
- Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroshi Matsui
- Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Yasuhiro Shibata
- Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Kazuto Ito
- Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Kazuhiro Suzuki
- Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
106
|
Androprostamine A: a unique antiprostate cancer agent. J Antibiot (Tokyo) 2021; 74:717-725. [PMID: 34321608 DOI: 10.1038/s41429-021-00449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
The androgen receptor (AR) is an important therapeutic target for all clinical states of prostate cancer. We screened cultured broths of microorganisms for their ability to suppress androgen-dependent growth of human prostate cancer LNCaP and VCaP cells without cytotoxicity. We have already identified androprostamine A (APA) from a Streptomyces culture broth as a functional inhibitor of AR. APA repressed R1881 (the synthetic androgen methyltrienolone)-induced androgen-regulated gene expression and dramatically inhibited R1881-induced prostate-specific antigen levels. However, APA did not act as an AR antagonist and did not inhibit AR transcriptional activity. Moreover, AS2405, an APA derivative, significantly inhibited the growth of VCaP cells in SCID mice upon oral administration.
Collapse
|
107
|
Giunta EF, Annaratone L, Bollito E, Porpiglia F, Cereda M, Banna GL, Mosca A, Marchiò C, Rescigno P. Molecular Characterization of Prostate Cancers in the Precision Medicine Era. Cancers (Basel) 2021; 13:4771. [PMID: 34638258 PMCID: PMC8507555 DOI: 10.3390/cancers13194771] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) therapy has been recently revolutionized by the approval of new therapeutic agents in the metastatic setting. However, the optimal therapeutic strategy in such patients should be individualized in the light of prognostic and predictive molecular factors, which have been recently studied: androgen receptor (AR) alterations, PTEN-PI3K-AKT pathway deregulation, homologous recombination deficiency (HRD), mismatch repair deficiency (MMRd), and tumor microenvironment (TME) modifications. In this review, we highlighted the clinical impact of prognostic and predictive molecular factors in PCa patients' outcomes, identifying biologically distinct subtypes. We further analyzed the relevant methods to detect these factors, both on tissue, i.e., immunohistochemistry (IHC) and molecular tests, and blood, i.e., analysis of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). Moreover, we discussed the main pros and cons of such techniques, depicting their present and future roles in PCa management, throughout the precision medicine era.
Collapse
Affiliation(s)
- Emilio Francesco Giunta
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.A.); (C.M.)
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - Enrico Bollito
- Department of Pathology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10043 Turin, Italy;
| | - Francesco Porpiglia
- Department of Urology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10043 Turin, Italy;
| | - Matteo Cereda
- Cancer Genomics and Bioinformatics Unit, IIGM-Italian Institute for Genomic Medicine, c/o IRCCS Candiolo, 10060 Turin, Italy;
- Candiolo Cancer Institute, FPO—IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy
| | - Giuseppe Luigi Banna
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth PO2 8QD, UK;
| | - Alessandra Mosca
- Multidisciplinary Outpatient Oncology Clinic, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy;
| | - Caterina Marchiò
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.A.); (C.M.)
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - Pasquale Rescigno
- Interdisciplinary Group for Translational Research and Clinical Trials, Urological Cancers (GIRT-Uro), Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| |
Collapse
|
108
|
Bai B, Chen Q, Jing R, He X, Wang H, Ban Y, Ye Q, Xu W, Zheng C. Molecular Basis of Prostate Cancer and Natural Products as Potential Chemotherapeutic and Chemopreventive Agents. Front Pharmacol 2021; 12:738235. [PMID: 34630112 PMCID: PMC8495205 DOI: 10.3389/fphar.2021.738235] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the second most common malignant cancer in males. It involves a complex process driven by diverse molecular pathways that closely related to the survival, apoptosis, metabolic and metastatic characteristics of aggressive cancer. Prostate cancer can be categorized into androgen dependent prostate cancer and castration-resistant prostate cancer and cure remains elusive due to the developed resistance of the disease. Natural compounds represent an extraordinary resource of structural scaffolds with high diversity that can offer promising chemical agents for making prostate cancer less devastating and curable. Herein, those natural compounds of different origins and structures with potential cytotoxicity and/or in vivo anti-tumor activities against prostate cancer are critically reviewed and summarized according to the cellular signaling pathways they interfere. Moreover, the anti-prostate cancer efficacy of many nutrients, medicinal plant extracts and Chinese medical formulations were presented, and the future prospects for the application of these compounds and extracts were discussed. Although the failure of conventional chemotherapy as well as involved serious side effects makes natural products ideal candidates for the treatment of prostate cancer, more investigations of preclinical and even clinical studies are necessary to make use of these medical substances reasonably. Therefore, the elucidation of structure-activity relationship and precise mechanism of action, identification of novel potential molecular targets, and optimization of drug combination are essential in natural medicine research and development.
Collapse
Affiliation(s)
- Bingke Bai
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qianbo Chen
- Department of Anesthesiology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Rui Jing
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yanfei Ban
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Qi Ye
- Department of Biological Science, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiheng Xu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
109
|
Liu Y, Yu C, Shao Z, Xia X, Hu T, Kong W, He X, Sun W, Deng Y, Liao Y, Huang H. Selective degradation of AR-V7 to overcome castration resistance of prostate cancer. Cell Death Dis 2021; 12:857. [PMID: 34548474 PMCID: PMC8455663 DOI: 10.1038/s41419-021-04162-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022]
Abstract
Androgen receptor splice variant 7 (AR-V7), a form of ligand-independent and constitutively activating variant of androgen receptor (AR), is considered as the key driver to initiate castration-resistant prostate cancer (CRPC). Because AR-V7 lacks ligand-binding domain, the AR-targeted therapies that aim to inactivate AR signaling through disrupting the interaction between AR and androgen are limited in CRPC. Thus, the emergence of AR-V7 has become the greatest challenge for treating CRPC. Targeting protein degradation is a recently proposed novel avenue for cancer treatment. Our previous studies have been shown that the oncoprotein AR-V7 is a substrate of the proteasome. Identifying novel drugs that can trigger the degradation of AR-V7 is therefore critical to cure CRPC. Here we show that nobiletin, a polymethoxylated flavonoid derived from the peel of Citrus fruits, exerts a potent anticancer activity via inducing G0/G1 phase arrest and enhancing the sensitivity of cells to enzalutamide in AR-V7 positive PC cells. Mechanically, we unravel that nobiletin selectively induces proteasomal degradation of AR-V7 (but not AR). This effect relies on its selective inhibition of the interactions between AR-V7 and two deubiquitinases USP14 and USP22. These findings not only enrich our understanding on the mechanism of AR-V7 degradation, but also provide an efficient and druggable target for overcoming CRPC through interfering the stability of AR-V7 mediated by the interaction between AR-V7 and deubiquitinase.
Collapse
Affiliation(s)
- Yuan Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, Guangdong, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Cuifu Yu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, Guangdong, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Zhenlong Shao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Xiaohong Xia
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, Guangdong, China
| | - Tumei Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Weiyao Kong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Xiaoyue He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Wenshuang Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China
| | - Yuanfei Deng
- Department of Pathology, First People's Hospital of Foshan, 528000, Foshan, Guangdong, China
| | - Yuning Liao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, Guangdong, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China.
| | - Hongbiao Huang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, Guangdong, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, Guangdong, China.
| |
Collapse
|
110
|
Hamid ARAH, Luna-Velez MV, Dudek AM, Jansen CFJ, Smit F, Aalders TW, Verhaegh GW, Schaafsma E, Sedelaar JPM, Schalken JA. Molecular Phenotyping of AR Signaling for Predicting Targeted Therapy in Castration Resistant Prostate Cancer. Front Oncol 2021; 11:721659. [PMID: 34490120 PMCID: PMC8417043 DOI: 10.3389/fonc.2021.721659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is defined by resistance of the tumor to androgen deprivation therapy (ADT). Several molecular changes, particularly in the AR signaling cascade, have been described that may explain ADT resistance. The variety of changes may also explain why the response to novel therapies varies between patients. Testing the specific molecular changes may be a major step towards personalized treatment of CRPC patients. The aim of our study was to evaluate the molecular changes in the AR signaling cascade in CRPC patients. We have developed and validated several methods which are easy to use, and require little tissue material, for exploring AR signaling pathway changes simultaneously. We found that the AR signaling pathway is still active in the majority of our CRPC patients, due to molecular changes in AR signaling components. There was heterogeneity in the molecular changes observed, but we could classify the patients into 4 major subgroups which are: AR mutation, AR amplification, active intratumoral steroidogenesis, and combination of AR amplification and active intratumoral steroidogenesis. We suggest characterizing the AR signaling pathway in CRPC patients before beginning any new treatment, and a recent fresh tissue sample from the prostate or a metastatic site should be obtained for the purpose of this characterization.
Collapse
Affiliation(s)
- Agus Rizal A H Hamid
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Urology, Ciptomangunkusumo Hospital, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Maria V Luna-Velez
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Aleksandra M Dudek
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Tilly W Aalders
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gerald W Verhaegh
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ewout Schaafsma
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| | - John P M Sedelaar
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jack A Schalken
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
111
|
Liu C, Armstrong CM, Ning S, Yang JC, Lou W, Lombard AP, Zhao J, Wu CY, Yu A, Evans CP, Tepper CG, Li PK, Gao AC. ARVib suppresses growth of advanced prostate cancer via inhibition of androgen receptor signaling. Oncogene 2021; 40:5379-5392. [PMID: 34272475 PMCID: PMC8413131 DOI: 10.1038/s41388-021-01914-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Targeting androgen signaling with the second-generation anti-androgen drugs, such as enzalutamide (Enza), abiraterone (Abi), apalutamide (Apal), and darolutamide (Daro), is the mainstay for the treatment of castration-resistant prostate cancer (CRPC). While these treatments are effective initially, resistance occurs frequently. Continued expression of androgen receptor (AR) and its variants such as AR-V7 despite AR-targeted therapy contributes to treatment resistance and cancer progression in advanced CRPC patients. This highlights the need for new strategies blocking continued AR signaling. Here, we identify a novel AR/AR-V7 degrader (ARVib) and found that ARVib effectively degrades AR/AR-V7 protein and attenuates AR/AR-V7 downstream target gene expression in prostate cancer cells. Mechanistically, ARVib degrades AR/AR-V7 protein through the ubiquitin-proteasome pathway mediated by HSP70/STUB1 machinery modulation. ARVib suppresses HSP70 expression and promotes STUB1 nuclear translocation, where STUB1 binds to AR/AR-V7 and promotes its ubiquitination and degradation. ARVib significantly inhibits resistant prostate tumor growth and improves enzalutamide treatment in vitro and in vivo. These data suggest that ARVib has potential for development as an AR/AR-V7 degrader to treat resistant CRPC.
Collapse
Affiliation(s)
- Chengfei Liu
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Cameron M Armstrong
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Shu Ning
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Joy C Yang
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Wei Lou
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Alan P Lombard
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Jinge Zhao
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Chun-Yi Wu
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - Aiming Yu
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - Christopher P Evans
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Clifford G Tepper
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - Pui-Kai Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Allen C Gao
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA.
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA.
- VA Northern California Health Care System, Sacramento, CA, USA.
| |
Collapse
|
112
|
Case TC, Merkel A, Ramirez-Solano M, Liu Q, Sterling JA, Jin R. Blocking GRP/GRP-R signaling decreases expression of androgen receptor splice variants and inhibits tumor growth in castration-resistant prostate cancer. Transl Oncol 2021; 14:101213. [PMID: 34461557 PMCID: PMC8405941 DOI: 10.1016/j.tranon.2021.101213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023] Open
Abstract
The results of our study strongly indicate that blocking GRP/GRP-R signaling by targeting GRP-R is sufficient to inhibit ARVs expression. In addition, the combination of blocking GRP/GRP-R signaling (targeting ARVs) and anti-androgens (targeting AR-FL) is a potential new therapeutic approach for treatment of CRPC and therapy-induced tNEPC.
Clinical management of castration-resistant prostate cancer (CRPC) resulting from androgen deprivation therapy (ADT) remains challenging. Many studies indicate that androgen receptor splice variants (ARVs) play a critical role in the development of CRPC, including resistance to the new generation of inhibitors of androgen receptor (AR) action. ARVs are constitutively active and lack the ligand-binding domain (LBD), thereby allowing prostate cancer (PC) to maintain AR activity despite therapies that target the AR (full-length AR; AR-FL). Previously, we have reported that long-term ADT increases the neuroendocrine (NE) hormone – Gastrin Releasing Peptide (GRP) and its receptor (GRP-R) expression in PC cells. Further, we demonstrated that activation of GRP/GRP-R signaling increases ARVs expression by activating NF-κB signaling, thereby promoting cancer progression to CRPC. Most importantly, as a cell surface protein, GRP-R is easily targeted by drugs to block GRP/GRP-R signaling. In this study, we tested if blocking GRP/GRP-R signaling by targeting GRP-R using GRP-R antagonist is sufficient to control CRPC progression. Our studies show that blocking GRP/GRP-R signaling by targeting GRP-R using RC-3095, a selective GRP-R antagonist, efficiently inhibits NF-κB activity and ARVs (AR-V7) expression in CRPC and therapy-induced NEPC (tNEPC) cells. In addition, blocking of GRP/GRP-R signaling by targeting GRP-R can sensitize CRPC cells to anti-androgen treatment (such as MDV3100). Further, preclinical animal studies indicate combination of GRP-R antagonist (targeting ARVs) with anti-androgen (targeting AR-FL) is sufficient to inhibit CRPC and tNEPC tumor growth.
Collapse
Affiliation(s)
- Thomas C Case
- Department of Urology, Vanderbilt University Medical Center, A1329, MCN, 1161 21st Ave. South, Nashville, TN 37232, USA
| | - Alyssa Merkel
- Department of Cancer Biology, Medicine, Division of Clinical Pharmacology, Bone Biology Center, and Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie A Sterling
- Department of Cancer Biology, Medicine, Division of Clinical Pharmacology, Bone Biology Center, and Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Renjie Jin
- Department of Urology, Vanderbilt University Medical Center, A1329, MCN, 1161 21st Ave. South, Nashville, TN 37232, USA.
| |
Collapse
|
113
|
Tietz KT, Dehm SM. Androgen receptor variants: RNA-based mechanisms and therapeutic targets. Hum Mol Genet 2021; 29:R19-R26. [PMID: 32412639 DOI: 10.1093/hmg/ddaa089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer is the second leading cause of male cancer death in the United States. The androgen receptor (AR) transcription factor is a master regulator of normal glandular homeostasis in the prostate, as well as growth and survival of prostate cancer cells. Therefore, AR-targeted therapies are effective for improving overall survival of patients with advanced prostate cancer that is incurable by surgery or radiation. However, prostate cancer will inevitably progress on AR-targeted therapies to a castration-resistant prostate cancer (CRPC) phenotype that accounts for virtually all prostate cancer-specific death. mRNA transcript variants of the AR gene are expressed in CRPC cells and can be translated to produce AR variant (AR-V) proteins that function as ligand-independent, constitutively active transcription factors. AR-Vs are able to support growth of CRPC cells by promoting expression of AR target genes that are normally suppressed by AR-targeted therapies. Knowledge of mechanisms that govern expression of AR-Vs is incomplete. Studies have shown genomic rearrangements of the AR gene underlie expression of diverse AR-Vs in certain CRPC tumors, but post-transcriptional processes represent a broader regulatory mechanism for expression of AR-Vs in CRPC. This review focuses on alternative splicing, 3' end processing, miRNA-mediated mRNA repression, of AR and AR-V expression and the potential these mechanisms hold as therapeutic targets for CRPC.
Collapse
Affiliation(s)
- Kiel T Tietz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Departments of Laboratory Medicine and Pathology and Urology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
114
|
Kruslin B, Gatalica Z, Hes O, Skenderi F, Miettinen M, Contreras E, Xiu J, Ellis M, Florento E, Vranic S, Swensen J. TERT Gene Fusions Characterize a Subset of Metastatic Leydig Cell Tumors. Clin Genitourin Cancer 2021; 19:333-338. [PMID: 33741265 PMCID: PMC9907364 DOI: 10.1016/j.clgc.2021.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Metastatic Leydig cell tumors (LCT) are rare, difficult-to-treat malignancies without known underlying molecular-genetic events. An index case of metastatic LCT showed an LDLR-TERT gene fusion upon routine genetic profiling for detection of therapeutic targets, which was then followed by an investigation into a cohort of additional LCTs. PATIENTS AND METHODS Twenty-nine LCT (27 male and 2 female patients) were profiled using next-generation sequencing and immunohistochemistry. RESULTS TERT gene fusions were detected only in testicular metastatic LCTs, in 3 of 7 successfully analyzed cases (RMST:TERT, LDLR:TERT, and B4GALT5:TERT). TOP1 and CCND3 amplifications were identified in the case with a B4GALT5:TERT fusion. A TP53 mutation was detected in 1 metastatic tumor without a TERT fusion. Five primary (4 testicular and 1 ovarian) LCTs showed multiple gene amplifications, without a consistent pattern. A single metastatic ovarian LCT showed BAP1 mutation and copy number amplifications affecting the NPM1, PCM1, and SS18 genes. At the protein level, 4 of 7 metastatic and 6 of 10 primary testicular LCTs overexpressed Topo1. Androgen receptor was overexpressed in 10 of 13 primary testicular tumors and 2 of 5 metastatic testicular LCTs (without detectable ARv7 messenger RNA or ARv7 protein). Only 1 metastatic testicular LCT exhibited a high tumor mutational burden; all tested cases were microsatellite instability stable and did not express programmed cell death ligand 1. CONCLUSIONS Our study for the first time identified TERT gene fusions as a main genetic alteration and a potential therapeutic target in metastatic LCTs. Topo1 and androgen receptor may guide decisions on chemotherapy and/or hormone therapy for selected individual patients.
Collapse
Affiliation(s)
- Bozo Kruslin
- Clinical Department of Pathology and Cytology “Ljudevit Jurak”, University Hospital Centre “Sestre milosrdnice”, Zagreb, Croatia,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Zoran Gatalica
- Caris Life Sciences, Phoenix, Arizona,Department of Pathology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma
| | - Ondrej Hes
- Department of Pathology, Charles University, Medical Faculty and Charles University Hospital Plzen, Pilsen, Czech Republic
| | - Faruk Skenderi
- Department of Pathology, Clinical Center, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Markku Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | | | | | | | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar.
| | | |
Collapse
|
115
|
Liang J, Wang L, Poluben L, Nouri M, Arai S, Xie L, Voznesensky OS, Cato L, Yuan X, Russo JW, Long HW, Brown M, Chen S, Balk SP. Androgen receptor splice variant 7 functions independently of the full length receptor in prostate cancer cells. Cancer Lett 2021; 519:172-184. [PMID: 34256096 DOI: 10.1016/j.canlet.2021.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022]
Abstract
One mechanism for reactivation of androgen receptor (AR) activity after androgen deprivation therapy in castration-resistant prostate cancer (CRPC) is expression of splice variants such as ARv7 that delete the ligand binding domain and have constitutive activity. Exogenous overexpressed ARv7 can function as a homodimer or heterodimer with full length AR (ARfl), which is highly expressed with ARv7 in CRPC. However, the extent to which endogenous ARv7 function is dependent on heterodimerization with ARfl remains to be determined. We used double-crosslinking to stabilize AR complexes on chromatin in a CRPC cell line expressing endogenous ARfl and ARv7 (LN95 cells), and established that only trace levels of ARfl were associated with ARv7 on chromatin. Consistent with this result, depletion of ARfl with an AR degrader targeting the AR ligand binding domain did not decrease ARv7 binding to chromatin or its association with HOXB13, but did decrease overall AR transcriptional activity. Comparable results were obtained in CWR22RV1 cells, another CRPC cell line expressing ARfl and ARv7. These results indicate that ARv7 function in CRPC is not dependent on ARfl, and that both contribute independently to overall AR activity.
Collapse
Affiliation(s)
- Jiaqian Liang
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA; Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Liyang Wang
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA; Shaanxi Normal University School of Life Sciences, Shaanxi 710062, China
| | - Larysa Poluben
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Mannan Nouri
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Seiji Arai
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA; Department of Urology, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Lisha Xie
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA; Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Olga S Voznesensky
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Laura Cato
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Xin Yuan
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Joshua W Russo
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Henry W Long
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Myles Brown
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Shaoyong Chen
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven P Balk
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
116
|
Hong Z, Xiang Z, Zhang P, Wu Q, Xu C, Wang X, Shi G, Hong Z, Wu D. Histone acetyltransferase 1 upregulates androgen receptor expression to modulate CRPC cell resistance to enzalutamide. Clin Transl Med 2021; 11:e495. [PMID: 34323404 PMCID: PMC8299045 DOI: 10.1002/ctm2.495] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is the latest stage of PCa, and there is almost no effective treatment available for the patients with CRPC when next-generation androgen deprivation therapy drugs, such as enzalutamide (ENZ), fail. The androgen receptor (AR) plays key roles in PCa and CRPC progression and drug resistance. Histone acetyltransferase 1 (HAT1) has recently been reported to be highly expressed in some tumors, such as lung carcinoma. However, what relationship between the AR and HAT1, and whether or how HAT1 plays roles in CRPC progression and drug resistance remain elusive. In the present study, we found that HAT1 is highly expressed in PCa cells, and the overexpression of HAT1 is linked with CRPC cell proliferation. Moreover, the HAT1 expression is positively correlated with the expression of AR, including both AR-FL (full-length) and AR-V7 (variant 7), which is mainly mediated by a bromodomain containing protein 4 (BRD4) -mediated pathway. Furthermore, knockdown of HAT1 can re-sensitize the response of CRPC cells to ENZ treatment in cells and mouse models. In addition, ascorbate was observed to decrease AR expression through downregulation of HAT1 expression. Collectively, our findings reveal a novel AR signaling regulation pathway in PCa and CRPC and suggest that HAT1 serves as a critical oncoprotein and an ideal target for the treatment of ENZ resistance in CRPC patients.
Collapse
Affiliation(s)
- Zhe Hong
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhendong Xiang
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Pan Zhang
- Illinois Informatics InstituteUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| | - Qiang Wu
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinan Wang
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Guowei Shi
- Department of Urology, the Fifth People's Hospital of ShanghaiUrology Research Center of Fudan UniversityShanghaiChina
| | - Zongyuan Hong
- Laboratory of Quantitative PharmacologyWannan Medical CollegeWuhuChina
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
117
|
Jillson LK, Rider LC, Rodrigues LU, Romero L, Karimpour-Fard A, Nieto C, Gillette C, Torkko K, Danis E, Smith EE, Nolley R, Peehl DM, Lucia MS, Costello JC, Cramer SD. MAP3K7 Loss Drives Enhanced Androgen Signaling and Independently Confers Risk of Recurrence in Prostate Cancer with Joint Loss of CHD1. Mol Cancer Res 2021; 19:1123-1136. [PMID: 33846123 PMCID: PMC8254790 DOI: 10.1158/1541-7786.mcr-20-0913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/20/2020] [Accepted: 04/06/2021] [Indexed: 12/13/2022]
Abstract
Prostate cancer genomic subtypes that stratify aggressive disease and inform treatment decisions at the primary stage are currently limited. Previously, we functionally validated an aggressive subtype present in 15% of prostate cancer characterized by dual deletion of MAP3K7 and CHD1. Recent studies in the field have focused on deletion of CHD1 and its role in androgen receptor (AR) chromatin distribution and resistance to AR-targeted therapy; however, CHD1 is rarely lost without codeletion of MAP3K7. Here, we show that in the clinically relevant context of co-loss of MAP3K7 and CHD1 there are significant, collective changes to aspects of AR signaling. Although CHD1 loss mainly impacts the expansion of the AR cistrome, loss of MAP3K7 drives increased AR target gene expression. Prostate cancer cell line models engineered to cosuppress MAP3K7 and CHD1 also demonstrated increased AR-v7 expression and resistance to the AR-targeting drug enzalutamide. Furthermore, we determined that low protein expression of both genes is significantly associated with biochemical recurrence (BCR) in a clinical cohort of radical prostatectomy specimens. Low MAP3K7 expression, however, was the strongest independent predictor for risk of BCR over all other tested clinicopathologic factors including CHD1 expression. Collectively, these findings illustrate the importance of MAP3K7 loss in a molecular subtype of prostate cancer that poses challenges to conventional therapeutic approaches. IMPLICATIONS: These findings strongly implicate MAP3K7 loss as a biomarker for aggressive prostate cancer with significant risk for recurrence that poses challenges for conventional androgen receptor-targeted therapies.
Collapse
Affiliation(s)
- Lauren K Jillson
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Leah C Rider
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lindsey U Rodrigues
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lina Romero
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anis Karimpour-Fard
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Cera Nieto
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Claire Gillette
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kathleen Torkko
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Etienne Danis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Elizabeth E Smith
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rosalie Nolley
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | - Donna M Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, California
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - M Scott Lucia
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Scott D Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
118
|
Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol Ther 2021; 228:107932. [PMID: 34174272 DOI: 10.1016/j.pharmthera.2021.107932] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and among the leading causes of cancer-related death worldwide. It is a highly heterogeneous disease, ranging from remarkably slow progression or inertia to highly aggressive and fatal disease. As therapeutic decision-making, clinical trial design and outcome highly depend on the appropriate stratification of patients to risk groups, it is imperative to differentiate between benign versus more aggressive states. The incorporation of clinically valuable prognostic and predictive biomarkers is also potentially amenable in this process, in the timely prevention of metastatic disease and in the decision for therapy selection. This review summarizes the progress that has so far been made in the identification of the genomic events that can be used for the classification, prediction and prognostication of PCa, and as major targets for clinical intervention. We include an extensive list of emerging biomarkers for which there is enough preclinical evidence to suggest that they may constitute crucial targets for achieving significant advances in the management of the disease. Finally, we highlight the main challenges that are associated with the identification of clinically significant PCa biomarkers and recommend possible ways to overcome such limitations.
Collapse
|
119
|
Li Q, Wang Z, Yi J, Shen H, Yang Z, Yan L, Xie L. Clinicopathological characteristics of androgen receptor splicing variant 7 (AR-V7) expression in patients with castration resistant prostate cancer: A systematic review and meta-analysis. Transl Oncol 2021; 14:101145. [PMID: 34130051 PMCID: PMC8214144 DOI: 10.1016/j.tranon.2021.101145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 11/21/2022] Open
Abstract
Studies have shown that AR-V7 may be correlated with the poor prognosis of castration resistant prostate cancer (CRPC), however, clinicopathological characteristics of AR-V7 have not been fully elucidated. We enrolled 24 studies with 2307 eligible patients for a systemic review and meta-analysis. AR-V7 positivity was associated with higher Gleason score, bone or any site metastasis, presence of pain and worse ECOG performance score in CRPC. Therefore, AR-V7 positivity may be a particular type of prostate cancer subtype in CRPC.
Background Studies have shown that AR-V7 may be correlated with the poor prognosis of castration resistant prostate cancer (CRPC), however, clinicopathological characteristics of AR-V7 have not been fully elucidated. Objective This study aimed at evaluating the clinicopathological features of AR-V7 in CRPC patients. Materials and methods To evaluate the clinicopathological features of AR-V7 in CRPC patients. A search of PubMed, Embase, and Web of Science was performed using the keywords prostate cancer, prostate tumor, prostate neoplasm, prostate carcinoma, AR-V7, AR3, androgen receptor splicing variant-7, or androgen receptor-3. Twenty-four trials published by February 2020 were included in this study. Results The proportion of Gleason score ≥ 8 was found to be significantly higher in AR-V7-positive CRPC (69.5%) than negative (54.9%) (OR 1.68, 95% CI 1.25–2.25, p < 0.001), while the rates of T3/T4 stage (OR 1.16, 95% CI 0.60–2.24, p = 0.65) and N1 stage (OR 0.99, 95% CI 0.65–1.51, p = 0.96) were not statistically correlated with AR-V7 status. The AR-V7-positive patients exhibited a significantly higher proportion of any site metastasis (61.3% versus 35.0%; OR 2.19, 95% CI 1.57–3.05, p < 0.001) and bone metastasis (81.7% versus 69.0%; OR 1.97, 95% CI 1.44–2.69, p < 0.001), and a trend close to significance was expected in visceral metastasis (28.8% versus 22.1%; OR 1.29, 95% CI 0.96–1.74, p = 0.09). Incidences of pain in AR-V7-positive CRPC (54.6%) were significantly higher than in negative CRPC (28.1%; OR 4.23, 95% CI 2.52–7.10, p < 0.001), line with worse ECOG performance status (56.7% versus 35.0%, OR 2.18, 95% CI 1.51–3.16, P < 0.001). Limitations of the study include differences in sample sizes and designs, AR-V7 detection assays, as well as disease characteristics of the included studies. Conclusions AR-V7 positivity is associated with a higher Gleason score, bone or any site metastasis, pain and worse ECOG performance scores in CRPC. However, it is not correlated with tumor stage or lymph node metastasis. More studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Qinchen Li
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province 310003, China.
| | - Zhize Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province 310003, China.
| | - Jiahe Yi
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province 310003, China.
| | - Haixiang Shen
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province 310003, China.
| | - Zitong Yang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province 310003, China.
| | - Libin Yan
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province 310003, China.
| | - Liping Xie
- Cancer center, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
120
|
Waddell AR, Huang H, Liao D. CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers (Basel) 2021; 13:2872. [PMID: 34201346 PMCID: PMC8229436 DOI: 10.3390/cancers13122872] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023] Open
Abstract
The CREB-binding protein (CBP) and p300 are two paralogous lysine acetyltransferases (KATs) that were discovered in the 1980s-1990s. Since their discovery, CBP/p300 have emerged as important regulatory proteins due to their ability to acetylate histone and non-histone proteins to modulate transcription. Work in the last 20 years has firmly established CBP/p300 as critical regulators for nuclear hormone signaling pathways, which drive tumor growth in several cancer types. Indeed, CBP/p300 are critical co-activators for the androgen receptor (AR) and estrogen receptor (ER) signaling in prostate and breast cancer, respectively. The AR and ER are stimulated by sex hormones and function as transcription factors to regulate genes involved in cell cycle progression, metabolism, and other cellular functions that contribute to oncogenesis. Recent structural studies of the AR/p300 and ER/p300 complexes have provided critical insights into the mechanism by which p300 interacts with and activates AR- and ER-mediated transcription. Breast and prostate cancer rank the first and forth respectively in cancer diagnoses worldwide and effective treatments are urgently needed. Recent efforts have identified specific and potent CBP/p300 inhibitors that target the acetyltransferase activity and the acetytllysine-binding bromodomain (BD) of CBP/p300. These compounds inhibit AR signaling and tumor growth in prostate cancer. CBP/p300 inhibitors may also be applicable for treating breast and other hormone-dependent cancers. Here we provide an in-depth account of the critical roles of CBP/p300 in regulating the AR and ER signaling pathways and discuss the potential of CBP/p300 inhibitors for treating prostate and breast cancer.
Collapse
Affiliation(s)
- Aaron R. Waddell
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| | - Haojie Huang
- Departments of Biochemistry and Molecular Biology and Urology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA;
| | - Daiqing Liao
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| |
Collapse
|
121
|
Lovell S, Zhang L, Kryza T, Neodo A, Bock N, De Vita E, Williams ED, Engelsberger E, Xu C, Bakker AT, Maneiro M, Tanaka RJ, Bevan CL, Clements JA, Tate EW. A Suite of Activity-Based Probes To Dissect the KLK Activome in Drug-Resistant Prostate Cancer. J Am Chem Soc 2021; 143:8911-8924. [PMID: 34085829 PMCID: PMC9282638 DOI: 10.1021/jacs.1c03950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Kallikrein-related
peptidases (KLKs) are a family of secreted serine
proteases, which form a network (the KLK activome) with an important
role in proteolysis and signaling. In prostate cancer (PCa), increased
KLK activity promotes tumor growth and metastasis through multiple
biochemical pathways, and specific quantification and tracking of
changes in the KLK activome could contribute to validation of KLKs
as potential drug targets. Herein we report a technology platform
based on novel activity-based probes (ABPs) and inhibitors enabling
simultaneous orthogonal analysis of KLK2, KLK3, and KLK14 activity
in hormone-responsive PCa cell lines and tumor homogenates. Importantly,
we identifed a significant decoupling of KLK activity and abundance
and suggest that KLK proteolysis should be considered as an additional
parameter, along with the PSA blood test, for accurate PCa diagnosis
and monitoring. Using selective inhibitors and multiplexed fluorescent
activity-based protein profiling (ABPP), we dissect the KLK activome
in PCa cells and show that increased KLK14 activity leads to a migratory
phenotype. Furthermore, using biotinylated ABPs, we show that active
KLK molecules are secreted into the bone microenvironment by PCa cells
following stimulation by osteoblasts suggesting KLK-mediated signaling
mechanisms could contribute to PCa metastasis to bone. Together our
findings show that ABPP is a powerful approach to dissect dysregulation
of the KLK activome as a promising and previously underappreciated
therapeutic target in advanced PCa.
Collapse
Affiliation(s)
- Scott Lovell
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Leran Zhang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Thomas Kryza
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.,Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Anna Neodo
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Nathalie Bock
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Elena De Vita
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Elisabeth Engelsberger
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Congyi Xu
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Alexander T Bakker
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Maria Maneiro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Reiko J Tanaka
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Charlotte L Bevan
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, U.K
| | - Judith A Clements
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.,The Francis Crick Institute, London NW1 1AT, U.K
| |
Collapse
|
122
|
Cong X, He Y, Wu H, Wang D, Liu Y, Shao T, Liu M, Yi Z, Zheng J, Peng S, Ding T. Regression of Castration-Resistant Prostate Cancer by a Novel Compound HG122. Front Oncol 2021; 11:650919. [PMID: 34150618 PMCID: PMC8210671 DOI: 10.3389/fonc.2021.650919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/04/2021] [Indexed: 01/11/2023] Open
Abstract
Prostate cancer (PCa) is a common aggressive disease worldwide which usually progresses into incurable castration-resistant prostate cancer (CRPC) in most cases after 18-24 months treatment. Androgen receptor (AR) has been considered as a crucial factor involved in CRPC and the study of AR as a potential therapeutic target in CRPC may be helpful in disease control and life-cycle management. In this study, we identified a potent small molecule compound, HG122, that suppressed CRPC cells proliferation and metastasis, and inhibited tumor growth both in subcutaneous and orthotopic tumor model. In addition, HG122 reduced the mRNA expression of PSA and TMPRSS2 which are target genes of AR, resulting in cell growth inhibition and metastasis suppression of CRPC, without affecting the expression of AR mRNA level. Mechanically, HG122 promoted AR protein degradation through the proteasome pathway impairing the AR signaling pathway. In conclusion, HG122 overcomes enzalutamide (ENZ) resistance in CRPC both in vitro and in vivo, thus suggesting HG122 is a potential candidate for the clinical prevention and treatment of CRPC.
Collapse
Affiliation(s)
- Xiaonan Cong
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yundong He
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Haigang Wu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dingxiang Wang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yongrui Liu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ting Shao
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhengfang Yi
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jianghua Zheng
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Shihong Peng
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Tao Ding
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, China
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| |
Collapse
|
123
|
Desai MH, Parsi M, Potdar RR. Triple-arm androgen blockade for advanced prostate cancer: a review. Med Oncol 2021; 38:75. [PMID: 34032938 DOI: 10.1007/s12032-021-01520-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022]
Abstract
Prostate cancer is estimated to be the second most common malignancy in men in the USA in 2020 and represents the second highest mortality from cancer behind lung and bronchial neoplasms. Management of advanced prostate cancer is evolving. Medical androgen deprivation therapy is currently a cornerstone of therapy for prostate cancer; however molecular mechanisms of resistance have emerged leading to castration-resistant prostate cancer that is proliferation of prostate cancer in the setting of low testosterone (< 50 ng/dl). The benefit of double androgen blockade like ADT plus abiraterone acetate or androgen receptor blockers is proven in many clinical trials; however multiple mechanisms of resistance still exist. In theory, another layer of androgen blockade will prevent, or at least slow, prostate cancer proliferation. This direction of thought has recently been explored with multiple clinical trials. In this review article, we summarize the current knowledge regarding androgen resistance, newer androgen inhibition therapies, and the implications of a triple-arm anti-androgen blockade in advanced prostate cancer.
Collapse
Affiliation(s)
- Milap H Desai
- Drexel University College of Medicine, 2900 W Queen Ln, Philadelphia, PA, 19129, USA.
| | | | | |
Collapse
|
124
|
Sobhani N, Neeli PK, D’Angelo A, Pittacolo M, Sirico M, Galli IC, Roviello G, Nesi G. AR-V7 in Metastatic Prostate Cancer: A Strategy beyond Redemption. Int J Mol Sci 2021; 22:5515. [PMID: 34073713 PMCID: PMC8197232 DOI: 10.3390/ijms22115515] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023] Open
Abstract
Metastatic prostate cancer is the most common cancer in males and the fifth cause of cancer mortality worldwide. Despite the major progress in this field, leading to the approval of novel anti-androgens, the prognosis is still poor. A significant number of patients acquire an androgen receptor splice variant 7 (AR-V7), which is constitutively activated and lacks the ligand-binding domain (LBD) while maintaining the nuclear localization signal and DNA-binding domain (DBD). This conformational change, even in the absence of the ligand, allows its retention within the nucleus, where it acts as a transcription factor repressing crucial tumor suppressor genes. AR-V7 is an important oncogenic driver and plays a role as an early diagnostic and prognostic marker, as well as a therapeutic target for antagonists such as niclosamide and TAS3681. Anti-AR-V7 drugs have shown promise in recent clinical investigations on this subset of patients. This mini-review focuses on the relevance of AR-V7 in the clinical manifestations of castration-resistant prostate cancer (CRPC) and summarizes redemptive therapeutic strategies.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA; (N.S.); (P.K.N.); (M.P.)
| | - Praveen Kumar Neeli
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA; (N.S.); (P.K.N.); (M.P.)
| | - Alberto D’Angelo
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK;
| | - Matteo Pittacolo
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA; (N.S.); (P.K.N.); (M.P.)
| | - Marianna Sirico
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK;
- Azienda Socio-Sanitaria Territoriale Cremona, 26100 Cremona, Italy
| | - Ilaria Camilla Galli
- Histopathology and Molecular Diagnostics, Careggi Teaching Hospital, 50139 Florence, Italy;
| | | | - Gabriella Nesi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| |
Collapse
|
125
|
Liu M, Shi H, Yan J, Zhang Y, Ma Y, Le K, Li Z, Xing N, Li G. Gene polymorphism-related differences in the outcomes of abiraterone for prostate cancer: a systematic overview. Am J Cancer Res 2021; 11:1873-1894. [PMID: 34094659 PMCID: PMC8167691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023] Open
Abstract
Numerous prostate cancer (PC) associated genes have been reported in previous genome-wide association studies. Elucidation of prostate cancer pharmacogenomics have enhanced studies into the impact of germline genetic changes on treatment, in addition to evaluating related genomic alterations and biomarkers in prostate tumor tissues. Currently, Abiraterone (Abi) is used as one of the therapeutic options for PC. In this article, germline variants that have been associated with responses to Abi in patients with advanced PC are summarized. These include biomarker genes such as CYP17A1, AR-V7, HSD3B1, SLCO2B1, SULT1E1, and SRD5A2 that are involved in homologous recombination, as well as in gene expression mutations in important signaling pathways, such as WNT and Abi metabolic pathways.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Hongzhe Shi
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Jiaqing Yan
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Yinglin Ma
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Kaidi Le
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Zhongdong Li
- Department of Pharmacy, Electric Power Teaching Hospital, Capital Medical UniversityBeijing 100073, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Guohui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| |
Collapse
|
126
|
Lu S, Dong Z. Proliferating cell nuclear antigen directly interacts with androgen receptor and enhances androgen receptor‑mediated signaling. Int J Oncol 2021; 59:41. [PMID: 33982774 DOI: 10.3892/ijo.2021.5221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Androgen receptor (AR) and/or its constitutively active splicing variants (AR‑Vs), such as AR‑V7 and ARv567es, is required for prostate cancer cell growth and survival, and cancer progression. Proliferating cell nuclear antigen (PCNA) is preferentially overexpressed in all cancers and executes its functions through interaction with numerous partner proteins. The aim of the present study was to investigate the potential role of PCNA in the regulation of AR activity. An identical consensus sequence of the PCNA‑interacting protein‑box (PIP‑box) was identified at the N‑terminus of human, mouse and rat AR proteins. It was found that PCNA complexes with the full‑length AR (AR‑FL) and AR‑V7, which can be attenuated by the small molecule PIP‑box inhibitor, T2AA. PCNA also complexes with ARv567es and recombinant AR protein. The PCNA inhibitors, PCNA‑I1S and T2AA, inhibited AR transcriptional activity and the expression of AR target genes in LNCaP‑AI and 22Rv1 cells, but not in AR‑negative PC‑3 cells. The knockdown of PCNA expression reduced dihydrotestosterone‑stimulated AR transcriptional activity and abolished the inhibitory effect of PCNA‑I1S on AR activity. The PCNA inhibitor, PCNA‑I1, exerted additive growth inhibitory effects with androgen deprivation and enzalutamide in cells expressing AR‑FL or AR‑FL/AR‑V7, but not in AR‑negative PC‑3 cells. Finally, R9‑AR‑PIP, a small peptide mimicking AR PIP‑box, was found to bind to GFP‑PCNA at Kd of 2.73 µM and inhibit the expression of AR target genes, AR transcriptional activity and the growth of AR‑expressing cells. On the whole, these data strongly suggest that AR is a PCNA partner protein and interacts with PCNA via the PIP‑box and that targeting the PCNA‑AR interaction may represent an innovative and selective therapeutic strategy against prostate cancer, particularly castration‑resistant prostate cancers overexpressing constitutively active AR‑Vs.
Collapse
Affiliation(s)
- Shan Lu
- Division of Hematology‑Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhongyun Dong
- Division of Hematology‑Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
127
|
Welti J, Sharp A, Brooks N, Yuan W, McNair C, Chand SN, Pal A, Figueiredo I, Riisnaes R, Gurel B, Rekowski J, Bogdan D, West W, Young B, Raja M, Prosser A, Lane J, Thomson S, Worthington J, Onions S, Shannon J, Paoletta S, Brown R, Smyth D, Harbottle GW, Gil VS, Miranda S, Crespo M, Ferreira A, Pereira R, Tunariu N, Carreira S, Neeb AJ, Ning J, Swain A, Taddei D, Schiewer MJ, Knudsen KE, Pegg N, de Bono JS. Targeting the p300/CBP Axis in Lethal Prostate Cancer. Cancer Discov 2021; 11:1118-1137. [PMID: 33431496 PMCID: PMC8102310 DOI: 10.1158/2159-8290.cd-20-0751] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022]
Abstract
Resistance to androgen receptor (AR) blockade in castration-resistant prostate cancer (CRPC) is associated with sustained AR signaling, including through alternative splicing of AR (AR-SV). Inhibitors of transcriptional coactivators that regulate AR activity, including the paralog histone acetyltransferase proteins p300 and CBP, are attractive therapeutic targets for lethal prostate cancer. Herein, we validate targeting p300/CBP as a therapeutic strategy for lethal prostate cancer and describe CCS1477, a novel small-molecule inhibitor of the p300/CBP conserved bromodomain. We show that CCS1477 inhibits cell proliferation in prostate cancer cell lines and decreases AR- and C-MYC-regulated gene expression. In AR-SV-driven models, CCS1477 has antitumor activity, regulating AR and C-MYC signaling. Early clinical studies suggest that CCS1477 modulates KLK3 blood levels and regulates CRPC biopsy biomarker expression. Overall, CCS1477 shows promise for the treatment of patients with advanced prostate cancer. SIGNIFICANCE: Treating CRPC remains challenging due to persistent AR signaling. Inhibiting transcriptional AR coactivators is an attractive therapeutic strategy. CCS1477, an inhibitor of p300/CBP, inhibits growth and AR activity in CRPC models, and can affect metastatic CRPC target expression in serial clinical biopsies.See related commentary by Rasool et al., p. 1011.This article is highlighted in the In This Issue feature, p. 995.
Collapse
Affiliation(s)
- Jonathan Welti
- The Institute of Cancer Research, London, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | | | | | - Abhijit Pal
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Ruth Riisnaes
- The Institute of Cancer Research, London, United Kingdom
| | - Bora Gurel
- The Institute of Cancer Research, London, United Kingdom
| | - Jan Rekowski
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | | | - Barbara Young
- Sygnature Discovery Services, Nottingham, United Kingdom
| | - Meera Raja
- Sygnature Discovery Services, Nottingham, United Kingdom
| | - Amy Prosser
- Sygnature Discovery Services, Nottingham, United Kingdom
| | - Jordan Lane
- Sygnature Discovery Services, Nottingham, United Kingdom
| | - Stuart Thomson
- Sygnature Discovery Services, Nottingham, United Kingdom
| | | | - Stuart Onions
- Sygnature Discovery Services, Nottingham, United Kingdom
| | | | | | - Richard Brown
- Sygnature Discovery Services, Nottingham, United Kingdom
| | - Don Smyth
- Sygnature Discovery Services, Nottingham, United Kingdom
| | | | - Veronica S Gil
- The Institute of Cancer Research, London, United Kingdom
| | - Susana Miranda
- The Institute of Cancer Research, London, United Kingdom
| | - Mateus Crespo
- The Institute of Cancer Research, London, United Kingdom
| | - Ana Ferreira
- The Institute of Cancer Research, London, United Kingdom
| | - Rita Pereira
- The Institute of Cancer Research, London, United Kingdom
| | - Nina Tunariu
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Antje J Neeb
- The Institute of Cancer Research, London, United Kingdom
| | - Jian Ning
- The Institute of Cancer Research, London, United Kingdom
| | - Amanda Swain
- The Institute of Cancer Research, London, United Kingdom
| | - David Taddei
- Sygnature Discovery Services, Nottingham, United Kingdom
| | | | | | - Neil Pegg
- CellCentric Ltd., Cambridge, United Kingdom
| | - Johann S de Bono
- The Institute of Cancer Research, London, United Kingdom.
- The Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
128
|
Ma T, Bai S, Qi Y, Zhan Y, Ungerleider N, Zhang DY, Neklesa T, Corey E, Dehm SM, Zhang K, Flemington EK, Dong Y. Increased transcription and high translation efficiency lead to accumulation of androgen receptor splice variant after androgen deprivation therapy. Cancer Lett 2021; 504:37-48. [PMID: 33556543 PMCID: PMC7940584 DOI: 10.1016/j.canlet.2020.12.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/25/2020] [Accepted: 12/26/2020] [Indexed: 01/03/2023]
Abstract
Upregulation of androgen receptor splice variants (AR-Vs), especially AR-V7, is associated with castration resistance of prostate cancer. At the RNA level, AR-V7 upregulation is generally coupled with increased full-length AR (AR-FL); consequently, AR-V7 and AR-Vs collectively constitute a minority of the AR population. However, Western blotting showed that the relative abundance of AR-V proteins is much higher in many castration-resistant prostate cancers (CRPCs). To address the mechanism underlying this discrepancy, we analyzed RNA-seq data from ~350 CRPC samples and found a positive correlation between all canonical and alternative AR splicing. This indicates that increased alternative splicing is not at the expense of canonical splicing. Instead, androgen deprivation releases AR-FL from repressing the transcription of the AR gene to induce coordinated increase of AR-FL and AR-V mRNAs. At the protein level, however, androgen deprivation induces AR-FL, but not AR-V, degradation. Moreover, AR-V7 is translated much faster than AR-FL. Thus, androgen-deprivation-induced AR-gene transcription and AR-FL protein decay, together with efficient AR-V7 translation, explain the discrepancy between the relative AR-V mRNA and protein abundances in many CRPCs, highlighting the inevitability of AR-V induction after endocrine therapy.
Collapse
Affiliation(s)
- Tianfang Ma
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Shanshan Bai
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Yanfeng Qi
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Yang Zhan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | | | | | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Scott M Dehm
- Department of Laboratory Medicine and Pathology and Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | - Kun Zhang
- Department of Computer Science, Bioinformatics Facility of Xavier RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, LA, USA
| | - Erik K Flemington
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA.
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA.
| |
Collapse
|
129
|
Govindammal M, Prasath M, Kamaraj S, Muthu S, Selvapandiyan M. Exploring the molecular structure, vibrational spectroscopic, quantum chemical calculation and molecular docking studies of curcumin: A potential PI3K/AKT uptake inhibitor. Heliyon 2021; 7:e06646. [PMID: 33898809 PMCID: PMC8056428 DOI: 10.1016/j.heliyon.2021.e06646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
The IUPAC name of curcumin is (1E, 6E)-1,7-Bis(4-hydroxy-3methoxyphenyl) hepta-1,6-e-3,5-dione (7B3M5D) and is characterized by spectroscopic profiling with FT-IR and FT-Raman spectra obtained both experimentally and theoretically. PED analysis was done for the confirmation of minimum energy obtained in the title compound. Optimized geometrical parameters are compared with experimental values obtained for 7B3M5D by utilizing B3LYP functional employing 6–311++G (d,p) level of theory. The HOMO-LUMO, MEP, and Fukui function analysis has been used to elucidate the information regarding charge transfer within the molecule. The stabilization energy and charge delocalization of the 7B3M5D were performed by NBO analysis. This article assesses that the title compound act as a potential inhibitor of the PI3K/AKT inhibitor through in silico studies, like molecular docking, molecular dynamics (MD), ADMET prediction and also this molecule obeys Lipinski's rule of five. 7B3M5D was docked effectively in the active site of PI3K/AKT inhibitor.
Collapse
Affiliation(s)
- M Govindammal
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636701, India
| | - M Prasath
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636701, India
| | - S Kamaraj
- Department of Biotechnology, Periyar University PG Extension Centre, Dharmapuri, India
| | - S Muthu
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, 604407, Tamilnadu, India
| | - M Selvapandiyan
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636701, India
| |
Collapse
|
130
|
Hydroxychloroquine Potentiates Apoptosis Induced by PPAR α Antagonist in 786-O Clear Cell Renal Cell Carcinoma Cells Associated with Inhibiting Autophagy. PPAR Res 2021; 2021:6631605. [PMID: 33959154 PMCID: PMC8075691 DOI: 10.1155/2021/6631605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/14/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the major pathological pattern of renal cell carcinoma. The ccRCC cells exhibit a certain degree of inherent drug resistance due to some genetic mutations. In recent years, peroxisome proliferator-activated receptor-α (PPARα) antagonists have been reported as a targeted therapeutic drug capable of inducing apoptosis and cell cycle arrest in the ccRCC cell line. Autophagy, which can be induced by stress in eukaryotic cells, plays a complex role in the proliferation, survival, and death of tumor cells. In our study, we found that the expression of PPARα was low in highly differentiated ccRCC tissues and 786-O cell line but high in poorly differentiated ccRCC tissues. The level of PPARα expression in ccRCC tissues is correlated to the grade of differentiation, but not to the sex or age of ccRCC patients. The findings also revealed that the PPARα antagonist GW6471 can lower cell viability and induce autophagy in the 786-O ccRCC cell line. This autophagy can be inhibited by hydroxychloroquine. When treated with a combination of hydroxychloroquine and GW6471, the viability of the 786-O cells was decreased further when compared to the treatment with GW6471 or hydroxychloroquine alone, and apoptosis was promoted. Meanwhile, when human kidney 2 cells were cotreated with hydroxychloroquine and GW6471, cell viability was only slightly influenced. Hence, our finding indicates that the combination of GW6471 and hydroxychloroquine may constitute a novel and potentially effective treatment for ccRCC. Furthermore, this approach is likely to be safe owing to its minimal effects on normal renal tissues.
Collapse
|
131
|
Undesirable Status of Prostate Cancer Cells after Intensive Inhibition of AR Signaling: Post-AR Era of CRPC Treatment. Biomedicines 2021; 9:biomedicines9040414. [PMID: 33921329 PMCID: PMC8069212 DOI: 10.3390/biomedicines9040414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Recent advances in prostate cancer (PC) research unveiled real androgen receptor (AR) functions in castration-resistant PC (CRPC). Moreover, AR still accelerates PC cell proliferation via the activation of several mechanisms (e.g., mutation, variants, and amplifications in CRPC). New-generation AR signaling-targeted agents, inhibiting extremely the activity of AR, were developed based on these incontrovertible mechanisms of AR-induced CRPC progression. However, long-term administration of AR signaling-targeted agents subsequently induces the major problem that AR (complete)-independent CRPC cells present neither AR nor prostate-specific antigen, including neuroendocrine differentiation as a subtype of AR-independent CRPC. Moreover, there are few treatments effective for AR-independent CRPC with solid evidence. This study focuses on the transformation mechanisms of AR-independent from AR-dependent CRPC cells and potential treatment strategy for AR-independent CRPC and discusses them based on a review of basic and clinical literature.
Collapse
|
132
|
Cross-resistance and drug sequence in prostate cancer. Drug Resist Updat 2021; 56:100761. [PMID: 33799049 DOI: 10.1016/j.drup.2021.100761] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
The treatment landscape of advanced prostate cancer has widely expanded over the past years with androgen receptor signaling inhibitors (ARSIs) and taxane chemotherapy moving to earlier disease stages in the treatment of prostate cancer. With the increasing use of ARSIs in earlier disease stages, cross-resistance between treatments has emerged, which is a dominant impediment in current clinical practice. To overcome cross-resistance in the treatment of prostate cancer, it is of paramount importance to decipher the mechanisms of cross-resistance between ARSIs and between ARSIs and chemotherapy. Here, molecular mechanisms of resistance to the available therapies including androgen receptor (AR) splice variants, AR overexpression, AR mutations and glucocorticoid receptor upregulation are described. Based on these underlying mechanisms, clinical data of cross-resistance between ARSIs and chemotherapy have been reported. Only recently these data have been confirmed in prospective randomized trials. From these studies, it has become clear that sequential ARSI treatment has no place in the treatment of advanced prostate cancer due to emerging drug resistance. In addition, based on prospective evidence, we argue that it is worth considering an early switch to cabazitaxel treatment in case of lack of benefit on docetaxel regimen after an ARSI treatment. Based on these new insights from randomized trials, several recommendations for treatment sequence are proposed.
Collapse
|
133
|
Ouyang W, Zhang Y, Long G, Sun G, Liu M, Li F, Yang C, Zeng X, Yang J, Yu X, Wang Z, Liu Z, Guan W, Hu Z, Wang S, Liu X, Li H, Xu H, Ye Z. Androgen receptor splice variant 7 detected by immunohistochemical is an independent poor prognostic marker in men receiving adjuvant androgen-deprivation therapy after radical prostatectomy. Biomark Res 2021; 9:23. [PMID: 33789757 PMCID: PMC8011087 DOI: 10.1186/s40364-021-00276-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background To evaluate the predictive value of AR-V7 expression detected by immunohistochemical (IHC) in the prognosis of prostate cancer patients receiving adjuvant hormonal therapy (AHT) following radical prostatectomy (RP). Methods We retrospectively collected data of 110 patients with prostate cancer receiving RP, followed by AHT, from Tongji hospital. IHC analysis of AR-V7 expression was performed in a retrospective cohort. Results In total, 110 patients were enrolled, of whom 21 patients (19.1%) were AR-V7-positive and 89 patients (80.9%) were AR-V7-negative. No significant differences in baseline characteristics were found between the two groups. AR-V7-positive patients had shorter progression-free survival (PFS) (HR: 4.26; 95% CI, 1.55 to 11.68; P = 0.003), shorter cancer-special survival (CSS) (HR: 22.47; 95% CI, 2.912 to 173.4; P = 0.003) and shorter overall survival (OS) (HR: 6.61; 95% CI, 1.40 to 31.20; P = 0.017) compared to AR-V7-negative patients. In multivariate analysis, AR-V7 is an independent risk factor for shorter PFS (HR, 3.76; 95% CI, 1.63 to 8.70; P = 0.002), shorter CSS (HR: 9.17; 95% CI, 1.48 to 55.56; P = 0.017) and shorter OS (HR: 4.81; 95% CI, 1.28 to 17.86; P = 0.020). Conclusion The presence of AR-V7 in prostate cancer tissue is independently associated with an unfavorable prognosis for PFS, OS and CSS in patients who received AHT. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-021-00276-x.
Collapse
Affiliation(s)
- Wei Ouyang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yucong Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gongwei Long
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Guan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
134
|
Makwana V, Rudrawar S, Anoopkumar-Dukie S. Signalling transduction of O-GlcNAcylation and PI3K/AKT/mTOR-axis in prostate cancer. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166129. [PMID: 33744394 DOI: 10.1016/j.bbadis.2021.166129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 12/23/2022]
Abstract
Hexosamine biosynthetic (HBP) and PI3K/AKT/mTOR pathways are found to predominate the proliferation and survival of prostate cancer cells. Both these pathways have their own specific intermediates to propagate the secondary signals in down-stream cascades and besides having their own structured network, also have shared interconnecting branches. These interconnections are either competitive or co-operative in nature depending on the microenvironmental conditions. Specifically, in prostate cancer HBP and mTOR pathways increases the expression and protein level of androgen receptor in order to support cancer cell proliferation, advancement and metastasis. Pharmacological inhibition of a single pathway is therefore insufficient to stop disease progression as the cancer cells manage to alter the signalling channel. This is one of the primary reasons for the therapeutic failure in prostate cancer and emergence of chemoresistance. Inhibition of these multiple pathways at their common junctures might prove to be of benefit in men suffering from an advanced disease state. Hence, a thorough understanding of these cellular intersecting points and their significance with respect to signal transduction mechanisms might assist in the rational designing of combinations for effective management of prostate cancer.
Collapse
Affiliation(s)
- Vivek Makwana
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia
| | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia.
| |
Collapse
|
135
|
Wu H, Ren J, Zhao L, Li Z, Ye W, Yang Y, Wang J, Bian J. Identification of novel androgen receptor degrading agents to treat advanced prostate cancer. Eur J Med Chem 2021; 217:113376. [PMID: 33756125 DOI: 10.1016/j.ejmech.2021.113376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/25/2021] [Accepted: 03/07/2021] [Indexed: 12/21/2022]
Abstract
Prostate cancer (PCa) is one of the most common malignancies affecting men worldwide. Androgen receptor (AR) has been a target of PCa treatment for nearly six decades. AR antagonists/degraders can effectively treat PCa caused by increased AR overexpression. However, all approved AR antagonists have similar chemical structures and exhibit the same mode of action on the protein. Although initially effective, resistance to these AR antagonists usually develops. Therefore, this calls for the identification of novel chemical structures of AR antagonists to overcome the resistance. Herein, we employed the synergetic combination of virtual and experimental screening to identify a flavonoid compound which not only effectively inhibits AR transcriptional activity, but also induces the degradation of the protein. Based on this compound, we designed and synthesized a series of derivatives. We discovered that the most potent compound 10e could effectively inhibit AR transcriptional activity, and possessed a profound ability to cause degradation of both full length- and ARv7 truncated forms of human AR. Notably, 10e efficiently inhibited the growth of ARv7 dependent prostate cancer cell-lines, which are completely resistant to all current anti-androgens. Compound 10e also showed strong antitumor activity in the LNCaP (androgen dependent prostate cancer cell line) in vivo xenograft model. These results provide a foundation for the development of a new class of AR antagonists.
Collapse
Affiliation(s)
- Hongxi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Ren
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lulu Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wanli Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yong Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jubo Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
136
|
Nagandla H, Robertson MJ, Putluri V, Putluri N, Coarfa C, Weigel NL. Isoform-specific Activities of Androgen Receptor and its Splice Variants in Prostate Cancer Cells. Endocrinology 2021; 162:6029774. [PMID: 33300995 PMCID: PMC8253248 DOI: 10.1210/endocr/bqaa227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 12/18/2022]
Abstract
Androgen receptor (AR) signaling continues to drive castration-resistant prostate cancer (CRPC) in spite of androgen deprivation therapy (ADT). Constitutively active shorter variants of AR, lacking the ligand binding domain, are frequently expressed in CRPC and have emerged as a potential mechanism for prostate cancer to escape ADT. ARv7 and ARv567es are 2 of the most commonly detected variants of AR in clinical samples of advanced, metastatic prostate cancer. It is not clear if variants of AR merely act as weaker substitutes for AR or can mediate unique isoform-specific activities different from AR. In this study, we employed LNCaP prostate cancer cell lines with inducible expression of ARv7 or ARv567es to delineate similarities and differences in transcriptomics, metabolomics, and lipidomics resulting from the activation of AR, ARv7, or ARv567es. While the majority of target genes were similarly regulated by the action of all 3 isoforms, we found a clear difference in transcriptomic activities of AR versus the variants, and a few differences between ARv7 and ARv567es. Some of the target gene regulation by AR isoforms was similar in the VCaP background as well. Differences in downstream activities of AR isoforms were also evident from comparison of the metabolome and lipidome in an LNCaP model. Overall our study implies that shorter variants of AR are capable of mediating unique downstream activities different from AR and some of these are isoform specific.
Collapse
Affiliation(s)
- Harika Nagandla
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX, USA
| | - Matthew J Robertson
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX, USA
| | - Vasanta Putluri
- Advanced Technology Core, Alkek Center for Molecular
Discovery
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX, USA
- Correspondence: Nancy L. Weigel and
Cristian Coarfa, Department of Molecular & Cellular Biology, Baylor College
of Medicine, Houston, TX 77030, USA. ,
| | - Nancy L Weigel
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX, USA
- Correspondence: Nancy L. Weigel and
Cristian Coarfa, Department of Molecular & Cellular Biology, Baylor College
of Medicine, Houston, TX 77030, USA. ,
| |
Collapse
|
137
|
Shen T, Wang W, Zhou W, Coleman I, Cai Q, Dong B, Ittmann MM, Creighton CJ, Bian Y, Meng Y, Rowley DR, Nelson PS, Moore DD, Yang F. MAPK4 promotes prostate cancer by concerted activation of androgen receptor and AKT. J Clin Invest 2021; 131:135465. [PMID: 33586682 DOI: 10.1172/jci135465] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/10/2020] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in American men. Androgen receptor (AR) signaling is essential for PCa cell growth/survival and remains a key therapeutic target for lethal castration-resistant PCa (CRPC). GATA2 is a pioneer transcription factor crucial for inducing AR expression/activation. We recently reported that MAPK4, an atypical MAPK, promotes tumor progression via noncanonical activation of AKT. Here, we demonstrated that MAPK4 activated AR by enhancing GATA2 transcriptional expression and stabilizing GATA2 protein through repression of GATA2 ubiquitination/degradation. MAPK4 expression correlated with AR activation in human CRPC. Concerted activation of both GATA2/AR and AKT by MAPK4 promoted PCa cell proliferation, anchorage-independent growth, xenograft growth, and castration resistance. Conversely, knockdown of MAPK4 decreased activation of both AR and AKT and inhibited PCa cell and xenograft growth, including castration-resistant growth. Both GATA2/AR and AKT activation were necessary for MAPK4 tumor-promoting activity. Interestingly, combined overexpression of GATA2 plus a constitutively activated AKT was sufficient to drive PCa growth and castration resistance, shedding light on an alternative, MAPK4-independent tumor-promoting pathway in human PCa. We concluded that MAPK4 promotes PCa growth and castration resistance by cooperating parallel pathways of activating GATA2/AR and AKT and that MAPK4 is a novel therapeutic target in PCa, especially CRPC.
Collapse
Affiliation(s)
- Tao Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Wolong Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ilsa Coleman
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Qinbo Cai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Chad J Creighton
- Department of Medicine, and.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yingnan Bian
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yanling Meng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - David R Rowley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Peter S Nelson
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Feng Yang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
138
|
Li H, Zhang Y, Li D, Ma X, Xu K, Ding B, Li H, Wang Z, Ouyang W, Long G, Zeng J, Liu H, Yan L, Zhang Y, Liu Z, Guan W, Hu Z, Liu C, Wan J, Wang G, Pu X, Zhang M, Guo L, An R, Qi J, Guo A, Ye Z, Liu J, Zhang X, Xu H. Androgen Receptor Splice Variant 7 Predicts Shorter Response in Patients with Metastatic Hormone-sensitive Prostate Cancer Receiving Androgen Deprivation Therapy. Eur Urol 2021; 79:879-886. [PMID: 33579577 DOI: 10.1016/j.eururo.2021.01.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Whether AR-V7 expression can predict the response in patients with metastatic hormone-sensitive prostate cancer (mHSPC) who receive androgen deprivation therapy (ADT) remains to be explored. OBJECTIVE To evaluate the predictive value of AR-V7 expression in the prognosis of mHSPC patients receiving ADT. DESIGN, SETTING, AND PARTICIPANTS In this multicenter prospective cohort study, 310 mHSPC patients commencing ADT were enrolled. Standard immunohistochemical staining was used to assess AR-V7 protein expression in biopsy tissues collected before initiation of ADT. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Kaplan-Meier survival estimates and Cox regression analyses were used to evaluate associations of AR-V7 status (positive vs negative) with progression-free survival (PFS) and overall survival (OS). RESULTS AND LIMITATIONS Sixty-four (21%) patients were AR-V7-positive and 246 (79%) patients were AR-V7-negative. The median follow-up for patients not confirmed dead was 25 mo (interquartile range 10-30). Compared to AR-V7-negative patients, AR-V7-positive patients had significantly shorter PFS (hazard ratio [HR] 47.39, 95% confidence interval [CI] 25.83-86.94) and OS (HR 3.57, 95% CI 1.46-8.72). In multivariable analysis, AR-V7 was an independent predictive factor (HR 7.61, 95% CI 5.24-11.06) for shorter PFS. Limitations include the sample size and follow-up period. CONCLUSIONS AR-V7 expression in primary cancer tissue is correlated with poor prognosis for mHSPC patients receiving ADT. PATIENT SUMMARY In this study of men with metastatic hormone-sensitive prostate cancer, AR-V7 protein expression in primary cancer tissue was associated with poor outcomes on androgen deprivation therapy.
Collapse
Affiliation(s)
- Heng Li
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Urology of Hubei Province, Wuhan, China
| | - Yucong Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Li
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Ma
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Kai Xu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Beichen Ding
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongzhao Li
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Zhize Wang
- Department of Urology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Ouyang
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Urology of Hubei Province, Wuhan, China
| | - Gongwei Long
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Urology of Hubei Province, Wuhan, China
| | - Jin Zeng
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haoran Liu
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Urology of Hubei Province, Wuhan, China
| | - Libin Yan
- Department of Urology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yangjun Zhang
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Urology of Hubei Province, Wuhan, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Urology of Hubei Province, Wuhan, China
| | - Wei Guan
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Urology of Hubei Province, Wuhan, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Urology of Hubei Province, Wuhan, China
| | - Cong Liu
- Department of Pathology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wan
- Department of Pathology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoping Wang
- Department of Pathology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyong Pu
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Minghui Zhang
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ruihua An
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiping Qi
- Department of Pathology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Aitao Guo
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Urology of Hubei Province, Wuhan, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Hua Xu
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Urology of Hubei Province, Wuhan, China.
| |
Collapse
|
139
|
Xie Y, Wang L, Khan MA, Hamburger AW, Guang W, Passaniti A, Munir K, Ross DD, Dean M, Hussain A. Metformin and Androgen Receptor-Axis-Targeted (ARAT) Agents Induce Two PARP-1-Dependent Cell Death Pathways in Androgen-Sensitive Human Prostate Cancer Cells. Cancers (Basel) 2021; 13:cancers13040633. [PMID: 33562646 PMCID: PMC7914929 DOI: 10.3390/cancers13040633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 02/01/2023] Open
Abstract
We explored whether the anti-prostate cancer (PC) activity of the androgen receptor-axis-targeted agents (ARATs) abiraterone and enzalutamide is enhanced by metformin. Using complementary biological and molecular approaches, we determined the associated underlying mechanisms in pre-clinical androgen-sensitive PC models. ARATs increased androgren receptors (ARs) in LNCaP and AR/ARv7 (AR variant) in VCaP cells, inhibited cell proliferation in both, and induced poly(ADP-ribose) polymerase-1 (PARP-1) cleavage and death in VCaP but not LNCaP cells. Metformin decreased AR and ARv7 expression and induced cleaved PARP-1-associated death in both cell lines. Metformin with abiraterone or enzalutamide decreased AR and ARv7 expression showed greater inhibition of cell proliferation and greater induction of cell death than single agent treatments. Combination treatments led to increased cleaved PARP-1 and enhanced PARP-1 activity manifested by increases in poly(ADP-ribose) (PAR) and nuclear accumulation of apoptosis inducing factor (AIF). Enhanced annexin V staining occurred in LNCaP cells only with metformin/ARAT combinations, but no caspase 3 recruitment occurred in either cell line. Finally, metformin and metformin/ARAT combinations increased lysosomal permeability resulting in cathepsin G-mediated PARP-1 cleavage and cell death. In conclusion, metformin enhances the efficacy of abiraterone and enzalutamide via two PARP-1-dependent, caspase 3-independent pathways, providing a rationale to evaluate these combinations in castration-sensitive PC.
Collapse
Affiliation(s)
- Yi Xie
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA; (L.W.); (M.A.K.); (A.W.H.); (W.G.); (A.P.); (D.D.R.)
- Correspondence: (Y.X.); (A.H.)
| | - Linbo Wang
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA; (L.W.); (M.A.K.); (A.W.H.); (W.G.); (A.P.); (D.D.R.)
| | - Mohammad A. Khan
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA; (L.W.); (M.A.K.); (A.W.H.); (W.G.); (A.P.); (D.D.R.)
| | - Anne W. Hamburger
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA; (L.W.); (M.A.K.); (A.W.H.); (W.G.); (A.P.); (D.D.R.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei Guang
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA; (L.W.); (M.A.K.); (A.W.H.); (W.G.); (A.P.); (D.D.R.)
| | - Antonino Passaniti
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA; (L.W.); (M.A.K.); (A.W.H.); (W.G.); (A.P.); (D.D.R.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore VA Medical Center, Baltimore, MD 21201, USA
| | - Kashif Munir
- Division of Endocrinology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Douglas D. Ross
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA; (L.W.); (M.A.K.); (A.W.H.); (W.G.); (A.P.); (D.D.R.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore VA Medical Center, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA;
| | - Arif Hussain
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA; (L.W.); (M.A.K.); (A.W.H.); (W.G.); (A.P.); (D.D.R.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Baltimore VA Medical Center, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Molecular Biology and Biochemistry, University of Maryland School of Medicine, Baltimore, MD 21210, USA
- Correspondence: (Y.X.); (A.H.)
| |
Collapse
|
140
|
Katleba K, Lombard AP, Tsamouri MM, Baek HB, Nishida KS, Libertini SJ, Platero AJ, Ma AH, Pan CX, Ghosh PM, Mudryj M. Depletion of androgen receptor low molecular weight isoform reduces bladder tumor cell viability and induces apoptosis. Cancer Lett 2021; 504:49-57. [PMID: 33549708 DOI: 10.1016/j.canlet.2021.01.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 01/21/2023]
Abstract
Bladder cancer (BlCa) exhibits a gender disparity where men are three times more likely to develop the malignancy than women suggesting a role for the androgen receptor (AR). Here we report that BlCa cells express low molecular weight (LMW) AR isoforms that are missing the ligand binding domain (LBD). Isoform expression was detected in most BlCa cells, while a few express the full-length AR. Immunofluorescence studies detect AR in the nucleus and cytoplasm, and localization is cell dependent. Cells with nuclear AR expression exhibit reduced viability and increased apoptosis on total AR depletion. A novel AR-LMW variant, AR-v19, that is missing the LBD and contains 15 additional amino acids encoded by intron 3 sequences was detected in most BlCa malignancies. AR-v19 localizes to the nucleus and can transactivate AR-dependent transcription in a dose dependent manner. AR-v19 depletion impairs cell viability and promotes apoptosis in cells that express this variant. Thus, AR splice variant expression is common in BlCa and instrumental in ensuring cell survival. This suggests that targeting AR or AR downstream effectors may be a therapeutic strategy for the treatment of this malignancy.
Collapse
Affiliation(s)
- Kimberley Katleba
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA
| | - Alan P Lombard
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA; Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group and Biotechnology Program, USA
| | - Maria-Malvina Tsamouri
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Urologic Surgery, University of California, 1 Shields Avenue, UC Davis, Davis, CA, 95616, USA
| | - Han Bit Baek
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA
| | | | - Stephen J Libertini
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA
| | | | - Ai-Hong Ma
- Department of Urologic Surgery, University of California, 1 Shields Avenue, UC Davis, Davis, CA, 95616, USA
| | - Chong-Xian Pan
- Department of Faculty of Medicine, Harvard Medical School, West Roxbury, MA, 02115, USA
| | - Paramita M Ghosh
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Urologic Surgery, University of California, 1 Shields Avenue, UC Davis, Davis, CA, 95616, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health Care System, Mather, CA, USA; Department of Medical Microbiology and Immunology, USA.
| |
Collapse
|
141
|
Blatt EB, Kopplin N, Kumar S, Mu P, Conzen SD, Raj GV. Overcoming oncogene addiction in breast and prostate cancers: a comparative mechanistic overview. Endocr Relat Cancer 2021; 28:R31-R46. [PMID: 33263560 PMCID: PMC8218927 DOI: 10.1530/erc-20-0272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) and breast cancer (BCa) are both hormone-dependent cancers that require the androgen receptor (AR) and estrogen receptor (ER, ESR1) for growth and proliferation, respectively. Endocrine therapies that target these nuclear receptors (NRs) provide significant clinical benefit for metastatic patients. However, these therapeutic strategies are seldom curative and therapy resistance is prevalent. Because the vast majority of therapy-resistant PCa and BCa remain dependent on the augmented activity of their primary NR driver, common mechanisms of resistance involve enhanced NR signaling through overexpression, mutation, or alternative splicing of the receptor, coregulator alterations, and increased intracrine hormonal synthesis. In addition, a significant subset of endocrine therapy-resistant tumors become independent of their primary NR and switch to alternative NR or transcriptional drivers. While these hormone-dependent cancers generally employ similar mechanisms of endocrine therapy resistance, distinct differences between the two tumor types have been observed. In this review, we compare and contrast the most frequent mechanisms of antiandrogen and antiestrogen resistance, and provide potential therapeutic strategies for targeting both advanced PCa and BCa.
Collapse
Affiliation(s)
- Eliot B Blatt
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Noa Kopplin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shourya Kumar
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ping Mu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suzanne D Conzen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
142
|
Butler W, Huang J. Neuroendocrine cells of the prostate: Histology, biological functions, and molecular mechanisms. PRECISION CLINICAL MEDICINE 2021; 4:25-34. [PMID: 33842835 PMCID: PMC8023015 DOI: 10.1093/pcmedi/pbab003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is a common cause of cancer-related mortality in men worldwide. Although most men are diagnosed with low grade, indolent tumors that are potentially curable, a significant subset develops advanced disease where hormone therapy is required to target the androgen receptor (AR). Despite its initial effect, hormone therapy eventually fails and the tumor progresses to lethal stages even through continued inhibition of AR. This review article focuses on the role of PCa cellular heterogeneity in therapy resistance and disease progression. Although AR-positive luminal-type cells represent the vast majority of PCa cells, there exists a minor component of AR-negative neuroendocrine (NE) cells that are resistant to hormonal therapy and are enriched by the treatment. In addition, it is now well accepted that a significant subset of hormonally treated tumors recur as small cell neuroendocrine carcinoma (SCNC), further highlighting the importance of targeting NE cells in addition to the more abundant luminal-type cancer cells. Although it has been long recognized that NE cells are present in PCa, their underlying function in benign prostate and molecular mechanisms contributing to PCa progression remains poorly understood. In this article, we review the morphology and function of NE cells in benign prostate and PCa as well as underlying molecular mechanisms. In addition, we review the major reported mechanisms for transformation from common adenocarcinoma histology to the highly lethal SCNC, a significant clinical challenge in the management of advanced PCa.
Collapse
Affiliation(s)
- William Butler
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
143
|
Zhou H, Zheng XD, Lin CM, Min J, Hu S, Hu Y, Li LY, Chen JS, Liu YM, Li HD, Meng XM, Li J, Yang YR, Xu T. Advancement and properties of circular RNAs in prostate cancer: An emerging and compelling frontier for discovering. Int J Biol Sci 2021; 17:651-669. [PMID: 33613119 PMCID: PMC7893591 DOI: 10.7150/ijbs.52266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/18/2020] [Indexed: 01/12/2023] Open
Abstract
Prostate cancer (PC) is the most common carcinoma among men worldwide which results in 26% of leading causes of cancer-related death. However, the ideal and effective molecular marker remains elusive. CircRNA, initially observed in plant-infected viruses and Sendai virus in 1979, is generated from pre-mRNA back-splicing and comes in to play by adequate expression. The differential expression in prostate tissues compared with the control reveals the promising capacity in modulating processes including carcinogenesis and metastasis. However, the biological mechanisms of regulatory network in PC needs to systemically concluded. In this review, we enlightened the comprehensive studies on the definite mechanisms of circRNAs affecting tumor progression and metastasis. What's more, we validated the potential clinical application of circRNAs serving as diagnostic and prognostic biomarker. The discussion and analysis in circRNAs will broaden our knowledge of the pathogenesis of PC and further optimize the current therapies against different condition.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC West District, University of Science and Technology of China, Hefei 230031, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Xu-Dong Zheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Chang-Ming Lin
- Department of Urology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230011, China
| | - Jie Min
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Liang-Yun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Jia-Si Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Yu-Min Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Hao-Dong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Ya-Ru Yang
- Department of Clinical Trial Research Center, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| |
Collapse
|
144
|
Androgen receptor and its splice variant, AR-V7, differentially induce mRNA splicing in prostate cancer cells. Sci Rep 2021; 11:1393. [PMID: 33446905 PMCID: PMC7809134 DOI: 10.1038/s41598-021-81164-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is dependent on the androgen receptor (AR). Advanced PCa is treated with an androgen deprivation therapy-based regimen; tumors develop resistance, although they typically remain AR-dependent. Expression of constitutively active AR variants lacking the ligand-binding domain including the variant AR-V7 contributes to this resistance. AR and AR-V7, as transcription factors, regulate many of the same genes, but also have unique activities. In this study, the capacity of the two AR isoforms to regulate splicing was examined. RNA-seq data from models that endogenously express AR and express AR-V7 in response to doxycycline were used. Both AR isoforms induced multiple changes in splicing and many changes were isoform-specific. Analyses of two endogenous genes, PGAP2 and TPD52, were performed to examine differential splicing. A novel exon that appears to be a novel transcription start site was preferentially induced by AR-V7 in PGAP2 although it is induced to a lesser extent by AR. The previously described AR induced promoter 2 usage that results in a novel protein derived from TPD52 (PrLZ) was not induced by AR-V7. AR, but not AR-V7, bound to a site proximal to promoter 2, and induction was found to depend on FOXA1.
Collapse
|
145
|
Selective targeting of the androgen receptor-DNA binding domain by the novel antiandrogen SBF-1 and inhibition of the growth of prostate cancer cells. Invest New Drugs 2021; 39:442-457. [PMID: 33411211 DOI: 10.1007/s10637-020-01050-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
Prostate cancers are reliant on androgens for growth and survival. Clinicians and researchers are looking for potent treatments for the resistant forms of prostate cancer; however, a handful of small molecules used in the treatment of castration-resistant prostate cancer have not shown potent effects owing to the mutations in the AR (Androgen Receptor). We used SBF-1, a well-characterized antitumor agent with potent cytotoxic effects against different kinds of cancers and investigated its effect on human prostate cancer. SBF-1 substantially inhibited the proliferation, induced apoptosis, and caused cell cycle arrest in LNCaP and PC3/AR+ prostate cancer cell lines. SBF-1 inhibited the activation of the IGF-1-PNCA pathway, as demonstrated by decreased expression of IGF-1 (insulin-like growth factor 1), proliferating cell nuclear antigen (PCNA), and its downstream Bcl-2 protein. Using microscale thermophoresis (MST) and isothermal titration calorimetry (ITC) assays, we observed a direct binding of SBF-1 to the AR. SBF-1 binds to the AR-DBD (DNA-binding domain) and blocks the transcription of its target gene. SBF-1 demonstrated a potent antitumor effect in vivo; it inhibited AR signaling and suppressed tumor growth in animals. Our study suggests that SBF-1 is an inhibitor of the AR and might be used in the treatment of prostate cancer.
Collapse
|
146
|
Moon SJ, Jeong BC, Kim HJ, Lim JE, Kim HJ, Kwon GY, Jackman JA, Kim JH. Bruceantin targets HSP90 to overcome resistance to hormone therapy in castration-resistant prostate cancer. Am J Cancer Res 2021; 11:958-973. [PMID: 33391515 PMCID: PMC7738850 DOI: 10.7150/thno.51478] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: Aberrant androgen receptor (AR) signaling via full-length AR (AR-FL) and constitutively active AR variant 7 (AR-V7) plays a key role in the development of castration-resistant prostate cancer (CRPC) and resistance to hormone therapies. Simultaneous targeting of AR-FL and AR-V7 may be a promising strategy to overcome resistance to hormone therapy. This study aimed to identify novel drug candidates co-targeting AR-FL and AR-V7 activities and elucidate their molecular mechanism of anti-CRPC activities. Methods: Using a CRPC cell-based reporter assay system, we screened a small library of antimalarial agents to explore the possibility of repositioning them for CRPC treatment and identified bruceantin (BCT) as a potent anti-CRPC drug candidate. A series of cell-based, molecular, biochemical, and in vivo approaches were performed to evaluate the therapeutic potential and molecular mechanism of BCT in CRPC. These approaches include reporter gene assays, cell proliferation, RNA-seq, qRT-PCR, mouse xenografts, co-immunoprecipitation, GST pull-down, immobilized BCT pull-down, molecular modeling, and bioinformatic analyses. Results: We identified BCT as a highly potent inhibitor co-targeting AR-FL and AR-V7 activity. BCT inhibits the transcriptional activity of AR-FL/AR-V7 and downregulates their target genes in CRPC cells. In addition, BCT efficiently suppresses tumor growth and metastasis of CRPC cells. Mechanistically, BCT disrupts the interaction of HSP90 with AR-FL/AR-V7 by directly binding to HSP90 and inhibits HSP90 chaperone function, leading to degradation of AR-FL/AR-V7 through the ubiquitin-proteasome system. Clinically, HSP90 expression is upregulated and correlated with AR/AR-V7 levels in CRPC. Conclusion: Our findings suggest that BCT could serve as a promising therapeutic candidate against CRPC and highlight the potential benefit of targeting AR-FL/AR-V7-HSP90 axis to overcome resistance caused by aberrant AR-FL/AR-V7 signaling.
Collapse
|
147
|
Sugiura M, Sato H, Okabe A, Fukuyo M, Mano Y, Shinohara KI, Rahmutulla B, Higuchi K, Maimaiti M, Kanesaka M, Imamura Y, Furihata T, Sakamoto S, Komiya A, Anzai N, Kanai Y, Luo J, Ichikawa T, Kaneda A. Identification of AR-V7 downstream genes commonly targeted by AR/AR-V7 and specifically targeted by AR-V7 in castration resistant prostate cancer. Transl Oncol 2021; 14:100915. [PMID: 33096335 PMCID: PMC7581977 DOI: 10.1016/j.tranon.2020.100915] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Primary prostate cancer (PC) progresses to castration-resistant PC (CRPC) under androgen deprivation therapy, by mechanisms e.g. expression of androgen receptor (AR) splice variant-7 (AR-V7). Here we conducted comprehensive epigenome and transcriptome analyses comparing LNCaP, primary PC cells, and LNCaP95, AR-V7-expressing CRPC cells derived from LNCaP. Of 399 AR-V7 target regions identified through ChIP-seq analysis, 377 could be commonly targeted by hormone-stimulated AR, and 22 were specifically targeted by AR-V7. Among genes neighboring to these AR-V7 target regions, 78 genes were highly expressed in LNCaP95, while AR-V7 knockdown led to significant repression of these genes and suppression of growth of LNCaP95. Of the 78 AR-V7 target genes, 74 were common AR/AR-V7 target genes and 4 were specific AR-V7 target genes; their most suppressed genes by AR-V7 knockdown were NUP210 and SLC3A2, respectively, and underwent subsequent analyses. NUP210 and SLC3A2 were significantly upregulated in clinical CRPC tissues, and their knockdown resulted in significant suppression of cellular growth of LNCaP95 through apoptosis and growth arrest. Collectively, AR-V7 contributes to CRPC proliferation by activating both common AR/AR-V7 target and specific AR-V7 target, e.g. NUP210 and SLC3A2.
Collapse
Affiliation(s)
- Masahiro Sugiura
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | - Hiroaki Sato
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | - Yasunobu Mano
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | - Ken-Ichi Shinohara
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | - Kosuke Higuchi
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Maihulan Maimaiti
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Manato Kanesaka
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | - Yusuke Imamura
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomomi Furihata
- Department of Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinichi Sakamoto
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akira Komiya
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan.
| |
Collapse
|
148
|
A detailed characterization of stepwise activation of the androgen receptor variant 7 in prostate cancer cells. Oncogene 2020; 40:1106-1117. [PMID: 33323969 PMCID: PMC7880901 DOI: 10.1038/s41388-020-01585-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 01/28/2023]
Abstract
Expression of the andrgogen receptor splice variant 7 (AR-V7) is frequently detected in castrate resistant prostate cancer and associated with resistance to AR-targeted therapies. While we have previously noted that homodimerization is required for the transcriptional activity of AR-V7 and that AR-V7 can also form heterodimers with the full-length AR (AR-FL), there are still many gaps of knowledge in AR-V7 stepwise activation. In the present study, we show that neither AR-V7 homodimerization nor AR-V7/AR-FL heterodimerization requires cofactors or DNA binding. AR-V7 can enter the nucleus as a monomer and drive a transcriptional program and DNA-damage repair as a homodimer. While forming a heterodimer with AR-FL to induce nuclear localization of unliganded AR-FL, AR-V7 does not need to interact with AR-FL to drive gene transcription or DNA-damage repair in prostate cancer cells that co-express AR-V7 and AR-FL. These data indicate that AR-V7 can function independently of its interaction with AR-FL in the true castrate state or “absence of ligand”, providing support for the utility of targeting AR-V7 in improving outcomes of patients with castrate resistant prostate cancer.
Collapse
|
149
|
Thelen P, Taubert H, Duensing S, Kristiansen G, Merseburger AS, Cronauer MV. [The impact of the androgen receptor splice variant AR-V7 on the prognosis and treatment of advanced prostate cancer]. Aktuelle Urol 2020; 51:582-592. [PMID: 29370587 DOI: 10.1055/s-0043-115426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A recently discovered mechanism enabling prostate cancer cells to escape the effects of endocrine therapies consists in the synthesis of C-terminally truncated, constitutively active androgen receptor (AR) splice variants (AR-V). Devoid of a functional C-terminal hormone/ligand binding domain, various AR-Vs are insensitive to therapies targeting the androgen/AR signalling axis. Preliminary studies suggest that AR-V7, the most common AR-V, is a promising predictive tumour marker and a relevant selection marker for the treatment of advanced prostate cancer. This review critically outlines recent advances in AR-V7 diagnostics and presents an overview of current AR-V7 targeted therapies.
Collapse
Affiliation(s)
- P. Thelen
- Klinik für Urologie, Universitätsmedizin Göttingen, 37099 Göttingen
| | - H. Taubert
- Urologische und Kinderurologische Klinik, Universitätsklinikum Erlangen, 91054 Erlangen
| | - S. Duensing
- Urologische Klinik, Sektion für Molekulare Uro-Onkologie, Universitätsklinikum Heidelberg, 69120 Heidelberg
| | - G. Kristiansen
- Institut für Pathologie, Universitätsklinikum Bonn, 53127 Bonn
| | - A. S. Merseburger
- Klinik für Urologie, Universitätsklinikum Schleswig-Holstein – Campus Lübeck, 23538 Lübeck
| | - M. V. Cronauer
- Klinik für Urologie, Universitätsklinikum Schleswig-Holstein – Campus Lübeck, 23538 Lübeck
| |
Collapse
|
150
|
Vlaeminck-Guillem V. Clinical utility of the nuclear-localized AR-V7 biomarker for treatment choice in metastatic castration-resistant prostate cancer. Transl Androl Urol 2020; 9:2483-2487. [PMID: 33457221 PMCID: PMC7807368 DOI: 10.21037/tau-20-968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Virginie Vlaeminck-Guillem
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052 CNRS UMR5286, Centre Léon Berard, Université Claude Bernard Lyon 1, Lyon, France.,Service de Biochimie Biologie Moléculaire Sud, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| |
Collapse
|