101
|
Jiang S, Zhou Y, Zou L, Chu L, Chu X, Ni J, Li Y, Guo T, Yang X, Zhu Z. Low- dose Apatinib promotes vascular normalization and hypoxia reduction and sensitizes radiotherapy in lung cancer. Cancer Med 2023; 12:4434-4445. [PMID: 36065943 PMCID: PMC9972072 DOI: 10.1002/cam4.5113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND PURPOSE Abnormal vascular network of tumor can create a hypoxic microenvironment, and reduce radiotherapy sensitivity. Normalization of tumor vasculature can be a new therapeutic strategy for sensitizing radiotherapy. This study aimed to explore the effect of apatinib on vascular normalization, as well as the syngeneic effect with radiotherapy on lung cancer. MATERIALS AND METHODS Lewis lung carcinoma (LLC) xenograft-bearing female C57BL/6 mice were treated with different doses of apatinib (30, 60, and 120 mg/kg per day) and/or radiation therapy (8 Gy/1F) and then sacrificed to harvest tumor tissue for immunohistochemical test. Further 18 F-FMISO micro- PET in vivo explored the degree of hypoxia. RESULTS Immunohistochemistry of CD31 and alpha-smooth muscle actin (α-SMA) proved that low-dose apatinib can normalize vasculature in tumor, especially on Day 10. Tissue staining of hypoxyprobe-1 and 18 F-FMISO micro- PET in vivo showed that 60 mg/kg/day of apatinib significantly alleviates hypoxia. Moreover, this study further proved that low-dose apatinib (60 mg/kg/day) can enhance the radio-response of LLC xenograft mice. CONCLUSION Our data suggested that low- dose apatinib can successfully induce a vascular normalization window and function as a radio- sensitizer in the lung cancer xenografts model.
Collapse
Affiliation(s)
- Shanshan Jiang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liqing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yida Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China
| |
Collapse
|
102
|
Li J, Zhang D, Liu Z, Wang Y, Li X, Wang Z, Liang G, Yuan X, Li Y, Komorowski AL, Rozen WM, Orlandi A, Takabe K, Franceschini G, Jerusalem G, Wang X. The combined effect and mechanism of antiangiogenic drugs and PD-L1 inhibitor on cell apoptosis in triple negative breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:83. [PMID: 36819490 PMCID: PMC9929791 DOI: 10.21037/atm-22-6446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
Background Breast cancer is the most common cancer worldwide, and triple-negative breast cancer (TNBC) has the worst prognosis. Standard systemic treatment includes chemotherapy and immunotherapy. Poly ADP-ribose polymerase (PARP) inhibitors are considered in breast cancer (BRCA) susceptibility genes mutated tumors. The role of antiangiogenic drugs is controversial. Immunotherapy with immune checkpoint inhibitor is now a standard of care for TNBC in the US, but its use in combination with anlotinib, an inhibitor of angiogenesis, on TNBC cells was never investigated. Methods We tested the effects of anlotinib and programmed cell death-ligand 1 (PD-L1) inhibitor on the proliferation, apoptosis, migration, and invasion of MDA-MB-468 and BT-549 TNBC cells through 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assays, cell apoptosis assay, wound healing and transwell matrix assays, and verified whether the combination of the two drugs had synergistic effect. Western blotting was used to detect the effect of anlotinib and PD-L1 inhibitor on the protein expression levels of PI3K, p-PI3K, AKT, p-AKT, Bcl-xl in MDA-MB-468 and BT-549 cells. The effects of anlotinib, PD-L1 inhibitor and the combination of the two drugs on the transplanted tumor of TNBC mice were tested by animal experiments. Results Anlotinib and PD-L1 inhibitor inhibited the proliferation and promote cell apoptosis of MDA-MB-468 and BT-549 cells, and the combination demonstrated the synergetic effect. Anlotinib and PD-L1 inhibitor inhibited cell migration and invasion, and the effect was strongest in the combination group. Both anlotinib and PD-L1 inhibitor reduced the expression of p-PI3K, p-AKT and Bcl-xl proteins in cells and the effects were the strongest in the combination group. Both anlotinib and PD-L1 inhibitor inhibited the growth of transplanted tumors in mice, and the combined group demonstrated the strongest growth suppression. Conclusions Anlotinib and PD-L1 inhibitor can inhibit cell proliferation, migration, and invasion of TNBC and promote cell apoptosis, and the two drugs show combined anti-tumor effects in vivo and in vitro. The combination of anlotinib and PD-L1 inhibitor may promote apoptosis of TNBC cells through PI3K/AKT/Bcl-xl signaling pathways, which might offer potential clinical treatment roles for these.
Collapse
Affiliation(s)
- Jing Li
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Dianbao Zhang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Zhiwei Liu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Yukun Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Xinyang Li
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Ziming Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Gaofeng Liang
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Xiang Yuan
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | | | - Warren Matthew Rozen
- Peninsula Clinical School, Central Clinical School, Faculty of Medicine, Monash University, Frankston Victoria, Australia
| | - Armando Orlandi
- Comprehensive Cancer Center, Unit of Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Kazuaki Takabe
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences The State University of New York, Bufflo, NY, USA;,Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Bufflo, NY, USA
| | - Gianluca Franceschini
- Breast Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Guy Jerusalem
- Medica l Oncology Department, CHU Liège and Liège University, Liege, Belgium
| | - Xinshuai Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
103
|
Song W, Zhang X, Song Y, Fan K, Shao F, Long Y, Gao Y, Cai W, Lan X. Enhancing Photothermal Therapy Efficacy by In Situ Self-Assembly in Glioma. ACS APPLIED MATERIALS & INTERFACES 2023; 15:57-66. [PMID: 36206382 PMCID: PMC9839507 DOI: 10.1021/acsami.2c14413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The residence time of some small molecular imaging and therapeutic agents in tumor tissue is short and the molecules can be easily dispersed, which decreases treatment efficacy. Therefore, methods that enhance oncotherapy performance are of significant importance. Here, we report an in situ self-assembly strategy aimed at enhancing the photothermal therapy of glioblastomas. The probe, ICG-PEP-c(RGD)fk, consisted of a glutathione-reactive self-assembling polypeptide as the skeleton, indocyanine green (ICG) as a theranostic agent, and cyclic Arg-Gly-Asp [c(RGD)fk] peptides as the targeting group. ICG-PEP-c(RGD)fk was synthesized and found to be assembled in the glutathione environment at 9.446 μM in vitro. Human glioblastoma cell line U87MG-luc with high integrin αvβ3 expression was applied to invivo experiments. ICG-PEP-c(RGD)fk provided clearer tumor imaging and had a tumor retention time of 6.12 times longer than that of ICG-c(RGD)fk. In therapeutic experiments, ICG-PEP-c(RGD)fk significantly suppressed glioblastoma growth and the tumor volume was 2.61 times smaller than in the ICG-c(RGD)fk group at the end of the observation period. Moreover, the median survival time of ICG-PEP-c(RGD)fk group was significantly improved by 2.78 times compared with that of the control group. In conclusion, glutathione-reactive self-assembling peptides are capable of increasing the tumor retention time and improving the photothermal therapeutic effect. The in situ self-assembly strategy is a potential and feasible method to enhance oncotherapy.
Collapse
Affiliation(s)
- Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 Hubei Province, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022 Hubei Province, China
| | - Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 Hubei Province, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022 Hubei Province, China
| | - Yangmeihui Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 Hubei Province, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022 Hubei Province, China
| | - Kevin Fan
- Department of Radiology and Department of Medical Physics, University of Wisconsin–Madison, Madison, Wisconsin 53705, United States
| | - Fuqiang Shao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 Hubei Province, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022 Hubei Province, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 Hubei Province, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022 Hubei Province, China
| | - Yu Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 Hubei Province, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022 Hubei Province, China
| | - Weibo Cai
- Department of Radiology and Department of Medical Physics, University of Wisconsin–Madison, Madison, Wisconsin 53705, United States
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 Hubei Province, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022 Hubei Province, China
| |
Collapse
|
104
|
Peng W, Yao C, Pan Q, Zhang Z, Ye J, Shen B, Zhou G, Fang Y. Novel considerations on EGFR-based therapy as a contributor to cancer cell death in NSCLC. Front Oncol 2023; 13:1120278. [PMID: 36910653 PMCID: PMC9995697 DOI: 10.3389/fonc.2023.1120278] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) represented by gefitinib and erlotinib are widely used in treating non-small cell lung cancer (NSCLC). However, acquired resistance to EGFR-TKI treatment remains a clinical challenge. In recent years, emerging research investigated in EGFR-TKI-based combination therapy regimens, and remarkable achievements have been reported. This article focuses on EGFR-TKI-based regimens, reviews the standard and novel application of EGFR targets, and summarizes the mechanisms of EGFR-TKI combinations including chemotherapy, anti-vascular endothelial growth factor monoclonal antibodies, and immunotherapy in the treatment of NSCLC. Additionally, we summarize clinical trials of EGFR-TKI-based combination therapy expanding indications to EGFR mutation-negative lung malignancies. Moreover, novel strategies are under research to explore new drugs with good biocompatibility. Nanoparticles encapsulating non-coding RNA and chemotherapy of new dosage forms drawn great attention and showed promising prospects in effective delivery and stable release. Overall, as the development of resistance to EGFR-TKIs treatment is inevitable in most of the cases, further research is needed to clarify the underlying mechanism of the resistance, and to evaluate and establish EGFR-TKI combination therapies to diversify the treatment landscape for NSCLC.
Collapse
Affiliation(s)
- Weiwei Peng
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Chengyun Yao
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Pan
- Department of Medical Oncology, Liyang People's Hospital, Liyang, China
| | - Zhi Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jinjun Ye
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Guoren Zhou
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Fang
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
105
|
Neuville C, Aubin F, Puzenat E, Popescu D, Crepin T, Nardin C. Nivolumab-induced capillary leak syndrome associated with chylothorax in a melanoma patient: A case report and review of the literature. Front Oncol 2022; 12:1032844. [PMID: 36578943 PMCID: PMC9791943 DOI: 10.3389/fonc.2022.1032844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Adverse events (AEs) of immune checkpoint inhibitors (ICIs) are frequent and mainly due to an overactivity of the immune system leading to excessive inflammatory responses (immune-related AE) that can affect any organ of the body. Beside the most frequent AEs, there are rare AEs whose diagnosis and treatment can be challenging. We report here a singular case of capillary leak syndrome (CLS) associated with chylothorax occurring in a patient who has been treated with adjuvant nivolumab (anti-PD1) for resected AJCC stage IIB primary melanoma. Case presentation A 43-year-old woman was diagnosed with a nodular stage IIB melanoma of her left thigh, according to the AJCC 8th edition (T3bN0M0). The woman was treated with adjuvant nivolumab. She stopped the treatment after 4 infusions due to thrombopenia. Three months later, she developed facial and leg edema and ascites due to capillary leak syndrome. The CLS was associated with chylothorax and elevated vascular endothelial growth factor. The patient was initially treated with several pleural puncturing and steroids. CLS and chylothorax progressively decreased with intravenous immunoglobulins and fat-free diet without recurrence of melanoma at one-year follow-up. Conclusion CLS is a rare and potentially life-threatening AE of ICIs such as anti-PD1. This AE may be associated with chylothorax probably related to lymphatic permeability induced by anti-PD1.
Collapse
Affiliation(s)
- Carole Neuville
- Department of Dermatology, University Hospital, Besançon, France
| | - François Aubin
- Department of Dermatology, University Hospital, Besançon, France,Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Eve Puzenat
- Department of Dermatology, University Hospital, Besançon, France
| | - Dragos Popescu
- Department of Dermatology, University Hospital, Besançon, France
| | - Thomas Crepin
- Department of Nephrology, University Hospital, Besançon, France
| | - Charlée Nardin
- Department of Dermatology, University Hospital, Besançon, France,Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Besançon, France,*Correspondence: Charlée Nardin,
| |
Collapse
|
106
|
Ozaki Y, Tsurutani J, Mukohara T, Iwasa T, Takahashi M, Tanabe Y, Kawabata H, Masuda N, Futamura M, Minami H, Matsumoto K, Yoshimura K, Kitano S, Takano T. Data of programmed death-ligand 1 expression and VEGF: Nivolumab, bevacizumab and paclitaxel For HER2-negative metastatic breast cancer. Data Brief 2022; 45:108558. [PMID: 36118297 PMCID: PMC9475259 DOI: 10.1016/j.dib.2022.108558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose was to explore potential biomarkers of the efficacy and toxicity of triple therapy of nivolumab, bevacizumab and paclitaxel in patients with HER2-negative metastatic breast cancer (MBC). Tumor tissues before treatment and blood samples at pretreatment, during and after treatment were collected. The serum samples were used to measure the concentrations of cytokines. Progression-free survival (PFS), overall survival (OS), and response were analyzed in association with the biomarker data using the Kaplan–Meier method and log-rank tests. Fifty patients were included in the biomarker analysis. Programmed death-ligand 1 (PD-L1) expression on tumor cells and immune cells were evaluated in tumor tissue samples using a Dako 28-8 immunohistochemistry assay and using a VENTANA SP142 immunohistochemistry assay. PD-L1 positive rates using anti-PD-L1 antibodies 28-8 (Combined positive score [CPS] ≥1) and SP142 (Immune cells [IC] ≥1) were 15% and 17%, respectively. The PFS and OS were not significantly different in the subgroups by PD-L1 expression. The median pretreatment vascular endothelial growth factor (VEGF)-A concentration was 116.1 pg/ml (range 0–740.23 pg/ml) on day 1 and decreased to <37 pg/ml on day 8 of cycle 1 in all patients. Subtypes (hormone receptor-positive HER2-negative or triple negative breast cancer), stage (recurrent or de novo stage IV) and liver metastasis (yes or no) were not significantly different between patients in VEGF-A high and VEGF-A low groups. PFS in the VEGF-A high group was similar to that in the VEGF-A low group.
Collapse
Affiliation(s)
- Yukinori Ozaki
- Department of Medical Oncology, Toranomon Hospital, Tokyo, Japan
- Department of Breast Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
- Corresponding author at: Department of Breast Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Junji Tsurutani
- Advanced Cancer Translational Research Institute, Showa University, Tokyo, Japan
| | - Toru Mukohara
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tsutomu Iwasa
- Department of Medical Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Masato Takahashi
- Department of Breast Surgery, National Hospital Organization Hokkaido Cancer Center, Hokkaido, Japan
| | - Yuko Tanabe
- Department of Medical Oncology, Toranomon Hospital, Tokyo, Japan
| | - Hidetaka Kawabata
- Department of Breast and Endocrine Surgery, Toranomon Hospital, Tokyo, Japan
| | - Norikazu Masuda
- Department of Surgery, Breast Oncology, National Hospital Organization Osaka National Hospital, Osaka, Japan
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | - Hironobu Minami
- Medical Oncology/Hematology, Internal Medicine, School of Medicine, Kobe University, Hyogo, Japan
| | - Koji Matsumoto
- Department of Medical Oncology, Hyogo Cancer Center, Hyogo, Japan
| | - Kenichi Yoshimura
- Center for Integrated Medical Research, Hiroshima University Hospital, Hiroshima University, Hiroshima, Japan
| | - Shigehisa Kitano
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toshimi Takano
- Department of Medical Oncology, Toranomon Hospital, Tokyo, Japan
- Department of Breast Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
107
|
Tu X, Yang J, Zheng Y, Liang C, Tao Q, Tang X, Liu Z, Jiang L, He Z, Xie F, Zheng Y. Immunotherapy combination with regorafenib for refractory hepatocellular carcinoma: A real-world study. Int Immunopharmacol 2022; 113:109401. [PMID: 36395672 DOI: 10.1016/j.intimp.2022.109401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022]
|
108
|
Yang G, Sun H, Sun N, Huang W, Wang Z, Zhang H, Liu C. Efficacy and safety comparison of PD-1 inhibitors vs. PD-L1 inhibitors in extensive-stage small-cell lung cancer: a retrospective comparative cohort study. J Thorac Dis 2022; 14:4925-4937. [PMID: 36647464 PMCID: PMC9840043 DOI: 10.21037/jtd-22-1682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
Background Evidence from clinical research and meta-analyses have suggested that programmed cell death 1 (PD-1) inhibitors and programmed cell death ligand 1 (PD-L1) inhibitors plus chemotherapy could achieve a significant survival benefit for extensive-stage small-cell lung cancer (ES-SCLC) patients. However clinical researches concerned about the comparation between the PD-1 and PD-L1 inhibitors were relatively lacking. Methods We collected the data of ES-SCLC patients treated with PD-1 inhibitors or PD-L1 inhibitors. The primary endpoints were overall survival (OS) and progression-free survival (PFS). Secondary endpoint included adverse events (AEs). Results The data of 221 ES-SCLC patients treated with PD-1 (n=146) or PD-L1 inhibitors (n=75) between February 2017 and June 2020 were retrospectively collected. The median OS (mOS) and median PFS (mPFS) were 19.07 and 8.27 months, respectively, in patients treated with PD-1 inhibitors. In the PD-L1 group, mOS has not been reached, and mPFS was 7.95 months. No significant differences were observed between the 2 groups in OS [hazard ratio (HR), 1.472; 95% confidence interval (CI), 0.847-2.220; P=0.198] and PFS (HR, 0.816; 95% CI, 0.577-1.155; P=0.251). The rates of patients showed AEs of any grade treated with PD-1 or PD-L1 were 67.12% and 64.00%, with no significant difference (P=0.642, χ2=0.216), ≥3 grade AEs occurred in 42 (28.76%) and 16 (21.33%) patients treated with PD-1 and PD-L1 inhibitors separately, also no significant difference (P=0.234, χ2=1.415) was observed. According to subgroup analysis, camrelizumab revealed a longer mPFS (15.17 months) compared with other immune-checkpoint inhibitors (ICIs). PD-1 and PD-L1 inhibitors revealed comparable efficacy in ES-SCLC patients with brain metastases, with no significant differences in OS (HR, 1.505; 95% CI, 0.684-3.311; P=0.309) and PFS (HR, 0.649; 95% CI, 0.356-1.182; P=0.157). Conclusions PD-1 and PD-L1 inhibitors might achieved comparable survival benefit and safety in ES-SCLC patients. A longer PFS was observed in patients treated with PD-1 inhibitors in the first-line treatment, and the PD-1 inhibitor camrelizumab might have achieved a better PFS compared with other ICIs.
Collapse
Affiliation(s)
- Guanghui Yang
- Cheeloo College of Medicine, Shandong University, Jinan, China;,Department of Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Hongfu Sun
- Cheeloo College of Medicine, Shandong University, Jinan, China;,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Nini Sun
- Radiotherapy Center, Xi’an International Medical Center Hospital, Xi’an, China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhongtang Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huawei Zhang
- Department of Ultrasound in Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chengxin Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China;,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
109
|
Yang X, Liu X, Li J, Zhang P, Li H, Chen G, Zhang W, Wang T, Frazer I, Ni G. Caerin 1.1/1.9 Enhances Antitumour Immunity by Activating the IFN-α Response Signalling Pathway of Tumour Macrophages. Cancers (Basel) 2022; 14:cancers14235785. [PMID: 36497272 PMCID: PMC9738106 DOI: 10.3390/cancers14235785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Macrophages are one of the essential components of the tumour microenvironment (TME) of many cancers and show complex heterogeneity and functions. More recent research has been focusing on the characterisation of tumour-associated macrophages (TAMs). Previously, our study demonstrated that caerin 1.1/1.9 peptides significantly improve the therapeutic efficacy of combined specific immunotherapy and immune checkpoint blockade in a murine transplantable tumour model (TC-1). In this study, the mice inoculated with TC-1 tumour were immunised differently. The TAMs were isolated using flow cytometry and characterised by cytokine ELISA. The survival rates of mice with different treatments containing caerin 1.1/19 were assessed comparatively, including those with/without macrophage depletion. The single-cell RNA sequencing (scRNA-seq) data of previous studies were integrated to further reveal the functions of TAMs with the treatments containing caerin 1.1/1.9. As a comparison, the TAMs of stage I and II cervical cancer patients were analysed using scRNA-seq analysis. We demonstrate that caerin induced tumour clearance is associated with infiltration of tumours by IL-12 secreting Ly6C+F4/80+ macrophages exhibiting enhanced IFN-α response signalling, renders animals resistant to further tumour challenge, which is lost after macrophage depletion. Our results indicate that caerin 1.1/1.9 treatment has great potential in improving current immunotherapy efficacy.
Collapse
Affiliation(s)
- Xiaodan Yang
- The First Affiliated Hospital, Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Xiaosong Liu
- The First Affiliated Hospital, Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou 510080, China
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan 528000, China
| | - Junjie Li
- The First Affiliated Hospital, Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Pingping Zhang
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan 528000, China
| | - Hejie Li
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD 4558, Australia
| | - Guoqiang Chen
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan 528000, China
| | - Wei Zhang
- The First Affiliated Hospital, Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Tianfang Wang
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD 4558, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD 4558, Australia
| | - Ian Frazer
- Faculty of Medicine, University of Queensland Diamantina Institute, Translational Research Institute, the University of Queensland, Woolloongabba, QLD 4102, Australia
- Correspondence: (I.F.); (G.N.)
| | - Guoying Ni
- The First Affiliated Hospital, Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou 510080, China
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan 528000, China
- Correspondence: (I.F.); (G.N.)
| |
Collapse
|
110
|
Zheng W, Qian C, Tang Y, Yang C, Zhou Y, Shen P, Chen W, Yu S, Wei Z, Wang A, Lu Y, Zhao Y. Manipulation of the crosstalk between tumor angiogenesis and immunosuppression in the tumor microenvironment: Insight into the combination therapy of anti-angiogenesis and immune checkpoint blockade. Front Immunol 2022; 13:1035323. [PMID: 36439137 PMCID: PMC9684196 DOI: 10.3389/fimmu.2022.1035323] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Immunotherapy has been recognized as an effective and important therapeutic modality for multiple types of cancer. Nevertheless, it has been increasing recognized that clinical benefits of immunotherapy are less than expected as evidenced by the fact that only a small population of cancer patients respond favorably to immunotherapy. The structurally and functionally abnormal tumor vasculature is a hallmark of most solid tumors and contributes to an immunosuppressive microenvironment, which poses a major challenge to immunotherapy. In turn, multiple immune cell subsets have profound consequences on promoting neovascularization. Vascular normalization, a promising anti-angiogenic strategy, can enhance vascular perfusion and promote the infiltration of immune effector cells into tumors via correcting aberrant tumor blood vessels, resulting in the potentiation of immunotherapy. More interestingly, immunotherapies are prone to boost the efficacy of various anti-angiogenic therapies and/or promote the morphological and functional alterations in tumor vasculature. Therefore, immune reprograming and vascular normalization appear to be reciprocally regulated. In this review, we mainly summarize how tumor vasculature propels an immunosuppressive phenotype and how innate and adaptive immune cells modulate angiogenesis during tumor progression. We further highlight recent advances of anti-angiogenic immunotherapies in preclinical and clinical settings to solidify the concept that targeting both tumor blood vessels and immune suppressive cells provides an efficacious approach for the treatment of cancer.
Collapse
Affiliation(s)
- Weiwei Zheng
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunmei Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yueke Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peiliang Shen
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suyun Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
111
|
Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer 2022; 21:208. [PMID: 36324128 PMCID: PMC9628074 DOI: 10.1186/s12943-022-01670-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Tumors are comprised of both cancer cells and surrounding stromal components. As an essential part of the tumor microenvironment, the tumor stroma is highly dynamic, heterogeneous and commonly tumor-type specific, and it mainly includes noncellular compositions such as the extracellular matrix and the unique cancer-associated vascular system as well as a wide variety of cellular components including activated cancer-associated fibroblasts, mesenchymal stromal cells, pericytes. All these elements operate with each other in a coordinated fashion and collectively promote cancer initiation, progression, metastasis and therapeutic resistance. Over the past few decades, numerous studies have been conducted to study the interaction and crosstalk between stromal components and neoplastic cells. Meanwhile, we have also witnessed an exponential increase in the investigation and recognition of the critical roles of tumor stroma in solid tumors. A series of clinical trials targeting the tumor stroma have been launched continually. In this review, we introduce and discuss current advances in the understanding of various stromal elements and their roles in cancers. We also elaborate on potential novel approaches for tumor-stroma-based therapeutic targeting, with the aim to promote the leap from bench to bedside.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tao Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
112
|
Talib WH, Abuawad A, Thiab S, Alshweiat A, Mahmod AI. Flavonoid-based nanomedicines to target tumor microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
113
|
Yang G, Zhou D, Dai Y, Li Y, Wu J, Liu Q, Deng X. Construction of PEI-EGFR-PD-L1-siRNA dual functional nano-vaccine and therapeutic efficacy evaluation for lung cancer. Thorac Cancer 2022; 13:2941-2950. [PMID: 36117149 PMCID: PMC9626337 DOI: 10.1111/1759-7714.14618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND PD-1/PD-L1 tumor immunotherapy shows effective anticancer in treatment of solid tumors, so PEI lipid nanoparticles (PEI-LNP)/siRNA complex (EPV-PEI-LNP-SiRNA) with the therapeutic function of PD-L1-siRNA and EGFR short peptide/PD-L1 double immune-enhancing function were constructed for the prevention and treatment of EGFR-positive lung cancer in this study. METHOD In this study, PEI lipid nanoparticles (PEI-LNP)/siRNA complex (EPV-PEI-LNP-siRNA) with the therapeutic function of PD-L1-siRNA and EGFR short peptide/PD-L1 double immune-enhancing function were constructed for the prevention and treatment of EGFR-positive lung cancer and functional evaluation was conducted. RESULTS On the basis of the construction of the composite nano-drug delivery system, the binding capacity, cytotoxicity, apoptosis and uptake capacity of siRNA and EPV-PEI-LNP were tested in vitro, and the downregulation effect of PD-L1 on A549 cancer cells and the cytokine levels of cocultured T cells were tested. Lipid nanoparticles delivered siRNA and EGFR short peptide vaccine to non-small cell lung cancer (NSCLC), increasing tumor invasion and activation of CD8 + T cells. Combination therapy is superior to single target therapy. CONCLUSION Our constructed lipid nanoparticles of tumor targeted therapy gene siRNA combination had the ability to target cells in vitro and downregulate the expression of PD-L1, realizing the tumor-specific expression of immune-stimulating cytokines, which is a highly efficient and safe targeted therapy nano-vaccine.
Collapse
Affiliation(s)
- Guixue Yang
- Department of Thoracic Surgery, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Dong Zhou
- Department of Thoracic Surgery, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yin Dai
- Department of Information, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yanqi Li
- Department of Thoracic Surgery, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Jiang Wu
- Department of Thoracic Surgery, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Quanxing Liu
- Department of Thoracic Surgery, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xufeng Deng
- Department of Thoracic Surgery, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
114
|
Radiovaccination Strategy for Cancer Treatment Integrating Photodynamic Therapy-Generated Vaccines with Radiotherapy. Int J Mol Sci 2022; 23:ijms232012263. [PMID: 36293116 PMCID: PMC9602685 DOI: 10.3390/ijms232012263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 03/21/2023] Open
Abstract
Therapeutic cancer vaccines have become firmly established as a reliable and proficient form of tumor immunotherapy. They represent a promising approach for substantial advancements in the successful treatment of malignant diseases. One attractive vaccine strategy is using, as the vaccine material, the whole tumor cells treated ex vivo by rapid tumor ablation therapies that instigate stress signaling responses culminating in immunogenic cell death (ICD). One such treatment is photodynamic therapy (PDT). The underlying mechanisms and critical elements responsible for the potency of these vaccines are discussed in this review. Radiotherapy has emerged as a suitable component for the combined therapy protocols with the vaccines. Arguments and prospects for optimizing tumor control using a radiovaccination strategy involving X-ray irradiation plus PDT vaccines are presented, together with the findings supporting its validity.
Collapse
|
115
|
Cui Q, Mao Y, Hu Y, Ma D, Liu H. Anlotinib in recurrent or metastatic endometrial cancer. Int J Gynecol Cancer 2022; 32:1147-1152. [PMID: 35606048 DOI: 10.1136/ijgc-2022-003345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE For recurrent or metastatic endometrial cancer after second-line treatment, therapeutic options are limited. Anlotinib is a new multi-targeted tyrosine kinase inhibitor of tumor angiogenesis and growth. The aim of this study was to explore the efficacy and safety of anlotinib in patients with recurrent or metastatic endometrial cancer. METHODS Patients with recurrent or metastatic endometrial cancer who received anlotinib or anlotinib plus pembrolizumab after second-line treatment between July 2017 and October 2020 were analyzed. Objective response rate, disease control rate, progression-free survival, overall survival, and safety were evaluated. RESULTS A total of 56 patients were analyzed. The median age was 62 years (range 42-80). The median treatment of anlotinib was 5.9 cycles (range 2-21). The overall objective response rate was 42.9%, and the disease control rate was 75%. 44 (78.6%) patients received anlotinib monotherapy and 12 (21.2%) patients received anlotinib plus pembrolizumab. The objective response rate was 40.9% versus 50% (p=0.52) and the disease control rate was 72.7% versus 83.3% (p=0.59) in the monotherapy group and the combination therapy group, respectively. The median progression-free survival and overall survival from initiation of anlotinib therapy was 6 months (95% CI 4.89 to 7.11) and 13.3 months (95% CI 9.94 to 16.61), respectively. On multivariable Cox analysis, age (>60 vs ≤60 years) was an independent impact factor for both progression-free survival and overall survival, while prior lines of treatment (2 lines vs ≥3 lines) was an independent predictor of progression-free survival. The incidences of grade 3/4 adverse events were hypertension (10.7%), fatigue (7.1%), hand-foot syndrome (7.1%), proteinuria (3.6%), sore throat (3.6%), and hypothyroidism (3.6%). CONCLUSION Anlotinib is effective and well tolerated in patients with recurrent or metastatic endometrial cancer. It may be considered a choice for patients younger than 60 years and who have had <3 lines of treatment.
Collapse
Affiliation(s)
- Qingli Cui
- Department of Integrated Traditional Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yuefeng Mao
- Department of Medical Oncology, Second People's Hospital of Pingdingshan, Pingdingshan, Henan, China
| | - Yanhui Hu
- Department of Integrated Traditional Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Dongyang Ma
- Department of Integrated Traditional Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Huaimin Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
116
|
Escriche‐Navarro B, Escudero A, Lucena‐Sánchez E, Sancenón F, García‐Fernández A, Martínez‐Máñez R. Mesoporous Silica Materials as an Emerging Tool for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200756. [PMID: 35866466 PMCID: PMC9475525 DOI: 10.1002/advs.202200756] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/16/2022] [Indexed: 05/16/2023]
Abstract
Cancer immunotherapy has emerged in the past decade as a promising strategy for treating many forms of cancer by stimulating the patient's immune system. Although immunotherapy has achieved some promising results in clinics, more efforts are required to improve the limitations of current treatments related to lack of effective and targeted cancer antigens delivery to immune cells, dose-limiting toxicity, and immune-mediated adverse effects, among others. In recent years, the use of nanomaterials has proven promising to enhance cancer immunotherapy efficacy and reduce side effects. Among nanomaterials, attention has been recently paid to mesoporous silica nanoparticles (MSNs) as a potential multiplatform for enhancing cancer immunotherapy by considering their unique properties, such as high porosity, and good biocompatibility, facile surface modification, and self-adjuvanticity. This review explores the role of MSN and other nano/micro-materials as an emerging tool to enhance cancer immunotherapy, and it comprehensively summarizes the different immunotherapeutic strategies addressed to date by using MSN.
Collapse
Affiliation(s)
- Blanca Escriche‐Navarro
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
| | - Andrea Escudero
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
| | - Elena Lucena‐Sánchez
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
| | - Félix Sancenón
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| | - Alba García‐Fernández
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| | - Ramón Martínez‐Máñez
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| |
Collapse
|
117
|
Kim SY, Yin J, Bohlman S, Walker P, Dacic S, Kim C, Khan H, Liu SV, Ma PC, Nagasaka M, Reckamp KL, Abraham J, Uprety D, Wang F, Xiu J, Zhang J, Cheng H, Halmos B. Characterization of MET Exon 14 Skipping Alterations (in NSCLC) and Identification of Potential Therapeutic Targets Using Whole Transcriptome Sequencing. JTO Clin Res Rep 2022; 3:100381. [PMID: 36082279 PMCID: PMC9445394 DOI: 10.1016/j.jtocrr.2022.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Genomic alterations in the juxtamembrane exon 14 splice sites in NSCLC lead to increased MET stability and oncogenesis. We present the largest cohort study of MET Exon 14 (METex14) using whole transcriptome sequencing. Methods A total of 21,582 NSCLC tumor samples underwent complete genomic profiling with next-generation sequencing of DNA (592 Gene Panel, NextSeq, whole exome sequencing, NovaSeq) and RNA (NovaSeq, whole transcriptome sequencing). Clinicopathologic information including programmed death-ligand 1 and tumor mutational burden were collected and RNA expression for mutation subtypes and MET amplification were quantified. Immunogenic signatures and potential pathways of invasion were characterized using single-sample gene set enrichment analysis and mRNA gene signatures. Results A total of 533tumors (2.47%) with METex14 were identified. The most common alterations were point mutations (49.5%) at donor splice sites. Most alterations translated to increased MET expression, with MET co-amplification resulting in synergistic increase in expression (q < 0.05). Common coalterations were amplifications of MDM2 (19.0% versus 1.8% wild-type [WT]), HMGA2 (13.2% versus 0.98% WT), and CDK4 (10.0% versus 1.5% WT) (q < 0.05). High programmed death-ligand 1 > 50% (52.5% versus 27.3% WT, q < 0.0001) and lower proportion of high tumor mutational burden (>10 mutations per megabase, 8.3% versus 36.7% WT, p < 0.0001) were associated with METex14, which were also enriched in both immunogenic signatures and immunosuppressive checkpoints. Pathways associated with METex14 included angiogenesis and apical junction pathways (q < 0.05). Conclusions METex14 splicing alterations and MET co-amplification translated to higher and synergistic MET expression at the transcriptomic level. High frequencies of MDM2 and CDK4 co-amplifications and association with multiple immunosuppressive checkpoints and angiogenic pathways provide insight into potential actionable targets for combination strategies in METex14 NSCLC.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, New York
- Yale School of Medicine, New Haven, Connecticut
| | - Jun Yin
- Caris Life Sciences, Phoenix, Arizona
| | - Stephen Bohlman
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, New York
| | | | - Sanja Dacic
- Yale School of Medicine, New Haven, Connecticut
| | - Chul Kim
- Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Hina Khan
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Stephen V. Liu
- Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | | | | | | | | | | | - Feng Wang
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, New York
| | | | | | - Haiying Cheng
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, New York
| | - Balazs Halmos
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, New York
- Corresponding author. Address for correspondence: Balazs Halmos, MD, Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, New York.
| |
Collapse
|
118
|
Nucleolin Therapeutic Targeting Decreases Pancreatic Cancer Immunosuppression. Cancers (Basel) 2022; 14:cancers14174265. [PMID: 36077801 PMCID: PMC9454580 DOI: 10.3390/cancers14174265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The pancreatic ductal adenocarcinoma (PDAC) microenvironment is highly fibrotic and hypoxic, with poor immune cell infiltration. Recently, we showed that nucleolin (NCL) inhibition normalizes tumour vessels and impairs PDAC growth. Methods: Immunocompetent mouse models of PDAC were treated by the pseudopeptide N6L, which selectively inhibits NCL. Tumour-infiltrating immune cells and changes in the tumour microenvironment were analysed. Results: N6L reduced the proportion of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) and increased tumour-infiltrated T lymphocytes (TILs) with an activated phenotype. Low-dose anti-VEGFR2 treatment normalized PDAC vessels but did not modulate the immune suppressive microenvironment. RNAseq analysis of N6L-treated PDAC tumours revealed a reduction of cancer-associated fibroblast (CAF) expansion in vivo and in vitro. Notably, N6L treatment decreased IL-6 levels both in tumour tissues and in serum. Treating mPDAC by an antibody blocking IL-6 reduced the proportion of Tregs and MDSCs and increased the amount of TILs, thus mimicking the effects of N6L. Conclusions: These results demonstrate that NCL inhibition blocks the amplification of lymphoid and myeloid immunosuppressive cells and promotes T cell activation in PDAC through a new mechanism of action dependent on the direct inhibition of the tumoral stroma.
Collapse
|
119
|
Chan Wah Hak CML, Rullan A, Patin EC, Pedersen M, Melcher AA, Harrington KJ. Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Front Oncol 2022; 12:971959. [PMID: 36106115 PMCID: PMC9465159 DOI: 10.3389/fonc.2022.971959] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the most effective and frequently used treatments for a wide range of cancers. In addition to its direct anti-cancer cytotoxic effects, ionising radiation can augment the anti-tumour immune response by triggering pro-inflammatory signals, DNA damage-induced immunogenic cell death and innate immune activation. Anti-tumour innate immunity can result from recruitment and stimulation of dendritic cells (DCs) which leads to tumour-specific adaptive T-cell priming and immunostimulatory cell infiltration. Conversely, radiotherapy can also induce immunosuppressive and anti-inflammatory mediators that can confer radioresistance. Targeting the DNA damage response (DDR) concomitantly with radiotherapy is an attractive strategy for overcoming radioresistance, both by enhancing the radiosensitivity of tumour relative to normal tissues, and tipping the scales in favour of an immunostimulatory tumour microenvironment. This two-pronged approach exploits genomic instability to circumvent immune evasion, targeting both hallmarks of cancer. In this review, we describe targetable DDR proteins (PARP (poly[ADP-ribose] polymerase); ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), DNA-PKcs (DNA-dependent protein kinase, catalytic subunit) and Wee1 (Wee1-like protein kinase) and their potential intersections with druggable immunomodulatory signalling pathways, including nucleic acid-sensing mechanisms (Toll-like receptors (TLR); cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and retinoic acid-inducible gene-I (RIG-I)-like receptors), and how these might be exploited to enhance radiation therapy. We summarise current preclinical advances, recent and ongoing clinical trials and the challenges of therapeutic combinations with existing treatments such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Antonio Rullan
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Emmanuel C. Patin
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Malin Pedersen
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Alan A. Melcher
- Translational Immunotherapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Kevin J. Harrington
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
120
|
Luo X, Zou W, Wei Z, Yu S, Zhao Y, Wu Y, Wang A, Lu Y. Inducing vascular normalization: A promising strategy for immunotherapy. Int Immunopharmacol 2022; 112:109167. [PMID: 36037653 DOI: 10.1016/j.intimp.2022.109167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
In solid tumors, the vasculature is highly abnormal in structure and function, resulting in the formation of an immunosuppressive tumor microenvironment by limiting immune cells infiltration into tumors. Vascular normalization is receiving much attention as an alternative strategy to anti-angiogenic therapy, and its potential therapeutic targets include signaling pathways, angiogenesis-related genes, and metabolic pathways. Endothelial cells play an important role in the formation of blood vessel structure and function, and their metabolic processes drive blood vessel sprouting in parallel with the control of genetic signals in cancer. The feedback loop between vascular normalization and immunotherapy has been discussed extensively in many reviews. In this review, we summarize the impact of aberrant tumor vascular structure and function on drug delivery, metastasis, and anti-tumor immune responses. In addition, we present evidences for the mutual regulation of immune vasculature. Based on the importance of endothelial metabolism in controlling angiogenesis, we elucidate the crosstalk between endothelial cells and immune cells from the perspective of metabolic pathways and propose that targeting abnormal endothelial metabolism to achieve vascular normalization can be an alternative strategy for cancer treatment, which provides a new theoretical basis for future research on the combination of vascular normalization and immunotherapy.
Collapse
Affiliation(s)
- Xin Luo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Suyun Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
121
|
Ma K, Chen S, Chen X, Zhao X, Yang J. CD93 is Associated with Glioma-related Malignant Processes and Immunosuppressive Cell Infiltration as an Inspiring Biomarker of Survivance. J Mol Neurosci 2022; 72:2106-2124. [PMID: 36006582 DOI: 10.1007/s12031-022-02060-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Previous reports have confirmed the significance of CD93 in the progression of multiple tumors; however, there are few studies examining its immune properties for gliomas. Here, we methodically investigated the pathophysiological characteristics and clinical manifestations of gliomas. Six hundred ninety-nine glioma patients in TCGA along with 325 glioma patients in CGGA were correspondingly collected for training and validating. We analyzed and visualized total statistics using RStudio. One-way ANOVA and Student's t-test were used to assess groups' differences. All differences were considered statistically significant at the level of P < 0.05. CD93 markedly upregulated among HGG, MGMT promoter unmethylated subforms, IDH wild forms, 1p19q non-codeletion subforms, and mesenchyme type gliomas. ROC analysis illustrated the favorable applicability of CD93 in estimating mesenchyme subform. Kaplan-Meier curves together with multivariable Cox analyses upon survivance identified high-expression CD93 as a distinct prognostic variable for glioma patients. GO analysis of CD93 documented its predominant part in glioma-related immunobiological processes and inflammation responses. We examined the associations of CD93 with immune-related meta-genes, and CD93 positively correlated with HCK, LCK, MHC I, MHC II, STAT1 and IFN, while adverse with IgG. Association analyses between CD93 and gliomas-infiltrating immunocytes indicated that the infiltrating degrees of most immunocytes exhibited positive correlations with CD93, particularly these immunosuppressive subsets such as TAM, Treg, and MDSCs. CD93 is markedly associated with adverse pathology types, unfavorable survival, and immunosuppressive immunocytes infiltration among gliomas, thus identifying CD93 as a practicable marker and a promising target for glioma-based precise diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Kaiming Ma
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China
| | - Suhua Chen
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Xiaofang Zhao
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, 49 North Garden Rd, Beijing, 100191, China. .,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China.
| |
Collapse
|
122
|
Rizzo M, Varnier L, Pezzicoli G, Pirovano M, Cosmai L, Porta C. IL-8 and its role as a potential biomarker of resistance to anti-angiogenic agents and immune checkpoint inhibitors in metastatic renal cell carcinoma. Front Oncol 2022; 12:990568. [PMID: 36059687 PMCID: PMC9437355 DOI: 10.3389/fonc.2022.990568] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
The therapeutic armamentarium of metastatic Renal Cell Carcinoma (mRCC) has consistently expanded in recent years, with the introduction of VEGF/VEGFR (Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor) inhibitors, mTOR (mammalian Target Of Rapamycin) inhibitors and Immune Checkpoint (IC) inhibitors. Currently, for the first-tline treatment of mRCC it is possible to choose between a VEGFR-TKI (VEGFR-Tyrosine Kinase Inhibitor) monotherapy, an ICI-ICI (Immune Checkpoint Inhibitor) combination and an ICI-VEGFRTKI combination. However, a consistent part of patients does not derive benefit from first-line therapy with ICIs; moreover, the use of combination regimens exposes patients to significant toxicities. Therefore, there is a critical need to develop prognostic and predictive biomarkers of response to VEGFR-TKIs and ICIs, and measurement of serum IL-8 is emerging as a potential candidate in this field. Recent retrospective analyses of large phase II and phase III trials found that elevated baseline serum IL-8 correlated with higher levels of tumor and circulating immunosuppressive myeloid cells, decreased T cell activation and poor response to treatment. These findings must be confirmed in prospective clinical trials; however, they provide evidence for a potential use of serum IL-8 as biomarker of resistance to VEGFR-TKIs and ICIs. Considering the amount of new agents and treatment regimens which are transforming the management of metastatic renal cell carcinoma, serum IL-8 could become a precious resource in tailoring the best therapy for each individual patient with the disease.
Collapse
Affiliation(s)
- Mimma Rizzo
- Division of Medical Oncology, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy
- *Correspondence: Mimma Rizzo,
| | - Luca Varnier
- Department of Pediatrics, Meyer’ Childrens University Hospital, Florence, Italy
| | - Gaetano Pezzicoli
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Marta Pirovano
- Division of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Fatebenefratelli Hospital, Milan, Italy
| | - Laura Cosmai
- Division of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Fatebenefratelli Hospital, Milan, Italy
| | - Camillo Porta
- Division of Medical Oncology, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy
- Chair of Oncology, Interdisciplinary Department of Medicine, University of Bari “A. Moro”, Bari, Italy
| |
Collapse
|
123
|
Yue Y, Cao Y, Mao X, Wang F, Fan P, Qian L, Guo S, Li F, Guo Y, Chen T, Lin Y, Dong W, Liu Y, Huang Y, Gu W. Novel myeloma patient-derived xenograft models unveil the potency of anlotinib to overcome bortezomib resistance. Front Oncol 2022; 12:894279. [PMID: 35992875 PMCID: PMC9389337 DOI: 10.3389/fonc.2022.894279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022] Open
Abstract
Multiple myeloma (MM) remains a common hematologic malignancy with a 10-year survival rate below 50%, which is largely due to disease relapse and resistance. The lack of a simple and practical approach to establish myeloma patient-derived xenograft (PDX) hampers translational myeloma research. Here, we successfully developed myeloma PDXs by subcutaneous inoculation of primary mononuclear cells from MM patients following series tumor tissue transplantations. Newly established myeloma PDXs retained essential cellular features of MM and recapitulated their original drug sensitivities as seen in the clinic. Notably, anlotinib therapy significantly suppressed the growth of myeloma PDXs even in bortezomib-resistant model. Anlotinib treatments polarized tumor-associated macrophages from an M2- to an M1-like phenotype, decreased tumor vascular function, and accelerated cell apoptosis in myeloma PDXs. Our preclinical work not only unveiled the potency of anlotinib to overcome bortezomib resistance, but also provided a more practical way to establish MM PDX to facilitate myeloma research.
Collapse
Affiliation(s)
- Yanhua Yue
- Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Yang Cao
- Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xunyuan Mao
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Fei Wang
- Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Peng Fan
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Long Qian
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Shuxin Guo
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Feng Li
- Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yanting Guo
- Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Tongbing Chen
- Department of Pathology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yan Lin
- Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Weimin Dong
- Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yue Liu
- Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yuhui Huang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
- *Correspondence: Weiying Gu, ; Yuhui Huang,
| | - Weiying Gu
- Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
- *Correspondence: Weiying Gu, ; Yuhui Huang,
| |
Collapse
|
124
|
Baci D, Cekani E, Imperatori A, Ribatti D, Mortara L. Host-Related Factors as Targetable Drivers of Immunotherapy Response in Non-Small Cell Lung Cancer Patients. Front Immunol 2022; 13:914890. [PMID: 35874749 PMCID: PMC9298844 DOI: 10.3389/fimmu.2022.914890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite some significant therapeutic breakthroughs leading to immunotherapy, a high percentage of patients with non-small cell lung cancer (NSCLC) do not respond to treatment on relapse, thus experiencing poor prognosis and survival. The unsatisfying results could be related to the features of the tumor immune microenvironment and the dynamic interactions between a tumor and immune infiltrate. Host-tumor interactions strongly influence the course of disease and response to therapies. Thus, targeting host-associated factors by restoring their physiologic functions altered by the presence of a tumor represents a new therapeutic approach to control tumor development and progression. In NSCLC, the immunogenic tumor balance is shifted negatively toward immunosuppression due to the release of inhibitory factors as well as the presence of immunosuppressive cells. Among these cells, there are myeloid-derived suppressor cells, regulatory T cells that can generate a tumor-permissive milieu by reprogramming the cells of the hosts such as tumor-associated macrophages, tumor-associated neutrophils, natural killer cells, dendritic cells, and mast cells that acquire tumor-supporting phenotypes and functions. This review highlights the current knowledge of the involvement of host-related factors, including innate and adaptive immunity in orchestrating the tumor cell fate and the primary resistance mechanisms to immunotherapy in NSCLC. Finally, we discuss combinational therapeutic strategies targeting different aspects of the tumor immune microenvironment (TIME) to prime the host response. Further research dissecting the characteristics and dynamic interactions within the interface host-tumor is necessary to improve a patient fitness immune response and provide answers regarding the immunotherapy efficacy, with the aim to develop more successful treatments for NSCLC.
Collapse
Affiliation(s)
- Denisa Baci
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy.,Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elona Cekani
- Medical Oncology Clinic, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Andrea Imperatori
- Center for Thoracic Surgery, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
125
|
Tiako Meyo M, Chen J, Goldwasser F, Hirsch L, Huillard O. A Profile of Avelumab Plus Axitinib in the Treatment of Renal Cell Carcinoma. Ther Clin Risk Manag 2022; 18:683-698. [PMID: 35837579 PMCID: PMC9275425 DOI: 10.2147/tcrm.s263832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
Abstract
Until recently, the approved first-line treatment for metastatic RCC (mRCC) consisted of tyrosine kinase inhibitors (TKI) targeting the vascular endothelial growth factor receptors (VEGFR) monotherapy. The landscape of first-line treatment has been transformed in the last few years with the advent of immune checkpoint inhibitors (ICI) or VEGFR TKI plus ICI combinations. This article focuses on the profile of one of these ICI plus VEGFR TKI combination, avelumab plus axitinib. We detail the characteristics of each drug separately, and then we explore the rationale for their association, its efficacy and the resulting toxicity. Finally, we examine the factors associated with avelumab plus axitinib outcomes, and their impact on therapeutic strategy.
Collapse
Affiliation(s)
- Manuela Tiako Meyo
- Department of Medical Oncology, Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Hôpital Cochin, Paris, France.,Immunomodulatory Therapies Multidisciplinary Study Group (CERTIM), AP-HP, APHP.Centre, Hôpital Cochin, Paris, France
| | - Jeanne Chen
- Department of Medical Oncology, Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Hôpital Cochin, Paris, France.,Immunomodulatory Therapies Multidisciplinary Study Group (CERTIM), AP-HP, APHP.Centre, Hôpital Cochin, Paris, France
| | - Francois Goldwasser
- Department of Medical Oncology, Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Hôpital Cochin, Paris, France.,Immunomodulatory Therapies Multidisciplinary Study Group (CERTIM), AP-HP, APHP.Centre, Hôpital Cochin, Paris, France
| | - Laure Hirsch
- Department of Medical Oncology, Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Hôpital Cochin, Paris, France.,Immunomodulatory Therapies Multidisciplinary Study Group (CERTIM), AP-HP, APHP.Centre, Hôpital Cochin, Paris, France
| | - Olivier Huillard
- Department of Medical Oncology, Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Hôpital Cochin, Paris, France.,Immunomodulatory Therapies Multidisciplinary Study Group (CERTIM), AP-HP, APHP.Centre, Hôpital Cochin, Paris, France
| |
Collapse
|
126
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
127
|
Chen H, Tu W, Lu Y, Zhang Y, Xu Y, Chen X, Zhu M, Liu Y. Low-dose X-ray irradiation combined with FAK inhibitors improves the immune microenvironment and confers sensitivity to radiotherapy in pancreatic cancer. Biomed Pharmacother 2022; 151:113114. [PMID: 35594704 DOI: 10.1016/j.biopha.2022.113114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Radiation therapy offers limited clinical benefits for patients with pancreatic cancer, partly as a result of the predominantly immunosuppressive microenvironment characteristic of this specific type of cancer. A large number of abnormal blood vessels and high-density fibrous matrices in pancreatic cancer will lead to hypoxia within tumor tissue and hinder immune cell infiltration. We used low-dose X-ray irradiation, also known as low-dose radiation therapy (LDRT), to normalize the blood vessels in pancreatic cancer, while simultaneously administering an inhibitor of focal adhesion kinase (FAK) to reduce pancreatic cancer fibrosis. We found that this treatment successfully reduced pancreatic cancer hypoxia, increased immune cell infiltration, and increased sensitivity to radiation therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Huanliang Chen
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Wenzhi Tu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yue Lu
- Department of Radiotherapy, Huangpu Branch of the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200002, China
| | - Yingzi Zhang
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yiqing Xu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xuming Chen
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Meiling Zhu
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Yong Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| |
Collapse
|
128
|
Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors. Int J Mol Sci 2022; 23:ijms23137325. [PMID: 35806328 PMCID: PMC9266676 DOI: 10.3390/ijms23137325] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells mediate innate and adaptive immune responses and are directly involved in the activation of cytotoxic T lymphocytes that kill tumor cells. Dendritic cell-based cancer immunotherapy has clinical benefits. Dendritic cell subsets are diverse, and tumors can be hot or cold, depending on their immunogenicity; this heterogeneity affects the success of dendritic cell-based immunotherapy. Here, we review the ontogeny of dendritic cells and dendritic cell subsets. We also review the characteristics of hot and cold tumors and briefly introduce therapeutic trials related to hot and cold tumors. Lastly, we discuss dendritic cell-based cancer immunotherapy in hot and cold tumors.
Collapse
|
129
|
Zeng Y, Yu T, Zhang S, Song G, Meng T, Yuan H, Hu F. Combination of tumor vessel normalization and immune checkpoint blockade for breast cancer treatment via multifunctional nanocomplexes. Biomater Sci 2022; 10:4140-4155. [PMID: 35726757 DOI: 10.1039/d2bm00600f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor vessel normalization can alleviate hypoxia, reduce the intratumoral infiltration of immunosuppressive cells and increase the intratumoral infiltration of immune effector cells (CD8+ T cells), further reversing the immunosuppressive microenvironment. Here, nanocomplexes (lipo/St@FA-COSA/BMS-202) which can accurately deliver drugs to tumor tissues and release different drugs at different sites with different rates were prepared to combine tumor vessel normalization with immune checkpoint blockade. The results of drug release in vitro showed that in a pH 6.5 release medium, lipo/St@FA-COSA/BMS-202 rapidly released the vascular normalizing drug (sunitinib, St) and slowly released the PD-1/PD-L1-blocking drug (BMS-202). The results of in vivo experiments showed that the rapidly released St normalized tumor vessels and formed an immunosupportive microenvironment which improved the anti-tumor efficacy of BMS-202. In conclusion, the drug delivery strategy significantly inhibited tumor growth and had excellent anti-tumor efficacy, which can provide a potential approach for effective tumor treatment.
Collapse
Affiliation(s)
- Yingping Zeng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Tong Yu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Shufen Zhang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Guangtao Song
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
130
|
Nakahama K, Kaneda H, Osawa M, Fukui M, Izumi M, Yoshimoto N, Sugimoto A, Nagamine H, Ogawa K, Matsumoto Y, Sawa K, Tani Y, Mitsuoka S, Watanabe T, Asai K, Kawaguchi T. Vascular endothelial growth factor receptor 2 expression and immunotherapy efficacy in non-small cell lung cancer. Cancer Sci 2022; 113:3148-3160. [PMID: 35722982 PMCID: PMC9459341 DOI: 10.1111/cas.15464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
It is unclear whether tumor vascular endothelial growth factor receptor 2 expression affects the therapeutic efficacy of immune‐checkpoint inhibitors and antiangiogenic agents. This retrospective, multicenter study included patients with advanced non–small cell lung cancer who were treated with immune‐checkpoint inhibitors. We constructed tissue microarrays and performed immunohistochemistry with an anti‐vascular endothelial growth factor receptor 2 antibody. We analyzed immune and tumor cell staining separately in order to determine their correlation with the objective response rate, progression‐free survival, and overall survival in patients receiving immune‐checkpoint inhibitors. Of 364 patients, 37 (10%) expressed vascular endothelial growth factor receptor 2 in immune cells and 165 (45%) in tumor cells. The objective response rate, progression‐free survival, and overall survival were significantly worse in patients treated with immune checkpoint inhibitor monotherapy who expressed vascular endothelial growth factor receptor 2 in immune cells than those who did not (10% vs 30%, p = 0.028; median = 2.2 vs 3.6 months, p = 0.012; median = 7.9 vs 17.0 months, p = 0.049, respectively), while there was no significant difference based on tumor cell expression (24% vs 30%, p = 0.33; median = 3.1 vs 3.5 months, p = 0.55; median = 13.6 vs 16.8 months, p = 0.31). There was no significant difference in overall survival between patients treated with and without antiangiogenic agents in any treatment period based on vascular endothelial growth factor receptor 2 expression. Immune checkpoint inhibitor efficacy was limited in patients expressing vascular endothelial growth factor receptor 2 in immune cells.
Collapse
Affiliation(s)
- Kenji Nakahama
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Japan
| | - Hiroyasu Kaneda
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Masahiko Osawa
- Department of Diagnostic Pathology, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Mitsuru Fukui
- Department of Laboratory of Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Motohiro Izumi
- Department of Pulmonary Medicine, Bell land General Hospital, Sakai, Japan
| | - Naoki Yoshimoto
- Department of Pulmonary Medicine, Ishikiriseiki Hospital, Higashiosaka, Japan
| | - Akira Sugimoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hiroaki Nagamine
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Koichi Ogawa
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshiya Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kenji Sawa
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoko Tani
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Shigeki Mitsuoka
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Japan
| | - Tetsuya Watanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tomoya Kawaguchi
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
131
|
Ozaki Y, Tsurutani J, Mukohara T, Iwasa T, Takahashi M, Tanabe Y, Kawabata H, Masuda N, Futamura M, Minami H, Matsumoto K, Yoshimura K, Kitano S, Takano T. Safety and efficacy of nivolumab plus bevacizumab, paclitaxel for HER2-negative metastatic breast cancer: Primary results and biomarker data from a phase 2 trial (WJOG9917B). Eur J Cancer 2022; 171:193-202. [PMID: 35728379 DOI: 10.1016/j.ejca.2022.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Preclinical models revealed potential synergistic effects of programmed cell death-1 inhibitors and anti-vascular endothelial growth factor (VEGF) antibodies. Therefore, we investigated the use of nivolumab, bevacizumab, and paclitaxel triple therapy for metastatic breast cancer. METHODS This phase 2, multicentre, single-arm study (NEWBEAT) investigated the safety and efficacy of first-line nivolumab, paclitaxel, and bevacizumab in patients with human epidermal growth factor receptor 2-negative metastatic breast cancer, regardless of programmed cell death-ligand 1 expression. The primary end-point was objective response rate. Key secondary end-points included progression-free survival, overall survival, and toxicities. A biomarker study evaluated tumour programmed cell death-ligand 1 expression and serum VEGF-A levels. RESULTS Between February 2018 and October 2018, 57 patients were enrolled. An objective response rate was seen in 39/56 patients (70%, 95% confidence interval [CI]: 55.9-81.2%), meeting the primary end-point. The objective response rate was 74% in patients with hormone receptor-positive breast cancer versus 59% in patients with triple-negative breast cancer. The median progression-free survival and overall survival were 14.0 (95% CI 11.0-16.3) and 32.5 (95% CI 26.0-not evaluable) months, respectively (median follow-up: 29.5 months). Grade 3/4 adverse drug reactions occurred in 33 of 57 patients (58%). There were no grade 5 adverse events. Immune-related adverse events occurred in 43 of 57 patients (75%), with grade 3/4 events in eight patients (14%). Biomarker analysis showed that tumour programmed cell death-ligand 1 expression was not correlated with the efficacy of triple therapy. Efficacy outcomes were similar between the serum VEGF-high and VEGF-low groups. CONCLUSIONS First-line nivolumab, bevacizumab, and paclitaxel therapy showed promising efficacy and manageable toxicity in patients with human epidermal growth factor receptor 2-negative metastatic breast cancer.
Collapse
Affiliation(s)
- Yukinori Ozaki
- Department of Medical Oncology, Toranomon Hospital, Tokyo, Japan; Department of Breast Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Junji Tsurutani
- Advanced Cancer Translational Research Institute, Showa University, Tokyo, Japan
| | - Toru Mukohara
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tsutomu Iwasa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masato Takahashi
- Department of Breast Surgery, National Hospital Organization Hokkaido Cancer Center, Hokkaido, Japan
| | - Yuko Tanabe
- Department of Medical Oncology, Toranomon Hospital, Tokyo, Japan
| | - Hidetaka Kawabata
- Department of Breast and Endocrine Surgery, Toranomon Hospital, Tokyo, Japan
| | - Norikazu Masuda
- Department of Surgery, Breast Oncology, National Hospital Organization Osaka National Hospital, Osaka, Japan; Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Hironobu Minami
- Medical Oncology/Hematology, Internal Medicine, Kobe University School of Medicine, Hyogo, Japan
| | - Koji Matsumoto
- Department of Medical Oncology, Hyogo Cancer Center, Hyogo, Japan
| | - Kenichi Yoshimura
- Center for Integrated Medical Research, Hiroshima University Hospital, Hiroshima University, Hiroshima, Japan
| | - Shigehisa Kitano
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan; Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toshimi Takano
- Department of Medical Oncology, Toranomon Hospital, Tokyo, Japan; Department of Breast Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
132
|
Takei J, Fukasawa N, Tanaka T, Yamamoto Y, Tamura R, Sasaki H, Akasaki Y, Kamata Y, Murahashi M, Shimoda M, Murayama Y. Impact of Neoadjuvant Bevacizumab on Neuroradiographic Response and Histological Findings Related to Tumor Stemness and the Hypoxic Tumor Microenvironment in Glioblastoma: Paired Comparison Between Newly Diagnosed and Recurrent Glioblastomas. Front Oncol 2022; 12:898614. [PMID: 35785200 PMCID: PMC9247463 DOI: 10.3389/fonc.2022.898614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 12/03/2022] Open
Abstract
Background Previously, we reported that bevacizumab (Bev) produces histological and neuroradiographic alterations including changes in tumor oxygenation, induction of an immunosupportive tumor microenvironment, and inhibition of stemness. To confirm how those effects vary during Bev therapy, paired samples from the same patients with newly diagnosed glioblastoma (GBM) who received preoperative neoadjuvant Bev (neoBev) were investigated with immunohistochemistry before and after recurrence. Methods Eighteen samples from nine patients with newly diagnosed GBM who received preoperative neoBev followed by surgery and chemoradiotherapy and then autopsy or salvage surgery after recurrence were investigated. The expression of carbonic anhydrase 9 (CA9), hypoxia-inducible factor-1 alpha (HIF-1α), nestin, and Forkhead box M1 (FOXM1) was evaluated with immunohistochemistry. For comparison between neoBev and recurrent tumors, we divided the present cohort into two groups based on neuroradiographic response: good and poor responders (GR and PR, respectively) to Bev were defined by the tumor regression rate on T1-weighted images with gadolinium enhancement (T1Gd) and fluid-attenuated inversion recovery images. Patterns of recurrence after Bev therapy were classified as cT1 flare-up and T2-diffuse/T2-circumscribed. Furthermore, we explored the possibility of utilizing FOXM1 as a biomarker of survival in this cohort. Results A characteristic “pseudo-papillary”-like structure containing round-shaped tumor cells clustered adjacent to blood vessels surrounded by spindle-shaped tumor cells was seen only in recurrent tumors. Tumor cells at the outer part of the “pseudo-papillary” structure were CA9-positive (CA9+)/HIF-1α+, whereas cells at the inner part of this structure were CA9−/HIF-1α+ and nestin+/FOXM1+. CA9 and HIF-1α expression was lower in T1Gd-GR and decreased in the “T2-circumscribed/T2-diffuse” pattern compared with the “T1 flare-up” pattern, suggesting that tumor oxygenation was frequently observed in T1Gd-GR in initial tumors and in the “T2-circumscribed/T2-diffuse” pattern in recurrent tumors. FOXM1 low-expression tumors tended to have a better prognosis than that of FOXM1 high-expression tumors. Conclusion A “pseudo-papillary” structure was seen in recurrent GBM after anti-vascular endothelial growth factor therapy. Bev may contribute to tumor oxygenation, leading to inhibition of stemness and correlation with a neuroimaging response during Bev therapy. FOXM1 may play a role as a biomarker of survival during Bev therapy.
Collapse
Affiliation(s)
- Jun Takei
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| | - Nei Fukasawa
- Department of Pathology, Jikei University School of Medicine, Tokyo, Japan
| | - Toshihide Tanaka
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
- Department of Neurosurgery, Jikei University School of Medicine Kashiwa Hospital, Kashiwa, Japan
- *Correspondence: Toshihide Tanaka,
| | - Yohei Yamamoto
- Department of Neurosurgery, Jikei University School of Medicine Daisan Hospital, Tokyo, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasuharu Akasaki
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| | - Yuko Kamata
- Division of Oncology, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo, Japan
| | - Mutsunori Murahashi
- Division of Oncology, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pathology, Jikei University School of Medicine, Tokyo, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
133
|
Blood Stasis Syndrome Accelerates the Growth and Metastasis of Breast Cancer by Promoting Hypoxia and Immunosuppressive Microenvironment in Mice. J Immunol Res 2022; 2022:7222638. [PMID: 35711625 PMCID: PMC9197668 DOI: 10.1155/2022/7222638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022] Open
Abstract
Blood stasis syndromes (BSSs) are closely related to the occurrence and development of tumors, although the mechanism is still unclear. This study was aimed at exploring the effect and mechanism underlying different BSSs on tumor growth and metastasis. We established four BSS mouse models bred with breast cancer: qi deficiency and blood stasis (QDBS), cold coagulation blood stasis (CCBS), heat toxin and blood stasis (HTBS), and qi stagnation and blood stasis (QSBS). The results showed that microcirculation in the lower limb, abdominal wall, and tumor in situ decreased by varying degrees in the BSS groups. In addition, BSS promoted tumor growth and lung metastasis. The ratio of regulatory T cells in the tumor microenvironment was downregulated. Moreover, hypoxia-inducible factor 1-α, Wnt1, β-catenin, vascular endothelial growth factor, and Cyclin D1 levels increased in the tumors of BSS mice. In conclusion, BSS not only promoted the formation of a hypoxic and immunosuppressive microenvironment but also promoted the neovascularization.
Collapse
|
134
|
Gopinathan G, Berlato C, Lakhani A, Szabova L, Pegrum C, Pedrosa AR, Laforets F, Maniati E, Balkwill FR. Immune Mechanisms of Resistance to Cediranib in Ovarian Cancer. Mol Cancer Ther 2022; 21:1030-1043. [PMID: 35313341 PMCID: PMC9167758 DOI: 10.1158/1535-7163.mct-21-0689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
This article investigates mechanisms of resistance to the VEGF receptor inhibitor cediranib in high-grade serous ovarian cancer (HGSOC), and defines rational combination therapies. We used three different syngeneic orthotopic mouse HGSOC models that replicated the human tumor microenvironment (TME). After 4 to 5 weeks treatment of established tumors, cediranib had antitumor activity with increased tumor T-cell infiltrates and alterations in myeloid cells. However, continued cediranib treatment did not change overall survival or the immune microenvironment in two of the three models. Moreover, treated mice developed additional peritoneal metastases not seen in controls. Cediranib-resistant tumors had intrinsically high levels of IL6 and JAK/STAT signaling and treatment increased endothelial STAT3 activation. Combination of cediranib with a murine anti-IL6 antibody was superior to monotherapy, increasing mouse survival, reducing blood vessel density, and pSTAT3, with increased T-cell infiltrates in both models. In a third HGSOC model, that had lower inherent IL6 JAK/STAT3 signaling in the TME but high programmed cell death protein 1 (PD-1) signaling, long-term cediranib treatment significantly increased overall survival. When the mice eventually relapsed, pSTAT3 was still reduced in the tumors but there were high levels of immune cell PD-1 and Programmed death-ligand 1. Combining cediranib with an anti-PD-1 antibody was superior to monotherapy in this model, increasing T cells and decreasing blood vessel densities. Bioinformatics analysis of two human HGSOC transcriptional datasets revealed distinct clusters of tumors with IL6 and PD-1 pathway expression patterns that replicated the mouse tumors. Combination of anti-IL6 or anti-PD-1 in these patients may increase activity of VEGFR inhibitors and prolong disease-free survival.
Collapse
Affiliation(s)
- Ganga Gopinathan
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; London, United Kingdom
| | - Chiara Berlato
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; London, United Kingdom
| | - Anissa Lakhani
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; London, United Kingdom
| | - Ludmila Szabova
- Frederick National Laboratory for Cancer Research, Tumour Microenvironment Leidos Biomedical Research Inc, Frederick, Maryland
| | - Colin Pegrum
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; London, United Kingdom
| | - Ana-Rita Pedrosa
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; London, United Kingdom
| | - Florian Laforets
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; London, United Kingdom
| | - Eleni Maniati
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; London, United Kingdom
| | - Frances R. Balkwill
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; London, United Kingdom
| |
Collapse
|
135
|
Kim HJ, Ji YR, Lee YM. Crosstalk between angiogenesis and immune regulation in the tumor microenvironment. Arch Pharm Res 2022; 45:401-416. [PMID: 35759090 PMCID: PMC9250479 DOI: 10.1007/s12272-022-01389-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Cancer creates a complex tumor microenvironment (TME) composed of immune cells, stromal cells, blood vessels, and various other cellular and extracellular elements. It is essential for the development of anti-cancer combination therapies to understand and overcome this high heterogeneity and complexity as well as the dynamic interactions between them within the TME. Recent treatment strategies incorporating immune-checkpoint inhibitors and anti-angiogenic agents have brought many changes and advances in clinical cancer treatment. However, there are still challenges for immune suppressive tumors, which are characterized by a lack of T cell infiltration and treatment resistance. In this review, we will investigate the crosstalk between immunity and angiogenesis in the TME. In addition, we will look at strategies designed to enhance anti-cancer immunity, to convert "immune suppressive tumors" into "immune activating tumors," and the mechanisms by which these strategies enhance effector immune cell infiltration.
Collapse
Affiliation(s)
- Hei Jung Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Young Rae Ji
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
- Department of Molecular Pathophysiology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
136
|
Acquired αSMA Expression in Pericytes Coincides with Aberrant Vascular Structure and Function in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14102448. [PMID: 35626052 PMCID: PMC9139959 DOI: 10.3390/cancers14102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
The subpopulations of tumor pericytes undergo pathological phenotype switching, affecting their normal function in upholding structural stability and cross-communication with other cells. In the case of pancreatic ductal adenocarcinoma (PDAC), a significant portion of blood vessels are covered by an α-smooth muscle actin (αSMA)-expressing pericyte, which is normally absent from capillary pericytes. The DesminlowαSMAhigh phenotype was significantly correlated with intratumoral hypoxia and vascular leakiness. Using an in vitro co-culture system, we demonstrated that cancer cell-derived exosomes could induce ectopic αSMA expression in pericytes. Exosome-treated αSMA+ pericytes presented altered pericyte markers and an acquired immune-modulatory feature. αSMA+ pericytes were also linked to morphological and biomechanical changes in the pericyte. The PDAC exosome was sufficient to induce αSMA expression by normal pericytes of the healthy pancreas in vivo, and the vessels with αSMA+ pericytes were leaky. This study demonstrated that tumor pericyte heterogeneity could be dictated by cancer cells, and a subpopulation of these pericytes confers a pathological feature.
Collapse
|
137
|
Yuge S, Nishiyama K, Arima Y, Hanada Y, Oguri-Nakamura E, Hanada S, Ishii T, Wakayama Y, Hasegawa U, Tsujita K, Yokokawa R, Miura T, Itoh T, Tsujita K, Mochizuki N, Fukuhara S. Mechanical loading of intraluminal pressure mediates wound angiogenesis by regulating the TOCA family of F-BAR proteins. Nat Commun 2022; 13:2594. [PMID: 35551172 PMCID: PMC9098626 DOI: 10.1038/s41467-022-30197-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis is regulated in coordinated fashion by chemical and mechanical cues acting on endothelial cells (ECs). However, the mechanobiological mechanisms of angiogenesis remain unknown. Herein, we demonstrate a crucial role of blood flow-driven intraluminal pressure (IP) in regulating wound angiogenesis. During wound angiogenesis, blood flow-driven IP loading inhibits elongation of injured blood vessels located at sites upstream from blood flow, while downstream injured vessels actively elongate. In downstream injured vessels, F-BAR proteins, TOCA1 and CIP4, localize at leading edge of ECs to promote N-WASP-dependent Arp2/3 complex-mediated actin polymerization and front-rear polarization for vessel elongation. In contrast, IP loading expands upstream injured vessels and stretches ECs, preventing leading edge localization of TOCA1 and CIP4 to inhibit directed EC migration and vessel elongation. These data indicate that the TOCA family of F-BAR proteins are key actin regulatory proteins required for directed EC migration and sense mechanical cell stretching to regulate wound angiogenesis. Chemical and mechanical cues coordinately regulate angiogenesis. Here, the authors show that blood flow-driven intraluminal pressure regulates wound angiogenesis. Findings indicate that TOCA family of F-BAR proteins act as actin regulators required for endothelial cell migration and sense mechanical cell stretching to regulate wound angiogenesis.
Collapse
Affiliation(s)
- Shinya Yuge
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Koichi Nishiyama
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan. .,Laboratory of Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki City, Miyazaki, 889-1962, Japan.
| | - Yuichiro Arima
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan.,Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Yasuyuki Hanada
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan.,Department of Cardiology, Graduate School of Medicine, Nagoya University, Nagoya City, Aichi, 466-8550, Japan
| | - Eri Oguri-Nakamura
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Sanshiro Hanada
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan
| | - Tomohiro Ishii
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yuki Wakayama
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565, Japan
| | - Urara Hasegawa
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kazuya Tsujita
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8540, Japan
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, 812-8582, Japan
| | - Toshiki Itoh
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
138
|
Xu JY, Wei XL, Wang YQ, Wang FH. Current status and advances of immunotherapy in nasopharyngeal carcinoma. Ther Adv Med Oncol 2022; 14:17588359221096214. [PMID: 35547095 PMCID: PMC9083041 DOI: 10.1177/17588359221096214] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
The general immune landscape of nasopharyngeal carcinoma (NPC) renders immunotherapy suitable for patients with NPC. Immune checkpoint inhibitors (ICIs) based on programmed death-1/programmed death ligand-1 (PD-1/PD-L1) blockade have made a breakthrough with the approval of PD-1 inhibitor for refractory recurrence and/or metastatic (R/M NPC) and the approval of PD-1 inhibitor in combination with gemcitabine and cisplatin as first line for R/M NPC in 2021 in China. The incorporation of ICIs into the treatment paradigms of NPC has become a clinical hot spot and many prospective clinical studies are ongoing. In this review, we provide a comprehensive overview of the rationale for immunotherapy in NPC and current status, advances and challenges of immunotherapy in NPC based on published clinical data, and ongoing trials. We focus on the clinical application and advances of PD-1 inhibitor monotherapy and its combination with chemotherapy and summarize the clinical explorations of other immunotherapy approaches, for example, combination of PD-1/PD-L1 inhibitors with antiangiogenic inhibitor with molecular targeted agents, cancer vaccines, adaptive immunotherapy, and new ICI agents beyond PD-1/PD-L1 inhibitors in R/M NPC. We also describe the clinical studies’ status and challenges of ICIs-based immunomodulatory strategies in local advanced NPC and pay attention to the biomarker application for personalized immunotherapy of NPC in the hope to provide insights for clinical practice and future clinical studies.
Collapse
Affiliation(s)
- Jian-Ying Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xiao-Li Wei
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yi-Qin Wang
- Department of Clinical Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Feng-Hua Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dong Feng Road East, Guangzhou 510060, Guangdong, P.R. China
| |
Collapse
|
139
|
Borchiellini D, Maillet D. Clinical activity of immunotherapy-based combination first-line therapies for metastatic renal cell carcinoma: the right treatment for the right patient. Bull Cancer 2022; 109:2S4-2S18. [DOI: 10.1016/s0007-4551(22)00234-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
140
|
Tanigawa T, Takeshima N, Ishikawa H, Nishio S, Usami T, Yamawaki T, Oishi T, Ihira K, Kato H, Goto M, Saito M, Taira Y, Yokoyama M, Shoji T, Kondo E, Mori A, Yokoi T, Iwasa-Inoue N, Hirashima Y, Nagasawa T, Takenaka M, Mikami M, Sugiyama T, Enomoto T. Paclitaxel-carboplatin and bevacizumab combination with maintenance bevacizumab therapy for metastatic, recurrent, and persistent uterine cervical cancer: An open-label multicenter phase II trial (JGOG1079). Gynecol Oncol 2022; 165:413-419. [PMID: 35487773 DOI: 10.1016/j.ygyno.2022.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This multicenter, open-label, phase II study aimed to evaluate the efficacy and safety of paclitaxel-carboplatin, bevacizumab, and bevacizumab-based maintenance therapy for metastatic, recurrent, and persistent uterine cervical cancer. METHODS Patients with measurable diseases that were not adapted to regional therapies, such as surgery or radiotherapy, and were systematic chemotherapy-naïve were eligible. The participants received paclitaxel (175 mg/m2), carboplatin (AUC 5), and bevacizumab (15 mg/m2) every three weeks until disease progression or unacceptable adverse events occurred. The primary endpoint was progression-free survival (PFS). The secondary endpoints were overall response rate (ORR), overall survival (OS), safety, and time to treatment failure. RESULTS Sixty-nine patients were analyzed using our protocol. The median paclitaxel- carboplatin therapy duration was six cycles; 40% of patients received bevacizumab maintenance therapy. The median PFS was 11.3 months. The median OS was not reached; the median time to treatment failure was 5.9 months. The ORR was 79.7% [95% confidence interval (CI) 63.8-88.4]; 16 patients (23.2%) showed complete response (CR) and 39 patients (56.5%) showed partial response (PR). The median PFS was 14.3 months (95% CI 7.3-17 months) for the 25 patients who received maintenance therapy and 7.4 months (95% CI 6.1-11 months) for nonrecipients (p = 0.0449). Gastrointestinal perforation/fistulas occurred in four patients (5.6%), all of whom had a history of radiation therapy. CONCLUSIONS Paclitaxel-carboplatin and bevacizumab therapy is an acceptable and tolerable treatment for advanced or recurrent cervical cancer.
Collapse
Affiliation(s)
- Terumi Tanigawa
- Department of Gynecology, The Cancer Institute Hospital of JFCR, Tokyo, Japan.
| | - Nobuhiro Takeshima
- Department of Obstetrics and Gynecology, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Hideki Ishikawa
- JGOG1079 Data Center, Medical Research Support, Osaka, Japan
| | - Shin Nishio
- Department of Obstetrics and Gynecology, Kurume University School of Medicine, Fukuoka, Japan
| | - Tomoka Usami
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Ehime, Japan
| | - Takaharu Yamawaki
- Department of Obstetrics and Gynecology, Ise Red Cross Hospital, Mie, Japan
| | - Tetsuro Oishi
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, Tottori, Japan
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido, Japan
| | - Hisamori Kato
- Department of Gynecology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Mayako Goto
- Department of Obstetrics and Gynecology, Kansai Rosai Hospital, Hyogo, Japan
| | - Motoaki Saito
- Department of Obstetrics and Gynecology, Tokyo Jikei kai Medical University School of Medicine, Tokyo, Japan
| | - Yusuke Taira
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, University of the Ryukyus, Okinawa, Japan
| | - Masatoshi Yokoyama
- Department of Obstetrics and Gynecology, Saga University School of Medicine, Saga, Japan
| | - Tadahiro Shoji
- Department of Obstetrics and Gynecology, Hachinohe Red Cross Hospital, Aomori, Japan
| | - Eiji Kondo
- Department of Obstetrics and Gynecology, Mie University School of Medicine, Mie, Japan
| | - Atsushi Mori
- Department of Obstetrics and Gynecology, Nagano Municipal Hospital, Nagano, Japan
| | - Takeshi Yokoi
- Department of Obstetrics and Gynecology, Kaizuka City Hospital, Osaka, Japan
| | - Naomi Iwasa-Inoue
- Department of Obstetrics and Gynecology, National Hospital Organization Saitama Hospital, Saitama, Japan
| | | | - Takayuki Nagasawa
- Department of Obstetrics and Gynecology, Iwate Medical University school of Medicine, Iwate, Japan
| | - Motoki Takenaka
- Department of Obstetrics and Gynecology, Gihu University School of Medicine, Gihu, Japan
| | - Mikio Mikami
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Kanagawa, Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology, St. Mary's Hospital, Fukuoka, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University School of Medicine, Niigata, Japan
| |
Collapse
|
141
|
Qu S, Zhang X, Wu Y, Meng Y, Pan H, Fang Q, Hu L, Zhang J, Wang R, Wei L, Wu D. Efficacy and Safety of TACE Combined With Lenvatinib Plus PD-1 Inhibitors Compared With TACE Alone for Unresectable Hepatocellular Carcinoma Patients: A Prospective Cohort Study. Front Oncol 2022; 12:874473. [PMID: 35530353 PMCID: PMC9068979 DOI: 10.3389/fonc.2022.874473] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Purpose To compare the efficacy and safety of the combination of transcatheter arterial chemoembolization (TACE), Lenvatinib, and programmed cell death protein-1 (PD-1) inhibitors (combination group) with TACE (TACE group) in the treatment of patients with unresectable hepatocellular carcinoma (uHCC). Methods We consecutively enrolled 110 patients with uHCC in this prospective cohort study, with 56 patients receiving combination treatment and 54 patients receiving TACE from November 2017 to September 2020. The differences in tumor response, survival benefit, and adverse events (AEs) were compared between the two groups. Factors affecting survival were identified via Cox regression analysis. Results Compared with the TACE group, the combination group had a higher objective response rate (ORR) (67.9% vs. 29.6%, p < 0.001), longer median progression-free survival (mPFS) (11.9 vs. 6.9 months, P = 0.003) and overall survival (mOS) (23.9 vs. 15.3 months, p < 0.001). Multivariate analysis showed that the neutrophil-to-lymphocyte ratio (NLR) and the treatment option were independent factors associated with the PFS and OS. Further subgroup analysis showed that patients with low NLR (≤median 3.11) receiving combination therapy had better mPFS (20.1 vs. 6.2 months, P < 0.001) and mOS (28.9 vs. 15.2 months, P < 0.001) than those receiving TACE, while no obvious difference in PFS or OS was observed between the two groups in patients with high NLR (> 3.11). There were no unexpected toxicities in the combination group. Conclusion Compared with TACE, the combination treatment demonstrated an improved clinical efficacy and manageable safety profile in patients with uHCC. Combination treatment showed better therapeutic efficacy in patients with low NLR; therefore, this ratio could be used to identify patients who will benefit from this treatment.
Collapse
Affiliation(s)
- Shuping Qu
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Xiaobing Zhang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Yutian Wu
- Department of Hepatic Surgery, The First Hospital of Putian, Putian, China
| | - Yan Meng
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Hongyu Pan
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Qiang Fang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Lei Hu
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jin Zhang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Ruoyu Wang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- *Correspondence: Lixin Wei, ; Dong Wu,
| | - Dong Wu
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
- *Correspondence: Lixin Wei, ; Dong Wu,
| |
Collapse
|
142
|
Dasgupta S, Saha A, Ganguly N, Bhuniya A, Dhar S, Guha I, Ghosh T, Sarkar A, Ghosh S, Roy K, Das T, Banerjee S, Pal C, Baral R, Bose A. NLGP regulates RGS5-TGFβ axis to promote pericyte-dependent vascular normalization during restricted tumor growth. FASEB J 2022; 36:e22268. [PMID: 35363396 DOI: 10.1096/fj.202101093r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/05/2022] [Accepted: 03/09/2022] [Indexed: 12/25/2022]
Abstract
Altered RGS5-associated intracellular pericyte signaling and its abnormal crosstalk with endothelial cells (ECs) result chaotic tumor-vasculature, prevent effective drug delivery, promote immune-evasion and many more to ensure ultimate tumor progression. Moreover, the frequency of lethal-RGS5high pericytes within tumor was found to increase with disease progression, which signifies the presence of altered cell death pathway within tumor microenvironment (TME). In this study, we checked whether and how neem leaf glycoprotein (NLGP)-immunotherapy-mediated tumor growth restriction is associated with modification of pericytes' signaling, functions and its interaction with ECs. Analysis of pericytes isolated from tumors of NLGP treated mice suggested that NLGP treatment promotes apoptosis of NG2+ RGS5high -fuctionally altered pericytes by downregulating intra-tumoral TGFβ, along with maintenance of more matured RGS5neg pericytes. NLGP-mediated inhibition of TGFβ within TME rescues binding of RGS5 with Gαi and thereby termination of PI3K-AKT mediated survival signaling by downregulating Bcl2 and initiating pJNK mediated apoptosis. Limited availability of TGFβ also prevents complex-formation between RGS5 and Smad2 and rapid RGS5 nuclear translocation to mitigate alternate immunoregulatory functions of RGS5high tumor-pericytes. We also observed binding of Ang1 from pericytes with Tie2 on ECs in NLGP-treated tumor, which support re-association of pericytes with endothelium and subsequent vessel stabilization. Furthermore, NLGP-therapy- associated RGS5 deficiency relieved CD4+ and CD8+ T cells from anergy by regulating 'alternate-APC-like' immunomodulatory characters of tumor-pericytes. Taken together, present study described the mechanisms of NLGP's effectiveness in normalizing tumor-vasculature by chiefly modulating pericyte-biology and EC-pericyte interactions in tumor-host to further strengthen its translational potential as single modality treatment.
Collapse
Affiliation(s)
- Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sukanya Dhar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Kamalika Roy
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Tapasi Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Chiranjib Pal
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
143
|
Yan Y, Tang L, Huang H, Yu Q, Xu H, Chen Y, Chen M, Zhang Q. Four-quadrant fast compressive tracking of breast ultrasound videos for computer-aided response evaluation of neoadjuvant chemotherapy in mice. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 217:106698. [PMID: 35217304 DOI: 10.1016/j.cmpb.2022.106698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Neoadjuvant chemotherapy (NAC) is a valuable treatment approach for locally advanced breast cancer. Contrast-enhanced ultrasound (CEUS) potentially enables the assessment of therapeutic response to NAC. In order to evaluate the response accurately, quantitatively and objectively, a method that can effectively compensate motions of breast cancer in CEUS videos is urgently needed. METHODS We proposed the four-quadrant fast compressive tracking (FQFCT) approach to automatically perform CEUS video tracking and compensation for mice undergoing NAC. The FQFCT divided a tracking window into four smaller windows at four quadrants of a breast lesion and formulated the tracking at each quadrant as a binary classification task. After the FQFCT of breast cancer videos, the quantitative features of CEUS including the mean transit time (MTT) were computed. All mice showed a pathological response to NAC. The features between pre- (day 1) and post-treatment (day 3 and day 5) in these responders were statistically compared. RESULTS When we tracked the CEUS videos of mice with the FQFCT, the average tracking error of FQFCT was 0.65 mm, reduced by 46.72% compared with the classic fast compressive tracking method (1.22 mm). After compensation with the FQFCT, the MTT on day 5 of the NAC was significantly different from the MTT before NAC (day 1) (p = 0.013). CONCLUSIONS The FQFCT improves the accuracy of CEUS video tracking and contributes to the computer-aided response evaluation of NAC for breast cancer in mice.
Collapse
Affiliation(s)
- Yifei Yan
- The SMART (Smart Medicine and AI-Based Radiology Technology) Lab, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China; School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Lei Tang
- Department of Ultrasound, Tongren Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200050, China
| | - Haibo Huang
- The SMART (Smart Medicine and AI-Based Radiology Technology) Lab, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China; School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Qihui Yu
- The SMART (Smart Medicine and AI-Based Radiology Technology) Lab, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China; School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Haohao Xu
- The SMART (Smart Medicine and AI-Based Radiology Technology) Lab, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China; School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Ying Chen
- The SMART (Smart Medicine and AI-Based Radiology Technology) Lab, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China; School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Man Chen
- Department of Ultrasound, Tongren Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200050, China.
| | - Qi Zhang
- The SMART (Smart Medicine and AI-Based Radiology Technology) Lab, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China; School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
144
|
Xu W, Wang K, Gu W, Nie X, Zhang H, Tang C, Lin L, Liang J. Case Report: Complete Remission With Anti-PD-1 and Anti-VEGF Combined Therapy of a Patient With Metastatic Primary Splenic Angiosarcoma. Front Oncol 2022; 12:809068. [PMID: 35311098 PMCID: PMC8928100 DOI: 10.3389/fonc.2022.809068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/01/2022] [Indexed: 01/04/2023] Open
Abstract
Primary splenic angiosarcoma (PSA) is a rare malignancy with poor prognosis. At present, little study is available on immunotherapy in PSA. Here, we report a case of a patient with metastatic PSA who was treated with programmed death-1 (PD-1) inhibitors and vascular endothelial growth factor (VEGF) tyrosine kinase inhibitors combined therapy and achieved complete response (CR). The patient was a 57−year−old woman with three liver metastases. She was treated with seven cycles of toripalimab plus anlotinib. Programmed death-ligand 1 (PD-L1) immunohistochemistry and next-generation sequencing was performed, and the PD-L1 tumor proportion score was 75%. Finally, she achieved CR after six cycles of the combined therapy regimen. No serious adverse events were detected. To the best of our knowledge, this is the first clinical evidence that anti-PD-1 plus anti-VEGF therapy might be a promising option for patients with metastatic PSA. However, more clinical trials are needed to verify this conclusion.
Collapse
Affiliation(s)
- Weiran Xu
- Department of Oncology, Peking University International Hospital, Beijing, China
| | - Kai Wang
- Department of Laboratory Medicine, Beijing Haidian Hospital, Beijing, China
| | - Wenguang Gu
- Department of Medicine, Geneplus-Beijing, Beijing, China
| | - Xinxin Nie
- Department of Medical Affairs, Shanghai Junshi Biosciences Co., Ltd., Beijing, China
| | - Hao Zhang
- Department of Medical Affairs, Shanghai Junshi Biosciences Co., Ltd., Beijing, China
| | - Chuanhao Tang
- Department of Oncology, Peking University International Hospital, Beijing, China
| | - Li Lin
- Department of Oncology, Peking University International Hospital, Beijing, China
| | - Jun Liang
- Department of Oncology, Peking University International Hospital, Beijing, China
| |
Collapse
|
145
|
Hu H, Chen Y, Tan S, Wu S, Huang Y, Fu S, Luo F, He J. The Research Progress of Antiangiogenic Therapy, Immune Therapy and Tumor Microenvironment. Front Immunol 2022; 13:802846. [PMID: 35281003 PMCID: PMC8905241 DOI: 10.3389/fimmu.2022.802846] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
Anti-angiogenesis therapy, a promising strategy against cancer progression, is limited by drug-resistance, which could be attributed to changes within the tumor microenvironment. Studies have increasingly shown that combining anti-angiogenesis drugs with immunotherapy synergistically inhibits tumor growth and progression. Combination of anti-angiogenesis therapy and immunotherapy are well-established therapeutic options among solid tumors, such as non-small cell lung cancer, hepatic cell carcinoma, and renal cell carcinoma. However, this combination has achieved an unsatisfactory effect among some tumors, such as breast cancer, glioblastoma, and pancreatic ductal adenocarcinoma. Therefore, resistance to anti-angiogenesis agents, as well as a lack of biomarkers, remains a challenge. In this review, the current anti-angiogenesis therapies and corresponding drug-resistance, the relationship between tumor microenvironment and immunotherapy, and the latest progress on the combination of both therapeutic modalities are discussed. The aim of this review is to discuss whether the combination of anti-angiogenesis therapy and immunotherapy can exert synergistic antitumor effects, which can provide a basis to exploring new targets and developing more advanced strategies.
Collapse
Affiliation(s)
- Haoyue Hu
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.,Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Medicine School of University of Electronic Science and Technology, Chengdu, China
| | - Yue Chen
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Songtao Tan
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Silin Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yan Huang
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Shengya Fu
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.,Second Department of Oncology, Sichuan Friendship Hospital, Chengdu, China
| | - Feng Luo
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Jun He
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| |
Collapse
|
146
|
Liu Y, Geng Y, Yue B, Lo PC, Huang J, Jin H. Injectable Hydrogel as a Unique Platform for Antitumor Therapy Targeting Immunosuppressive Tumor Microenvironment. Front Immunol 2022; 12:832942. [PMID: 35111169 PMCID: PMC8801935 DOI: 10.3389/fimmu.2021.832942] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapy can boost the immune response of patients to eliminate tumor cells and suppress tumor metastasis and recurrence. However, immunotherapy resistance and the occurrence of severe immune-related adverse effects are clinical challenges that remain to be addressed. The tumor microenvironment plays a crucial role in the therapeutic efficacy of cancer immunotherapy. Injectable hydrogels have emerged as powerful drug delivery platforms offering good biocompatibility and biodegradability, minimal invasion, convenient synthesis, versatility, high drug-loading capacity, controlled drug release, and low toxicity. In this review, we summarize the application of injectable hydrogels as a unique platform for targeting the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Yushuai Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Geng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Beilei Yue
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR China
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
147
|
Ren S, He J, Fang Y, Chen G, Ma Z, Chen J, Guo R, Lin X, Yao Y, Wu G, Wang Q, Zhou C. Camrelizumab plus apatinib in treatment-naive patients with advanced non-squamous non-small-cell lung cancer: a multicenter, open-label, single-arm, phase 2 trial. JTO Clin Res Rep 2022; 3:100312. [PMID: 35498381 PMCID: PMC9046448 DOI: 10.1016/j.jtocrr.2022.100312] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People’s Republic of China
| | - Jianxing He
- Department of Thoracic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yong Fang
- Department of Oncology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Gongyan Chen
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Zhiyong Ma
- Department of Oncology, Henan Cancer Hospital, Zhengzhou, People’s Republic of China
| | - Jianhua Chen
- Department of Medical Oncology, Hunan Cancer Hospital, Changsha, People’s Republic of China
| | - Renhua Guo
- Department of Oncology, Jiangsu Province Hospital, Nanjing, People’s Republic of China
| | - Xiaoyan Lin
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Gang Wu
- Department of Thoracic Oncology, Union Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Quanren Wang
- Department of Clinical Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, People’s Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People’s Republic of China
- Corresponding author. Address for correspondence: Caicun Zhou, MD, Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, No.507, Zhengmin Road, Shanghai 200433, People’s Republic of China.
| |
Collapse
|
148
|
Zan N, Zhang X, Du L, Lin Z, Yu D, Liu J, Gou F. Case Report: Toripalimab Combined With Anlotinib in a Patient With Metastatic Upper Tract Urothelial Carcinoma After Pembrolizumab Failure. Front Oncol 2022; 12:796407. [PMID: 35296012 PMCID: PMC8918649 DOI: 10.3389/fonc.2022.796407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Urothelial carcinoma is the most common primary upper tract urinary carcinoma. If surgery, chemotherapy, and immunotherapy fail, the prognosis for upper tract urinary carcinoma is extremely poor. Immunotherapy combined with antiangiogenesis therapy is a new therapeutic regimen with a synergistic antitumor effect. We present a case of metastatic upper tract urinary carcinoma in which the patient underwent surgery and treatment with gemcitabine combined with platinum-based chemotherapy. Radiotherapy and second-line immunotherapy (pembrolizumab) were administered after the cancer had progressed to the left lymph node of the abdominal aorta in the umbilical plane. However, the patient developed liver metastases while being treated with pembrolizumab. He was administered off-label immunotherapy (toripalimab) combined with antiangiogenesis therapy (anlotinib) and achieved a long-term clinical response for over 25 months. Toripalimab combined with anlotinib has potential therapeutic value for locally advanced or metastatic upper tract urinary carcinoma in patients who had previously received platinum-based chemotherapy and had disease progression or after treatment with a PD-1 inhibitor.
Collapse
|
149
|
Saba NF, Vijayvargiya P, Vermorken JB, Rodrigo JP, Willems SM, Zidar N, de Bree R, Mäkitie A, Wolf GT, Argiris A, Teng Y, Ferlito A. Targeting Angiogenesis in Squamous Cell Carcinoma of the Head and Neck: Opportunities in the Immunotherapy Era. Cancers (Basel) 2022; 14:cancers14051202. [PMID: 35267508 PMCID: PMC8909398 DOI: 10.3390/cancers14051202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Therapies for squamous cell carcinomas of the head and neck (SCCHN) have been rapidly evolving, initially with the inclusion of immunotherapy, but more recently with the consideration of anti-angiogenic therapies. Recent preclinical and clinical data reveal a strong correlation between vascular endothelial growth factor (VEGF) and the progression of SCCHN, with nearly 90% of these malignancies expressing VEGF. Our review article not only elaborates on the utility of anti-VEGF therapies on SCCHN but also its interaction with the immune environment. Furthermore, we detailed the current data on immunotherapies targeting SCCHN and how this could be coupled with anti-angiogenics therapies. Abstract Despite the lack of approved anti-angiogenic therapies in squamous cell carcinoma of the head and neck (SCCHN), preclinical and more recent clinical evidence support the role of targeting the vascular endothelial growth factor (VEGF) in this disease. Targeting VEGF has gained even greater interest following the recent evidence supporting the role of immunotherapy in the management of advanced SCCHN. Preclinical evidence strongly suggests that VEGF plays a role in promoting the growth and progression of SCCHN, and clinical evidence exists as to the value of combining this strategy with immunotherapeutic agents. Close to 90% of SCCHNs express VEGF, which has been correlated with a worse clinical prognosis and an increased resistance to chemotherapeutic agents. As immunotherapy is currently at the forefront of the management of advanced SCCHN, revisiting the rationale for targeting angiogenesis in this disease has become an even more attractive proposition.
Collapse
Affiliation(s)
- Nabil F. Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; (P.V.); (Y.T.)
- Correspondence:
| | - Pooja Vijayvargiya
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; (P.V.); (Y.T.)
| | - Jan B. Vermorken
- Department of Medical Oncology, Antwerp University Hospital, 2650 Edegem, Belgium;
- Faculty of Medicine and Health Sciences, University of Antwerp, 2650 Antwerp, Belgium
| | - Juan P. Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias, University of Oviedo, ISPA, IUOPA, CIBERONC, 33011 Oviedo, Spain;
| | - Stefan M. Willems
- Department of Pathology and Medical Biology, University Medical Center Groningen, 9727 GZ Groningen, The Netherlands;
| | - Nina Zidar
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Antti Mäkitie
- Department of Otorhinolaryngology—Head and Neck Surgery, HUS Helsinki University Hospital, University of Helsinki, FI-00029 Helsinki, Finland;
| | - Greg T. Wolf
- Department of Otolaryngology—Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Athanassios Argiris
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; (P.V.); (Y.T.)
| | - Alfio Ferlito
- International Head and Neck Scientific Group, 35100 Padua, Italy;
| |
Collapse
|
150
|
Yu B, Yoo D, Kim KH, Kim TW, Park S, Kim Y, Son Y, Kim J, Noh I, Whang C, Chung J, Jon S. Effective Combination Immunotherapy through Vessel Normalization Using a Cancer‐Targeting Antiangiogenic Peptide–Antibody Hybrid. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Byeongjun Yu
- Department of Biological Sciences KAIST Institute for the BioCentury Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
- Center for Precision Bio‐Nanomedicine Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
| | - Dohyun Yoo
- Department of Biological Sciences KAIST Institute for the BioCentury Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
- Center for Precision Bio‐Nanomedicine Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
| | - Ki Hyun Kim
- Department of Biochemistry and Molecular Biology Seoul National University College of Medicine 103 Daehak‐ro Seoul 03080 Republic of Korea
| | - Tae Woo Kim
- Department of Biological Sciences KAIST Institute for the BioCentury Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
- Center for Precision Bio‐Nanomedicine Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
| | - Seho Park
- Department of Biological Sciences KAIST Institute for the BioCentury Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
- Center for Precision Bio‐Nanomedicine Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
| | - Yujin Kim
- Department of Biological Sciences KAIST Institute for the BioCentury Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
- Center for Precision Bio‐Nanomedicine Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
| | - Youngju Son
- Department of Biological Sciences KAIST Institute for the BioCentury Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
- Center for Precision Bio‐Nanomedicine Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
| | - Jinjoo Kim
- Department of Biological Sciences KAIST Institute for the BioCentury Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
- Center for Precision Bio‐Nanomedicine Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
| | - Ilkoo Noh
- Department of Biological Sciences KAIST Institute for the BioCentury Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
- Center for Precision Bio‐Nanomedicine Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
| | - Chang‐Hee Whang
- Department of Biological Sciences KAIST Institute for the BioCentury Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
- Center for Precision Bio‐Nanomedicine Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology Seoul National University College of Medicine 103 Daehak‐ro Seoul 03080 Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences KAIST Institute for the BioCentury Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
- Center for Precision Bio‐Nanomedicine Korea Advanced Institute of Sciences and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Korea
| |
Collapse
|