101
|
Dental pulp cell-derived powerful inducer of TNF-α comprises PKR containing stress granule rich microvesicles. Sci Rep 2019; 9:3825. [PMID: 30846715 PMCID: PMC6405945 DOI: 10.1038/s41598-019-40046-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/24/2019] [Indexed: 11/16/2022] Open
Abstract
It is well known that dental pulp tissue can evoke some of the most severe acute inflammation observed in the human body. We found that dental pulp cells secrete a factor that induces tumor necrosis factor-α production from macrophages, and designated this factor, dental pulp cell-derived powerful inducer of TNF-α (DPIT). DPIT was induced in dental pulp cells and transported to recipient cells via microvesicles. Treatment of dental pulp cells with a PKR inhibitor markedly suppressed DPIT activity, and weak interferon signals were constitutively activated inside the cells. In recipient macrophages, stimulation with DPIT-containing supernatants from pulp cells resulted in activation of both nuclear factor-κB and MAP kinases like JNK and p38. Proteomics analyses revealed that many stress granule-related proteins were present in supernatants from dental pulp cells as well as microvesicle marker proteins like GAPDH, β-actin, HSPA8, HSPB1, HSPE1, and HSPD1. Furthermore, giant molecule AHNAK and PKR were detected in microvesicles derived from dental pulp cells, and gene silencing of AHNAK in dental pulp cells led to reduced DPIT activity. Thus, it appeared that the core protein of DPIT was PKR, and that PKR was maintained in an active state in stress granule aggregates with AHNAK and transported via microvesicles. The activity of DPIT for TNF-α induction was far superior to that of gram-negative bacterial endotoxin. Therefore, we, report for the first time, that active PKR is transported via microvesicles as stress granule aggregates and induces powerful inflammatory signals in macrophages.
Collapse
|
102
|
Pereira BA, Lister NL, Hashimoto K, Teng L, Flandes-Iparraguirre M, Eder A, Sanchez-Herrero A, Niranjan B, Frydenberg M, Papargiris MM, Lawrence MG, Taylor RA, Hutmacher DW, Ellem SJ, Risbridger GP, De-Juan-Pardo EM. Tissue engineered human prostate microtissues reveal key role of mast cell-derived tryptase in potentiating cancer-associated fibroblast (CAF)-induced morphometric transition in vitro. Biomaterials 2019; 197:72-85. [DOI: 10.1016/j.biomaterials.2018.12.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/11/2022]
|
103
|
Perotti V, Baldassari P, Molla A, Nicolini G, Bersani I, Grazia G, Benigni F, Maurichi A, Santinami M, Anichini A, Mortarini R. An actionable axis linking NFATc2 to EZH2 controls the EMT-like program of melanoma cells. Oncogene 2019; 38:4384-4396. [PMID: 30710146 PMCID: PMC6756060 DOI: 10.1038/s41388-019-0729-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/03/2018] [Accepted: 01/21/2019] [Indexed: 01/30/2023]
Abstract
Discovery of new actionable targets and functional networks in melanoma is an urgent need as only a fraction of metastatic patients achieves durable clinical benefit by targeted therapy or immunotherapy approaches. Here we show that NFATc2 expression is associated with an EMT-like transcriptional program and with an invasive melanoma phenotype, as shown by analysis of melanoma cell lines at the mRNA and protein levels, interrogation of the TCGA melanoma dataset and characterization of melanoma lesions by immunohistochemistry. Gene silencing or pharmacological inhibition of NFATc2 downregulated EMT-related genes and AXL, and suppressed c-Myc, FOXM1, and EZH2. Targeting of c-Myc suppressed FOXM1 and EZH2, while targeting of FOXM1 suppressed EZH2. Inhibition of c-Myc, or FOXM1, or EZH2 downregulated EMT-related gene expression, upregulated MITF and suppressed migratory and invasive activity of neoplastic cells. Stable silencing of NFATc2 impaired melanoma cell proliferation in vitro and tumor growth in vivo in SCID mice. In NFATc2+ EZH2+ melanoma cell lines pharmacological co-targeting of NFATc2 and EZH2 exerted strong anti-proliferative and pro-apoptotic activity, irrespective of BRAF or NRAS mutations and of BRAF inhibitor resistance. These results provide preclinical evidence for a role of NFATc2 in shaping the EMT-like melanoma phenotype and reveal a targetable vulnerability associated with NFATc2 and EZH2 expression in melanoma cells belonging to different mutational subsets.
Collapse
Affiliation(s)
- Valentina Perotti
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Paola Baldassari
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Alessandra Molla
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | | | - Ilaria Bersani
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Giulia Grazia
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Fabio Benigni
- HuMabs Biomed, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Andrea Maurichi
- Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mario Santinami
- Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Anichini
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Roberta Mortarini
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy.
| |
Collapse
|
104
|
Peng L, Huang YT, Zhang F, Chen JY, Huo X. Chronic cadmium exposure aggravates malignant phenotypes of nasopharyngeal carcinoma by activating the Wnt/β-catenin signaling pathway via hypermethylation of the casein kinase 1α promoter. Cancer Manag Res 2018; 11:81-93. [PMID: 30588112 PMCID: PMC6304082 DOI: 10.2147/cmar.s171200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Our previous study has shown that cadmium (Cd) exposure is not only a risk factor for nasopharyngeal carcinoma (NPC), but also correlated with the clinical stage and lymph node metastasis. However, the underlying molecular events of Cd involved in NPC progression remain to be elucidated. PURPOSE The objective of this study was to decipher how Cd impacts the malignant phenotypes of NPC cells. METHODS NPC cell lines CNE-1 and CNE-2 were continuously exposed with 1 μM Cd chloride for 10 weeks, designating as chronic Cd treated NPC cells (CCT-NPC). MTT assay, colony formation assay and xenograft tumor growth were used to assess cell viability in vitro and in vivo. Transwell assays were performed to detect cell invasion and migration. The protein levels of E-cadherin, N-cadherin, Vimentin as well as β-catenin and casein kinase 1α(CK1α) were measured by Western blot. Immunofluorescence staining was used to observe the distribution of filament actin (F-actin), β-catenin and CK1α. The mRNA levels of downstream target genes of β-catenin were detected by RT-PCR. Wnt/β-catenin signaling activity was assessed by TOPFlash/FOPFlash dual luciferase report system. MS-PCR was used to detect the methylation status of CK1α. Finally, the activation of Wnt/β-catenin pathway and cell biological properties were examined following treatment of CCT-NPC cells with 5-aza-2-deoxy-cytidine(5-aza-CdR). RESULTS CCT-NPC cells showed an increase in cell proliferation, colony formation, invasion and migration compared to the parental cells. Cd also induced cytoskeleton reorganization and epithelial-to-mesenchymal transition. Upregulation and nuclear translocation of β-catenin and increased luciferase activity accompanied with transcription of downstream target genes were found in CCT-NPC cells. Treatment of CCT-CNE1 cells with 5-aza-CdR could reverse the hypermethylation of CK1α and attenuate the cell malignancy. CONCLUSION These results support a role for chronic Cd exposure as a driving force for the malignant progression of NPC via epigenetic activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Lin Peng
- Clinical Laboratory, Cancer Hospital of Shantou University Medical College, Shantou 515041, People's Republic of China
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, People's Republic of China
| | - Yi-Teng Huang
- Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, People's Republic of China
| | - Fan Zhang
- Oncological Research Lab, Cancer Hospital of Shantou University Medical College, Shantou 515031, People's Republic of China,
| | - Jiong-Yu Chen
- Oncological Research Lab, Cancer Hospital of Shantou University Medical College, Shantou 515031, People's Republic of China,
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangzhou and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, People's Republic of China,
| |
Collapse
|
105
|
Lee CC, Cheng YC, Chang CY, Lin CM, Chang JY. Alpha-tubulin acetyltransferase/MEC-17 regulates cancer cell migration and invasion through epithelial-mesenchymal transition suppression and cell polarity disruption. Sci Rep 2018; 8:17477. [PMID: 30504808 PMCID: PMC6269487 DOI: 10.1038/s41598-018-35392-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/28/2018] [Indexed: 02/06/2023] Open
Abstract
MEC-17, a newly identified alpha-tubulin-N-acetyltransferase 1, serves as the major α-tubulin acetyltransferase to promote α-tubulin acetylation in vitro and in vivo. Alteration of α-tubulin acetylation may be involved in morphology regulation, cell migration, and tumour metastasis. However, MEC-17’s role in cell physiology and its effect on epithelial–mesenchymal transition (EMT) and cell polarity remain elusive. In the present study, we characterized the overexpressed or downregulated cell models through gene targeting as MEC-17 gain- or loss-of-function. Overexpression of MEC-17 enhanced the cell spreading area, suppressed pseudopods formation in a three-dimensional (3D) culture system, and inhibited cancer cell migratory and invasive ability and tumour metastasis by orthotopic lung cancer animal model. Furthermore, morphological change and migration inhibition of cancer cells were accompanied by EMT repression, Golgi reorientation, and polarity disruption caused by alteration of cdc42 activity via a decrease in Rho-GAP, ARHGAP21. By contrast, a reduction in endogenous MEC-17 accelerated the pseudopods formation and EMT, and facilitated cell migration and invasion. These results demonstrated the crucial role of MEC-17 in the modulation of intrinsic cell morphogenesis, migration, and invasive function through regulation of EMT and cell polarity.
Collapse
Affiliation(s)
- Cheng-Che Lee
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, ROC, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, ROC, Taiwan
| | - Yun-Ching Cheng
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Changhua, ROC, Taiwan
| | - Chi-Yen Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, ROC, Taiwan
| | - Chi-Min Lin
- National Institute of Cancer Research, National Health Research Institutes, Tainan, ROC, Taiwan
| | - Jang-Yang Chang
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, ROC, Taiwan. .,National Institute of Cancer Research, National Health Research Institutes, Tainan, ROC, Taiwan. .,Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, ROC, Taiwan.
| |
Collapse
|
106
|
Coexpression of FOXK1 and vimentin promotes EMT, migration, and invasion in gastric cancer cells. J Mol Med (Berl) 2018; 97:163-176. [PMID: 30483822 DOI: 10.1007/s00109-018-1720-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022]
Abstract
In human gastric cancer (GC), the upregulation of FOXK1 and vimentin is frequently observed in cancer cells and correlates with increased malignancy. We report that FOXK1 synergizes with vimentin to promote GC invasion and metastasis via the induction of epithelial-mesenchymal transition (EMT). We showed that higher expression levels of FOXK1 were significantly associated with GC development. FOXK1 can physically interact with and stabilize vimentin. Moreover, a positive correlation between the expression of FOXK1 and vimentin was found in GC cells. Higher expression levels of these two proteins were significantly associated with differentiation, lymph node metastasis, AJCC stage, and poorer prognosis. Furthermore, the coexpression of FOXK1 and vimentin enhances cell metastasis through the induction of EMT in GC cells. However, the siRNA-mediated repression of vimentin in FOXK1-overexpressing cells reversed the EMT-like phenotype and reduced GC cell migration and invasion in vitro and in vivo. Altogether, our findings suggest that the vimentin-FOXK1 axis provides new insights into the molecular mechanisms underlying EMT regulation during GC progression and metastasis.
Collapse
|
107
|
Sohn M, Shin S, Yoo JY, Goh Y, Lee IH, Bae YS. Ahnak promotes tumor metastasis through transforming growth factor-β-mediated epithelial-mesenchymal transition. Sci Rep 2018; 8:14379. [PMID: 30258109 PMCID: PMC6158194 DOI: 10.1038/s41598-018-32796-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/14/2018] [Indexed: 12/28/2022] Open
Abstract
Previously, we reported a molecular mechanism by which Ahnak potentiates transforming growth factor-β (TGFβ) signaling during cell growth. Here, we show that Ahnak induces epithelial-mesenchymal transition (EMT) in response to TGFβ. EMT phenotypes, including altered in cell morphology, and expression patterns of various EMT marker genes were detected in HaCaT keratinocytes transfected with Ahnak-specific siRNA. Knockdown of Ahnak expression in HaCaT keratinocytes resulted in attenuated cell migration and invasion. We found that Ahnak activates TGFβ signaling via Smad3 phosphorylation, leading to enhanced Smad3 transcriptional activity. To validate function of Ahnak in EMT of B16F10 cells having high metastatic and tumorigenic properties, we established B16F10 cells with stable knockdown of Ahnak. N-cadherin expression and Smad3 phosphorylation were significantly decreased in B16F10-shAhnak cells, compared to B16F10-shControl cells after treatment of TGFβ. Moreover, TGFβ failed to induce cell migration and cell invasion in B16F10-shAhnak cells. To determine whether Ahnak regulates the metastatic activity of B16F10 cells, we established a lung metastasis model in C57BL/6 mice via tail vein injection of B16F10-shAhnak cells. Lung metastasis was significantly suppressed in mice injected with B16F10-shAhnak cells, compared to those injected with B16F10-shControl cells. Taken together, we propose that TGFβ-Ahnak signaling axis regulates EMT during tumor metastasis.
Collapse
Affiliation(s)
- Mira Sohn
- Department of Life Sciences, Ewha Womans University, Seoul, 120-750, Korea
| | - Sunmee Shin
- Department of Life Sciences, Ewha Womans University, Seoul, 120-750, Korea
| | - Jung-Yeon Yoo
- Department of Life Sciences, Ewha Womans University, Seoul, 120-750, Korea
| | - Yookyung Goh
- Department of Life Sciences, Ewha Womans University, Seoul, 120-750, Korea
| | - In Hye Lee
- Department of Life Sciences, Ewha Womans University, Seoul, 120-750, Korea.
| | - Yun Soo Bae
- Department of Life Sciences, Ewha Womans University, Seoul, 120-750, Korea.
| |
Collapse
|
108
|
Soini T, Eloranta K, Pihlajoki M, Kyrönlahti A, Akinrinade O, Andersson N, Lohi J, Pakarinen MP, Wilson DB, Heikinheimo M. Transcription factor GATA4 associates with mesenchymal-like gene expression in human hepatoblastoma cells. Tumour Biol 2018; 40:1010428318785498. [PMID: 30074440 DOI: 10.1177/1010428318785498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
GATA4, a transcription factor crucial for early liver development, has been implicated in the pathophysiology of hepatoblastoma, an embryonal tumor of childhood. However, the molecular and phenotypic consequences of GATA4 expression in hepatoblastoma are not fully understood. We surveyed GATA4 expression in 24 hepatoblastomas using RNA in situ hybridization and immunohistochemistry. RNA interference was used to inhibit GATA4 in human HUH6 hepatoblastoma cells, and changes in cell migration were measured with wound healing and transwell assays. RNA microarray hybridization was performed on control and GATA4 knockdown HUH6 cells, and differentially expressed genes were validated by quantitative polymerase chain reaction or immunostaining. Plasmid transfection was used to overexpress GATA4 in primary human hepatocytes and ensuring changes in gene expression were measured by quantitative polymerase chain reaction. We found that GATA4 expression was high in most hepatoblastomas but weak or negligible in normal hepatocytes. GATA4 gene silencing impaired HUH6 cell migration. We identified 106 differentially expressed genes (72 downregulated, 34 upregulated) in knockdown versus control HUH6 cells. GATA4 silencing altered the expression of genes associated with cytoskeleton organization, cell-to-cell adhesion, and extracellular matrix dynamics (e.g. ADD3, AHNAK, DOCK8, RHOU, MSF, IGFBP1, COL4A2). These changes in gene expression reflected a more epithelial (less malignant) phenotype. Consistent with this notion, there was reduced F-actin stress fiber formation in knockdown HUH6 cells. Forced expression of GATA4 in primary human hepatocytes triggered opposite changes in the expression of genes identified by GATA4 silencing in HUH6 cells. In conclusion, GATA4 is highly expressed in most hepatoblastomas and correlates with a mesenchymal, migratory phenotype of hepatoblastoma cells.
Collapse
Affiliation(s)
- Tea Soini
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katja Eloranta
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjut Pihlajoki
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 2 Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Antti Kyrönlahti
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 2 Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Oyediran Akinrinade
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Noora Andersson
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jouko Lohi
- 3 Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko P Pakarinen
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 4 Unit of Pediatric Surgery and Pediatric Liver and Gut Research Group, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - David B Wilson
- 2 Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- 5 Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Markku Heikinheimo
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 2 Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
109
|
Lee H, Kim K, Woo J, Park J, Kim H, Lee KE, Kim H, Kim Y, Moon KC, Kim JY, Park IA, Shim BB, Moon JH, Han D, Ryu HS. Quantitative Proteomic Analysis Identifies AHNAK (Neuroblast Differentiation-associated Protein AHNAK) as a Novel Candidate Biomarker for Bladder Urothelial Carcinoma Diagnosis by Liquid-based Cytology. Mol Cell Proteomics 2018; 17:1788-1802. [PMID: 29950347 DOI: 10.1074/mcp.ra118.000562] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/25/2018] [Indexed: 01/04/2023] Open
Abstract
Cytological examination of urine is the most widely used noninvasive pathologic screen for bladder urothelial carcinoma (BLCA); however, inadequate diagnostic accuracy remains a major challenge. We performed mass spectrometry-based proteomic analysis of urine samples of ten patients with BLCA and ten paired patients with benign urothelial lesion (BUL) to identify ancillary proteomic markers for use in liquid-based cytology (LBC). A total of 4,839 proteins were identified and 112 proteins were confirmed as expressed at significantly different levels between the two groups. We also performed an independent proteomic profiling of tumor tissue samples where we identified 7,916 proteins of which 758 were differentially expressed. Cross-platform comparisons of these data with comparative mRNA expression profiles from The Cancer Genome Atlas identified four putative candidate proteins, AHNAK, EPPK1, MYH14 and OLFM4. To determine their immunocytochemical expression levels in LBC, we examined protein expression data from The Human Protein Atlas and in-house FFPE samples. We further investigated the expression of the four candidate proteins in urine cytology samples from two independent validation cohorts. These analyses revealed AHNAK as a unique intracellular protein differing in immunohistochemical expression and subcellular localization between tumor and non-tumor cells. In conclusion, this study identified a new biomarker, AHNAK, applicable to discrimination between BLCA and BUL by LBC. To our knowledge, the present study provides the first identification of a clinical biomarker for LBC based on in-depth proteomics.
Collapse
Affiliation(s)
- Hyebin Lee
- From the ‡Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kwangsoo Kim
- §Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Jongmin Woo
- ¶Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Joonho Park
- ¶Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyeyoon Kim
- ‖Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,**Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung Eun Lee
- ‡‡Department of Statistics, Korea University, Seoul, South Korea
| | - Hyeyeon Kim
- ‖Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Youngsoo Kim
- ¶Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung Chul Moon
- **Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Young Kim
- **Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - In Ae Park
- **Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Bo Bae Shim
- **Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hye Moon
- **Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Dohyun Han
- §Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea; .,‖Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Han Suk Ryu
- **Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea;
| |
Collapse
|
110
|
Min JS, Kim JC, Kim JA, Kang I, Ahn JK. SIRT2 reduces actin polymerization and cell migration through deacetylation and degradation of HSP90. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1230-1238. [PMID: 29908203 DOI: 10.1016/j.bbamcr.2018.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/26/2018] [Accepted: 06/12/2018] [Indexed: 01/07/2023]
Abstract
SIRT2, a member of the class III histone deacetylase family, has been identified as a tumor suppressor, which is associated with various cellular processes including metabolism and proliferation. However, the effects of SIRT2 on cancer cell migration caused by cytoskeletal rearrangement remain uncertain. Here we show that SIRT2 inhibits cell motility by suppressing actin polymerization. SIRT2 regulates actin dynamics through HSP90 destabilization and subsequent repression of LIM kinase (LIMK) 1/cofilin pathway. SIRT2 directly interacts with HSP90 and regulates its acetylation and ubiquitination. In addition, the deacetylase activity of SIRT2 is required for the regulation of actin polymerization and the ubiquitin-mediated proteasomal degradation of HSP90 induced by SIRT2.
Collapse
Affiliation(s)
- Jung Sun Min
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Chul Kim
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Ae Kim
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Inho Kang
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong Keun Ahn
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
111
|
Li S, Xiong N, Peng Y, Tang K, Bai H, Lv X, Jiang Y, Qin X, Yang H, Wu C, Zhou P, Liu Y. Acidic pHe regulates cytoskeletal dynamics through conformational integrin β1 activation and promotes membrane protrusion. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2395-2408. [PMID: 29698684 DOI: 10.1016/j.bbadis.2018.04.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/02/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
An acidic extracellular pH (pHe) in the tumor microenvironment has been suggested to facilitate tumor growth and metastasis. However, the molecular mechanisms by which tumor cells sense acidic signal to induce a transition to an aggressive phenotype remain elusive. Here, we showed that an acidic pHe (pH 6.5) stimulation resulted in protrusion and epithelial-mesenchymal transition (EMT) of cancer cells, which promoted migration and matrix degeneration. Using computational molecular dynamics simulations, we reported acidic pHe-induced opening of the Integrin dimers (α5β1) headpiece which indicated the activation of integrin. Moreover, acidic pHe promoted maturation of focal adhesions, temporal activation of Rho GTPases and microfilament reorganization through integrin β1-activated FAK signaling. Furthermore, mechanical balance of cytoskeleton (actin, tubulin and vimentin) contributed to acidic pHe-triggered protrusion and morphology change. Taken together, these findings revealed that integrin β1 could be a novel pH-regulated sensitive molecule which confers protrusion and malignant phenotype of cancer cells.
Collapse
Affiliation(s)
- Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Niya Xiong
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Yueting Peng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Kai Tang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Hongxia Bai
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Xiaoying Lv
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Ying Jiang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Peng Zhou
- Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China.
| |
Collapse
|
112
|
Lin WF, Lin XL, Fu SW, Yang L, Tang CT, Gao YJ, Chen HY, Ge ZZ. Pseudopod-associated protein KIF20B promotes Gli1-induced epithelial-mesenchymal transition modulated by pseudopodial actin dynamic in human colorectal cancer. Mol Carcinog 2018; 57:911-925. [PMID: 29573464 DOI: 10.1002/mc.22812] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/27/2018] [Accepted: 03/20/2018] [Indexed: 12/30/2022]
Abstract
Kinesin family member 20B (KIF20B) has been reported to have an oncogenic role in bladder and hepatocellular cancer cells, but its role in colorectal cancer (CRC) progression remains unclear. In this study, we assessed the mRNA and protein levels of KIF20B in CRC tissues using qRT-PCR and immunohistochemistry, respectively. KIF20B was overexpressed in CRC tissues and was associated with cancer invasion and metastasis. Mechanistically, KIF20B overexpression promoted the epithelial-mesenchymal transition (EMT) process mediated by glioma-associated oncogene 1 (Gli1) as well as CRC cell migration and invasion. Interestingly, KIF20B was localized in pseudopod protrusions of CRC cells and influenced the formation of cell protrusions, especially the EMT-related invadopodia. Moreover, intracellular actin dynamic participated in the modulation of the Gli1-mediated EMT and EMT-related cell pseudopod protrusion formation induced by KIF20B. We identified a role for KIF20B in CRC progression and revealed a correlation between KIF20B expression in CRC tissues and patient prognosis. The underlying mechanism was associated with the Gli1-mediated EMT and EMT-related cell protrusion formation modulated by intracellular actin dynamic. Thus, KIF20B may be a potential biomarker and promising treatment target for CRC.
Collapse
Affiliation(s)
- Wen-Feng Lin
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China.,Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, China
| | - Xiao-Lu Lin
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China.,Department of Digestive Endoscopy, Fujian Provincial Hospital, Provincial Clinic Medical College, Fujian Medical University, Fuzhou, China
| | - Seng-Wang Fu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Li Yang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Chao-Tao Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yun-Jie Gao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Hao-Yan Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhi-Zheng Ge
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
113
|
Klett H, Fuellgraf H, Levit-Zerdoun E, Hussung S, Kowar S, Küsters S, Bronsert P, Werner M, Wittel U, Fritsch R, Busch H, Boerries M. Identification and Validation of a Diagnostic and Prognostic Multi-Gene Biomarker Panel for Pancreatic Ductal Adenocarcinoma. Front Genet 2018; 9:108. [PMID: 29675033 PMCID: PMC5895731 DOI: 10.3389/fgene.2018.00108] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
Late diagnosis and systemic dissemination essentially contribute to the invariably poor prognosis of pancreatic ductal adenocarcinoma (PDAC). Therefore, the development of diagnostic biomarkers for PDAC are urgently needed to improve patient stratification and outcome in the clinic. By studying the transcriptomes of independent PDAC patient cohorts of tumor and non-tumor tissues, we identified 81 robustly regulated genes, through a novel, generally applicable meta-analysis. Using consensus clustering on co-expression values revealed four distinct clusters with genes originating from exocrine/endocrine pancreas, stromal and tumor cells. Three clusters were strongly associated with survival of PDAC patients based on TCGA database underlining the prognostic potential of the identified genes. With the added information of impact of survival and the robustness within the meta-analysis, we extracted a 17-gene subset for further validation. We show that it did not only discriminate PDAC from non-tumor tissue and stroma in fresh-frozen as well as formalin-fixed paraffin embedded samples, but also detected pancreatic precursor lesions and singled out pancreatitis samples. Moreover, the classifier discriminated PDAC from other cancers in the TCGA database. In addition, we experimentally validated the classifier in PDAC patients on transcript level using qPCR and exemplify the usage on protein level for three proteins (AHNAK2, LAMC2, TFF1) using immunohistochemistry and for two secreted proteins (TFF1, SERPINB5) using ELISA-based protein detection in blood-plasma. In conclusion, we present a novel robust diagnostic and prognostic gene signature for PDAC with future potential applicability in the clinic.
Collapse
Affiliation(s)
- Hagen Klett
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.,German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Freiburg, Germany
| | - Hannah Fuellgraf
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ella Levit-Zerdoun
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.,German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Freiburg, Germany
| | - Saskia Hussung
- Comprehensive Cancer Center Freiburg, Freiburg, Germany.,Department of Medicine I, Hematology, Oncology and Stem Cell Transplantation, Freiburg, Germany
| | - Silke Kowar
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Simon Küsters
- Department of Surgery, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Freiburg, Germany.,Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Werner
- German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Freiburg, Germany.,Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Uwe Wittel
- Department of Surgery, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Ralph Fritsch
- German Cancer Consortium, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, Freiburg, Germany.,Department of Medicine I, Hematology, Oncology and Stem Cell Transplantation, Freiburg, Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.,Lübeck Institute of Experimental Dermatology - Institute for Cardiogenetics, Lübeck, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.,German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, Freiburg, Germany
| |
Collapse
|
114
|
Zhou X, Natino D, Zhai X, Gao Z, He X. MicroRNA‑22 inhibits the proliferation and migration, and increases the cisplatin sensitivity, of osteosarcoma cells. Mol Med Rep 2018; 17:7209-7217. [PMID: 29568877 PMCID: PMC5928679 DOI: 10.3892/mmr.2018.8790] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/03/2018] [Indexed: 01/01/2023] Open
Abstract
Osteosarcoma (OS) is the major type of primary bone tumor and is associated with a poor prognosis due to chemotherapy resistance. Accumulating evidence indicates that microRNAs (miRNAs/miRs) may influence the tumor progression of OS and cell sensitivity to chemotherapy. In the present study, a total of 7 patients with OS and 7 healthy volunteers were recruited. Reverse transcription-quantitative polymerase chain reaction and ELISA were performed to determine the expression of miRNAs and mRNAs in the serum of participants. Furthermore, the biological function of miR-22 and S100A11 was examined in MG-63 cells using Cell Counting Kit-8 assays, Transwell migration assays and western blot analysis to determine the effects on cell proliferation, migration and protein expression, respectively, while MG-63 cell sensitivity to cisplatin was assessed by measuring cell viability following cisplatin treatment and calculating the half maximal inhibitory concentration (IC50). Additionally, the association between miR-22 and S100 calcium-binding protein A11 (S100A11) was validated using a luciferase reporter assay. The results demonstrated that miR-22 expression was significantly reduced in patients with OS and the MG-63 OS cell line, compared with healthy volunteers and the normal osteoblast hFOB 1.19 cell line, respectively, while the expression of S100A11 was negatively associated with miR-22 levels in the MG-63 cell line. Furthermore, overexpression of miR-22 inhibited the proliferation and migratory ability of MG-63 cells, and increased the sensitivity of MG-63 cells to cisplatin treatment; however, overexpression of S100A11 partially attenuated the alterations in proliferation, migratory ability and chemosensitivity that were induced by miR-22 overexpression. In addition, it was confirmed that S100A11 is a direct target gene of miR-22 in MG-63 cells. In conclusion, to the best of our knowledge, the present study is the first to demonstrate that miR-22 may be a promising therapeutic target and may have potential as part of a combination treatment alongside chemotherapeutic agents for OS.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Dimple Natino
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32304, USA
| | - Xu Zhai
- Emergency Department, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhongyang Gao
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
115
|
Silva TA, Smuczek B, Valadão IC, Dzik LM, Iglesia RP, Cruz MC, Zelanis A, de Siqueira AS, Serrano SMT, Goldberg GS, Jaeger RG, Freitas VM. AHNAK enables mammary carcinoma cells to produce extracellular vesicles that increase neighboring fibroblast cell motility. Oncotarget 2018; 7:49998-50016. [PMID: 27374178 PMCID: PMC5226564 DOI: 10.18632/oncotarget.10307] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 06/12/2016] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles play important roles in tumor development. Many components of these structures, including microvesicles and exosomes, have been defined. However, mechanisms by which extracellular vesicles affect tumor progression are not fully understood. Here, we investigated vesicular communication between mammary carcinoma cells and neighboring nontransformed mammary fibroblasts. Nonbiased proteomic analysis found that over 1% of the entire proteome is represented in these vesicles, with the neuroblast differentiation associated protein AHNAK and annexin A2 being the most abundant. In particular, AHNAK was found to be the most prominent component of these vesicles based on peptide number, and appeared necessary for their formation. In addition, we report here that carcinoma cells produce vesicles that promote the migration of recipient fibroblasts. These data suggest that AHNAK enables mammary carcinoma cells to produce and release extracellular vesicles that cause disruption of the stroma by surrounding fibroblasts. This paradigm reveals fundamental mechanisms by which vesicular communication between carcinoma cells and stromal cells can promote cancer progression in the tumor microenvironment.
Collapse
Affiliation(s)
- Thaiomara A Silva
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of Sao Paulo, Sao Paulo, Brazil
| | - Basílio Smuczek
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of Sao Paulo, Sao Paulo, Brazil
| | - Iuri C Valadão
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of Sao Paulo, Sao Paulo, Brazil
| | - Luciana M Dzik
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of Sao Paulo, Sao Paulo, Brazil
| | - Rebeca P Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of Sao Paulo, Sao Paulo, Brazil
| | - Mário C Cruz
- Center of Facilities and Support Research, Institute of Biomedical Sciences (ICB), Sao Paulo, Brazil
| | - André Zelanis
- Department of Science and Technology, Institute of Science and Technology, Federal University of Sao Paulo (ICT-UNIFESP), Sao Jose dos Campos, Brazil.,Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, Sao Paulo, Brazil
| | - Adriane S de Siqueira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of Sao Paulo, Sao Paulo, Brazil
| | - Solange M T Serrano
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, Sao Paulo, Brazil
| | - Gary S Goldberg
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA
| | - Ruy G Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of Sao Paulo, Sao Paulo, Brazil
| | - Vanessa M Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
116
|
Fu W, Wu H, Cheng Z, Huang S, Rao H. The role of katanin p60 in breast cancer bone metastasis. Oncol Lett 2018; 15:4963-4969. [PMID: 29552132 PMCID: PMC5840750 DOI: 10.3892/ol.2018.7942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/06/2017] [Indexed: 12/20/2022] Open
Abstract
p60 is a subunit of katanin involved in microtubule-severing. Previous studies of p60 were primarily focused on microtubule regulation and cell cycle regulation. More recent research has demonstrated that katanin p60 possesses a function in prostate cancer bone metastasis; however, its role in breast cancer bone metastasis remains unclear. In the present study, immunohistochemistry was used to analyze the expression of katanin p60 in primary and bone metastatic breast cancer. The role of up- and downregulated katanin p60 was investigated using cell proliferation, and migration experiments. Overall, katanin p60 was highly expressed in breast cancer bone metastatic tissue compared with primary tumor tissue. In breast cancer cells, overexpression of katanin p60 inhibited cell proliferation, but promoted cell migration, whereas silencing katanin p60 expression promoted cell proliferation but inhibited cell migration. Overall, the present study indicated that katanin p60 serves a role in cell proliferation and migration, and thus may be a novel therapeutic target for prevention of breast cancer metastasis.
Collapse
Affiliation(s)
- Wenrong Fu
- Department of Pathology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Hui Wu
- Department of Clinical Laboratory, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Zhengjiang Cheng
- Department of Clinical Laboratory, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Shaojun Huang
- Department of Clinical Laboratory, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Hui Rao
- Department of Clinical Laboratory, Xiangyang Central Hospital, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
117
|
Davis T, van Niekerk G, Peres J, Prince S, Loos B, Engelbrecht AM. Doxorubicin resistance in breast cancer: A novel role for the human protein AHNAK. Biochem Pharmacol 2018; 148:174-183. [DOI: 10.1016/j.bcp.2018.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/03/2018] [Indexed: 12/24/2022]
|
118
|
Duhamel S, Goyette MA, Thibault MP, Filion D, Gaboury L, Côté JF. The E3 Ubiquitin Ligase HectD1 Suppresses EMT and Metastasis by Targeting the +TIP ACF7 for Degradation. Cell Rep 2018; 22:1016-1030. [PMID: 29386124 DOI: 10.1016/j.celrep.2017.12.096] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/28/2017] [Accepted: 12/23/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer cells exploit the epithelial-to-mesenchymal transition (EMT) program to become metastatic. Cytoskeletal regulators are required in mesenchymal cells where they promote EMT and EMT-induced migration. In a search for regulators of metastasis, we conducted shRNA screens targeting the microtubule plus-end tracking proteins (+TIPs). We show that the +TIP ACF7 is essential both for the maintenance of the EMT program and to promote migration. We find that the E3 ubiquitin ligase HectD1 promotes ACF7-proteasome-mediated degradation. Depletion of HectD1 stabilized ACF7, and this enhanced EMT and migration. Decreased HectD1 expression increased metastases in mouse models and conferred increased resistance to the cytotoxic drug cisplatin. A retrospective analysis of biopsies from breast cancer patients also reveals a correlation between higher ACF7 or lower HectD1 expression with poor clinical outcomes. Together, these results suggest that the control of ACF7 levels by HectD1 modulates EMT and the efficiency of metastasis.
Collapse
Affiliation(s)
- Stéphanie Duhamel
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Marie-Anne Goyette
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada; Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | | | - Dominic Filion
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Louis Gaboury
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada; Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada.
| |
Collapse
|
119
|
Therapeutic potential of targeting S100A11 in malignant pleural mesothelioma. Oncogenesis 2018; 7:11. [PMID: 29362358 PMCID: PMC5833371 DOI: 10.1038/s41389-017-0017-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/21/2017] [Indexed: 12/30/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumor with an unfavorable prognosis. The standard therapeutic approaches are limited to surgery, chemotherapy, and radiotherapy. Because the consequent clinical outcome is often unsatisfactory, a different approach in MPM treatment is required. S100A11, a Ca2+-binding small protein with two EF-hands, is frequently upregulated in various human cancers. Interestingly, it has been found that intracellular and extracellular S100A11 have different functions in cell viability. In this study, we focused on the impact of extracellular S100A11 in MPM and explored the therapeutic potential of an S100A11-targeting strategy. We examined the secretion level of S100A11 in various kinds of cell lines by enzyme-linked immunosorbent assay. Among them, six out of seven MPM cell lines actively secreted S100A11, whereas normal mesothelial cell lines did not secrete it. To investigate the role of secreted S100A11 in MPM, we inhibited its function by neutralizing S100A11 with an anti-S100A11 antibody. Interestingly, the antibody significantly inhibited the proliferation of S100A11-secreting MPM cells in vitro and in vivo. Microarray analysis revealed that several pathways including genes involved in cell proliferation were negatively enriched in the antibody-treated cell lines. In addition, we examined the secretion level of S100A11 in various types of pleural effusions. We found that the secretion of S100A11 was significantly higher in MPM pleural effusions, compared to others, suggesting the possibility for the use of S100A11 as a biomarker. In conclusion, our results indicate that extracellular S100A11 plays important roles in MPM and may be a therapeutic target in S100A11-secreting MPM.
Collapse
|
120
|
Spiliotis ET. Spatial effects - site-specific regulation of actin and microtubule organization by septin GTPases. J Cell Sci 2018; 131:jcs207555. [PMID: 29326311 PMCID: PMC5818061 DOI: 10.1242/jcs.207555] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The actin and microtubule cytoskeletons comprise a variety of networks with distinct architectures, dynamics and protein composition. A fundamental question in eukaryotic cell biology is how these networks are spatially and temporally controlled, so they are positioned in the right intracellular places at the right time. While significant progress has been made in understanding the self-assembly of actin and microtubule networks, less is known about how they are patterned and regulated in a site-specific manner. In mammalian systems, septins are a large family of GTP-binding proteins that multimerize into higher-order structures, which associate with distinct subsets of actin filaments and microtubules, as well as membranes of specific curvature and lipid composition. Recent studies have shed more light on how septins interact with actin and microtubules, and raised the possibility that the cytoskeletal topology of septins is determined by their membrane specificity. Importantly, new functions have emerged for septins regarding the generation, maintenance and positioning of cytoskeletal networks with distinct organization and biochemical makeup. This Review presents new and past findings, and discusses septins as a unique regulatory module that instructs the local differentiation and positioning of distinct actin and microtubule networks.
Collapse
Affiliation(s)
- Elias T Spiliotis
- Drexel University, Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
121
|
Neelamraju Y, Gonzalez-Perez A, Bhat-Nakshatri P, Nakshatri H, Janga SC. Mutational landscape of RNA-binding proteins in human cancers. RNA Biol 2017; 15:115-129. [PMID: 29023197 PMCID: PMC5786023 DOI: 10.1080/15476286.2017.1391436] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RNA Binding Proteins (RBPs) are a class of post-transcriptional regulatory molecules which are increasingly documented to be dysfunctional in cancer genomes. However, our current understanding of these alterations is limited. Here, we delineate the mutational landscape of ∼1300 RBPs in ∼6000 cancer genomes. Our analysis revealed that RBPs have an average of ∼3 mutations per Mb across 26 cancer types. We identified 281 RBPs to be enriched for mutations (GEMs) in at least one cancer type. GEM RBPs were found to undergo frequent frameshift and inframe deletions as well as missense, nonsense and silent mutations when compared to those that are not enriched for mutations. Functional analysis of these RBPs revealed the enrichment of pathways associated with apoptosis, splicing and translation. Using the OncodriveFM framework, we also identified more than 200 candidate driver RBPs that were found to accumulate functionally impactful mutations in at least one cancer. Expression levels of 15% of these driver RBPs exhibited significant difference, when transcriptome groups with and without deleterious mutations were compared. Functional interaction network of the driver RBPs revealed the enrichment of spliceosomal machinery, suggesting a plausible mechanism for tumorogenesis while network analysis of the protein interactions between RBPs unambiguously revealed the higher degree, betweenness and closeness centrality for driver RBPs compared to non-drivers. Analysis to reveal cancer-specific Ribonucleoprotein (RNP) mutational hotspots showed extensive rewiring even among common drivers between cancer types. Knockdown experiments on pan-cancer drivers such as SF3B1 and PRPF8 in breast cancer cell lines, revealed cancer subtype specific functions like selective stem cell features, indicating a plausible means for RBPs to mediate cancer-specific phenotypes. Hence, this study would form a foundation to uncover the contribution of the mutational spectrum of RBPs in dysregulating the post-transcriptional regulatory networks in different cancer types.
Collapse
Affiliation(s)
- Yaseswini Neelamraju
- a Department of Bio Health Informatics, School of Informatics and Computing , Indiana University Purdue University , Indianapolis , Indiana , USA
| | - Abel Gonzalez-Perez
- b Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences , Universitat Pompeu Fabra , Barcelona , Spain
| | - Poornima Bhat-Nakshatri
- c Department of Surgery , Indiana University School of Medicine , Indianapolis , Indiana , USA
| | - Harikrishna Nakshatri
- c Department of Surgery , Indiana University School of Medicine , Indianapolis , Indiana , USA.,d Department of Biochemistry & Molecular Biology , Indiana University School of Medicine , Indianapolis , Indiana , USA.,e VA Roudebush Medical Center , Indianapolis , Indiana , USA
| | - Sarath Chandra Janga
- a Department of Bio Health Informatics, School of Informatics and Computing , Indiana University Purdue University , Indianapolis , Indiana , USA.,f Centre for Computational Biology and Bioinformatics , Indiana University School of Medicine , 5021 Health Information and Translational Sciences (HITS), Indianapolis , Indiana , USA.,g Department of Medical and Molecular Genetics , Indiana University School of Medicine , Medical Research and Library Building, Indianapolis , Indiana , USA
| |
Collapse
|
122
|
Sun T, Cheung KSC, Liu ZL, Leung F, Lu WW. Matrix metallopeptidase 9 targeted by hsa-miR-494 promotes silybin-inhibited osteosarcoma. Mol Carcinog 2017; 57:262-271. [DOI: 10.1002/mc.22753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/09/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Tianhao Sun
- Li Ka Shing Faculty of Medicine; Department of Orthopaedics and Traumatology; The University of Hong Kong; Hong Kong SAR China
| | - Kelvin S. C. Cheung
- Li Ka Shing Faculty of Medicine; Department of Orthopaedics and Traumatology; The University of Hong Kong; Hong Kong SAR China
| | - Zhi-Li Liu
- Department of Orthopedic Surgery; The First Affiliated Hospital of Nanchang University; Nanchang China
| | - Frankie Leung
- Li Ka Shing Faculty of Medicine; Department of Orthopaedics and Traumatology; The University of Hong Kong; Hong Kong SAR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma; Department of Orthopaedics and Traumatology; The University of Hong Kong-Shenzhen Hospital; Shenzhen China
| | - William W. Lu
- Li Ka Shing Faculty of Medicine; Department of Orthopaedics and Traumatology; The University of Hong Kong; Hong Kong SAR China
| |
Collapse
|
123
|
Kittur H, Tay A, Hua A, Yu M, Di Carlo D. Probing Cell Adhesion Profiles with a Microscale Adhesive Choice Assay. Biophys J 2017; 113:1858-1867. [PMID: 29045879 PMCID: PMC5647542 DOI: 10.1016/j.bpj.2017.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 10/18/2022] Open
Abstract
In this work, we introduce, to our knowledge, a new set of adhesion-based biomarkers for characterizing mammalian cells. Mammalian cell adhesion to the extracellular matrix influences numerous physiological processes. Current in vitro methods to probe adhesion focus on adhesive force to a single surface, which can investigate only a subcomponent of the adhesive, motility, and polarization cues responsible for adhesion in the 3D tissue environment. Here, we demonstrate a method to quantify the transhesive properties of cells that relies on the microscale juxtaposition of two extracellular matrix-coated surfaces. By multiplexing this approach, we investigate the unique transhesive profiles for breast cancer cells that are adapted to colonize different metastatic sites. We find that malignant breast cancer cells readily transfer to new collagen I surfaces, and away from basement membrane proteins. Integrins and actin polymerization largely regulate this transfer. This tool can be readily adopted in cell biology and cancer research to uncover, to our knowledge, novel drivers of adhesion (or de-adhesion) and sort cell populations based on complex phenotypes with physiological relevance.
Collapse
Affiliation(s)
- Harsha Kittur
- University of California Los Angeles, Los Angeles, California
| | - Andy Tay
- University of California Los Angeles, Los Angeles, California
| | - Avery Hua
- University of California Los Angeles, Los Angeles, California
| | - Min Yu
- University of Southern California, Los Angeles, California
| | - Dino Di Carlo
- University of California Los Angeles, Los Angeles, California; California NanoSystems Institute, Los Angeles, California; Jonsson Comprehensive Cancer Center, Los Angeles, California.
| |
Collapse
|
124
|
Extracellular matrix stiffness and cell contractility control RNA localization to promote cell migration. Nat Commun 2017; 8:896. [PMID: 29026081 PMCID: PMC5638855 DOI: 10.1038/s41467-017-00884-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 08/02/2017] [Indexed: 01/13/2023] Open
Abstract
Numerous RNAs are enriched within cellular protrusions, but the underlying mechanisms are largely unknown. We had shown that the APC (adenomatous polyposis coli) protein controls localization of some RNAs at protrusions. Here, using protrusion-isolation schemes and RNA-Seq, we find that RNAs localized in protrusions of migrating fibroblasts can be distinguished in two groups, which are differentially enriched in distinct types of protrusions, and are additionally differentially dependent on APC. APC-dependent RNAs become enriched in high-contractility protrusions and, accordingly, their localization is promoted by increasing stiffness of the extracellular matrix. Dissecting the underlying mechanism, we show that actomyosin contractility activates a RhoA-mDia1 signaling pathway that leads to formation of a detyrosinated-microtubule network, which in turn is required for localization of APC-dependent RNAs. Importantly, a competition-based approach to specifically mislocalize APC-dependent RNAs suggests that localization of the APC-dependent RNA subgroup is functionally important for cell migration.Adenomatous polyposis coli (APC) regulates the localization of some mRNAs at cellular protrusions but the underlying mechanisms and functional roles are not known. Here the authors show that APC-dependent RNAs are enriched in contractile protrusions, via detyrosinated microtubules, and enhance cell migration.
Collapse
|
125
|
Septin remodeling is essential for the formation of cell membrane protrusions (microtentacles) in detached tumor cells. Oncotarget 2017; 8:76686-76698. [PMID: 29100341 PMCID: PMC5652735 DOI: 10.18632/oncotarget.20805] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Microtentacles are mostly microtubule-based cell protrusions that are formed by detached tumor cells. Here, we report that the formation of tumor cell microtentacles depends on the presence and dynamics of guanine nucleotide-binding proteins of the septin family, which are part of the cytoskeleton. In matrix-attached breast, lung, prostate and pancreas cancer cells, septins are associated with the cytosolic actin cytoskeleton. Detachment of cells causes redistribution of septins to the membrane, where microtentacle formation occurs. Forchlorfenuron, which inhibits septin functions, blocks microtentacle formation. The small GTPase Cdc42 and its effector proteins Borgs regulate septins and are essential for microtentacle formation. Dominant active and inactive Cdc42 inhibit microtentacle formation indicating that the free cycling of Cdc42 between its active and inactive state is essential for septin regulation and microtentacle formation. Cell attachment and aggregation models suggest that septins play an essential role in the metastatic behavior of tumor cells.
Collapse
|
126
|
Gharibi A, La Kim S, Molnar J, Brambilla D, Adamian Y, Hoover M, Hong J, Lin J, Wolfenden L, Kelber JA. ITGA1 is a pre-malignant biomarker that promotes therapy resistance and metastatic potential in pancreatic cancer. Sci Rep 2017; 7:10060. [PMID: 28855593 PMCID: PMC5577248 DOI: 10.1038/s41598-017-09946-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has single-digit 5-year survival rates at <7%. There is a dire need to improve pre-malignant detection methods and identify new therapeutic targets for abrogating PDAC progression. To this end, we mined our previously published pseudopodium-enriched (PDE) protein/phosphoprotein datasets to identify novel PDAC-specific biomarkers and/or therapeutic targets. We discovered that integrin alpha 1 (ITGA1) is frequently upregulated in pancreatic cancers and associated precursor lesions. Expression of ITGA1-specific collagens within the pancreatic cancer microenvironment significantly correlates with indicators of poor patient prognosis, and depleting ITGA1 from PDAC cells revealed that it is required for collagen-induced tumorigenic potential. Notably, collagen/ITGA1 signaling promotes the survival of ALDH1-positive stem-like cells and cooperates with TGFβ to drive gemcitabine resistance. Finally, we report that ITGA1 is required for TGFβ/collagen-induced EMT and metastasis. Our data suggest that ITGA1 is a new diagnostic biomarker and target that can be leveraged to improve patient outcomes.
Collapse
Affiliation(s)
- Armen Gharibi
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Sa La Kim
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Justin Molnar
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Daniel Brambilla
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Yvess Adamian
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Malachia Hoover
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Julie Hong
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Joy Lin
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Laurelin Wolfenden
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Jonathan A Kelber
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA.
| |
Collapse
|
127
|
Zhao Z, Xiao S, Yuan X, Yuan J, Zhang C, Li H, Su J, Wang X, Liu Q. AHNAK as a Prognosis Factor Suppresses the Tumor Progression in Glioma. J Cancer 2017; 8:2924-2932. [PMID: 28928883 PMCID: PMC5604443 DOI: 10.7150/jca.20277] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/07/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE AHNAK is originally identified as a giant protein based on the estimated size of approximately 700 kDa. The aim of this study is to identify the role of AHNAK in the pathogenesis of glioma. METHODS We tested AHNAK mRNA level in a panel of six human glioma cell lines, and in 30 cases of normal brain tissues and 73 cases of glioma tissue samples using a qRT-PCR method. Further, we analyzed the relationship of AHNAK expression with clinicopathological characteristics in glioma patients. Meanwhile, we analyzed the relationship of expression of AHNAK and survival of glioma patients in survival analyses. Then, in vitro, we analyzed the biological effects of AHNAK in glioma cell lines (U87 and U251) including proliferation assay, cell transwell assay, and apoptosis. And in vivo, we examined the effects of AHNAK on tumor growth using xenograft model of human glioma cells in nude mice. Then we examined the expression of Ki-67-positive cells in these tumors. RESULTS We found that the mRNA levels of AHNAK were down-regulated in 4 of 6 human glioma cell lines, especially in U87 and U251 cell lines. Meanwhile, in glioma patients, a negative correlation was found between the expression of AHNAK and the glioma histopathology. And a low expression of AHNAK was a significant and independent prognostic factor for poor survival of glioma patients. Through over expression of AHNAK in both of U87 and U251, we demonstrated that overexpression of AHNAK could inhibit glioma cell proliferation and invasion, induce apoptosis, and inhibit in vivo glioma tumor growth and ki-67 expression. CONCLUSIONS The AHNAK acts as a potential tumor suppressor. Our study provides a preclinical basis for developing AHNAK as a reliable clinical prognostic indicator for glioma patients, and a new biomarker for treatment response, and a potentially therapeutic target in glioma management options.
Collapse
Affiliation(s)
- Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Skull Base Surgery and Neuro-oncology at Hunan, Changsha, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guanzhou, Guangdong, China
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Skull Base Surgery and Neuro-oncology at Hunan, Changsha, China
| | - Jian Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Skull Base Surgery and Neuro-oncology at Hunan, Changsha, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Skull Base Surgery and Neuro-oncology at Hunan, Changsha, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Skull Base Surgery and Neuro-oncology at Hunan, Changsha, China
| | - Jun Su
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Skull Base Surgery and Neuro-oncology at Hunan, Changsha, China
| |
Collapse
|
128
|
Díaz-Díaz A, Casas-Pais A, Calamia V, Castosa R, Martinez-Iglesias O, Roca-Lema D, Santamarina I, Valladares-Ayerbes M, Calvo L, Chantada V, Figueroa A. Proteomic Analysis of the E3 Ubiquitin-Ligase Hakai Highlights a Role in Plasticity of the Cytoskeleton Dynamics and in the Proteasome System. J Proteome Res 2017; 16:2773-2788. [PMID: 28675930 DOI: 10.1021/acs.jproteome.7b00046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Carcinoma, the most common type of cancer, arises from epithelial cells. The transition from adenoma to carcinoma is associated with the loss of E-cadherin and, in consequence, the disruption of cell-cell contacts. E-cadherin is a tumor suppressor, and it is down-regulated during epithelial-to-mesenchymal transition (EMT); indeed, its loss is a predictor of poor prognosis. Hakai is an E3 ubiquitin-ligase protein that mediates E-cadherin ubiquitination, endocytosis and finally degradation, leading the alterations of cell-cell contacts. Although E-cadherin is the most established substrate for Hakai activity, other regulated molecular targets for Hakai may be involved in cancer cell plasticity during tumor progression. In this work we employed an iTRAQ approach to explore novel molecular pathways involved in Hakai-driven EMT during tumor progression. Our results show that Hakai may have an important influence on cytoskeleton-related proteins, extracellular exosome-associated proteins, RNA-related proteins and proteins involved in metabolism. Moreover, a profound decreased expression in several proteasome subunits during Hakai-driven EMT was highlighted. Since proteasome inhibitors are becoming increasingly used in cancer treatment, our findings suggest that the E3 ubiquitin-ligase, such as Hakai, may be a better target than proteasome for using novel specific inhibitors in tumor subtypes that follow EMT.
Collapse
Affiliation(s)
- Andrea Díaz-Díaz
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC) , 15006 A Coruña, Spain
| | - Alba Casas-Pais
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC) , 15006 A Coruña, Spain
| | - Valentina Calamia
- Proteomics Group-ProteoRed PRB2/ISCIII, INIBIC-CHUAC, UDC , 15006 A Coruña, Spain
| | - Raquel Castosa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC) , 15006 A Coruña, Spain
| | - Olaia Martinez-Iglesias
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC) , 15006 A Coruña, Spain
| | - Daniel Roca-Lema
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC) , 15006 A Coruña, Spain
| | - Isabel Santamarina
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC) , 15006 A Coruña, Spain
| | - Manuel Valladares-Ayerbes
- Clinical and Translational Oncology Group, Hospital Universitario Virgen del Rocio, Instituto de Investigación Biomédica de Sevilla (IBIS) , 41013 Sevilla, Spain
| | - Lourdes Calvo
- Clinical and Translational Oncology Group, Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas , 15006 A Coruña, Spain
| | - Venancio Chantada
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC) , 15006 A Coruña, Spain
| | - Angélica Figueroa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC) , 15006 A Coruña, Spain
| |
Collapse
|
129
|
Ma X, Sung DC, Yang Y, Wakabayashi Y, Adelstein RS. Nonmuscle myosin IIB regulates epicardial integrity and epicardium-derived mesenchymal cell maturation. J Cell Sci 2017; 130:2696-2706. [PMID: 28687623 DOI: 10.1242/jcs.202564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/01/2017] [Indexed: 11/20/2022] Open
Abstract
Nonmuscle myosin IIB (NMIIB; heavy chain encoded by MYH10) is essential for cardiac myocyte cytokinesis. The role of NMIIB in other cardiac cells is not known. Here, we show that NMIIB is required in epicardial formation and functions to support myocardial proliferation and coronary vessel development. Ablation of NMIIB in epicardial cells results in disruption of epicardial integrity with a loss of E-cadherin at cell-cell junctions and a focal detachment of epicardial cells from the myocardium. NMIIB-knockout and blebbistatin-treated epicardial explants demonstrate impaired mesenchymal cell maturation during epicardial epithelial-mesenchymal transition. This is manifested by an impaired invasion of collagen gels by the epicardium-derived mesenchymal cells and the reorganization of the cytoskeletal structure. Although there is a marked decrease in the expression of mesenchymal genes, there is no change in Snail (also known as Snai1) or E-cadherin expression. Studies from epicardium-specific NMIIB-knockout mice confirm the importance of NMIIB for epicardial integrity and epicardial functions in promoting cardiac myocyte proliferation and coronary vessel formation during heart development. Our findings provide a novel mechanism linking epicardial formation and epicardial function to the activity of the cytoplasmic motor protein NMIIB.
Collapse
Affiliation(s)
- Xuefei Ma
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1762, USA
| | - Derek C Sung
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1762, USA
| | - Yanqin Yang
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1762, USA
| | - Yoshi Wakabayashi
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1762, USA
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1762, USA
| |
Collapse
|
130
|
Han J, Li J, Ho JC, Chia GS, Kato H, Jha S, Yang H, Poellinger L, Lee KL. Hypoxia is a Key Driver of Alternative Splicing in Human Breast Cancer Cells. Sci Rep 2017. [PMID: 28642487 PMCID: PMC5481333 DOI: 10.1038/s41598-017-04333-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adaptation to hypoxia, a hallmark feature of many tumors, is an important driver of cancer cell survival, proliferation and the development of resistance to chemotherapy. Hypoxia-induced stabilization of hypoxia-inducible factors (HIFs) leads to transcriptional activation of a network of hypoxia target genes involved in angiogenesis, cell growth, glycolysis, DNA damage repair and apoptosis. Although the transcriptional targets of hypoxia have been characterized, the alternative splicing of transcripts that occurs during hypoxia and the roles they play in oncogenesis are much less understood. To identify and quantify hypoxia-induced alternative splicing events in human cancer cells, we performed whole transcriptome RNA-Seq in breast cancer cells that are known to provide robust transcriptional response to hypoxia. We found 2005 and 1684 alternative splicing events including intron retention, exon skipping and alternative first exon usage that were regulated by acute and chronic hypoxia where intron retention was the most dominant type of hypoxia-induced alternative splicing. Many of these genes are involved in cellular metabolism, transcriptional regulation, actin cytoskeleton organisation, cancer cell proliferation, migration and invasion, suggesting they may modulate or be involved in additional features of tumorigenic development that extend beyond the known functions of canonical full-length transcripts.
Collapse
Affiliation(s)
- Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Jia Li
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Jolene Caifeng Ho
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Grace Sushin Chia
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Hiroyuki Kato
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Lorenz Poellinger
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Kian Leong Lee
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore.
| |
Collapse
|
131
|
Du Y, Jiang B, Song S, Pei G, Ni X, Wu J, Wang S, Wang Z, Yu J. Metadherin regulates actin cytoskeletal remodeling and enhances human gastric cancer metastasis via epithelial-mesenchymal transition. Int J Oncol 2017; 51:63-74. [PMID: 28534938 PMCID: PMC5467779 DOI: 10.3892/ijo.2017.4002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/28/2017] [Indexed: 12/17/2022] Open
Abstract
Metadherin (MTDH) can be recruited to mature tight junction complexes, and it regulates mesenchymal marker protein expression in many tumors and promote cancer metastasis. This study investigated the influence of MTDH expression on gastric cancer and to elucidate the potential mechanisms by which MTDH regulates actin cytoskeletal remodeling and enhances human gastric cancer metastasis via epithelial-mesenchymal transition (EMT). Relative MTDH mRNA expression levels were assessed by quantitative real-time PCR (Q-PCR), and MTDH protein expression levels and localization were evaluated via immunohistochemical (ICH) staining. We studied the role of MTDH in cancer cell migration and invasion by modulating MTDH expression in the gastric cancer cell lines MKN45 and AGS. We also confirmed the functions of MTDH through in vivo experiments. We found that MTDH expression levels were correlated with lymph node metastasis, TNM stages and decreased OS (P=0.002, <0.001 and 0.010, respectively) in human gastric cancer and that MTDH upregulation promoted EMT in vitro. Consistent with this finding, MTDH downregulation inhibited cell migration and invasion in vitro and suppressed tumor growth and metastasis in vivo. Furthermore, MTDH knockdown regulated actin cytoskeletal remodeling and inhibited EMT. Overall, our results provide a novel role for MTDH in regulating gastric cancer metastasis.
Collapse
Affiliation(s)
- Yaqiong Du
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Baoshang, Shanghai 201999, P.R. China
| | - Bojian Jiang
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Baoshang, Shanghai 201999, P.R. China
| | - Shuzheng Song
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Baoshang, Shanghai 201999, P.R. China
| | - Guoqing Pei
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Baoshang, Shanghai 201999, P.R. China
| | - Xiaochun Ni
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Baoshang, Shanghai 201999, P.R. China
| | - Jugang Wu
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Baoshang, Shanghai 201999, P.R. China
| | - Shoulian Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Baoshang, Shanghai 201999, P.R. China
| | - Zhengyuan Wang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Yangpu, Shanghai 200090, P.R. China
| | - Jiwei Yu
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Baoshang, Shanghai 201999, P.R. China
| |
Collapse
|
132
|
Chen B, Wang J, Dai D, Zhou Q, Guo X, Tian Z, Huang X, Yang L, Tang H, Xie X. AHNAK suppresses tumour proliferation and invasion by targeting multiple pathways in triple-negative breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:65. [PMID: 28494797 PMCID: PMC5427595 DOI: 10.1186/s13046-017-0522-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
Abstract
Background AHNAK, also known as desmoyokin, is a giant protein with the molecular size of approximately 700 kDa and exerts diverse functions in different types of cancer. Results In the present study, we demonstrated that AHNAK mRNA levels were down-regulated in 7 out of 8 human breast cancer cell lines, especially in triple - negative breast cancer (TNBC) cell lines. Moreover, in patients with TNBC, the expression of AHNAK gene was inversely correlated with the tumor status (P = 0.015), lymph node status (P < 0.001), lymph node (LN) infiltration (P < 0.001) and TNM stage (P < 0.001). Moreover, down-regulated AHNAK expression was considered an independent prognostic factor associated with the poor survival of patients with TNBC. Overexpression of AHNAK in two TNBC cell lines, MDA-MB-231 and BT549, suppressed the in vitro TNBC cell proliferation and colony formation, and inhibited the in vivo TNBC xenograft growth and lung metastasis. The tumor suppressing effect of AHNAK in TNBC was associated with the AKT/MAPK signaling pathway and Wnt/β-catenin pathway. Consistent results were observed when AHNAK was knockdown in BT20 and MDA-MB-435 cells. Conclusions Taken together, our results suggest that AHNAK acts as a tumor suppressor that negatively regulates TNBC cell proliferation, TNBC xenograft growth and metastasis via different signaling pathways. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0522-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Chen
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, People's Republic of China
| | - Jin Wang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, People's Republic of China
| | - Danian Dai
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, People's Republic of China
| | - Qingyu Zhou
- College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, MD30, Tampa, FL, 33612-4749, USA
| | - Xiaofang Guo
- College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, MD30, Tampa, FL, 33612-4749, USA
| | - Zhi Tian
- College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, MD30, Tampa, FL, 33612-4749, USA
| | - Xiaojia Huang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, People's Republic of China
| | - Lu Yang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, People's Republic of China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, People's Republic of China.
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
133
|
Haase N, Rüder C, Haase H, Kamann S, Kouno M, Morano I, Dechend R, Zohlnhöfer D, Haase T. Protective Function of Ahnak1 in Vascular Healing after Wire Injury. J Vasc Res 2017; 54:131-142. [PMID: 28468000 DOI: 10.1159/000464287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/13/2017] [Indexed: 01/17/2023] Open
Abstract
AIM Vascular remodeling following injury substantially accounts for restenosis and adverse clinical outcomes. In this study, we investigated the role of the giant scaffold protein Ahnak1 in vascular healing after endothelial denudation of the murine femoral artery. METHODS The spatiotemporal expression pattern of Ahnak1 and Ahnak2 was examined using specific antibodies and real-time quantitative PCR. Following wire-mediated endothelial injury of Ahnak1-deficient mice and wild-type (WT) littermates, the processes of vascular healing were analyzed. RESULTS Ahnak1 and Ahnak2 showed a mutually exclusive vascular expression pattern, with Ahnak1 being expressed in the endothelium and Ahnak2 in the medial cells in naïve WT arteries. After injury, a marked increase of Ahnak1- and Ahnak2-positive cells at the lesion site became evident. Both proteins showed a strong upregulation in neointimal cells 14 days after injury. Ahnak1-deficient mice showed delayed vascular healing and dramatically impaired re-endothelialization that resulted in prolonged adverse vascular remodeling, when compared to the WT littermates. CONCLUSION The large scaffold and adaptor proteins Ahnak1 and Ahnak2 exhibit differential expression patterns and functions in naïve and injured arteries. Ahnak1 plays a nonredundant protective role in vascular healing.
Collapse
Affiliation(s)
- Nadine Haase
- Experimental and Clinical Research Center (a joint cooperation of the MDC and the Charité Medical Faculty), Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Sakamoto N, Tsujimoto H, Takahata R, Cao B, Zhao P, Ito N, Shimazaki H, Ichikura T, Hase K, Vande Woude GF, Shinomiya N. MET4 expression predicts poor prognosis of gastric cancers with Helicobacter pylori infection. Cancer Sci 2017; 108:322-330. [PMID: 28012218 PMCID: PMC5378289 DOI: 10.1111/cas.13146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/08/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023] Open
Abstract
The role of HGF/SF‐MET signaling is important in cancer progression, but its relation with Helicobacter pylori‐positive gastric cancers remains to be elucidated. In total, 201 patients with primary gastric carcinoma who underwent curative or debulking resection without preoperative chemotherapy were studied. MET4 and anti‐HGF/SF mAbs were used for immunohistochemical analysis. Survival of gastric cancer patients was estimated by Kaplan–Meier method and compared with log‐rank. Cox proportional hazards models were fit to determine the independent association of MET‐staining status with outcome. The effect of live H. pylori bacteria on cell signaling and biological behaviors was evaluated using gastric cancer cell lines. MET4‐positive gastric cancers showed poorer prognosis than MET4‐negative cases (overall survival, P = 0.02; relapse‐free survival, P = 0.06). Positive staining for MET4 was also a statistically significant factor to predict poor prognosis in H. pylori‐positive cases (overall survival, P < 0.01; relapse‐free survival, P = 0.01) but not in H. pylori‐negative cases. Gastric cancers positively stained with both HGF/SF and MET4 showed a tendency of the worst prognosis. Stimulation of MET‐positive gastric cancer cells with live H. pylori bacteria directly upregulated MET phosphorylation and activated MET downstream signals such as p44/42MAPK and Akt, conferring cell proliferation and anti‐apoptotic activity. In conclusion, positive staining for MET4 was useful for predicting poor prognosis of gastric cancers with H. pylori infection. Helicobacter pylori stimulated MET‐positive gastric cancers and activated downstream signaling, thereby promoting cancer proliferation and anti‐apoptotic activity. These results support the importance of H. pylori elimination from gastric epithelial surface in clinical therapy.
Collapse
Affiliation(s)
- Naoko Sakamoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Hironori Tsujimoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Risa Takahata
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Brian Cao
- Laboratory of Antibody Technology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Ping Zhao
- Laboratory of Antibody Technology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Nozomi Ito
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Hideyuki Shimazaki
- Department of Laboratory Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Takashi Ichikura
- Court Physician in Chief, The Imperial Household Agency, Tokyo, Japan
| | - Kazuo Hase
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - George F Vande Woude
- Laboratory of Molecular Oncology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
135
|
Giverso C, Arduino A, Preziosi L. How Nucleus Mechanics and ECM Microstructure Influence the Invasion of Single Cells and Multicellular Aggregates. Bull Math Biol 2017; 80:1017-1045. [PMID: 28409417 DOI: 10.1007/s11538-017-0262-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/17/2017] [Indexed: 01/14/2023]
Abstract
In order to move in a three-dimensional extracellular matrix, the nucleus of a cell must squeeze through the narrow spacing among the fibers and, by adhering to them, the cell needs to exert sufficiently strong traction forces. If the nucleus is too stiff, the spacing too narrow, or traction forces too weak, the cell is not able to penetrate the network. In this article, we formulate a mathematical model based on an energetic approach, for cells entering cylindrical channels composed of extracellular matrix fibers. Treating the nucleus as an elastic body covered by an elastic membrane, the energetic balance leads to the definition of a necessary criterion for cells to pass through the regular network of fibers, depending on the traction forces exerted by the cells (or possibly passive stresses), the stretchability of the nuclear membrane, the stiffness of the nucleus, and the ratio of the pore size within the extracellular matrix with respect to the nucleus diameter. The results obtained highlight the importance of the interplay between mechanical properties of the cell and microscopic geometric characteristics of the extracellular matrix and give an estimate for a critical value of the pore size that represents the physical limit of migration and can be used in tumor growth models to predict their invasive potential in thick regions of ECM.
Collapse
Affiliation(s)
- Chiara Giverso
- Istituto Nazionale di Alta Matematica "F. Severi", Città Universitaria, P.le Aldo Moro 5, 00185, Rome, Italy.
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
| | - Alessandro Arduino
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135, Turin, Italy
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| |
Collapse
|
136
|
Uram Ł, Szuster M, Misiorek M, Filipowicz A, Wołowiec S, Wałajtys-Rode E. The effect of G3 PAMAM dendrimer conjugated with B-group vitamins on cell morphology, motility and ATP level in normal and cancer cells. Eur J Pharm Sci 2017; 102:275-283. [PMID: 28323116 DOI: 10.1016/j.ejps.2017.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 10/20/2022]
Abstract
In a search for the safe vitamin carrier the PAMAM G3 dendrimer covalently substituted with 9 and 10 molecules of vitamin B7 (biotin) and B6 (pyridoxal), respectively (BC-PAMAM) was investigated. Dendrimer substitution with B-group vitamins significantly alters its biological properties as compared to native form. Observed effects on investigated cell parameters including morphology, adhesion, migration and ATP level were different for normal human fibroblasts (BJ) and squamous cell carcinoma (SCC-15) cell lines. BC-PAMAM revealed significantly less pronounced effects on investigated parameters, particularly at higher concentrations (5-50μM), which is relevant with its lower positive surface charge, as compared with native form. The bioconjugate, up to 50μM concentration, appeared to be a safe vitamin carrier to normal fibroblasts, without significant effect on their adhesion, shape and migration as well as on intracellular ATP level. In SCC-15 cells BC-PAMAM, at low concentrations (0.1-0.5μM), altered the cell shape and increase adhesion, whereas at higher concentrations opposite effects were seen. Measurements of cellular level of ATP showed that higher resistance of cancer cells to toxic effects of native PAMAM dendrimers may be due to higher energy supply of cancer cells.
Collapse
Affiliation(s)
- Łukasz Uram
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland.
| | - Magdalena Szuster
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Maria Misiorek
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Aleksandra Filipowicz
- Faculty of Medical Sciences, Rzeszów University of Information Technology and Management, 2 Sucharskiego Str, 35-225 Rzeszów, Poland
| | - Stanisław Wołowiec
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland
| | - Elżbieta Wałajtys-Rode
- Department of Drug Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology,75 Koszykowa Str,00-664 Warsaw, Poland
| |
Collapse
|
137
|
Maiti B, Dutta P, Seal S, Pal S, De P, Maiti S. Side-chain amino acid based cationic polymer induced actin polymerization. J Mater Chem B 2017; 5:1218-1226. [PMID: 32263591 DOI: 10.1039/c6tb02814d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Actin filament dynamics is important for proper cellular functions and is controlled by hundreds of actin binding proteins inside the cells. There are several natural and synthetic compounds that are able to bind actin and alter the actin filament dynamics. Since the actin dynamics changes due to nonspecific electrostatic interactions between negatively charged actin and positively charged proteins, and natural or synthetic compounds, herein we report the synthesis of poly(tert-butyl carbamate (Boc)-l-alanine methacryloyloxyethyl ester) (P(Boc-Ala-HEMA)) homopolymer in a controlled fashion by the reversible addition-fragmentation chain transfer (RAFT) polymerization. Subsequent deprotection of the Boc groups in the homopolymer under acidic conditions resulted in a positively charged polymer with primary amine moieties at the side chains. This cationic polymer (P(NH3 +-Ala-HEMA)), is able to nucleate actin in vitro. The cationic polymer and corresponding partially fluorescence tagged polymer are able to nucleate actin filament in vivo. These polymers are nontoxic to the cultured cells and also stabilize the filamentous actin in vitro.
Collapse
Affiliation(s)
- Binoy Maiti
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | | | | | | | | | | |
Collapse
|
138
|
Huang D, Cao L, Zheng S. CAPZA1 modulates EMT by regulating actin cytoskeleton remodelling in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:13. [PMID: 28093067 PMCID: PMC5240199 DOI: 10.1186/s13046-016-0474-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
Background Epithelial-mesenchymal transition (EMT) elicits dramatic changes, including cytoskeleton remodelling as well as changes in gene expression and cellular phenotypes. During this process, actin filament assembly plays an important role in maintaining the morphology and movement of tumour cells. Capping protein, a protein complex referred to as CapZ, is an actin-binding complex that can regulate actin cytoskeleton remodelling. CAPZA1 is the α1 subunit of this complex, and we hypothesized that CAPZA1 regulates EMT through the regulation of actin filaments assembly, thus reducing the metastatic ability of hepatocellular carcinoma (HCC) cells. Methods Immunohistochemistry was used to detect CAPZA1 expression in 129 HCC tissues. Western blotting and qPCR were used to detect CAPZA1, EMT markers and EMT transcription factors in HCC cells. Transwell migration and invasion assays were performed to observe the migration and invasion of HCC cells. Cell Counting Kit-8 (CCK-8) was used to detect the proliferation of HCC cells. Immunoprecipitation was used to detect the interaction between CAPZA1 and actin filaments. Finally, a small animal magnetic resonance imager (MRI) was used to observe metastases in HCC cell xenografts in the liver. Results CAPZA1 expression levels were negatively correlated with the biological characteristics of primary HCC and patient prognosis. CAPZA1 expression was negatively correlated with the migration and invasion of HCC cells. CAPZA1 down regulation promoted the migration and invasion of HCC cells. Conversely, CAPZA1 overexpression significantly inhibited the migration and invasion of HCC cells. Moreover, CAPZA1 expression levels were correlated with the expression of the EMT markers E-cadherin, N-cadherin and Vimentin. Furthermore, the expression of Snail1 and ZEB1 were negatively correlated with CAPZA1 expression levels. Similarly, CAPZA1 significantly inhibited intrahepatic metastases of HCC cells in an orthotopic transplantation tumour model. Conclusions CAPZA1 inhibits EMT in HCC cells by regulating actin cytoskeleton remodelling, thereby reducing the metastatic ability of the cells. Together, our data suggest that CAPZA1 could be a useful biomarker for clinical determination of the prognosis of HCC patients.
Collapse
Affiliation(s)
- Deng Huang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, No.29 Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Li Cao
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, No.29 Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Shuguo Zheng
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, No.29 Gaotanyan Road, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
139
|
Johnston HE, Carter MJ, Cox KL, Dunscombe M, Manousopoulou A, Townsend PA, Garbis SD, Cragg MS. Integrated Cellular and Plasma Proteomics of Contrasting B-cell Cancers Reveals Common, Unique and Systemic Signatures. Mol Cell Proteomics 2017; 16:386-406. [PMID: 28062796 DOI: 10.1074/mcp.m116.063511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
Approximately 800,000 leukemia and lymphoma cases are diagnosed worldwide each year. Burkitt's lymphoma (BL) and chronic lymphocytic leukemia (CLL) are examples of contrasting B-cell cancers; BL is a highly aggressive lymphoid tumor, frequently affecting children, whereas CLL typically presents as an indolent, slow-progressing leukemia affecting the elderly. The B-cell-specific overexpression of the myc and TCL1 oncogenes in mice induce spontaneous malignancies modeling BL and CLL, respectively. Quantitative mass spectrometry proteomics and isobaric labeling were employed to examine the biology underpinning contrasting Eμ-myc and Eμ-TCL1 B-cell tumors. Additionally, the plasma proteome was evaluated using subproteome enrichment to interrogate biomarker emergence and the systemic effects of tumor burden. Over 10,000 proteins were identified (q<0.01) of which 8270 cellular and 2095 plasma proteins were quantitatively profiled. A common B-cell tumor signature of 695 overexpressed proteins highlighted ribosome biogenesis, cell-cycle promotion and chromosome segregation. Eμ-myc tumors overexpressed several methylating enzymes and underexpressed many cytoskeletal components. Eμ-TCL1 tumors specifically overexpressed ER stress response proteins and signaling components in addition to both subunits of the interleukin-5 (IL5) receptor. IL5 treatment promoted Eμ-TCL1 tumor proliferation, suggesting an amplification of IL5-induced AKT signaling by TCL1. Tumor plasma contained a substantial tumor lysis signature, most prominent in Eμ-myc plasma, whereas Eμ-TCL1 plasma contained signatures of immune-response, inflammation and microenvironment interactions, with putative biomarkers in early-stage cancer. These findings provide a detailed characterization of contrasting B-cell tumor models, identifying common and specific tumor mechanisms. Integrated plasma proteomics allowed the dissection of a systemic response and a tumor lysis signature present in early- and late-stage cancers, respectively. Overall, this study suggests common B-cell cancer signatures exist and illustrates the potential of the further evaluation of B-cell cancer subtypes by integrative proteomics.
Collapse
Affiliation(s)
- Harvey E Johnston
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton SO16 6YD, UK.,§Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Matthew J Carter
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton SO16 6YD, UK
| | - Kerry L Cox
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton SO16 6YD, UK
| | - Melanie Dunscombe
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton SO16 6YD, UK
| | - Antigoni Manousopoulou
- §Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK.,¶Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Paul A Townsend
- ‖Molecular and Clinical Cancer Sciences, Paterson Building, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, M20 4BX
| | - Spiros D Garbis
- §Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK.,¶Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Mark S Cragg
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton SO16 6YD, UK;
| |
Collapse
|
140
|
Schunter AJ, Yue X, Hummon AB. Phosphoproteomics of colon cancer metastasis: comparative mass spectrometric analysis of the isogenic primary and metastatic cell lines SW480 and SW620. Anal Bioanal Chem 2016; 409:1749-1763. [PMID: 27987026 DOI: 10.1007/s00216-016-0125-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 12/25/2022]
Abstract
The contributions of phosphorylation-mediated signaling networks to colon cancer metastasis are poorly defined. To interrogate constitutive signaling alterations in cancer progression, the global phosphoproteomes of patient-matched SW480 (primary colon tumor origin) and SW620 (lymph node metastasis) cell lines were compared with TiO2 and immobilized metal affinity chromatography phosphopeptide enrichment followed by liquid chromatography-tandem mass spectrometry. Network analysis of the significantly altered phosphosites revealed differential regulation in cellular adhesion, mitosis, and messenger RNA translational machinery. Messenger RNA biogenesis and splicing, transport through the nuclear pores, initiation of translation, and stability and degradation were also affected. Although alterations in these processes have been associated with oncogenic transformation, control of messenger RNA stability has typically not been associated with cancer progression. Notably, the single phosphosite with the greatest relative change in SW620 cells was Ser2 on eukaryotic translation initiation factor 2 subunit 2, suggesting that SW620 cells translate faster or with greater efficiency than SW480 cells. These broad changes in the regulation of translation also occur without overexpression of eukaryotic translation initiation factor 4E. The findings suggest that metastatic cells exhibit constitutive changes to the phosphoproteome, and that messenger RNA stability and translational efficiency may be important targets of deregulation during cancer progression.
Collapse
Affiliation(s)
- Alissa J Schunter
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Xiaoshan Yue
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
141
|
Autophagy and epithelial-mesenchymal transition: an intricate interplay in cancer. Cell Death Dis 2016; 7:e2520. [PMID: 27929542 PMCID: PMC5260980 DOI: 10.1038/cddis.2016.415] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/19/2022]
Abstract
Autophagy and epithelial to mesenchymal transition (EMT) are major biological processes in cancer. Autophagy is a catabolic pathway that aids cancer cells to overcome intracellular or environmental stress, including nutrient deprivation, hypoxia and drugs effect. EMT is a complex transdifferentiation through which cancer cells acquire mesenchymal features, including motility and metastatic potential. Recent observations indicate that these two processes are linked in a complex relationship. On the one side, cells that underwent EMT require autophagy activation to survive during the metastatic spreading. On the other side, autophagy, acting as oncosuppressive signal, tends to inhibit the early phases of metastasization, contrasting the activation of the EMT mainly by selectively destabilizing crucial mediators of this process. Currently, still limited information is available regarding the molecular hubs at the interplay between autophagy and EMT. However, a growing number of evidence points to the functional interaction between cytoskeleton and mitochondria as one of the crucial regulatory center at the crossroad between these two biological processes. Cytoskeleton and mitochondria are linked in a tight functional relationship. Controlling mitochondria dynamics, the cytoskeleton cooperates to dictate mitochondria availability for the cell. Vice versa, the number and structure of mitochondria, which are primarily affected by autophagy-related processes, define the energy supply that cancer cells use to reorganize the cytoskeleton and to sustain cell movement during EMT. In this review, we aim to revise the evidence on the functional crosstalk between autophagy and EMT in cancer and to summarize the data supporting a parallel regulation of these two processes through shared signaling pathways. Furthermore, we intend to highlight the relevance of cytoskeleton and mitochondria in mediating the interaction between autophagy and EMT in cancer.
Collapse
|
142
|
Angelis D, Spiliotis ET. Septin Mutations in Human Cancers. Front Cell Dev Biol 2016; 4:122. [PMID: 27882315 PMCID: PMC5101219 DOI: 10.3389/fcell.2016.00122] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022] Open
Abstract
Septins are GTP-binding proteins that are evolutionarily and structurally related to the RAS oncogenes. Septin expression levels are altered in many cancers and new advances point to how abnormal septin expression may contribute to the progression of cancer. In contrast to the RAS GTPases, which are frequently mutated and actively promote tumorigenesis, little is known about the occurrence and role of septin mutations in human cancers. Here, we review septin missense mutations that are currently in the Catalog of Somatic Mutations in Cancer (COSMIC) database. The majority of septin mutations occur in tumors of the large intestine, skin, endometrium and stomach. Over 25% of the annotated mutations in SEPT2, SEPT4, and SEPT9 belong to large intestine tumors. From all septins, SEPT9 and SEPT14 exhibit the highest mutation frequencies in skin, stomach and large intestine cancers. While septin mutations occur with frequencies lower than 3%, recurring mutations in several invariant and highly conserved amino acids are found across different septin paralogs and tumor types. Interestingly, a significant number of these mutations occur in the GTP-binding pocket and septin dimerization interfaces. Future studies may determine how these somatic mutations affect septin structure and function, whether they contribute to the progression of specific cancers and if they could serve as tumor-specific biomarkers.
Collapse
|
143
|
Poüs C, Klipfel L, Baillet A. Cancer-Related Functions and Subcellular Localizations of Septins. Front Cell Dev Biol 2016; 4:126. [PMID: 27878118 PMCID: PMC5099157 DOI: 10.3389/fcell.2016.00126] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022] Open
Abstract
Since the initial discovery of septin family GTPases, the understanding of their molecular organization and cellular roles keeps being refined. Septins have been involved in many physiological processes and the misregulation of specific septin gene expression has been implicated in diverse human pathologies, including neurological disorders and cancer. In this minireview, we focus on the importance of the subunit composition and subcellular localization of septins relevant to tumor initiation, progression, and metastasis. We especially underline the importance of septin polymer composition and of their association with the plasma membrane, actin, or microtubules in cell functions involved in cancer and in resistance to cancer therapies. Through their scaffolding role, their function in membrane compartmentalization or through their protective function against protein degradation, septins also emerge as critical organizers of membrane-associated proteins and of signaling pathways implicated in cancer-associated angiogenesis, apoptosis, polarity, migration, proliferation, and in metastasis. Also, the question as to which of the free monomers, hetero-oligomers, or filaments is the functional form of mammalian septins is raised and the control over their spatial and temporal localization is discussed. The increasing amount of crosstalks identified between septins and cellular signaling mediators reinforces the exciting possibility that septins could be new targets in anti-cancer therapies or in therapeutic strategies to limit drug resistance.
Collapse
Affiliation(s)
- Christian Poüs
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1193, Université Paris-Sud, Université Paris-SaclayChâtenay-Malabry, France; Laboratoire de Biochimie-Hormonologie, Hôpital Antoine Béclère, AP-HPClamart, France
| | - Laurence Klipfel
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1193, Université Paris-Sud, Université Paris-SaclayChâtenay-Malabry, France; Département de Génétique, Institut de la Vision, Université Pierre et Marie Curie Paris 06, Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale UMR-S 968, Centre National de la Recherche Scientifique UMR 7210Paris, France
| | - Anita Baillet
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1193, Université Paris-Sud, Université Paris-Saclay Châtenay-Malabry, France
| |
Collapse
|
144
|
Choi Y, Ko YS, Park J, Choi Y, Kim Y, Pyo JS, Jang BG, Hwang DH, Kim WH, Lee BL. HER2-induced metastasis is mediated by AKT/JNK/EMT signaling pathway in gastric cancer. World J Gastroenterol 2016; 22:9141-9153. [PMID: 27895401 PMCID: PMC5107595 DOI: 10.3748/wjg.v22.i41.9141] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/12/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigated the relationships between HER2, c-Jun N-terminal kinase (JNK) and protein kinase B (AKT) with respect to metastatic potential of HER2-positive gastric cancer (GC) cells.
METHODS Immunohistochemistry was performed on tissue array slides containing 423 human GC specimens. Using HER2-positve GC cell lines SNU-216 and NCI-N87, HER2 expression was silenced by RNA interference, and the activations of JNK and AKT were suppressed by SP600125 and LY294002, respectively. Transwell assay, Western blot, semi-quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining were used in cell culture experiments.
RESULTS In GC specimens, HER2, JNK, and AKT activations were positively correlated with each other. In vitro analysis revealed a positive regulatory feedback loop between HER2 and JNK in GC cell lines and the role of JNK as a downstream effector of AKT in the HER2/AKT signaling pathway. JNK inhibition suppressed migratory capacity through reversing EMT and dual inhibition of JNK and AKT induced a more profound effect on cancer cell motility.
CONCLUSION HER2, JNK and AKT in human GC specimens are positively associated with each other. JNK and AKT, downstream effectors of HER2, co-operatively contribute to the metastatic potential of HER2-positive GC cells. Thus, targeting of these two molecules in combination with HER2 downregulation may be a good approach to combat HER2-positive GC.
Collapse
|
145
|
Hong JH, Kwak Y, Woo Y, Park C, Lee SA, Lee H, Park SJ, Suh Y, Suh BK, Goo BS, Mun DJ, Sanada K, Nguyen MD, Park SK. Regulation of the actin cytoskeleton by the Ndel1-Tara complex is critical for cell migration. Sci Rep 2016; 6:31827. [PMID: 27546710 PMCID: PMC4992831 DOI: 10.1038/srep31827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/27/2016] [Indexed: 11/16/2022] Open
Abstract
Nuclear distribution element-like 1 (Ndel1) plays pivotal roles in diverse biological processes and is implicated in the pathogenesis of multiple neurodevelopmental disorders. Ndel1 function by regulating microtubules and intermediate filaments; however, its functional link with the actin cytoskeleton is largely unknown. Here, we show that Ndel1 interacts with TRIO-associated repeat on actin (Tara), an actin-bundling protein, to regulate cell movement. In vitro wound healing and Boyden chamber assays revealed that Ndel1- or Tara-deficient cells were defective in cell migration. Moreover, Tara overexpression induced the accumulation of Ndel1 at the cell periphery and resulted in prominent co-localization with F-actin. This redistribution of Ndel1 was abolished by deletion of the Ndel1-interacting domain of Tara, suggesting that the altered peripheral localization of Ndel1 requires a physical interaction with Tara. Furthermore, co-expression of Ndel1 and Tara in SH-SY5Y cells caused a synergistic increase in F-actin levels and filopodia formation, suggesting that Tara facilitates cell movement by sequestering Ndel1 at peripheral structures to regulate actin remodeling. Thus, we demonstrated that Ndel1 interacts with Tara to regulate cell movement. These findings reveal a novel role of the Ndel1-Tara complex in actin reorganization during cell movement.
Collapse
Affiliation(s)
- Ji-Ho Hong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Yongdo Kwak
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Cana Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Seol-Ae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Haeryun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Sung Jin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Bo Kyoung Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Kamon Sanada
- Molecular Genetics Research Laboratory, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
146
|
Przygodzka P, Papiewska-Pajak I, Bogusz H, Kryczka J, Sobierajska K, Kowalska MA, Boncela J. Neuromedin U is upregulated by Snail at early stages of EMT in HT29 colon cancer cells. Biochim Biophys Acta Gen Subj 2016; 1860:2445-2453. [PMID: 27450890 DOI: 10.1016/j.bbagen.2016.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/07/2016] [Accepted: 07/15/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) is considered a core process that facilitates the escape of cancer cells from the primary tumor site. The transcription factor Snail was identified as a key regulator of EMT; however, the cascade of regulatory events leading to metastasis remains unknown and new predictive markers of the process are awaited. METHODS Gene expressions were analysed using real-time PCR, protein level by Western immunoblotting and confocal imaging. The motility of the cells was examined using time-lapse microscopy. Affymetrix GeneChip Human Genome U133 Plus 2.0 analysis was performed to identify transcriptomic changes upon Snail. Snail silencing was performed using siRNA nucleofection. NMU detection was performed by ELISA. RESULTS HT29 cells overexpressing Snail showed changed morphology, functions and transcriptomic profile indicating EMT induction. Changes in expression of 324 genes previously correlated with cell motility were observed. Neuromedin U was the second highest upregulated gene in HT29-Snail cells. This increase was validated by real-time PCR. Additionally elevated NMU protein was detected by ELISA in cell media. CONCLUSIONS These results show that Snail in HT29 cells regulates early phenotype conversion towards an intermediate epithelial state. We provided the first evidence that neuromedin U is associated with Snail regulatory function of metastatic induction in colon cancer cells. GENERAL SIGNIFICANCE We described the global, early transcriptomic changes induced through Snail in HT29 colon cancer cells and suggested NMU involvement in this process.
Collapse
Affiliation(s)
| | | | - Helena Bogusz
- Institute of Medical Biology, PAS, 106 Lodowa Street, 93232 Lodz, Poland.
| | - Jakub Kryczka
- Institute of Medical Biology, PAS, 106 Lodowa Street, 93232 Lodz, Poland.
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University, 6/8 Mazowiecka Street, 92215 Lodz, Poland.
| | - M Anna Kowalska
- Institute of Medical Biology, PAS, 106 Lodowa Street, 93232 Lodz, Poland; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Joanna Boncela
- Institute of Medical Biology, PAS, 106 Lodowa Street, 93232 Lodz, Poland.
| |
Collapse
|
147
|
Lovato P, Bicego M, Kesa M, Jojic N, Murino V, Perina A. Traveling on discrete embeddings of gene expression. Artif Intell Med 2016; 70:1-11. [PMID: 27431033 DOI: 10.1016/j.artmed.2016.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVE High-throughput technologies have generated an unprecedented amount of high-dimensional gene expression data. Algorithmic approaches could be extremely useful to distill information and derive compact interpretable representations of the statistical patterns present in the data. This paper proposes a mining approach to extract an informative representation of gene expression profiles based on a generative model called the Counting Grid (CG). METHOD Using the CG model, gene expression values are arranged on a discrete grid, learned in a way that "similar" co-expression patterns are arranged in close proximity, thus resulting in an intuitive visualization of the dataset. More than this, the model permits to identify the genes that distinguish between classes (e.g. different types of cancer). Finally, each sample can be characterized with a discriminative signature - extracted from the model - that can be effectively employed for classification. RESULTS A thorough evaluation on several gene expression datasets demonstrate the suitability of the proposed approach from a twofold perspective: numerically, we reached state-of-the-art classification accuracies on 5 datasets out of 7, and similar results when the approach is tested in a gene selection setting (with a stability always above 0.87); clinically, by confirming that many of the genes highlighted by the model as significant play also a key role for cancer biology. CONCLUSION The proposed framework can be successfully exploited to meaningfully visualize the samples; detect medically relevant genes; properly classify samples.
Collapse
Affiliation(s)
- Pietro Lovato
- Department of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy.
| | - Manuele Bicego
- Department of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Maria Kesa
- Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Nebojsa Jojic
- Microsoft Research, One Microsoft Way, 98052 Redmond, WA, USA
| | - Vittorio Murino
- Pattern Analysis and Computer Vision (PAVIS), Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | | |
Collapse
|
148
|
Liu YH, Jin JL, Wang YZ, Tan Y, Zhou YY, Peng T, Li F, Liang WD, Chartrand P, Jiang YY, Shen ZF. Protrusion-localized STAT3 mRNA promotes metastasis of highly metastatic hepatocellular carcinoma cells in vitro. Acta Pharmacol Sin 2016; 37:805-13. [PMID: 27133294 DOI: 10.1038/aps.2015.166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/24/2015] [Indexed: 02/06/2023]
Abstract
AIM Recent evidence shows that localization of mRNAs and their protein products at cellular protrusions plays a decisive function in the metastasis of cancer cells. The aim of this study was to identify the variety of proteins encoded by protrusion-localized mRNAs and their roles in the metastasis and invasion of liver cancer cells. METHODS Highly metastatic hepatocellular carcinoma cell line HCCLM3 and non-metastatic hepatocellular carcinoma cell line SMMC-7721 were examined. Cell protrusions (Ps) were separated from cell bodies (CB) using a Boyden chamber assay; total mRNA population in CB and Ps fractions was analyzed using high-throughput direct RNA sequencing. The localization of STAT3 mRNA and protein at Ps was confirmed using RT-qPCR, RNA FISH, and immunofluorescence assays. Cell migration capacity and invasiveness of HCCLM3 cells were evaluated using MTT, wound healing migration and in vitro invasion assays. The interaction between Stat3 and growth factor receptors was explored with co-immunoprecipitation assays. RESULTS In HCCLM3 cells, 793 mRNAs were identified as being localized in the Ps fraction according to a cut-off value (Ps/CB ratio) >1.6. The Ps-localized mRNAs could be divided into 4 functional groups, and were all closely related to the invasive and metastatic properties. STAT3 mRNA accumulated in the Ps of HCCLM3 cells compared with non-metastatic SMMC-7721 cells. Treatment of HCCLM3 cells with siRNAs against STAT3 mRNA drastically decreased the cell migration and invasion. Moreover, Ps-localized Stat3 was found to interact with pseudopod-enriched platelet-derived growth factor receptor tyrosine kinase (PDGFRTK) in a growth factor-dependent manner. CONCLUSION This study reveals STAT3 mRNA localization at the Ps of metastatic hepatocellular carcinoma HCCLM3 cells by combining application of genome-wide and gene specific description and functional analysis.
Collapse
|
149
|
Abstract
Rho family GTPases such as Cdc42 are key regulators of essential cellular processes through their effects on cytoskeletal dynamics, signaling and gene expression. Rho GTPases modulate these functions by engaging a wide variety of downstream effectors. Among these effectors is the largely understudied Cdc42EP/BORG family of Cdc42 effectors. BORG proteins have been linked to actin and septin regulation, but their role in development and disease is only starting to emerge. Recently, Cdc42EP3/BORG2 was shown to coordinate actin and septin cytoskeleton rearrangements in cancer-associated fibroblasts (CAFs). Interestingly, Cdc42EP3 expression potentiated cellular responses to mechanical stimulation leading to signaling and transcriptional adaptations required for the emergence of a fully activated CAF phenotype. These findings uncover a novel role for the BORG/septin network in cancer. Here, we demonstrate that Cdc42EP3 function in CAFs relies on tight regulation by Cdc42.
Collapse
Affiliation(s)
- Aaron J Farrugia
- a Tumour Microenvironment Team, Division of Cancer Biology , Institute of Cancer Research , London , UK
| | - Fernando Calvo
- a Tumour Microenvironment Team, Division of Cancer Biology , Institute of Cancer Research , London , UK
| |
Collapse
|
150
|
Zhang J, Deng YT, Liu J, Wang YQ, Yi TW, Huang BY, He SS, Zheng B, Jiang Y. Norepinephrine induced epithelial-mesenchymal transition in HT-29 and A549 cells in vitro. J Cancer Res Clin Oncol 2016; 142:423-35. [PMID: 26358081 DOI: 10.1007/s00432-015-2044-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/03/2015] [Indexed: 02/05/2023]
Abstract
PURPOSE Norepinephrine (NE) has been implicated in epithelial-mesenchymal transition (EMT) of cancer cells. However, the underlying mechanism is poorly understood. The goal of this study was to explore the effect of NE on cancer cell EMT and to investigate the potential mechanism. METHODS HT-29 and A549 cells were treated with NE, β-adrenergic receptor (β-AR) antagonist (propranolol) or inhibitor of transforming growth factor-β (TGF-β) receptor type I kinase (Ly2157299). Morphology of cells was observed with optical and electron microscope and immunofluorescence staining. Cellular migration and invasion were tested with transwell migration assay and Matrigel invasion assay, respectively. TGF-β1 and cyclic adenosine monophosphate (cAMP) were quantified. EMT markers and signaling pathway were measured by RT-PCR and western blot. RESULTS NE stimulated TGF-β1 secretion and intracellular cAMP synthesis, induced morphological alterations in HT-29 and A549 cells, and enhanced their ability of migration and invasion. EMT markers induction was observed in NE-treated cancer cells. The effect of NE could be inhibited by propranolol or Ly2157299. β-AR/TGF-β1 signaling/p-Smad3/Snail and β-AR/TGF-β1 signaling/HIF-1α/Snail were two signaling pathways. CONCLUSION These findings demonstrated that TGF-β1 signaling pathway was a significant factor of NE-induced cancer cells EMT. The data also suggested that psychological stress might be a risk factor which enhances the ability of migration or invasion of cancer cells.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yao-tiao Deng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jie Liu
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yu-qing Wang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ting-wu Yi
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Bo-yan Huang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Sha-sha He
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Bo Zheng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yu Jiang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo-Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|