101
|
KIR haplotype B donors but not KIR-ligand mismatch result in a reduced incidence of relapse after haploidentical transplantation using reduced intensity conditioning and CD3/CD19-depleted grafts. Ann Hematol 2014; 93:1579-86. [PMID: 24771045 DOI: 10.1007/s00277-014-2084-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 04/08/2014] [Indexed: 10/25/2022]
Abstract
Natural killer (NK)-cell alloreactivity after allogeneic hematopoietic cell transplantation (HCT) is influenced by the interaction of killer-cell immunoglobulin-like receptors (KIRs) on donor NK cells and human leukocyte antigen (HLA) class I ligands on recipient cells. We investigated the influence of donor KIR haplotype and KIR-ligand mismatch (MM) on relapse in 57 patients with hematologic malignancies receiving haploidentical HCT after reduced intensity conditioning and graft CD3/CD19 depletion. Of the 57 donors, 17 had KIR haplotype A (29.8 %) and 40 had KIR haplotype B (70.2 %). A KIR-ligand MM was found in 34 of 57 patients (59.6 %). There was no difference between donor KIR haplotypes in non-relapse mortality (NRM, p = 0.200) but had a significantly reduced incidence of relapse for patients with a haplotype B donor (p = 0.001). In particular, patients in partial remission (PR) benefited more from a haplotype B graft (p = 0.008) than patients in complete remission (CR, p = 0.297). Evaluating KIR-ligand MM cumulative incidences of relapse (p = 0.680) or NRM (p = 0.579), we found no significant difference. In conclusion, in the setting of reduced intensity conditioning (RIC) and CD3/CD19-depleted haploidentical HCT, we could not confirm the positive data with KIR-ligand MM but observed a significant lower risk of relapse with a KIR haplotype B donor.
Collapse
|
102
|
Cheung NKV, Cheung IY, Kramer K, Modak S, Kuk D, Pandit-Taskar N, Chamberlain E, Ostrovnaya I, Kushner BH. Key role for myeloid cells: phase II results of anti-G(D2) antibody 3F8 plus granulocyte-macrophage colony-stimulating factor for chemoresistant osteomedullary neuroblastoma. Int J Cancer 2014; 135:2199-205. [PMID: 24644014 DOI: 10.1002/ijc.28851] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/18/2014] [Indexed: 11/09/2022]
Abstract
Anti-G(D2) murine antibody 3F8 plus subcutaneously (sc) administered granulocyte-macrophage colony-stimulating factor (GM-CSF) was used against primary refractory neuroblastoma in metastatic osteomedullary sites. Large study size and long follow-up allowed assessment of prognostic factors in a multivariate analysis not reported with other anti-G(D2) antibodies. In a phase II trial, 79 patients without prior progressive disease were treated for persistent osteomedullary neuroblastoma documented by histology and/or metaiodobenzyl-guanidine (MIBG) scan. In the absence of human antimouse antibody, 3F8 + scGM-CSF cycles were repeated up to 24 months. Minimal residual disease (MRD) in bone marrow was measured by quantitative reverse transcription-polymerase chain reaction pre-enrollment and post-cycle #2, before initiation of 13-cis-retinoic acid. Study endpoints were: (i) progression-free survival (PFS) compared with the predecessor trial of 3F8 plus intravenously administered (iv) GM-CSF (26 patients) and (ii) impact of MRD on PFS. Using all 105 patients from the two consecutive 3F8 + GM-CSF trials, prognostic factors were analyzed by multivariate Cox regression model. Complete response rates to 3F8 + scGM-CSF were 87% by histology and 38% by MIBG. Five-year PFS was 24 ± 6%, which was significantly superior to 11 ± 7% with 3F8 + ivGM-CSF (p = 0.002). In the multivariate analysis, significantly better PFS was associated with R/R or H/R FCGR2A polymorphism, sc route of GM-CSF and early MRD response. MYCN amplification was not prognostic. Complement consumption was similar with either route of GM-CSF. Toxicities were manageable, allowing outpatient treatment. 3F8 + scGM-CSF is highly active against chemoresistant osteomedullary neuroblastoma. MRD response may be an indicator of tumor sensitivity to anti-G(D2) immunotherapy. Correlative studies highlight the antineoplastic potency of myeloid effectors.
Collapse
Affiliation(s)
- Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Bottino C, Dondero A, Bellora F, Moretta L, Locatelli F, Pistoia V, Moretta A, Castriconi R. Natural killer cells and neuroblastoma: tumor recognition, escape mechanisms, and possible novel immunotherapeutic approaches. Front Immunol 2014; 5:56. [PMID: 24575100 PMCID: PMC3921882 DOI: 10.3389/fimmu.2014.00056] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/30/2014] [Indexed: 12/19/2022] Open
Abstract
Neuroblastoma (NB) is the most common extra-cranial solid tumor of childhood and arises from developing sympathetic nervous system. Most primary tumors localize in the abdomen, the adrenal gland, or lumbar sympathetic ganglia. Amplification in tumor cells of MYCN, the major oncogenic driver, patients' age over 18 months, and the presence at diagnosis of a metastatic disease (stage IV, M) identify NB at high risk of treatment failure. Conventional therapies did not significantly improve the overall survival of these patients. Moreover, the limited landscape of somatic mutations detected in NB is hampering the development of novel pharmacological approaches. Major efforts aim to identify novel NB-associated surface molecules that activate immune responses and/or direct drugs to tumor cells and tumor-associated vessels. PVR (Poliovirus Receptor) and B7-H3 are promising targets, since they are expressed by most high-risk NB, are upregulated in tumor vasculature and are essential for tumor survival/invasiveness. PVR is a ligand of DNAM-1 activating receptor that triggers the cytolytic activity of natural killer (NK) cells against NB. In animal models, targeting of PVR with an attenuated oncolytic poliovirus induced tumor regression and elimination. Also B7-H3 was successfully targeted in preclinical studies and is now being tested in phase I/II clinical trials. B7-H3 down-regulates NK cytotoxicity, providing NB with a mechanism of escape from immune response. The immunosuppressive potential of NB can be enhanced by the release of soluble factors that impair NK cell function and/or recruitment. Among these, TGF-β1 modulates the cytotoxicity receptors and the chemokine receptor repertoire of NK cells. Here, we summarize the current knowledge on the main cell surface molecules and soluble mediators that modulate the function of NK cells in NB, considering the pros and cons that must be taken into account in the design of novel NK cell-based immunotherapeutic approaches.
Collapse
Affiliation(s)
- Cristina Bottino
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Genova , Italy ; Istituto Giannina Gaslini , Genova , Italy
| | - Alessandra Dondero
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Genova , Italy
| | - Francesca Bellora
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Genova , Italy
| | | | - Franco Locatelli
- Dipartimento di Onco-Ematologia Pediatrica, Ospedale Bambino Gesù , Roma , Italy ; Università di Pavia , Pavia , Italy
| | | | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Genova , Italy ; Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova , Genova , Italy
| | - Roberta Castriconi
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova , Genova , Italy ; Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova , Genova , Italy
| |
Collapse
|
104
|
Membrane-bound TRAIL supplements natural killer cell cytotoxicity against neuroblastoma cells. J Immunother 2013; 36:319-29. [PMID: 23719242 DOI: 10.1097/cji.0b013e31829b4493] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuroblastoma cells have been reported to be resistant to death induced by soluble, recombinant forms of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) (CD253/TNFSF10) because of low or absent expression of caspase-8 and/or TRAIL-receptor 2 (TRAIL-R2/DR5/CD262/TNFRSF10b). However, their sensitivity to membrane-bound TRAIL on natural killer (NK) cells is not known. Comparing microarray gene expression and response to NK cell-mediated cytotoxicity, we observed a correlation between TRAIL-R2 expression and the sensitivity of 14 neuroblastoma cell lines to the cytotoxicity of NK cells activated with interleukin (IL)-2 plus IL-15. Even though most NK cytotoxicity was dependent upon perforin, the cytotoxicity was supplemented by TRAIL in 14 of 17 (82%) neuroblastoma cell lines as demonstrated using an anti-TRAIL neutralizing antibody. Similarly, a recently developed NK cell expansion system employing IL-2 plus lethally irradiated K562 feeder cells constitutively expressing membrane-bound IL-21 (K562 clone 9.mbIL21) resulted in activated NK cells derived from normal healthy donors and neuroblastoma patients that also utilized TRAIL to supplement cytotoxicity. Exogenous interferon-γ upregulated expression of caspase-8 in 3 of 4 neuroblastoma cell lines and increased the contribution of TRAIL to NK cytotoxicity against 2 of the 3 lines; however, relatively little inhibition of cytotoxicity was observed when activated NK cells were treated with an anti-interferon-γ neutralizing antibody. Constraining the binding of anti-TRAIL neutralizing antibody to membrane-bound TRAIL but not soluble TRAIL indicated that membrane-bound TRAIL alone was responsible for essentially all of the supplemental cytotoxicity. Together, these findings support a role for membrane-bound TRAIL in the cytotoxicity of NK cells against neuroblastoma cells.
Collapse
|
105
|
Kudo K, Imai C, Lorenzini P, Kamiya T, Kono K, Davidoff AM, Chng WJ, Campana D. T lymphocytes expressing a CD16 signaling receptor exert antibody-dependent cancer cell killing. Cancer Res 2013; 74:93-103. [PMID: 24197131 DOI: 10.1158/0008-5472.can-13-1365] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To expand applications for T-cell-based immunotherapy in cancer, we designed a receptor that binds the Fc portion of human immunoglobulins and delivers activation signals. The construct included the high-affinity CD16 (FCGR3A) V158 variant, CD8α hinge, and transmembrane domains, along with signaling domains from CD3ζ and 4-1BB (TNFRSF9), forming a chimeric receptor termed CD16V-BB-ζ. After retrovirus-mediated expression in human T cells, CD16V-BB-ζ bound humanized antibodies with higher affinity than a control receptor containing the more common F158 variant. Engagement of CD16V-BB-ζ provoked T-cell activation, exocytosis of lytic granules, and sustained proliferation, with a mean cell recovery after 4-week coculture with Daudi lymphoma cells and rituximab of nearly 70-fold relative to input cells. In contrast, unbound antibody alone produced no effect. CD16V-BB-ζ T cells specifically killed lymphoma cells and primary chronic lymphocytic leukemia cells in combination with rituximab at a low effector:target ratio, even when assayed on mesenchymal cells. Trastuzumab triggered CD16V-BB-ζ-mediated killing of HER2 (ERBB2)(+) breast and gastric cancer cells; similar results were obtained with an anti-GD2 antibody in neuroblastoma and osteosarcoma cells. Furthermore, coadministration of CD16V-BB-ζ T cells with immunotherapeutic antibodies exerted considerable antitumor activity in vivo. Signaling mediated by 4-1BB-CD3ζ induced higher T-cell activation, proliferation, and cytotoxicity than CD3ζ or FcεRIγ, and the receptor was expressed effectively after mRNA electroporation without viral vectors, facilitating clinical translation. Our results offer preclinical proof of concept for CD16V-BB-ζ as a universal, next-generation chimeric receptor with the potential to augment the efficacy of antibody therapies for cancer.
Collapse
Affiliation(s)
- Ko Kudo
- Authors' Affiliations: Departments of Pediatrics and Surgery, and Cancer Science Institute, National University of Singapore, Singapore; Department of Pediatrics, Niigata University, Niigata, Japan; and Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Kroesen M, Nierkens S, Ansems M, Wassink M, Orentas RJ, Boon L, den Brok MH, Hoogerbrugge PM, Adema GJ. A transplantable TH-MYCN transgenic tumor model in C57Bl/6 mice for preclinical immunological studies in neuroblastoma. Int J Cancer 2013; 134:1335-45. [PMID: 24038106 DOI: 10.1002/ijc.28463] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/07/2013] [Accepted: 08/14/2013] [Indexed: 12/29/2022]
Abstract
Current multimodal treatments for patients with neuroblastoma (NBL), including anti-disialoganglioside (GD2) monoclonal antibody (mAb) based immunotherapy, result in a favorable outcome in around only half of the patients with advanced disease. To improve this, novel immunocombinational strategies need to be developed and tested in autologous preclinical NBL models. A genetically well-explored autologous mouse model for NBL is the TH-MYCN model. However, the immunobiology of the TH-MYCN model remains largely unexplored. We developed a mouse model using a transplantable TH-MYCN cell line in syngeneic C57Bl/6 mice and characterized the immunobiology of this model. In this report, we show the relevance and opportunities of this model to study immunotherapy for human NBL. Similar to human NBL cells, syngeneic TH-MYCN-derived 9464D cells endogenously express the tumor antigen GD2 and low levels of MHC Class I. The presence of the adaptive immune system had little or no influence on tumor growth, showing the low immunogenicity of the NBL cells. In contrast, depletion of NK1.1+ cells resulted in enhanced tumor outgrowth in both wild-type and Rag1(-/-) mice, showing an important role for NK cells in the natural anti-NBL immune response. Analysis of the tumor infiltrating leukocytes ex vivo revealed the presence of both tumor associated myeloid cells and T regulatory cells, thus mimicking human NBL tumors. Finally, anti-GD2 mAb mediated NBL therapy resulted in ADCC in vitro and delayed tumor outgrowth in vivo. We conclude that the transplantable TH-MYCN model represents a relevant model for the development of novel immunocombinatorial approaches for NBL patients.
Collapse
Affiliation(s)
- Michiel Kroesen
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Department of Pediatric Oncology, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Brehm C, Huenecke S, Pfirrmann V, Rossig C, Mackall CL, Bollard CM, Gottschalk S, Schlegel PG, Klingebiel T, Bader P. Highlights of the third International Conference on Immunotherapy in Pediatric Oncology. Pediatr Hematol Oncol 2013; 30:349-66. [PMID: 23758210 DOI: 10.3109/08880018.2013.802106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The third International Conference on Immunotherapy in Pediatric Oncology was held in Frankfurt/Main, Germany, October 1-2, 2012. Major topics of the conference included (i) cellular therapies using antigen-specific and gene-modified T cells for targeting leukemia and pediatric solid tumors; (ii) overcoming hurdles and barriers with regard to immunogenicity, immune escape, and the role of tumor microenvironment; (iii) vaccine strategies and antigen presentation; (iv) haploidentical transplantation and innate immunity; (v) the role of immune cells in allogeneic transplantation; and (vi) current antibody/immunoconjugate approaches for the treatment of pediatric malignancies. During the past decade, major advances have been made in improving the efficacy of these modalities and regulatory hurdles have been taken. Nevertheless, there is still a long way to go to fully exploit the potential of immunotherapeutic strategies to improve the cure of children and adolescents with malignancies. This and future meetings will support new collaborations and insights for further translational and clinical immunotherapy studies.
Collapse
Affiliation(s)
- Claudia Brehm
- Department for Stem Cell Transplantation and Immunology, J.W. Goethe-University Hospital, University Hospital for Children and Adolescents, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Murine NK-cell licensing is reflective of donor MHC-I following allogeneic hematopoietic stem cell transplantation in murine cytomegalovirus responses. Blood 2013; 122:1518-21. [PMID: 23818546 DOI: 10.1182/blood-2013-02-483503] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cells express inhibitory receptors with varied binding affinities to specific major histocompatibility complex class I (MHC-I) haplotypes. NK cells can be classified as licensed or unlicensed based on their ability or inability to bind MHC-I, respectively. The role of donor vs host MHC on their development after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is not known. Following reciprocal MHC-disparate allogeneic transplants and during de novo NK-cell recovery, depletion of the licensed and not unlicensed population of NK cells as determined by the licensing patterns of donor MHC-I haplotypes, resulted in significantly increased susceptibility to murine cytomegalovirus (MCMV) infection. A corresponding expansion of the licensed Ly49H(+) NK cells occurred with greater interferon γ production by these cells than unlicensed NK cells in the context of donor MHC-I. Thus, NK licensing behavior to MCMV corresponds to the donor, and not recipient, MHC haplotype after allo-HSCT in mice.
Collapse
|
109
|
Current and future strategies for relapsed neuroblastoma: challenges on the road to precision therapy. J Pediatr Hematol Oncol 2013; 35:337-47. [PMID: 23703550 DOI: 10.1097/mph.0b013e318299d637] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
More than half of the patients with high-risk neuroblastoma (NB) will relapse despite intensive multimodal therapy, with an additional 10% to 20% refractory to induction chemotherapy. Management of these patients is challenging, given disease heterogeneity, resistance, and organ toxicity including poor hematological reserve. This review will discuss the current treatment options and consider novel therapies on the horizon. Cytotoxic chemotherapy regimens for relapse and refractory NB typically center on the use of the camptothecins, topotecan and irinotecan, in combination with agents such as cyclophosphamide and temozolomide, with objective responses but poor long-term survival. I-meta-iodobenzylguanidine therapy is also effective for relapsed patients with meta-iodobenzylguanidine-avid disease, with objective responses in a third of cases. Immunotherapy with anti-GD2 has recently been incorporated into upfront therapy, but its role in the relapse setting remains uncertain, especially for patients with bulky disease. Future cell-based immunotherapies and other approaches may be able to overcome this limitation. Finally, many novel molecularly targeted agents are in development, some of which show specific promise for NB. Successful incorporation of these agents will require combinations with conventional cytotoxic chemotherapies, as well as the development of predictive biomarkers, to ultimately personalize approaches to patients with "targetable" molecular abnormalities.
Collapse
|
110
|
Differential expression of proteins in naïve and IL-2 stimulated primary human NK cells identified by global proteomic analysis. J Proteomics 2013; 91:151-163. [PMID: 23806757 DOI: 10.1016/j.jprot.2013.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/15/2013] [Accepted: 06/17/2013] [Indexed: 12/17/2022]
Abstract
UNLABELLED Natural killer (NK) cells efficiently cytolyse tumors and virally infected cells. Despite the important role that interleukin (IL)-2 plays in stimulating the proliferation of NK cells and increasing NK cell activity, little is known about the alterations in the global NK cell proteome following IL-2 activation. To compare the proteomes of naïve and IL-2-activated primary NK cells and identify key cellular pathways involved in IL-2 signaling, we isolated proteins from naïve and IL-2-activated NK cells from healthy donors, the proteins were trypsinized and the resulting peptides were analyzed by 2D LC ESI-MS/MS followed by label-free quantification. In total, more than 2000 proteins were identified from naïve and IL-2-activated NK cells where 383 proteins were found to be differentially expressed following IL-2 activation. Functional annotation of IL-2 regulated proteins revealed potential targets for future investigation of IL-2 signaling in human primary NK cells. A pathway analysis was performed and revealed several pathways that were not previously known to be involved in IL-2 response, including ubiquitin proteasome pathway, integrin signaling pathway, platelet derived growth factor (PDGF) signaling pathway, epidermal growth factor receptor (EGFR) signaling pathway and Wnt signaling pathway. BIOLOGICAL SIGNIFICANCE The development and functional activity of natural killer (NK) cells is regulated by interleukin (IL)-2 which stimulates the proliferation of NK cells and increases NK cell activity. With the development of IL-2-based immunotherapeutic strategies that rely on the IL-2-mediated activation of NK cells to target human cancers, it is important to understand the global molecular events triggered by IL-2 in human NK cells. The differentially expressed proteins in human primary NK cells following IL-2 activation identified in this study confirmed the activation of JAK-STAT signaling pathway and cell proliferation by IL-2 as expected, but also led to the discovery and identification of other factors that are potentially important in IL-2 signaling. These new factors warrant further investigation on their potential roles in modulating NK cell biology. The results from this study suggest that the activation of NK cells by IL-2 is a dynamic process through which proteins with various functions are regulated. Such findings will be important for the elucidation of molecular pathways involved in IL-2 signaling in NK cells and provide new targets for future studies in NK cell biology.
Collapse
|
111
|
Abstract
Neuroblastoma is a solid tumour that arises from the developing sympathetic nervous system. Over the past decade, our understanding of this disease has advanced tremendously. The future challenge is to apply the knowledge gained to developing risk-based therapies and, ultimately, improving outcome. In this Review we discuss the key discoveries in the developmental biology, molecular genetics and immunology of neuroblastoma, as well as new translational tools for bringing these promising scientific advances into the clinic.
Collapse
Affiliation(s)
- Nai-Kong V. Cheung
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Michael A. Dyer
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
112
|
Intratumoral treatment of smaller mouse neuroblastoma tumors with a recombinant protein consisting of IL-2 linked to the hu14.18 antibody increases intratumoral CD8+ T and NK cells and improves survival. Cancer Immunol Immunother 2013; 62:1303-13. [PMID: 23661160 DOI: 10.1007/s00262-013-1430-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 04/25/2013] [Indexed: 01/10/2023]
Abstract
Hu14.18-IL2 is an immunocytokine (IC) consisting of human IL-2 linked to hu14.18 mAb, which recognizes GD2 disialoganglioside. Phase II clinical trials of intravenous-hu14.18-IL2 (IV-IC) in neuroblastoma and melanoma are underway, and have already demonstrated activity in neuroblastoma. In our Phase II trial, lower neuroblastoma burden at the time of treatment was associated with a greater likelihood of clinical response to IV-IC. We have previously shown that intratumoral-hu14.18-IL2 (IT-IC) compared to IV-IC results in enhanced local and systemic antitumor activity in tumor-bearing mice. We utilized a mouse model to investigate the impact of tumor burden on hu14.18-IL2 treatment efficacy in IV- versus IT-treated animals. Studies presented here describe the analyses of tumor burden at the initiation of treatment and its effects on treatment efficacy, survival, and tumor-infiltrating leukocytes in A/J mice bearing subcutaneous NXS2 neuroblastoma. We show that smaller tumor burden at treatment initiation is associated with increased infiltration of NK and CD8+ T cells and increased overall survival. NXS2 tumor shrinkage shortly after completion of the 3 days of hu14.18-IL2 treatment is necessary for long-term survival. This model demonstrates that tumor size is a strong predictor of hu14.18-IL2-induced lymphocyte infiltration and treatment outcome.
Collapse
|
113
|
Murine natural killer cell licensing and regulation by T regulatory cells in viral responses. Proc Natl Acad Sci U S A 2013; 110:7401-6. [PMID: 23589894 DOI: 10.1073/pnas.1218767110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells show differential functionality based on their capability of binding to self-MHC consistent with licensing. Here we show in vivo confirmation of the physiologic effects of licensing with differential effects of NK subsets on anti-murine cytomegalovirus (anti-MCMV) responses after syngeneic hematopoietic stem cell transplantation (HSCT) or regulatory T-cell (Treg) depletion. After HSCT, depletion of licensed NK cells led to far greater viral loads in target organs early after infection compared with nondepleted and unlicensed depleted mice. There was a preferential expansion of licensed, C-type lectin-like activating receptor Ly49H+ NK cells with increased IFNγ production after infection in nondepleted mice post-HSCT and after Treg depletion. Adoptive transfer of licensed NK subsets into immunodeficient hosts provided significantly greater MCMV resistance compared with transfer of total NK populations or unlicensed subsets. In non-HSCT mice, only concurrent depletion of Tregs or TGF-β neutralization resulted in detection of NK licensing effects. This suggests that licensed NK cells are the initial and rapidly responding population of NK cells to MCMV infection, but are highly regulated by Tregs and TGF-β.
Collapse
|
114
|
Seidel UJE, Schlegel P, Lang P. Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Front Immunol 2013; 4:76. [PMID: 23543707 PMCID: PMC3608903 DOI: 10.3389/fimmu.2013.00076] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/08/2013] [Indexed: 12/11/2022] Open
Abstract
In the last decade several therapeutic antibodies have been Federal Drug Administration (FDA) and European Medicines Agency (EMEA) approved. Although their mechanisms of action in vivo is not fully elucidated, antibody-dependent cellular cytotoxicity (ADCC) mediated by natural killer (NK) cells is presumed to be a key effector function. A substantial role of ADCC has been demonstrated in vitro and in mouse tumor models. However, a direct in vivo effect of ADCC in tumor reactivity in humans remains to be shown. Several studies revealed a predictive value of FcγRIIIa-V158F polymorphism in monoclonal antibody treatment, indicating a potential effect of ADCC on outcome for certain indications. Furthermore, the use of therapeutic antibodies after allogeneic hematopoietic stem cell transplantation is an interesting option. Studying the role of the FcγRIIIa-V158F polymorphism and the influence of Killer-cell Immunoglobuline-like Receptor (KIR) receptor ligand incompatibility on ADCC in this approach may contribute to future transplantation strategies. Despite the success of approved second-generation antibodies in the treatment of several malignancies, efforts are made to further augment ADCC in vivo by antibody engineering. Here, we review currently used therapeutic antibodies for which ADCC has been suggested as effector function.
Collapse
Affiliation(s)
- Ursula J E Seidel
- Department of General Paediatrics, Oncology/Haematology, University Children's Hospital Tübingen Tübingen, Germany
| | | | | |
Collapse
|
115
|
Rujkijyanont P, Chan WK, Eldridge PW, Lockey T, Holladay M, Rooney B, Davidoff AM, Leung W, Vong Q. Ex vivo activation of CD56(+) immune cells that eradicate neuroblastoma. Cancer Res 2013; 73:2608-18. [PMID: 23440424 DOI: 10.1158/0008-5472.can-12-3322] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the use of intensive contemporary multimodal therapy, the overall survival of patients with high-risk neuroblastoma is still less than 50%. Therefore, immunotherapy without cross-resistance and overlapping toxicity has been proposed. In this study, we report the development of a novel strategy to specifically activate and expand human CD56(+) (NCAM1) natural killer (NK) immune cells from normal donors and patients with neuroblastoma. Enriched CD56(+) cells from peripheral blood were mixed with CD56(-) fraction at 1:1 ratio and cultured in the presence of OKT3, interleukin (IL)-2, and -15 for five days and then without OKT3 for 16 more days. The final products contained more than 90% CD56(+) cells and could kill neuroblastoma cells effectively that were originally highly resistant to nonprocessed NK cells. Mechanistically, cytolysis of neuroblastoma was mediated through natural cytotoxicity receptor (NCR), DNAX accessory molecule-1 (DNAM-1; CD226), perforin, and granzyme B. Successful clinical scale-up in a good manufacturing practices (GMP)-compliant bioreactor yielded effector cells that in a neuroblastoma xenograft model slowed tumor growth and extended survival without GVHD. Investigation of CD56(+) cells from patients with neuroblastoma revealed a similar postactivation phenotype and lytic activity. Our findings establish a novel and clinically expedient strategy to generate allogeneic or autologous CD56(+) cells that are highly cytotoxic against neuroblastoma with minimal risk of GVHD.
Collapse
Affiliation(s)
- Piya Rujkijyanont
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Allogeneic hematopoietic cell transplantation for neuroblastoma: the CIBMTR experience. Bone Marrow Transplant 2013; 48:1056-64. [PMID: 23419433 PMCID: PMC3661721 DOI: 10.1038/bmt.2012.284] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/06/2012] [Accepted: 12/01/2012] [Indexed: 02/06/2023]
Abstract
While the role of auto-HCT is well established in neuroblastoma, the role of allo-HCT is controversial. The CIBMTR conducted a retrospective review of 143 allo-HCT for NBL reported in 1990-2007. Patients were categorized into two different groups: those who had not (Group 1) and had (Group 2) undergone a prior auto HCT (n=46 and 97, respectively). One-year and five-year overall survival (OS) were 59% and 29% for Group 1 and 50% and 7% for Group 2. Amongst donor types, disease free survival (DFS) and OS were significantly lower for unrelated transplants at 1 and 3 years but not 5 years post-HCT. Patients in complete response (CR) or very good partial response (VGPR) at transplant had lower relapse rates and better DFS and OS, compared to those not in CR or VGPR. Our analysis indicates that allo-HCT can cure some neuroblastoma patients, with lower relapse rates and improved survival in patients without a history of prior auto-HCT as compared to those patients who had previously undergone auto-HCT. Although the data do not address why either strategy was chosen for patients, allo-HCT after a prior auto-HCT appears to offer minimal benefit. Disease recurrence remains the most common cause of treatment failure.
Collapse
|
117
|
Parsons K, Bernhardt B, Strickland B. Targeted Immunotherapy for High-Risk Neuroblastoma—The Role of Monoclonal Antibodies. Ann Pharmacother 2013; 47:210-8. [DOI: 10.1345/aph.1r353] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE: To systematically review clinical trials evaluating anti-disialoganglioside (GD2) antibodies in treating high-risk neuroblastoma in children. DATA SOURCES: A literature search was conducted in PubMed/MEDLINE, International Pharmaceutical Abstracts, and Cumulative Index of Nursing and Allied Health Literature (all searches 1990-August 2012) using the terms neuroblastoma, immunotherapy, 3F8, ch14.18, and hu14.18. Meeting abstracts presented between 1990 and 2012 from the American Society of Clinical Oncology, European Society for Medical Oncology, the American Society of Pediatric Hematology Oncology, Society of Surgical Oncology, and the American Society of Hematology were also evaluated. STUDY SELECTION AND DATA EXTRACTION: All completed and ongoing clinical trials of anti-GD2 antibodies in neuroblastoma were included. References from selected articles were also reviewed to identify additional citations. DATA SYNTHESIS: In 1999, the results of a Children's Cancer Group trial established that consolidation therapy after induction, surgery, and radiation should include purged autologous stem cell rescue followed by maintenance with isotretinoin. Overall survival at 7 years with this regimen remains below 30%. Over the following decade, antibodies targeting GD2, a surface antigen found on the surface of neuroblastoma cells, have emerged as a major therapeutic development for high-risk neuroblastoma. Anti-GD2 antibodies incite immune-mediated cytotoxicity toward neuroblastoma cells when given as monotherapy or in combination with cytokines such as sargramostim (granulocyte-macrophage colony-stimulating factor) or aldesleukin (interleukin-2). Responses to anti-GD2 agents appear most notable in patients with minimal residual disease following standard therapy. A chimeric preparation, ch14.18, is the only anti-GD2 antibody to be evaluated in a large controlled clinical trial, in which it demonstrated overall survival of 86% at 2 years in patients with high-risk neuroblastoma. Older nonrandomized studies of ch14.18 monotherapy and 3F8, a murine antibody, suggest this survival rate remains between 50 and 85% at 5 years posttreatment. CONCLUSIONS: Multiple GD2-specific monoclonal antibodies have been researched over the last decade in patients diagnosed with high-risk neuroblastoma. One anti-GD2 antibody, ch14.18, was found to significantly improve event-free and overall survival of high-risk neuroblastoma. Therefore, the standard approach to treating high-risk neuroblastoma is likely to undergo a major shift once an anti-GD2 antibody becomes commercially available.
Collapse
Affiliation(s)
- Kerry Parsons
- Kerry Parsons PharmD BCOP, Pediatric Oncology Pharmacist, Department of Pharmacy, Children's of Alabama, Birmingham, AL
| | - Brooke Bernhardt
- Brooke Bernhardt PharmD BCOP, Clinical Pharmacy Specialist, Hematology/Oncology, Department of Pharmacy, Texas Children's Hospital, Houston, TX
| | - Brandy Strickland
- Brandy Strickland PharmD BCOP, Clinical Pharmacy Specialist, Pediatric Hematology and Oncology, Department of Pharmacy, Wake Forest Baptist Health, Winston-Salem, NC
| |
Collapse
|
118
|
Liu Y, Wu HW, Sheard MA, Sposto R, Somanchi SS, Cooper LJN, Lee DA, Seeger RC. Growth and activation of natural killer cells ex vivo from children with neuroblastoma for adoptive cell therapy. Clin Cancer Res 2013; 19:2132-43. [PMID: 23378384 DOI: 10.1158/1078-0432.ccr-12-1243] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Adoptive transfer of natural killer (NK) cells combined with tumor-specific monoclonal antibodies (mAb) has therapeutic potential for malignancies. We determined if large numbers of activated NK (aNK) cells can be grown ex vivo from peripheral blood mononuclear cells (PBMC) of children with high-risk neuroblastoma using artificial antigen-presenting cells (aAPC). EXPERIMENTAL DESIGN Irradiated K562-derived Clone 9.mbIL21 aAPC were cocultured with PBMC, and propagated NK cells were characterized with flow cytometry, cytotoxicity assays, Luminex multicytokine assays, and a nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model of disseminated neuroblastoma. RESULTS Coculturing patient PBMC with aAPC for 14 days induced 2,363- ± 443-fold expansion of CD56(+)CD3(-)CD14(-) NK cells with 83% ± 3% purity (n = 10). Results were similar to PBMC from normal donors (n = 5). Expression of DNAM-1, NKG2D, FcγRIII/CD16, and CD56 increased 6- ± 3-, 10- ± 2-, 21- ± 20-, and 18- ± 3-fold, respectively, on day 14 compared with day 0, showing activation of NK cells. In vitro, aNK cells were highly cytotoxic against neuroblastoma cell lines and killing was enhanced with GD2-specific mAb ch14.18. When mediating cytotoxicity with ch14.18, release of TNF-α, granulocyte macrophage colony-stimulating factor, IFN-γ, sCD40L, CCL2/MCP-1, CXCL9/MIG, and CXCL11/I-TAC by aNK cells increased 4-, 5-, 6-, 15-, 265-, 917-, and 363-fold (151-9,121 pg/mL), respectively, compared with aNK cells alone. Survival of NOD/SCID mice bearing disseminated neuroblastoma improved when treated with thawed and immediately intravenously infused cryopreserved aNK cells compared with untreated mice and was further improved when ch14.18 was added. CONCLUSION Propagation of large numbers of aNK cells that maintain potent antineuroblastoma activities when cryopreserved supports clinical testing of adoptive cell therapy with ch14.18.
Collapse
Affiliation(s)
- Yin Liu
- Division of Hematology/Oncology and Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Enhancement of the anti-melanoma response of Hu14.18K322A by αCD40 + CpG. Cancer Immunol Immunother 2012; 62:665-75. [PMID: 23151945 DOI: 10.1007/s00262-012-1372-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/01/2012] [Indexed: 10/27/2022]
Abstract
Targeted monoclonal antibodies (mAb) can be used therapeutically for tumors with identifiable antigens such as disialoganglioside GD2, expressed on neuroblastoma and melanoma tumors. Anti-GD2 mAbs (αGD2) can provide clinical benefit in patients with neuroblastoma. An important mechanism of mAb therapy is antibody-dependent cellular cytotoxicity (ADCC). Combinatorial therapeutic strategies can dramatically increase the anti-tumor response elicited by mAbs. We combined a novel αGD2 mAb, hu14.18K322A, with an immunostimulatory regimen of agonist CD40 mAb and class B CpG-ODN 1826 (CpG). Combination immunotherapy was more effective than the single therapeutic components in a syngeneic model of GD2-expressing B16 melanoma with minimal tumor burden. NK cell depletion in B6 mice showed that NK cells were required for the anti-tumor effect; however, anti-tumor responses were also observed in tumor-bearing SCID/beige mice. Thus, NK cell cytotoxicity did not appear to be essential. Peritoneal macrophages from anti-CD40 + CpG-treated mice inhibited tumor cells in vitro in an hu14.18K322A antibody-dependent manner. These data highlight the importance of myeloid cells as potential effectors in immunotherapy regimens utilizing tumor-specific mAb and suggest that further studies are needed to investigate the therapeutic potential of activated myeloid cells and their interaction with NK cells.
Collapse
|
120
|
Successful allogeneic hematopoietic cell engraftment after a minimal conditioning regimen in children with relapsed or refractory solid tumors. Biol Blood Marrow Transplant 2012; 19:291-7. [PMID: 23063628 DOI: 10.1016/j.bbmt.2012.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/03/2012] [Indexed: 01/10/2023]
Abstract
Children with relapsed or refractory solid tumors face dismal prognoses, and novel therapies are desperately needed. Allogeneic hematopoietic cell transplantation (HCT) offers potential for cell-based therapy, but the toxicity of myeloablation limits this approach in heavily pretreated patients. We sought to determine the feasibility of HCT in a cohort of 24 children with incurable solid tumors using human leukocyte antigen-matched sibling or unrelated donors and a minimal conditioning regimen. Before stem cell infusion, all patients received 3 daily doses of 30 mg/m(2) fludarabine followed by 2 Gy of total body irradiation. Hematopoietic cell recovery was rapid and reliable. Median time to neutrophil engraftment was 13.5 days for sibling donors and 12 days for unrelated donors. Donor lymphocyte infusions were used safely in 4 patients, all of whom had either improved chimerism or apparent tumor response. Graft-versus-host disease was comparable across donor sources and did not affect survival. Relapse remains a substantial barrier, although objective graft-versus-tumor effect was observed in several patients. Four patients with detectable disease before HCT achieved a complete response for at least 30 days after HCT, and two remain long-term survivors. Three patients were in complete response before HCT and remained in remission for 3, 6, and 74 months after HCT. Early disease response was associated with improved survival. Allogeneic HCT using this conditioning regimen offers a potential platform for novel immunotherapies.
Collapse
|
121
|
Tarek N, Le Luduec JB, Gallagher MM, Zheng J, Venstrom JM, Chamberlain E, Modak S, Heller G, Dupont B, Cheung NKV, Hsu KC. Unlicensed NK cells target neuroblastoma following anti-GD2 antibody treatment. J Clin Invest 2012; 122:3260-70. [PMID: 22863621 DOI: 10.1172/jci62749] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/28/2012] [Indexed: 02/02/2023] Open
Abstract
Survival outcomes for patients with high-risk neuroblastoma (NB) have significantly improved with anti-disialoganglioside GD2 mAb therapy, which promotes NK cell activation through antibody-dependent cell-mediated cytotoxicity. NK cell activation requires an interaction between inhibitory killer cell immunoglobulin-like receptors (KIRs) and HLA class I ligands. NK cells lacking KIRs that are specific for self HLA are therefore "unlicensed" and hyporesponsive. mAb-treated NB patients lacking HLA class I ligands for their inhibitory KIRs have significantly higher survival rates, suggesting that NK cells expressing KIRs for non-self HLA are mediating tumor control in these individuals. We found that, in the presence of mAb, both licensed and unlicensed NK cells are highly activated in vitro. However, HLA class I expression on NB cell lines selectively inhibited licensed NK cell activity, permitting primarily unlicensed NK cells to mediate antibody-dependent cell-mediated cytotoxicity. These results indicate that unlicensed NK cells play a key antitumor role in patients undergoing mAb therapy via antibody-dependent cell-mediated cytotoxicity, thus explaining the potent "missing KIR ligand" benefit in patients with NB.
Collapse
Affiliation(s)
- Nidale Tarek
- Department of Pediatrics, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Cheung NKV, Cheung IY, Kushner BH, Ostrovnaya I, Chamberlain E, Kramer K, Modak S. Murine anti-GD2 monoclonal antibody 3F8 combined with granulocyte-macrophage colony-stimulating factor and 13-cis-retinoic acid in high-risk patients with stage 4 neuroblastoma in first remission. J Clin Oncol 2012; 30:3264-70. [PMID: 22869886 DOI: 10.1200/jco.2011.41.3807] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Anti-GD2 monoclonal antibody (MoAb) combined with granulocyte-macrophage colony-stimulating factor (GM-CSF) has shown efficacy against neuroblastoma (NB). Prognostic variables that could influence clinical outcome were explored. PATIENTS AND METHODS One hundred sixty-nine children diagnosed with stage 4 NB (1988 to 2008) were enrolled onto consecutive anti-GD2 murine MoAb 3F8 ± GM-CSF ± 13-cis-retinoic acid (CRA) protocols after achieving first remission (complete remission/very good partial remission). Patients enrolled in regimen A (n = 43 high-risk [HR] patients) received 3F8 alone; regimen B (n = 41 HR patients), 3F8 + intravenous GM-CSF + CRA, after stem-cell transplantation (SCT); and regimen C (n = 85), 3F8 + subcutaneous GM-CSF + CRA, 46 of 85 after SCT, whereas 28 of 85 required additional induction therapy and were deemed ultra high risk (UHR). Marrow minimal residual disease (MRD) was measured by quantitative reverse transcription polymerase chain reaction. Survival probability was calculated by the Kaplan-Meier method, and prognostic variables were analyzed by multivariate Cox regression model. RESULTS At 5 years from the start of immunotherapy, progression-free survival (PFS) improved from 44% for HR patients receiving regimen A to 56% and 62% for those receiving regimens B and C, respectively. Overall survival (OS) was 49%, 61%, and 81%, respectively. PFS and OS of UHR patients were 36% and 75%, respectively. Relapse was mostly at isolated sites. Independent adverse prognostic factors included UHR (PFS) and post-cycle two MRD (PFS and OS), whereas the prognostic factors for improved outcome were missing killer immunoglobulin-like receptor ligand (PFS and OS), human antimouse antibody response (OS), and regimen C (OS). CONCLUSION Retrospective analysis of consecutive trials from a single center demonstrated that MoAb 3F8 + GM-CSF + CRA is effective against chemotherapy-resistant marrow MRD. Its positive impact on long-term survival can only be confirmed definitively by randomized studies.
Collapse
Affiliation(s)
- Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | | | | | | | | | |
Collapse
|
123
|
Sondel PM, Gillies SD. Current and Potential Uses of Immunocytokines as Cancer Immunotherapy. Antibodies (Basel) 2012; 1:149-171. [PMID: 24634778 PMCID: PMC3954573 DOI: 10.3390/antib1020149] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immunocytokines (ICs) are a class of molecules created by linking tumor-reactive monoclonal antibodies to cytokines that are able to activate immune cells. Tumor selective localization is provided by the ability of the mAb component to bind to molecules found on the tumor cell surface or molecules found selectively in the tumor microenvronment. In this way the cytokine component of the immunocytokine is selectively localized to sites of tumor and can activate immune cells with appropriate receptors for the cytokine. Immunocytokines have been made and tested by us, and others, using a variety of tumor-reactive mAbs linked to distinct cytokines. To date, the majority of clinical progress has been made with ICs that have linked human interleukin-2 (IL2) to a select number of tumor reactive mAbs that had already been in prior clinical testing as non-modified mAbs (Figure 1). Here we briefly review the background for the creation of ICs, summarize current clinical progress, emphasize mechanisms of action for ICs that are distinct from those of their constituent components, and present some directions for future development and testing.
Collapse
Affiliation(s)
- Paul M Sondel
- The Departments of Pediatrics, Human Oncology, and Genetics and The UW Carbone Cancer Center, University of Wisconsin, Madison WI
| | - Stephen D Gillies
- The Departments of Pediatrics, Human Oncology, and Genetics and The UW Carbone Cancer Center, University of Wisconsin, Madison WI
| |
Collapse
|
124
|
Kroesen M, Lindau D, Hoogerbrugge P, Adema GJ. Immunocombination therapy for high-risk neuroblastoma. Immunotherapy 2012; 4:163-74. [PMID: 22394368 DOI: 10.2217/imt.11.169] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Neuroblastoma (NBL) is an aggressive malignancy of the sympathetic nervous system. Advanced-stage NBLs prove fatal in approximately 50% of patients within 5 years. Therefore, new treatment modalities are urgently needed. Immunotherapy is a treatment modality that can be combined with established forms of treatment. Administration of monoclonal antibodies or dendritic cell-based therapies alone can lead to favorable clinical outcomes in individual cancer patients; for example patients with melanoma, lymphoma and NBL. However, clinical benefit is still limited to a minority of patients, and further improvements are clearly needed. In this article, we review the most commonly used approaches to treat patients with NBL and highlight the prerequisites and opportunities of cell-based immunotherapy, involving both innate and adaptive immune-effector cells. Furthermore, we discuss the potential of the combined application of immunotherapy and novel tumor-targeted therapies for the treatment of both cancer in general and NBL in particular.
Collapse
Affiliation(s)
- Michiel Kroesen
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences/278 TIL, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
125
|
Albertini MR, Hank JA, Gadbaw B, Kostlevy J, Haldeman J, Schalch H, Gan J, Kim K, Eickhoff J, Gillies SD, Sondel PM. Phase II trial of hu14.18-IL2 for patients with metastatic melanoma. Cancer Immunol Immunother 2012; 61:2261-71. [PMID: 22678096 DOI: 10.1007/s00262-012-1286-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/17/2012] [Indexed: 01/12/2023]
Abstract
Phase I testing of the hu14.18-IL2 immunocytokine in melanoma patients showed immune activation, reversible toxicities, and a maximal tolerated dose of 7.5 mg/m(2)/day. In this phase II study, 14 patients with measurable metastatic melanoma were scheduled to receive hu14.18-IL2 at 6 mg/m(2)/day as 4-h intravenous infusions on Days 1, 2, and 3 of each 28 day cycle. Patients with stable disease (SD) or regression following cycle 2 could receive two additional treatment cycles. The primary objective was to evaluate antitumor activity and response duration. Secondary objectives evaluated adverse events and immunologic activation. All patients received two cycles of treatment. One patient had a partial response (PR) [1 PR of 14 patients = response rate of 7.1 %; confidence interval, 0.2-33.9 %], and 4 patients had SD and received cycles 3 and 4. The PR and SD responses lasted 3-4 months. All toxicities were reversible and those resulting in dose reduction included grade 3 hypotension (2 patients) and grade 2 renal insufficiency with oliguria (1 patient). Patients had a peripheral blood lymphocytosis on Day 8 and increased C-reactive protein. While one PR in 14 patients met protocol criteria to proceed to stage 2 and enter 16 additional patients, we suspended stage 2 due to limited availability of hu14.18-IL2 at that time and the brief duration of PR and SD. We conclude that subsequent testing of hu14.18-IL2 should involve melanoma patients with minimal residual disease based on compelling preclinical data and the confirmed immune activation with some antitumor activity in this study.
Collapse
Affiliation(s)
- Mark R Albertini
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Koehn TA, Trimble LL, Alderson KL, Erbe AK, McDowell KA, Grzywacz B, Hank JA, Sondel PM. Increasing the clinical efficacy of NK and antibody-mediated cancer immunotherapy: potential predictors of successful clinical outcome based on observations in high-risk neuroblastoma. Front Pharmacol 2012; 3:91. [PMID: 22623917 PMCID: PMC3353262 DOI: 10.3389/fphar.2012.00091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/26/2012] [Indexed: 12/02/2022] Open
Abstract
Disease recurrence is frequent in high-risk neuroblastoma (NBL) patients even after multi-modality aggressive treatment [a combination of chemotherapy, surgical resection, local radiation therapy, autologous stem cell transplantation, and cis-retinoic acid (CRA)]. Recent clinical studies have explored the use of monoclonal antibodies (mAbs) that bind to disialoganglioside (GD2), highly expressed in NBL, as a means to enable immune effector cells to destroy NBL cells via antibody-dependent cell-mediated cytotoxicity (ADCC). Preclinical data indicate that ADCC can be more effective when appropriate effector cells are activated by cytokines. Clinical studies have pursued this by administering anti-GD2 mAb in combination with ADCC-enhancing cytokines (IL2 and GM-CSF), a regimen that has demonstrated improved cancer-free survival. More recently, early clinical studies have used a fusion protein that consists of the anti-GD2 mAb directly linked to IL2, and anti-tumor responses were seen in the Phase II setting. Analyses of genes that code for receptors that influence ADCC activity and natural killer (NK) cell function [Fc receptor (FcR), killer immunoglublin-like receptor (KIR), and KIR-ligand (KIR-L)] suggest patients with anti-tumor activity are more likely to have certain genotype profiles. Further analyses will need to be conducted to determine whether these genotypes can be used as predictive markers for favorable therapeutic outcome. In this review, we discuss factors that affect response to mAb-based tumor therapies such as hu14.18-IL2. Many of our observations have been made in the context of NBL; however, we will also include some observations made with mAbs targeting other tumor types that are consistent with results in NBL. Therefore, we hypothesize that the NBL observations discussed here may also be relevant to mAb therapy for other cancers, in which ADCC is known to play a role.
Collapse
Affiliation(s)
- Tony A Koehn
- Department of Human Oncology, University of Wisconsin Madison Madison, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
Neuroblastoma, the most common extracranial solid tumor in children, is derived from neural crest cells. Nearly half of patients present with metastatic disease and have a 5-year event-free survival of <50%. New approaches with targeted therapy may improve efficacy without increased toxicity. In this review we evaluate 3 promising targeted therapies: (i) (131)I-metaiodobenzylguanidine (MIBG), a radiopharmaceutical that is taken up by human norepinephrine transporter (hNET), which is expressed in 90% of neuroblastomas; (ii) immunotherapy with monoclonal antibodies targeting the GD2 ganglioside, which is expressed on 98% of neuroblastoma cells; and (iii) inhibitors of anaplastic lymphoma kinase (ALK), a tyrosine kinase that is mutated or amplified in ~10% of neuroblastomas and expressed on the surface of most neuroblastoma cells. Early-phase trials have confirmed the activity of (131)I-MIBG in relapsed neuroblastoma, with response rates of ~30%, but the technical aspects of administering large amounts of radioactivity in young children and limited access to this agent have hindered its incorporation into treatment of newly diagnosed patients. Anti-GD2 antibodies have also shown activity in relapsed disease, and a recent phase III randomized trial showed a significant improvement in event-free survival for patients receiving chimeric anti-GD2 (ch14.18) combined with cytokines and isotretinoin after myeloablative consolidation therapy. A recently approved small-molecule inhibitor of ALK has shown promising preclinical activity for neuroblastoma and is currently in phase I and II trials. This is the first agent directed to a specific mutation in neuroblastoma, and marks a new step toward personalized therapy for neuroblastoma. Further clinical development of targeted treatments offers new hope for children with neuroblastoma.
Collapse
Affiliation(s)
- Katherine K Matthay
- Department of Pediatrics, UCSF Helen Diller Family Comprehensive Cancer Center, and UCSF Benioff Children's Hospital, UCSF Medical Center, University of California, San Francisco, CA 94143-0106, USA.
| | | | | |
Collapse
|
128
|
Brenu EW, van Driel ML, Staines DR, Ashton KJ, Hardcastle SL, Keane J, Tajouri L, Peterson D, Ramos SB, Marshall-Gradisnik SM. Longitudinal investigation of natural killer cells and cytokines in chronic fatigue syndrome/myalgic encephalomyelitis. J Transl Med 2012; 10:88. [PMID: 22571715 PMCID: PMC3464733 DOI: 10.1186/1479-5876-10-88] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 03/15/2012] [Indexed: 12/19/2022] Open
Abstract
Background Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) is an etiologically unexplained disorder characterised by irregularities in various aspects of the immunological function. Presently, it is unknown whether these immunological changes remain consistent over time. This study investigates Natural Killer (NK) cell cytotoxic activity, NK cell subsets (CD56brightCD16- and CD56dimCD16+) and cytokines, over the course of a12 month period in patients with CFS/ME. Methods The participants in the study comprised 65 (47.2 ± 11.5 years) CFS/ME participants and 21 (45.2 ±9.3 years) non-fatigued controls. Flow cytometry protocols were used to assess NK subsets and NK cytotoxic activity at various time points that included baseline (T1), 6 (T2) and 12 months (T3). Cytokine secretions were measured following mitogenic stimulation of peripheral blood mononuclear cells. Results NK cytotoxic activity was significantly decreased in the CFS/ME patients at T1, T2 and T3 compared to the non-fatigued group. Additionally, in comparison to the non-fatigued controls, the CFS/ME group had significantly lower numbers of CD56brightCD16- NK cells at both T1 and T2. Interestingly, following mitogenic stimulation, cytokine secretion revealed significant increases in IL-10, IFN-γ and TNF-α at T1 in the CFS/ME group. A significant decrease was observed at T2 in the CFS/ME group for IL-10 and IL-17A while at T3, IL-2 was increased in the CFS/ME group in comparison to the non-fatigued controls. Overall cytotoxic activity was significantly decreased at T3 compared to T1 and T2. CD56brightCD16- NK cells were much lower at T2 compared to T1 and T3. IL-10 and IL-17A secretion was elevated at T2 in comparison to T1 and T3. Conclusion These results confirm decreases in immune function in CFS/ME patients, suggesting an increased susceptibility to viral and other infections. Furthermore, NK cytotoxic activity may be a suitable biomarker for diagnosing CFS/ME as it was consistently decreased during the course of the 12 months study.
Collapse
Affiliation(s)
- Ekua W Brenu
- Population Health and Neuroimmunology Unit, Bond University, Robina, QLD, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Kohrt HE, Houot R, Marabelle A, Cho HJ, Osman K, Goldstein M, Levy R, Brody J. Combination strategies to enhance antitumor ADCC. Immunotherapy 2012; 4:511-27. [PMID: 22642334 PMCID: PMC3386352 DOI: 10.2217/imt.12.38] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The clinical efficacy of monoclonal antibodies as cancer therapeutics is largely dependent upon their ability to target the tumor and induce a functional antitumor immune response. This two-step process of ADCC utilizes the response of innate immune cells to provide antitumor cytotoxicity triggered by the interaction of the Fc portion of the antibody with the Fc receptor on the immune cell. Immunotherapeutics that target NK cells, γδ T cells, macrophages and dendritic cells can, by augmenting the function of the immune response, enhance the antitumor activity of the antibodies. Advantages of such combination strategies include: the application to multiple existing antibodies (even across multiple diseases), the feasibility (from a regulatory perspective) of combining with previously approved agents and the assurance (to physicians and trial participants) that one of the ingredients - the antitumor antibody - has proven efficacy on its own. Here we discuss current strategies, including biologic rationale and clinical results, which enhance ADCC in the following ways: strategies that increase total target-monoclonal antibody-effector binding, strategies that trigger effector cell 'activating' signals and strategies that block effector cell 'inhibitory' signals.
Collapse
Affiliation(s)
- Holbrook E Kohrt
- Department of Medicine, Division of Oncology, Stanford University, Stanford, CA, USA
| | - Roch Houot
- CHU Rennes, Service Hématologie Clinique, F-35033 Rennes, France
- INSERM, U917, F-35043 Rennes, France
| | - Aurélien Marabelle
- Department of Medicine, Division of Oncology, Stanford University, Stanford, CA, USA
| | - Hearn Jay Cho
- Department of Medicine, Division of Hematology/Oncology, Mount Sinai School of Medicine, New York, NY, USA
| | - Keren Osman
- Department of Medicine, Division of Hematology/Oncology, Mount Sinai School of Medicine, New York, NY, USA
| | - Matthew Goldstein
- Department of Medicine, Division of Oncology, Stanford University, Stanford, CA, USA
| | - Ronald Levy
- Department of Medicine, Division of Oncology, Stanford University, Stanford, CA, USA
| | - Joshua Brody
- Department of Medicine, Division of Hematology/Oncology, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
130
|
Shimasaki N, Fujisaki H, Cho D, Masselli M, Lockey T, Eldridge P, Leung W, Campana D. A clinically adaptable method to enhance the cytotoxicity of natural killer cells against B-cell malignancies. Cytotherapy 2012; 14:830-40. [PMID: 22458956 DOI: 10.3109/14653249.2012.671519] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS Retroviral transduction of anti-CD19 chimeric antigen receptors significantly enhances the cytotoxicity of natural killer (NK) cells against B-cell malignancies. We aimed to validate a more practical, affordable and safe method for this purpose. METHODS We tested the expression of a receptor containing CD3ζ and 4-1BB signaling molecules (anti-CD19-BB-ζ) in human NK cells after electroporation with the corresponding mRNA using a clinical-grade electroporator. The cytotoxic capacity of the transfected NK cells was tested in vitro and in a mouse model of leukemia. RESULTS Median anti-CD19-BB-ζ expression 24 h after electroporation was 40.3% in freshly purified (n =18) and 61.3% in expanded (n = 31) NK cells; median cell viability was 90%. NK cells expressing anti-CD19-BB-ζ secreted interferon (IFN)-γ in response to CD19-positive target cells and had increased cytotoxicity. Receptor expression was detectable 6 h after electroporation, reaching maximum levels at 24-48 h; specific anti-CD19 cytotoxicity was observed at 96 h. Levels of expression and cytotoxicities were comparable with those achieved by retroviral transduction. A large-scale protocol was developed and applied to expanded NK cells (median NK cell number 2.5 × 10(8), n = 12). Median receptor expression after 24 h was 82.0%; NK cells transfected under these conditions exerted considerable cytotoxicity in xenograft models of B-cell leukemia. CONCLUSIONS The method described here represents a practical way to augment the cytotoxicity of NK cells against B-cell malignancies. It has the potential to be extended to other targets beyond CD19 and should facilitate the clinical use of redirected NK cells for cancer therapy.
Collapse
Affiliation(s)
- Noriko Shimasaki
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Cheung IY, Hsu K, Cheung NKV. Activation of peripheral-blood granulocytes is strongly correlated with patient outcome after immunotherapy with anti-GD2 monoclonal antibody and granulocyte-macrophage colony-stimulating factor. J Clin Oncol 2011; 30:426-32. [PMID: 22203761 DOI: 10.1200/jco.2011.37.6236] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Adjuvant therapy using anti-GD2 monoclonal antibody and granulocyte-macrophage colony-stimulating factor (GM-CSF) has shown treatment success for patients with high-risk neuroblastoma (NB). Although there is ample evidence on how the antibody targets NB, in vivo contribution by GM-CSF remains unclear. This report investigates granulocyte activation and its correlation with treatment outcome. PATIENTS AND METHODS Patients enrolled onto NCT00072358 received multiple treatment cycles, each consisting of anti-GD2 antibody 3F8 plus subcutaneous (SC) GM-CSF. Peripheral-blood (PB) samples from 151 patients were collected on day 0 and day 4 of cycle 1. PB from a subgroup of 35 patients had intravenous (IV) instead of SC GM-CSF during cycle 4. Samples were analyzed by flow cytometry for CD11a, CD63, CD87, and CD11b and its activation epitope CBRM1/5. RESULTS Comparing cycle 1 day 4 PB samples with day 0 PB samples, five of five activation marker-positive granulocytes were significantly higher. The change in frequency and mean fluorescence intensity of CBRM1/5-positive granulocytes correlated with progression-free survival (PFS; P = .024 and P = .008, respectively). A multivariable analysis identified increasing CBRM1/5-positive granulocytes and missing killer immunoglobulin-like receptor ligand as positive independent prognostic factors for PFS, whereas second-line cyclophosphamide-based therapy before protocol entry negatively influenced outcome. Thirty-five patients who received SC GM-CSF at cycle 1 and IV GM-CSF at cycle 4 had significantly less CBRM1/5 activation after IV GM-CSF. In contrast, 63 patients who received SC GM-CSF at both cycles had comparable CBRM1/5 activation. CONCLUSION GM-CSF-induced granulocyte activation in vivo is associated with improved patient outcome. This activation was more apparent when GM-CSF was given by the SC route instead of IV route.
Collapse
Affiliation(s)
- Irene Y Cheung
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA.
| | | | | |
Collapse
|
132
|
Gubbels JAA, Gadbaw B, Buhtoiarov IN, Horibata S, Kapur AK, Patel D, Hank JA, Gillies SD, Sondel PM, Patankar MS, Connor J. Ab-IL2 fusion proteins mediate NK cell immune synapse formation by polarizing CD25 to the target cell-effector cell interface. Cancer Immunol Immunother 2011; 60:1789-800. [PMID: 21792658 PMCID: PMC4153733 DOI: 10.1007/s00262-011-1072-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 07/07/2011] [Indexed: 10/18/2022]
Abstract
The huKS-IL2 immunocytokine (IC) consists of IL2 fused to a mAb against EpCAM, while the hu14.18-IL2 IC recognizes the GD2 disialoganglioside. They are under evaluation for treatment of EpCAM(+) (ovarian) and GD2(+) (neuroblastoma and melanoma) malignancies because of their proven ability to enhance tumor cell killing by antibody-dependent cell-mediated cytotoxicity (ADCC) and by antitumor cytotoxic T cells. Here, we demonstrate that huKS-IL2 and hu14.18-IL2 bind to tumor cells via their antibody components and increase adhesion and activating immune synapse (AIS) formation with NK cells by engaging the immune cells' IL-2 receptors (IL2R). The NK leukemia cell line, NKL (which expresses high affinity IL2Rs), shows fivefold increase in binding to tumor targets when treated with IC compared to matching controls. This increase in binding is effectively inhibited by blocking antibodies against CD25, the α-chain of the IL2R. NK cells isolated from the peritoneal environment of ovarian cancer patients, known to be impaired in mediating ADCC, bind to huKS-IL2 via CD25. The increased binding between tumor and effector cells via ICs is due to the formation of AIS that are characterized by the simultaneous polarization of LFA-1, CD2 and F-actin at the cellular interface. AIS formation of peritoneal NK and NKL cells is inhibited by anti-CD25 blocking antibody and is 50-200% higher with IC versus the parent antibody. These findings demonstrate that the IL-2 component of the IC allows IL2Rs to function not only as receptors for this cytokine but also as facilitators of peritoneal NK cell binding to IC-coated tumor cells.
Collapse
Affiliation(s)
- Jennifer A. A. Gubbels
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53711 USA
- Present Address: Department of Biology, Augustana College, Sioux Falls, SD 57197 USA
| | - Brian Gadbaw
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53711 USA
| | - Ilia N. Buhtoiarov
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53711 USA
| | - Sachi Horibata
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53711 USA
| | - Arvinder K. Kapur
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53711 USA
| | - Dhara Patel
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53711 USA
| | - Jacquelyn A. Hank
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53711 USA
| | | | - Paul M. Sondel
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53711 USA
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53711 USA
- 4159 Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI 53705 USA
| | - Manish S. Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53711 USA
- H4/657 CSC, 600 Highland Avenue, Madison, WI 53792-6188 USA
| | - Joseph Connor
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53711 USA
- Clinical Science Center-H4/650, 600 Highland Ave, Box 6188, Madison, WI 53792 USA
| |
Collapse
|
133
|
Seeger RC. Immunology and immunotherapy of neuroblastoma. Semin Cancer Biol 2011; 21:229-37. [PMID: 21971567 DOI: 10.1016/j.semcancer.2011.09.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 09/21/2011] [Indexed: 12/31/2022]
Abstract
PURPOSE This review demonstrates the importance of immunobiology and immunotherapy research for understanding and treating neuroblastoma. PRINCIPAL RESULTS The first suggestions of immune system-neuroblastoma interactions came from in vitro experiments showing that lymphocytes from patients were cytotoxic for their own tumor cells and from evaluations of tumors from patients that showed infiltrations of immune system cells. With the development of monoclonal antibody (mAb) technology, a number of mAbs were generated against neuroblastoma cells lines and were used to define tumor associated antigens. Disialoganglioside (GD2) is one such antigen that is highly expressed by virtually all neuroblastoma cells and so is a useful target for both identification and treatment of tumor cells with mAbs. Preclinical research using in vitro and transplantable tumor models of neuroblastoma has demonstrated that cytotoxic T lymphocytes (CTLs) can specifically recognize and kill tumor cells as a result of vaccination or of genetic engineering that endows them with chimeric antigen receptors. However, CTL based clinical trials have not progressed beyond pilot and phase I studies. In contrast, anti-GD2 mAbs have been extensively studied and modified in pre-clinical experiments and have progressed from phase I through phase III clinical trials. Thus, the one proven beneficial immunotherapy for patients with high-risk neuroblastoma uses a chimeric anti-GD2 mAb combined with IL-2 and GM-CSF to treat patients after they have received intensive cyto-reductive chemotherapy, irradiation, and surgery. Ongoing pre-clinical and clinical research emphasizes vaccine, adoptive cell therapy, and mAb strategies. Recently it was shown that the neuroblastoma microenvironment is immunosuppressive and tumor growth promoting, and strategies to overcome this are being developed to enhance anti-tumor immunotherapy. CONCLUSIONS Our understanding of the immunobiology of neuroblastoma has increased immensely over the past 40 years, and clinical translation has shown that mAb based immunotherapy can contribute to improving treatment for high-risk patients. Continued immunobiology and pre-clinical therapeutic research will be translated into even more effective immunotherapeutic strategies that will be integrated with new cytotoxic drug and irradiation therapies to improve survival and quality of life for patients with high-risk neuroblastoma.
Collapse
Affiliation(s)
- Robert C Seeger
- Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, CA 90027, United States.
| |
Collapse
|
134
|
Capitini CM, Gottschalk S, Brenner M, Cooper LJN, Handgretinger R, Mackall CL. Highlights of the second international conference on "Immunotherapy in Pediatric Oncology". Pediatr Hematol Oncol 2011; 28:459-60. [PMID: 21854215 DOI: 10.3109/08880018.2011.596615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Second International Conference on Immunotherapy in Pediatric Oncology was held in Houston, Texas, USA, October 11-12, 2010, to discuss the progress and challenges that have occurred in cutting edge immunotherapeutic strategies currently being developed for pediatric oncology. Major topics included immune targeting of acute lymphoblastic leukemia and pediatric solid tumors, chimeric antigen receptors (CARs) for hematologic malignancies and solid tumors, enhancing graft-versus-leukemia for pediatric cancers, overcoming hurdles of immunotherapy, strategies to active the innate immune system, and moving immunotherapy beyond phase I studies. Significant progress has been made in the last 2 years both in the development of novel immunobiologics such as CARs, and in establishing survival benefits of an anti-GD2 monoclonal antibody in randomized studies. Although there is much excitement going forward, a great deal of laboratory and regulatory challenges lie ahead in improving the efficacy of each of these modalities as well as getting them to patients in a timely and cost-effective fashion. The resulting discussions will hopefully lead to new collaborations and insight for further translational and clinical studies.
Collapse
Affiliation(s)
- Christian M Capitini
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
135
|
Abstract
Emerging from a largely cytokine-based era, the last several years have witnessed a dramatic change in the therapeutic landscape of renal cancer. Molecularly targeted and antiangiogenic agents now form the backbone of most therapeutic strategies for patients with advanced renal cell carcinoma (RCC). Although the next few years may not see such broad paradigm shifts, there remains significant room for improvement in the care of patients with RCC. This review discusses challenges that face physicians and researchers as well as innovations that may contribute to improving the therapeutic outcomes for patients with RCC.
Collapse
Affiliation(s)
- Daniel C Cho
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| | | |
Collapse
|
136
|
Role of common-gamma chain cytokines in NK cell development and function: perspectives for immunotherapy. J Biomed Biotechnol 2011; 2011:861920. [PMID: 21716670 PMCID: PMC3118299 DOI: 10.1155/2011/861920] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/14/2011] [Indexed: 12/22/2022] Open
Abstract
NK cells are components of the innate immunity system and play an important role as a first-line defense mechanism against viral infections and in tumor immune surveillance. Their development and their functional activities are controlled by several factors among which cytokines sharing the usage of the common cytokine-receptor gamma chain play a pivotal role. In particular, IL-2, IL-7, IL-15, and IL-21 are the members of this family predominantly involved in NK cell biology. In this paper, we will address their role in NK cell ontogeny, regulation of functional activities, development of specialized cell subsets, and acquisition of memory-like functions. Finally, the potential application of these cytokines as recombinant molecules to NK cell-based immunotherapy approaches will be discussed.
Collapse
|
137
|
Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity. J Biomed Biotechnol 2011; 2011:379123. [PMID: 21660134 PMCID: PMC3110303 DOI: 10.1155/2011/379123] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/16/2011] [Indexed: 01/08/2023] Open
Abstract
Natural killer (NK) cells are powerful effector cells that can be directed to eliminate tumor cells through tumor-targeted monoclonal antibodies (mAbs). Some tumor-targeted mAbs have been successfully applied in the clinic and are included in the standard of care for certain malignancies. Strategies to augment the antitumor response by NK cells have led to an increased understanding of how to improve their effector responses. Next-generation reagents, such as molecularly modified mAbs and mAb-cytokine fusion proteins (immunocytokines, ICs) designed to augment NK-mediated killing, are showing promise in preclinical and some clinical settings. Continued research into the antitumor effects induced by NK cells and tumor-targeted mAbs suggests that additional intrinsic and extrinsic factors may influence the antitumor response. Therefore more research is needed that focuses on evaluating which NK cell and tumor criteria are best predictive of a clinical response and which combination immunotherapy regimens to pursue for distinct clinical settings.
Collapse
|