101
|
Darowski D, Kobold S, Jost C, Klein C. Combining the best of two worlds: highly flexible chimeric antigen receptor adaptor molecules (CAR-adaptors) for the recruitment of chimeric antigen receptor T cells. MAbs 2019; 11:621-631. [PMID: 30892136 PMCID: PMC6601549 DOI: 10.1080/19420862.2019.1596511] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T cells have a proven efficacy for the treatment of refractory hematological B cell malignancies. While often accompanied by side effects, CAR-T technology is getting more mature and will become an important treatment option for various tumor indications. In this review, we summarize emerging approaches that aim to further evolve CAR-T cell therapy based on combinations of so-called universal or modular CAR-(modCAR-)T cells, and their respective adaptor molecules (CAR-adaptors), which mediate the crosslinking between target and effector cells. The activity of such modCAR-T cells is entirely dependent on binding of the respective CAR-adaptor to both a tumor antigen and to the CAR-expressing T cell. Contrary to conventional CAR-T cells, where the immunological synapse is established by direct interaction of CAR and membrane-bound target, modCAR-T cells provide a highly flexible and customizable development of the CAR-T cell concept and offer an additional possibility to control T cell activity.
Collapse
Affiliation(s)
- Diana Darowski
- a Roche Pharmaceutical Research & Early Development , Roche Innovation Center Zurich , Schlieren , Switzerland
| | - Sebastian Kobold
- b Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV , Klinikum der Universität München, LMU, Member of the German Center for Lung Research (DZL) , Munich , Germany
| | - Christian Jost
- a Roche Pharmaceutical Research & Early Development , Roche Innovation Center Zurich , Schlieren , Switzerland
| | - Christian Klein
- a Roche Pharmaceutical Research & Early Development , Roche Innovation Center Zurich , Schlieren , Switzerland
| |
Collapse
|
102
|
Minutolo NG, Hollander EE, Powell DJ. The Emergence of Universal Immune Receptor T Cell Therapy for Cancer. Front Oncol 2019; 9:176. [PMID: 30984613 PMCID: PMC6448045 DOI: 10.3389/fonc.2019.00176] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/01/2019] [Indexed: 12/17/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells have shown great success in the treatment of CD19+ hematological malignancies, leading to their recent approval by the FDA as a new cancer treatment modality. However, their broad use is limited since a CAR targets a single tumor associated antigen (TAA), which is not effective against tumors with heterogeneous TAA expression or emerging antigen loss variants. Further, stably engineered CAR T cells can continually and uncontrollably proliferate and activate in response to antigen, potentially causing fatal on-target off-tumor toxicity, cytokine release syndrome, or neurotoxicity without a method of control or elimination. To address these issues, our lab and others have developed various universal immune receptors (UIRs) that allow for targeting of multiple TAAs by T cells expressing a single receptor. UIRs function through the binding of an extracellular adapter domain which acts as a bridge between intracellular T cell signaling domains and a soluble tumor antigen targeting ligand (TL). The dissociation of TAA targeting and T cell signaling confers many advantages over standard CAR therapy, such as dose control of T cell effector function, the ability to simultaneously or sequentially target multiple TAAs, and control of immunologic synapse geometry. There are currently four unique UIR platform types: ADCC-mediating Fc-binding immune receptors, bispecific protein engaging immune receptors, natural binding partner immune receptors, and anti-tag CARs. These UIRs all allow for potential benefits over standard CARs, but also bring unique engineering challenges that will have to be addressed to achieve maximal efficacy and safety in the clinic. Still, UIRs present an exciting new avenue for adoptive T cell transfer therapies and could lead to their expanded use in areas which current CAR therapies have failed. Here we review the development of each UIR platform and their unique functional benefits, and detail the potential hurdles that may need to be overcome for continued clinical translation.
Collapse
Affiliation(s)
- Nicholas G Minutolo
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, United States.,Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA, United States.,Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Erin E Hollander
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, United States.,Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Daniel J Powell
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
103
|
Shah NN, Maatman T, Hari P, Johnson B. Multi Targeted CAR-T Cell Therapies for B-Cell Malignancies. Front Oncol 2019; 9:146. [PMID: 30915277 PMCID: PMC6423158 DOI: 10.3389/fonc.2019.00146] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/20/2019] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) modified T cell therapy has revolutionized the treatment of relapsed and refractory hematological malignancies. Through targeting of the CD19 antigen on B cells durable remissions have been achieved in patients with B cell non-Hodgkin lymphoma and acute lymphoblastic lymphoma. Despite impressive responses, multiple escape mechanisms to evade CAR-T cell therapy have been identified, among which the most common is loss of the target antigen. In this review we will highlight outcomes to date with CD19 CAR-T cell therapy, describe the current limitations of single targeted CAR-T therapies, review identified tumor escape mechanisms, and lastly discuss novel strategies to overcome resistance via multi-targeted CAR-T cells.
Collapse
Affiliation(s)
- Nirav N Shah
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Theresa Maatman
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Parameswaran Hari
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bryon Johnson
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
104
|
Eisenberg V, Hoogi S, Shamul A, Barliya T, Cohen CJ. T-cells "à la CAR-T(e)" - Genetically engineering T-cell response against cancer. Adv Drug Deliv Rev 2019; 141:23-40. [PMID: 30653988 DOI: 10.1016/j.addr.2019.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/01/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
The last decade will be remembered as the dawn of the immunotherapy era during which we have witnessed the approval by regulatory agencies of genetically engineered CAR T-cells and of checkpoint inhibitors for cancer treatment. Understandably, T-lymphocytes represent the essential player in these approaches. These cells can mediate impressive tumor regression in terminally-ill cancer patients. Moreover, they are amenable to genetic engineering to improve their function and specificity. In the present review, we will give an overview of the most recent developments in the field of T-cell genetic engineering including TCR-gene transfer and CAR T-cells strategies. We will also elaborate on the development of other types of genetic modifications to enhance their anti-tumor immune response such as the use of co-stimulatory chimeric receptors (CCRs) and unconventional CARs built on non-antibody molecules. Finally, we will discuss recent advances in genome editing and synthetic biology applied to T-cell engineering and comment on the next challenges ahead.
Collapse
|
105
|
Hajari Taheri F, Hassani M, Sharifzadeh Z, Behdani M, Arashkia A, Abolhassani M. T cell engineered with a novel nanobody‐based chimeric antigen receptor against VEGFR2 as a candidate for tumor immunotherapy. IUBMB Life 2019; 71:1259-1267. [DOI: 10.1002/iub.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 11/07/2022]
Affiliation(s)
| | - Mahmoud Hassani
- Department of ImmunologyHybridoma Lab, Pasteur Institute of Iran Tehran Iran
- Department of Molecular MedicineTehran University of Medical Sciences Tehran Iran
| | - Zahra Sharifzadeh
- Department of ImmunologyHybridoma Lab, Pasteur Institute of Iran Tehran Iran
| | - Mehdi Behdani
- Department of Molecular MedicinePasteur Institute of Iran Tehran Iran
| | - Arash Arashkia
- Department of a Molecular VirologyPasteur Institute of Iran Tehran Iran
| | - Mohsen Abolhassani
- Department of ImmunologyHybridoma Lab, Pasteur Institute of Iran Tehran Iran
| |
Collapse
|
106
|
Holzinger A, Abken H. CAR T Cells: A Snapshot on the Growing Options to Design a CAR. Hemasphere 2019; 3:e172. [PMID: 31723811 PMCID: PMC6745938 DOI: 10.1097/hs9.0000000000000172] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/14/2018] [Indexed: 12/27/2022] Open
Abstract
Adoptive cell therapy of malignant diseases with chimeric antigen receptor (CAR) modified T cells rapidly advanced from pre-clinical models to commercial approvals within 2 decades. CARs redirect patient's T cells towards cancer cells and activate the engineered cells for a cytolytic attack resulting in the destruction of the cognate target cell. CAR T cells have demonstrated their powerful capacities in inducing complete and lasting remissions of leukemia/lymphoma in an increasing number of trials worldwide. Since the early 90's, the design of CARs went through various steps of optimization until the very recent developments which include CARs with logic gating in the recognition of antigen patterns on target cells and TRUCKs with a target recognition induced delivery of immune modulating agents. Here we review the generations in CAR design, the impact of specific modifications, the strategies to improve the safety of CAR T cell therapy, and the challenges to adapt the CAR design for broader applications.
Collapse
Affiliation(s)
- Astrid Holzinger
- RCI, Regensburg Center for Interventional Immunology, Chair for Gene-Immune Therapy, University Hospital Regensburg, Regensburg, Germany
| | - Hinrich Abken
- RCI, Regensburg Center for Interventional Immunology, Chair for Gene-Immune Therapy, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
107
|
Chimeric antigen receptor-modified T cell therapy in chronic lymphocytic leukemia. J Hematol Oncol 2018; 11:130. [PMID: 30458878 PMCID: PMC6247712 DOI: 10.1186/s13045-018-0676-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/08/2018] [Indexed: 01/21/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL), a common type of B cell chronic lymphoproliferative disorder in adults, has witnessed enormous development in its treatment in recent years. New drugs such as ibrutinib, idelalisib, and venetoclax have achieved great success in treating relapsed and refractory (R/R) CLL. In addition, with the development of immunotherapy, chimeric antigen receptor-engineered T cells (CAR-T) therapy, a novel adoptive immune treatment, has also become more and more important in treating R/R CLL. It combines the advantages of T cells and B cells via ex vivo gene transfer technology and is able to bind targets recognized by specific antibodies without antigen presentation, thus breaking the restriction of major histocompatibility complex. So far, there have been lots of studies exploring the application of CAR-T therapy in CLL. In this review, we describe the structure of chimeric antigen receptor, the preclinical, and clinical results of CAR-T therapy against CLL, along with its adverse events and advances in efficacy.
Collapse
|
108
|
Rataj F, Jacobi SJ, Stoiber S, Asang F, Ogonek J, Tokarew N, Cadilha BL, van Puijenbroek E, Heise C, Duewell P, Endres S, Klein C, Kobold S. High-affinity CD16-polymorphism and Fc-engineered antibodies enable activity of CD16-chimeric antigen receptor-modified T cells for cancer therapy. Br J Cancer 2018; 120:79-87. [PMID: 30429531 PMCID: PMC6325122 DOI: 10.1038/s41416-018-0341-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND CD16-chimeric antigen receptors (CAR) T cells recognise the Fc-portion of therapeutic antibodies, which can enable the selective targeting of different antigens. Limited evidence exists as to which CD16-CAR design and antibody partner might be most effective. We have hypothesised that the use of high-affinity CD16 variants, with increased Fc-terminus antibody affinity, combined with Fc-engineered antibodies, would provide superior CD16-CAR T cell efficacy. METHODS CD16-CAR T (wild-type or variants) cells were co-cultured with Panc-1 pancreatic cancer, Raji lymphoma or A375 melanoma cells in the presence or absence of anti-CD20, anti-MCSP, wild-type or the glycoengineered antibody variants. The endpoints were proliferation, activation, and cytotoxicity in vitro. RESULTS The CD16 158 V variant of CD16-CAR T cells showed increased cytotoxic activity against all the tested cancer cells in the presence of the wild-type antibody directed against MCSP or CD20. Glycoengineered antibodies enhanced CD16-CAR T cell activity irrespective of CD16 polymorphisms as compared with the wild-type antibody. The combination of the glycoengineered antibodies with the CD16-CAR 158 V variant synergised as seen by the increase in all endpoints. CONCLUSION These results indicate that CD16-CAR with the high-affinity CD16 variant 158 V, combined with Fc-engineered antibodies, have high anti-tumour efficacy.
Collapse
Affiliation(s)
- Felicitas Rataj
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich (Member of the German Center for Lung Research (DZL), LMU Munich, Germany
| | - Severin J Jacobi
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich (Member of the German Center for Lung Research (DZL), LMU Munich, Germany
| | - Stefan Stoiber
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich (Member of the German Center for Lung Research (DZL), LMU Munich, Germany
| | - Florian Asang
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich (Member of the German Center for Lung Research (DZL), LMU Munich, Germany
| | - Justyna Ogonek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich (Member of the German Center for Lung Research (DZL), LMU Munich, Germany
| | - Nicholas Tokarew
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich (Member of the German Center for Lung Research (DZL), LMU Munich, Germany
| | - Bruno L Cadilha
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich (Member of the German Center for Lung Research (DZL), LMU Munich, Germany
| | | | - Constanze Heise
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich (Member of the German Center for Lung Research (DZL), LMU Munich, Germany
| | - Peter Duewell
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich (Member of the German Center for Lung Research (DZL), LMU Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich (Member of the German Center for Lung Research (DZL), LMU Munich, Germany
| | | | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich (Member of the German Center for Lung Research (DZL), LMU Munich, Germany.
| |
Collapse
|
109
|
Schmidts A, Maus MV. Making CAR T Cells a Solid Option for Solid Tumors. Front Immunol 2018; 9:2593. [PMID: 30467505 PMCID: PMC6235951 DOI: 10.3389/fimmu.2018.02593] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/22/2018] [Indexed: 01/02/2023] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor (CAR) T cells aims to redirect the patient's own immune system to selectively attack cancer cells. To do so, CAR T cells are endowed with specific antigen recognition moieties fused to signaling and costimulatory domains. While this approach has shown great success for the treatment of B cell malignancies, response rates among patients with solid cancers are less favorable. The major challenges for CAR T cell immunotherapy in solid cancers are the identification of unique tumor target antigens, as well as improving CAR T cell trafficking to and expansion at the tumor site. This review focuses on combinatorial antigen targeting, regional delivery and approaches to improve CAR T cell persistence in the face of a hostile tumor microenvironment.
Collapse
Affiliation(s)
- Andrea Schmidts
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
110
|
Halim L, Ajina A, Maher J. Pre-clinical development of chimeric antigen receptor T-cell immunotherapy: Implications of design for efficacy and safety. Best Pract Res Clin Haematol 2018; 31:117-125. [PMID: 29909912 DOI: 10.1016/j.beha.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 11/18/2022]
Abstract
Following the landmark approvals by the United States Food and Drug Administration, the adoptive transfer of CD19-directed chimeric antigen receptor (CAR) T-cells has now entered mainstream clinical practice for patients with chemotherapy-resistant or refractory B-cell malignancies. These approvals have followed on from a prolonged period of pre-clinical evaluation, informing the design of clinical trials that have demonstrated unprecedented efficacy in this difficult to treat patient population. However, the delivery of autologous CAR-engineered T-cell therapy is complex, costly and not without significant risk. Here we summarize the key themes of CAR T-cell preclinical development and highlight a number of innovative strategies designed to further address toxicity and improve efficacy. In concert with the emerging promise of precision genome editing, it is hoped these next generation products will increase the repertoire of clinical applications of CAR T-cell therapy in malignant and perhaps other disease settings.
Collapse
Affiliation(s)
- Leena Halim
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK.
| | - Adam Ajina
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK.
| | - John Maher
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK; Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, UK; Department of Immunology, Eastbourne Hospital, East Sussex, UK.
| |
Collapse
|
111
|
Chu W, Zhou Y, Tang Q, Wang M, Ji Y, Yan J, Yin D, Zhang S, Lu H, Shen J. Bi-specific ligand-controlled chimeric antigen receptor T-cell therapy for non-small cell lung cancer. Biosci Trends 2018; 12:298-308. [PMID: 29899195 DOI: 10.5582/bst.2018.01048] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Our goal is to develop a switch-controlled approach to enable better control of reactivity and safety of chimeric antigen receptor (CAR)-T therapy for non-small-cell lung cancer (NSCLC). Lentiviral transduction was performed to generate anti-FITC CAR-T cells and target cells stably expressing either isoform of the folate receptor. Colorimetric-based cytotoxic assay, enzyme-linked immunosorbent assay, and multiparametric flow cytometry analysis were used to evaluate the specificity and activity of CAR-T cells in vitro. Human primary T cells stably expressing the fully human anti-FITC CAR were generated. Anti-FITC CAR-T cells displayed antigen-specific and folate-FTIC dependent reactivity against engineered A549-FRα and THP-1-FRβ. The selective activation and proliferation of anti-FITC CAR-T cells in vitro stringently relied on the co-existence of folate-FITC and FR- expressing target cells and was dose-titratable with the folate-FITC switch. The excellent in vitro efficacy and specificity of an adaptor-controlled CAR-T therapy to target both tumor cells and tumor-associated macrophages in NSCLCs were validated.
Collapse
Affiliation(s)
- Wenqi Chu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University
| | - Yixiong Zhou
- Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Qi Tang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University
| | - Min Wang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University
| | - Yongjia Ji
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University
| | - Jingjing Yan
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University
| | - Dan Yin
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University
| | - Shuye Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University.,Department of Infectious Diseases, Huashan Hospital Affiliated to Fudan University
| | - Jiayin Shen
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University
| |
Collapse
|
112
|
Labanieh L, Majzner RG, Mackall CL. Programming CAR-T cells to kill cancer. Nat Biomed Eng 2018; 2:377-391. [PMID: 31011197 DOI: 10.1038/s41551-018-0235-9] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/09/2018] [Indexed: 02/06/2023]
Abstract
T cells engineered to express chimeric antigen receptors (CARs) that are specific for tumour antigens have led to high complete response rates in patients with haematologic malignancies. Despite this early success, major challenges to the broad application of CAR-T cells as cancer therapies remain, including treatment-associated toxicities and cancer relapse with antigen-negative tumours. Targeting solid tumours with CAR-T cells poses additional obstacles because of the paucity of tumour-specific antigens and the immunosuppressive effects of the tumour microenvironment. To overcome these challenges, T cells can be programmed with genetic modules that increase their therapeutic potency and specificity. In this Review Article, we survey major advances in the engineering of next-generation CAR-T therapies for haematologic cancers and solid cancers, with particular emphasis on strategies for the control of CAR specificity and activity and on approaches for improving CAR-T-cell persistence and overcoming immunosuppression. We also lay out a roadmap for the development of off-the-shelf CAR-T cells.
Collapse
Affiliation(s)
- Louai Labanieh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Robbie G Majzner
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Crystal L Mackall
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA. .,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
113
|
Cho JH, Collins JJ, Wong WW. Universal Chimeric Antigen Receptors for Multiplexed and Logical Control of T Cell Responses. Cell 2018; 173:1426-1438.e11. [PMID: 29706540 PMCID: PMC5984158 DOI: 10.1016/j.cell.2018.03.038] [Citation(s) in RCA: 483] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/11/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
T cells expressing chimeric antigen receptors (CARs) are promising cancer therapeutic agents, with the prospect of becoming the ultimate smart cancer therapeutics. To expand the capability of CAR T cells, here, we present a split, universal, and programmable (SUPRA) CAR system that simultaneously encompasses multiple critical "upgrades," such as the ability to switch targets without re-engineering the T cells, finely tune T cell activation strength, and sense and logically respond to multiple antigens. These features are useful to combat relapse, mitigate over-activation, and enhance specificity. We test our SUPRA system against two different tumor models to demonstrate its broad utility and humanize its components to minimize potential immunogenicity concerns. Furthermore, we extend the orthogonal SUPRA CAR system to regulate different T cell subsets independently, demonstrating a dually inducible CAR system. Together, these SUPRA CARs illustrate that multiple advanced logic and control features can be implemented into a single, integrated system.
Collapse
Affiliation(s)
- Jang Hwan Cho
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - James J Collins
- Synthetic Biology Center, MIT, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
114
|
Sun S, Hao H, Yang G, Zhang Y, Fu Y. Immunotherapy with CAR-Modified T Cells: Toxicities and Overcoming Strategies. J Immunol Res 2018; 2018:2386187. [PMID: 29850622 PMCID: PMC5932485 DOI: 10.1155/2018/2386187] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
T cells modified via chimeric antigen receptors (CARs) have emerged as a promising treatment modality. Unparalleled clinical efficacy recently demonstrated in refractory B-cell malignancy has brought this new form of adoptive immunotherapy to the center stage. Nonetheless, its current success has also highlighted its potential treatment-related toxicities. The adverse events observed in the clinical trials are described in this review, after which, some innovative strategies developed to overcome these unwanted toxicities are outlined, including suicide genes, targeted activation, and other novel strategies.
Collapse
Affiliation(s)
- Shangjun Sun
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Oncology, Ansteel Group Hospital, Anshan, Liaoning 114000, China
| | - He Hao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Orthopedics, Ansteel Group Hospital, Anshan, Liaoning 114000, China
| | - Ge Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yang Fu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
115
|
Hung CF, Xu X, Li L, Ma Y, Jin Q, Viley A, Allen C, Natarajan P, Shivakumar R, Peshwa MV, Emens LA. Development of Anti-Human Mesothelin-Targeted Chimeric Antigen Receptor Messenger RNA-Transfected Peripheral Blood Lymphocytes for Ovarian Cancer Therapy. Hum Gene Ther 2018; 29:614-625. [PMID: 29334771 DOI: 10.1089/hum.2017.080] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CD19-targeted chimeric antigen receptor (CAR) engineered T/natural killer (NK)-cell therapies can result in durable clinical responses in B-cell malignancies. However, CAR-based immunotherapies have been much less successful in solid cancers, in part due to "on-target off-tumor" toxicity related to expression of target tumor antigens on normal tissue. Based on preliminary observations of safety and clinical activity in proof-of-concept clinical trials, tumor antigen-specific messenger RNA (mRNA) CAR transfection into selected, activated, and expanded T/NK cells may permit prospective control of "on-target off-tumor" toxicity. To develop a commercial product for solid tumors, mesothelin was selected as an antigen target based on its association with poor prognosis and overexpression in multiple solid cancers. It was hypothesized that selecting, activating, and expanding cells ex vivo prior to mRNA CAR transfection would not be necessary, thus simplifying the complexity and cost of manufacturing. Now, the development of anti-human mesothelin mRNA CAR transfected peripheral blood lymphocytes (CARMA-hMeso) is reported, demonstrating the manufacture and cryopreservation of multiple cell aliquots for repeat administrations from a single human leukapheresis. A rapid, automated, closed system for cGMP-compliant transfection of mRNA CAR in up to 20 × 109 peripheral blood lymphocytes was developed. Here we show that CARMA-hMeso cells recognize and lyse tumor cells in a mesothelin-specific manner. Expression of CAR was detectable over approximately 7 days in vitro, with a progressive decline of CAR expression that appears to correlate with in vitro cell expansion. In a murine ovarian cancer model, a single intraperitoneal injection of CARMA-hMeso resulted in the dose-dependent inhibition of tumor growth and improved survival of mice. Furthermore, repeat weekly intraperitoneal administrations of the optimal CARMA-hMeso dose further prolonged disease control and survival. No significant off-target toxicities were observed. These data support further investigation of CARMA-hMeso as a potential treatment for ovarian cancer and other mesothelin-expressing cancers.
Collapse
Affiliation(s)
- Chien-Fu Hung
- 1 Department of Pathology, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Xuequn Xu
- 1 Department of Pathology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Linhong Li
- 3 MaxCyte, Inc. , Gaithersburg, Maryland
| | - Ying Ma
- 1 Department of Pathology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Qiu Jin
- 1 Department of Pathology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | | | | | | | | | | | - Leisha A Emens
- 2 Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, Maryland.,4 Johns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy , Baltimore, Maryland
| |
Collapse
|
116
|
Gene-modified NK-92MI cells expressing a chimeric CD16-BB-ζ or CD64-BB-ζ receptor exhibit enhanced cancer-killing ability in combination with therapeutic antibody. Oncotarget 2018; 8:37128-37139. [PMID: 28415754 PMCID: PMC5514896 DOI: 10.18632/oncotarget.16201] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/04/2017] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells play a pivotal role in monoclonal antibody-mediated immunotherapy through the antibody-dependent cell-mediated cytotoxicity (ADCC) mechanism. NK-92MI is an interleukin-2 (IL-2)-independent cell line, which was derived from NK-92 cells with superior cytotoxicity toward a wide range of tumor cells in vitro and in vivo. Nonetheless, the Fc-receptor (CD16) that usually mediates ADCC is absent in NK-92 and NK-92MI cells. To apply NK-92MI cell-based immunotherapy to cancer treatment, we designed and generated two chimeric receptors in NK-92MI cells that can bind the Fc portion of human immunoglobulins. The construct includes the low-affinity Fc receptor CD16 (158F) or the high-affinity Fc receptor CD64, with the addition of the CD8a extracellular domain, CD28 transmembrane domains, two costimulatory domains (CD28 and 4-1BB), and the signaling domain from CD3ζ. The resulting chimeric receptors, termed CD16-BB-ζ and CD64-BB-ζ, were used to generate modified NK-92MI cells expressing the chimeric receptor, which were named NK-92MIhCD16 and NK-92MIhCD64 cells, respectively. We found that NK-92MIhCD16 and NK-92MIhCD64 cells significantly improved cytotoxicity against CD20-positive non-Hodgkin's lymphoma cells in the presence of rituximab. These results suggest that the chimeric receptor-expressing NK-92MI cells may enhance the clinical responses to currently available anticancer monoclonal antibodies.
Collapse
|
117
|
Kamiya T, Wong D, Png YT, Campana D. A novel method to generate T-cell receptor-deficient chimeric antigen receptor T cells. Blood Adv 2018; 2:517-528. [PMID: 29507075 PMCID: PMC5851418 DOI: 10.1182/bloodadvances.2017012823] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
Practical methods are needed to increase the applicability and efficacy of chimeric antigen receptor (CAR) T-cell therapies. Using donor-derived CAR-T cells is attractive, but expression of endogenous T-cell receptors (TCRs) carries the risk for graft-versus-host-disease (GVHD). To remove surface TCRαβ, we combined an antibody-derived single-chain variable fragment specific for CD3ε with 21 different amino acid sequences predicted to retain it intracellularly. After transduction in T cells, several of these protein expression blockers (PEBLs) colocalized intracellularly with CD3ε, blocking surface CD3 and TCRαβ expression. In 25 experiments, median TCRαβ expression in T lymphocytes was reduced from 95.7% to 25.0%; CD3/TCRαβ cell depletion yielded virtually pure TCRαβ-negative T cells. Anti-CD3ε PEBLs abrogated TCRαβ-mediated signaling, without affecting immunophenotype or proliferation. In anti-CD3ε PEBL-T cells, expression of an anti-CD19-41BB-CD3ζ CAR induced cytokine secretion, long-term proliferation, and CD19+ leukemia cell killing, at rates meeting or exceeding those of CAR-T cells with normal CD3/TCRαβ expression. In immunodeficient mice, anti-CD3ε PEBL-T cells had markedly reduced GVHD potential; when transduced with anti-CD19 CAR, these T cells killed engrafted leukemic cells. PEBL blockade of surface CD3/TCRαβ expression is an effective tool to prepare allogeneic CAR-T cells. Combined PEBL and CAR expression can be achieved in a single-step procedure, is easily adaptable to current cell manufacturing protocols, and can be used to target other T-cell molecules to further enhance CAR-T-cell therapies.
Collapse
Affiliation(s)
- Takahiro Kamiya
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Desmond Wong
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yi Tian Png
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dario Campana
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
118
|
Zuo BL, Yan B, Zheng GX, Xi WJ, Zhang X, Yang AG, Jia LT. Targeting and suppression of HER3-positive breast cancer by T lymphocytes expressing a heregulin chimeric antigen receptor. Cancer Immunol Immunother 2018; 67:393-401. [PMID: 29127433 PMCID: PMC11028200 DOI: 10.1007/s00262-017-2089-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023]
Abstract
Chimeric antigen receptor-modulated T lymphocytes (CAR-T) have emerged as a powerful tool for arousing anticancer immunity. Endogenous ligands for tumor antigen may outperform single-chain variable fragments to serve as a component of CARs with high cancer recognition efficacy and minimized immunogenicity. As heterodimerization and signaling partners for human epidermal growth factor receptor 2 (HER2), HER3/HER4 has been implicated in tumorigenic signaling and therapeutic resistance of breast cancer. In this study, we engineered T cells with a CAR consisting of the extracellular domain of heregulin-1β (HRG1β) that is a natural ligand for HER3/HER4, and evaluated the specific cytotoxicity of these CAR-T cells in cultured HER3 positive breast cancer cells and xenograft tumors. Our results showed that HRG1β-CAR was successfully constructed, and T cells were transduced at a rate of 50%. The CAR-T cells specifically recognized and killed HER3-overexpressing breast cancer cells SK-BR-3 and BT-474 in vitro, and displayed potent tumoricidal effect on SK-BR-3 xenograft tumor models. Our results suggest that HRG1β-based CAR-T cells effectively suppress breast cancer driven by HER family receptors, and may provide a novel strategy to overcome cancer resistance to HER2-targeted therapy.
Collapse
Affiliation(s)
- Bai-Le Zuo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Bo Yan
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Guo-Xu Zheng
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Wen-Jin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Xiao Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China.
| | - Lin-Tao Jia
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
119
|
D'Aloia MM, Zizzari IG, Sacchetti B, Pierelli L, Alimandi M. CAR-T cells: the long and winding road to solid tumors. Cell Death Dis 2018; 9:282. [PMID: 29449531 PMCID: PMC5833816 DOI: 10.1038/s41419-018-0278-6] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 01/11/2023]
Abstract
Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the “next generation” of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host’s defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles.
Collapse
Affiliation(s)
- Maria Michela D'Aloia
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | - Luca Pierelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Alimandi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
120
|
Gomes-Silva D, Ramos CA. Cancer Immunotherapy Using CAR-T Cells: From the Research Bench to the Assembly Line. Biotechnol J 2018; 13:10.1002/biot.201700097. [PMID: 28960810 PMCID: PMC5966018 DOI: 10.1002/biot.201700097] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/20/2017] [Indexed: 11/08/2022]
Abstract
The focus of cancer treatment has recently shifted toward targeted therapies, including immunotherapy, which allow better individualization of care and are hoped to increase the probability of success for patients. Specifically, T cells genetically modified to express chimeric antigen receptors (CARs; CAR-T cells) have generated exciting results. Recent clinical successes with this cutting-edge therapy have helped to push CAR-T cells toward approval for wider use. However, several limitations need to be addressed before the widespread use of CAR-T cells as a standard treatment. Here, a succinct background on adoptive T-cell therapy (ATCT)is given. A brief overview of the structure of CARs, how they are introduced into T cells, and how CAR-T cell expansion and selection is achieved in vitro is then presented. Some of the challenges in CAR design are discussed, as well as the difficulties that arise in large-scale CAR-T cell manufacture that will need to be addressed to achieve successful commercialization of this type of cell therapy. Finally, developments already on the horizon are discussed.
Collapse
Affiliation(s)
- Diogo Gomes-Silva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA
| |
Collapse
|
121
|
Recent challenges and advances in genetically-engineered cell therapy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017; 48:199-208. [PMID: 30680249 PMCID: PMC6312535 DOI: 10.1007/s40005-017-0381-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Cells naturally sense and actively response to their environment. Cell-therapy has long been studied and shown therapeutic effects in various diseases. However, several hurdles should be overcome to improve cell-based therapy. Gene delivery-mediated cellular modification has shown improvement of cell function by obstacle gene silencing and therapeutic gene expression. Especially, CRISPR/Cas9-mediated genome editing is a very promising method for gene modification. In this review, we describe the recent advances in genetic modification for cell therapy. Stem cells are still promising source of cell therapy due to their self-renewal character and differentiation potential. Immune cells regulate the inflammatory response and immunization, which inspired various cell therapy using immune-regulatory cells. Conclusively, we emphasize the need to develop gene-modification-based cell therapy as potent future treatment.
Collapse
|
122
|
Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies. Blood Adv 2017; 1:2348-2360. [PMID: 29296885 DOI: 10.1182/bloodadvances.2017009928] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/27/2017] [Indexed: 01/03/2023] Open
Abstract
Effective immunotherapies for T-cell malignancies are lacking. We devised a novel approach based on chimeric antigen receptor (CAR)-redirected T lymphocytes. We selected CD7 as a target because of its consistent expression in T-cell acute lymphoblastic leukemia (T-ALL), including the most aggressive subtype, early T-cell precursor (ETP)-ALL. In 49 diagnostic T-ALL samples (including 14 ETP-ALL samples), median CD7 expression was >99%; CD7 expression remained high at relapse (n = 14), and during chemotherapy (n = 54). We targeted CD7 with a second-generation CAR (anti-CD7-41BB-CD3ζ), but CAR expression in T lymphocytes caused fratricide due to the presence of CD7 in the T cells themselves. To downregulate CD7 and control fratricide, we applied a new method (protein expression blocker [PEBL]), based on an anti-CD7 single-chain variable fragment coupled with an intracellular retention domain. Transduction of anti-CD7 PEBL resulted in virtually instantaneous abrogation of surface CD7 expression in all transduced T cells; 2.0% ± 1.7% were CD7+ vs 98.1% ± 1.5% of mock-transduced T cells (n = 5; P < .0001). PEBL expression did not impair T-cell proliferation, interferon-γ and tumor necrosis factor-α secretion, or cytotoxicity, and eliminated CAR-mediated fratricide. PEBL-CAR T cells were highly cytotoxic against CD7+ leukemic cells in vitro and were consistently more potent than CD7+ T cells spared by fratricide. They also showed strong anti-leukemic activity in cell line- and patient-derived T-ALL xenografts. The strategy described in this study fits well with existing clinical-grade cell manufacturing processes and can be rapidly implemented for the treatment of patients with high-risk T-cell malignancies.
Collapse
|
123
|
Lohmueller JJ, Ham JD, Kvorjak M, Finn OJ. mSA2 affinity-enhanced biotin-binding CAR T cells for universal tumor targeting. Oncoimmunology 2017; 7:e1368604. [PMID: 29296519 PMCID: PMC5739565 DOI: 10.1080/2162402x.2017.1368604] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 01/28/2023] Open
Abstract
Chimeric antigen receptor T cells (CAR-Ts) are promising cancer therapeutics. However, since cancer cells can lose the CAR-targeted antigen and avoid destruction, targeting multiple antigens with multiple CARs has been proposed. We illustrate here a less cumbersome alternative, anti-tag CARs (AT-CARs) that bind to tags on tumor-targeting antibodies. We have created novel AT-CARs, using the affinity-enhanced monomeric streptavidin 2 (mSA2) biotin-binding domain that when expressed on T cells can target cancer cells coated with biotinylated antibodies. Human T cells expressing mSA2 CARs with CD28-CD3ζ and 4–1BB-CD3ζ signaling domains were activated by plate-immobilized biotin and by tumor cells coated with biotinylated antibodies against the tumor-associated antigens CD19 and CD20. Furthermore, mSA2 CAR T cells were capable of mediating cancer cell lysis and IFNγ production in an antibody dose-dependent manner. The mSA2 CAR is a universal AT-CAR that can be combined with biotinylated tumor-specific antibodies to potentially target many different tumor types.
Collapse
Affiliation(s)
- Jason J Lohmueller
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA USA
| | - James D Ham
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA USA.,Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, PA USA
| | - Michael Kvorjak
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA USA
| | - Olivera J Finn
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA USA
| |
Collapse
|
124
|
Klein C, Bacac M, Umana P, Fingerle-Rowson G. Combination therapy with the type II anti-CD20 antibody obinutuzumab. Expert Opin Investig Drugs 2017; 26:1145-1162. [DOI: 10.1080/13543784.2017.1373087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Christian Klein
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Marina Bacac
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Pablo Umana
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | | |
Collapse
|
125
|
Koch J, Tesar M. Recombinant Antibodies to Arm Cytotoxic Lymphocytes in Cancer Immunotherapy. Transfus Med Hemother 2017; 44:337-350. [PMID: 29070979 PMCID: PMC5649249 DOI: 10.1159/000479981] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy has the potential to support and expand the body's own armamentarium of immune effector functions, which have been circumvented during malignant transformation and establishment of cancer and is presently considered to be the most promising treatment option for cancer patients. Recombinant antibody technologies have led to a multitude of novel antibody formats, which are in clinical development and hold great promise for future therapies. Among these formats, bispecific antibodies are extremely versatile due to their high efficacy to recruit and activate anti-tumoral immune effector cells, their excellent safety profile, and the opportunity for use in combination with cellular therapies. This review article summarizes the latest developments in cancer immunotherapy using immuno-engagers for recruiting T cells and NK cells to the tumor site. In addition to antibody formats, malignant cell targets, and immune cell targets, opportunities for combination therapies, including check point inhibitors, cytokines and adoptive transfer of immune cells, will be summarized and discussed.
Collapse
Affiliation(s)
- Joachim Koch
- Affimed GmbH, Technologiepark, Heidelberg, Germany
| | | |
Collapse
|
126
|
Re A. Synthetic Gene Expression Circuits for Designing Precision Tools in Oncology. Front Cell Dev Biol 2017; 5:77. [PMID: 28894736 PMCID: PMC5581392 DOI: 10.3389/fcell.2017.00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/16/2017] [Indexed: 01/21/2023] Open
Abstract
Precision medicine in oncology needs to enhance its capabilities to match diagnostic and therapeutic technologies to individual patients. Synthetic biology streamlines the design and construction of functionalized devices through standardization and rational engineering of basic biological elements decoupled from their natural context. Remarkable improvements have opened the prospects for the availability of synthetic devices of enhanced mechanism clarity, robustness, sensitivity, as well as scalability and portability, which might bring new capabilities in precision cancer medicine implementations. In this review, we begin by presenting a brief overview of some of the major advances in the engineering of synthetic genetic circuits aimed to the control of gene expression and operating at the transcriptional, post-transcriptional/translational, and post-translational levels. We then focus on engineering synthetic circuits as an enabling methodology for the successful establishment of precision technologies in oncology. We describe significant advancements in our capabilities to tailor synthetic genetic circuits to specific applications in tumor diagnosis, tumor cell- and gene-based therapy, and drug delivery.
Collapse
Affiliation(s)
- Angela Re
- Centre for Sustainable Future Technologies, Istituto Italiano di TecnologiaTorino, Italy
| |
Collapse
|
127
|
Baruch EN, Berg AL, Besser MJ, Schachter J, Markel G. Adoptive T cell therapy: An overview of obstacles and opportunities. Cancer 2017; 123:2154-2162. [PMID: 28543698 DOI: 10.1002/cncr.30491] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022]
Abstract
The therapeutic potential of adoptive cell therapy (ACT) in cancer patients was first acknowledged 3 decades ago, but it was an esoteric approach at the time. In recent years, technological advancements have transformed ACT into a viable therapeutic option that can be curative in some patients. In fact, current ACT response rates are 80% to 90% for hematological malignancies and 30% for metastatic melanoma refractory to multiple lines of therapy. Although these results are encouraging, there is still much to be done to fulfill ACT's potential, specifically with regard to improving clinical efficacy, expanding clinical indications, reducing toxicity, and increasing production and cost-effectiveness. This review addresses the current major obstacles to ACT and presents potential solutions. Cancer 2017;123:2154-62. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Erez Nissim Baruch
- The Ella Lemelbaum Institute of Immuno-oncology, Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amy Lauren Berg
- The Ella Lemelbaum Institute of Immuno-oncology, Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Michal Judith Besser
- The Ella Lemelbaum Institute of Immuno-oncology, Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Schachter
- The Ella Lemelbaum Institute of Immuno-oncology, Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gal Markel
- The Ella Lemelbaum Institute of Immuno-oncology, Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Talpiot Medical Leadership Program, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
128
|
Fernández L, Metais JY, Escudero A, Vela M, Valentín J, Vallcorba I, Leivas A, Torres J, Valeri A, Patiño-García A, Martínez J, Leung W, Pérez-Martínez A. Memory T Cells Expressing an NKG2D-CAR Efficiently Target Osteosarcoma Cells. Clin Cancer Res 2017; 23:5824-5835. [DOI: 10.1158/1078-0432.ccr-17-0075] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/27/2017] [Accepted: 06/21/2017] [Indexed: 11/16/2022]
|
129
|
Bezverbnaya K, Mathews A, Sidhu J, Helsen CW, Bramson JL. Tumor-targeting domains for chimeric antigen receptor T cells. Immunotherapy 2017; 9:33-46. [PMID: 28000526 DOI: 10.2217/imt-2016-0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Immunotherapy with chimeric antigen receptor (CAR) T cells has been advancing steadily in clinical trials. Since the ability of engineered T cells to recognize intended tumor-associated targets is crucial for the therapeutic success, antigen-binding domains play an important role in shaping T-cell responses. Single-chain antibody and T-cell receptor fragments, natural ligands, repeat proteins, combinations of the above and universal tag-specific domains have all been used in the antigen-binding moiety of chimeric receptors. Here we outline the advantages and disadvantages of different domains, discuss the concepts of affinity and specificity, and highlight the recent progress of each targeting strategy.
Collapse
Affiliation(s)
- Ksenia Bezverbnaya
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Canada
| | - Ashish Mathews
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Canada
| | - Jesse Sidhu
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Canada
| | - Christopher W Helsen
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Canada
| | - Jonathan L Bramson
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
130
|
Oldham RAA, Medin JA. Practical considerations for chimeric antigen receptor design and delivery. Expert Opin Biol Ther 2017; 17:961-978. [DOI: 10.1080/14712598.2017.1339687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Robyn A. A. Oldham
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jeffrey A. Medin
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Biochemistry, The Medical College of Wisconsin, Milwaukee, USA
- The Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
131
|
Lim WA, June CH. The Principles of Engineering Immune Cells to Treat Cancer. Cell 2017; 168:724-740. [PMID: 28187291 DOI: 10.1016/j.cell.2017.01.016] [Citation(s) in RCA: 780] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/12/2017] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR) T cells have proven that engineered immune cells can serve as a powerful new class of cancer therapeutics. Clinical experience has helped to define the major challenges that must be met to make engineered T cells a reliable, safe, and effective platform that can be deployed against a broad range of tumors. The emergence of synthetic biology approaches for cellular engineering is providing us with a broadly expanded set of tools for programming immune cells. We discuss how these tools could be used to design the next generation of smart T cell precision therapeutics.
Collapse
Affiliation(s)
- Wendell A Lim
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, UCSF Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Carl H June
- Center for Cellular Immunotherapies, the Department of Pathology and Laboratory Medicine at the Perelman School of Medicine, and the Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
132
|
Kulemzin SV, Kuznetsova VV, Mamonkin M, Taranin AV, Gorchakov AA. CAR T-cell therapy: Balance of efficacy and safety. Mol Biol 2017. [DOI: 10.1134/s0026893317020145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
133
|
Liu X, Zhang N, Shi H. Driving better and safer HER2-specific CARs for cancer therapy. Oncotarget 2017; 8:62730-62741. [PMID: 28977984 PMCID: PMC5617544 DOI: 10.18632/oncotarget.17528] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/14/2017] [Indexed: 12/26/2022] Open
Abstract
Given the clinical efficacy of chimeric antigen receptor (CAR)-based therapy in hematological malignancies, CAR T-cell therapy for a number of solid tumors has been actively investigated. Human epidermal growth factor receptor 2 (HER2) is a well-established therapeutic target in breast, as well as other types of cancer. However, HER2 CAR T cells pose a risk of lethal toxicity including cytokine release syndrome from “on-target, off-tumor” recognition of HER2. In this review, we summarize the development of conventional HER2 CAR technology, the alternative selection of CAR hosts, the novel HER2 CAR designs, clinical studies and toxicity. Furthermore, we also discuss the main strategies for improving the safety of HER2 CAR-based cancer therapies.
Collapse
Affiliation(s)
- Xianqiang Liu
- Department of Breast and Thyroid Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Nan Zhang
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Huan Shi
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| |
Collapse
|
134
|
Caratelli S, Sconocchia T, Arriga R, Coppola A, Lanzilli G, Lauro D, Venditti A, Del Principe MI, Buccisano F, Maurillo L, Ferrone S, Sconocchia G. FCγ Chimeric Receptor-Engineered T Cells: Methodology, Advantages, Limitations, and Clinical Relevance. Front Immunol 2017; 8:457. [PMID: 28496440 PMCID: PMC5406408 DOI: 10.3389/fimmu.2017.00457] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/04/2017] [Indexed: 01/05/2023] Open
Abstract
For many years, disappointing results have been generated by many investigations, which have utilized a variety of immunologic strategies to enhance the ability of a patient’s immune system to recognize and eliminate malignant cells. However, in recent years, immunotherapy has been used successfully for the treatment of hematologic and solid malignancies. The impressive clinical responses observed in many types of cancer have convinced even the most skeptical clinical oncologists that a patient’s immune system can recognize and reject his tumor if appropriate strategies are implemented. The success immunotherapy is due to the development of at least three therapeutic strategies. They include tumor-associated antigen (TAA)-specific monoclonal antibodies (mAbs), T cell checkpoint blockade, and TAA-specific chimeric antigen receptors (CARs) T cell-based immunotherapy. However, the full realization of the therapeutic potential of these approaches requires the development of strategies to counteract and overcome some limitations. They include off-target toxicity and mechanisms of cancer immune evasion, which obstacle the successful clinical application of mAbs and CAR T cell-based immunotherapies. Thus, we and others have developed the Fc gamma chimeric receptors (Fcγ-CRs)-based strategy. Like CARs, Fcγ-CRs are composed of an intracellular tail resulting from the fusion of a co-stimulatory molecule with the T cell receptor ζ chain. In contrast, the extracellular CAR single-chain variable fragment (scFv), which recognizes the targeted TAA, has been replaced with the extracellular portion of the FcγRIIIA (CD16). Fcγ-CR T cells have a few intriguing features. First, given in combination with mAbs, Fcγ-CR T cells mediate anticancer activity in vitro and in vivo by an antibody-mediated cellular cytotoxicity mechanism. Second, CD16-CR T cells can target multiple cancer types provided that TAA-specific mAbs with the appropriate specificity are available. Third, the off-target effect of CD16-CR T cells may be controlled by withdrawing the mAb administration. The goal of this manuscript was threefold. First, we review the current state-of-the-art of preclinical CD16-CR T cell technology. Second, we describe its in vitro and in vivo antitumor activity. Finally, we compare the advantages and limitations of the CD16-CR T cell technology with those of CAR T cell methodology.
Collapse
Affiliation(s)
- Sara Caratelli
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | | | - Roberto Arriga
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Andrea Coppola
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Davide Lauro
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Adriano Venditti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | | | - Francesco Buccisano
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Luca Maurillo
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Soldano Ferrone
- Departments of Surgery and of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
135
|
Sadelain M. Chimeric Antigen Receptors: A Paradigm Shift in Immunotherapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-050216-034351] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
136
|
Abstract
The immune system evolved to distinguish non-self from self to protect the organism. As cancer is derived from our own cells, immune responses to dysregulated cell growth present a unique challenge. This is compounded by mechanisms of immune evasion and immunosuppression that develop in the tumour microenvironment. The modern genetic toolbox enables the adoptive transfer of engineered T cells to create enhanced anticancer immune functions where natural cancer-specific immune responses have failed. Genetically engineered T cells, so-called 'living drugs', represent a new paradigm in anticancer therapy. Recent clinical trials using T cells engineered to express chimeric antigen receptors (CARs) or engineered T cell receptors (TCRs) have produced stunning results in patients with relapsed or refractory haematological malignancies. In this Review we describe some of the most recent and promising advances in engineered T cell therapy with a particular emphasis on what the next generation of T cell therapy is likely to entail.
Collapse
MESH Headings
- Antigen Presentation
- Antigens, CD19/immunology
- Antigens, Neoplasm/immunology
- Clinical Trials as Topic
- Costimulatory and Inhibitory T-Cell Receptors/genetics
- Costimulatory and Inhibitory T-Cell Receptors/immunology
- Cytokines/metabolism
- Forecasting
- Gene Editing
- Gene Transfer Techniques
- Genetic Engineering
- HLA Antigens/immunology
- Hematologic Neoplasms/immunology
- Hematologic Neoplasms/therapy
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Models, Immunological
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Syndrome
- T-Cell Antigen Receptor Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/transplantation
- Tumor Escape
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Andrew D Fesnak
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5156, USA
| | - Carl H June
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5156, USA
| | - Bruce L Levine
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5156, USA
| |
Collapse
|
137
|
Sadelain M. Chimeric antigen receptors: driving immunology towards synthetic biology. Curr Opin Immunol 2016; 41:68-76. [PMID: 27372731 DOI: 10.1016/j.coi.2016.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/15/2022]
Abstract
The advent of second generation chimeric antigen receptors and the CD19 paradigm have ushered a new therapeutic modality in oncology. In contrast to earlier forms of adoptive cell therapy, which were based on the isolation and expansion of naturally occurring T cells, CAR therapy is based on the design and manufacture of engineered T cells with optimized properties. A new armamentarium, comprising not only CARs but also chimeric costimulatory receptors, chimeric cytokine receptors, inhibitory receptors and synthetic Notch receptors, expressed in naïve, central memory or stem cell-like memory T cells, is being developed for clinical use in a wide range of cancers. Immunological principles are thus finding a new purpose thanks to advances in genetic engineering, synthetic biology and cell manufacturing sciences.
Collapse
Affiliation(s)
- Michel Sadelain
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
138
|
Gacerez AT, Arellano B, Sentman CL. How Chimeric Antigen Receptor Design Affects Adoptive T Cell Therapy. J Cell Physiol 2016; 231:2590-8. [PMID: 27163336 DOI: 10.1002/jcp.25419] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 01/09/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have been developed to treat tumors and have shown great success against B cell malignancies. Exploiting modular designs and swappable domains, CARs can target an array of cell surface antigens and, upon receptor-ligand interactions, direct signaling cascades, thereby driving T cell effector functions. CARs have been designed using receptors, ligands, or scFv binding domains. Different regions of a CAR have each been found to play a role in determining the overall efficacy of CAR T cells. Therefore, this review provides an overview of CAR construction and common designs. Each CAR region is discussed in the context of its importance to a CAR's function. Additionally, the review explores how various engineering strategies have been applied to CAR T cells in order to regulate CAR T cell function and activity. J. Cell. Physiol. 231: 2590-2598, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Albert T Gacerez
- Department of Microbiology and Immunology, Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, New Hampshire
| | - Benjamine Arellano
- Department of Microbiology and Immunology, Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, New Hampshire
| | - Charles L Sentman
- Department of Microbiology and Immunology, Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, New Hampshire
| |
Collapse
|
139
|
Cao Y, Rodgers DT, Du J, Ahmad I, Hampton EN, Ma JSY, Mazagova M, Choi SH, Yun HY, Xiao H, Yang P, Luo X, Lim RKV, Pugh HM, Wang F, Kazane SA, Wright TM, Kim CH, Schultz PG, Young TS. Design of Switchable Chimeric Antigen Receptor T Cells Targeting Breast Cancer. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu Cao
- Department of Chemistry and The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 N Torrey Pines Rd La Jolla CA 92037 USA
| | - David T. Rodgers
- California Institute for Biomedical Research; 11119 N Torrey Pines Rd La Jolla CA 92037 USA
| | - Juanjuan Du
- California Institute for Biomedical Research; 11119 N Torrey Pines Rd La Jolla CA 92037 USA
| | - Insha Ahmad
- Department of Chemistry and The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 N Torrey Pines Rd La Jolla CA 92037 USA
| | - Eric N. Hampton
- California Institute for Biomedical Research; 11119 N Torrey Pines Rd La Jolla CA 92037 USA
| | - Jennifer S. Y. Ma
- California Institute for Biomedical Research; 11119 N Torrey Pines Rd La Jolla CA 92037 USA
| | - Magdalena Mazagova
- California Institute for Biomedical Research; 11119 N Torrey Pines Rd La Jolla CA 92037 USA
| | - Sei-hyun Choi
- Department of Chemistry and The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 N Torrey Pines Rd La Jolla CA 92037 USA
- Present address: Daegu-Gyeongbook Medical Innovation Center; 80 Chembok-ro Dong-gu Daegu 41061 Korea
| | - Hwa Young Yun
- Department of Chemistry and The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 N Torrey Pines Rd La Jolla CA 92037 USA
| | - Han Xiao
- Department of Chemistry and The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 N Torrey Pines Rd La Jolla CA 92037 USA
| | - Pengyu Yang
- California Institute for Biomedical Research; 11119 N Torrey Pines Rd La Jolla CA 92037 USA
| | - Xiaozhou Luo
- Department of Chemistry and The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 N Torrey Pines Rd La Jolla CA 92037 USA
| | - Reyna K. V. Lim
- California Institute for Biomedical Research; 11119 N Torrey Pines Rd La Jolla CA 92037 USA
| | - Holly M. Pugh
- California Institute for Biomedical Research; 11119 N Torrey Pines Rd La Jolla CA 92037 USA
| | - Feng Wang
- California Institute for Biomedical Research; 11119 N Torrey Pines Rd La Jolla CA 92037 USA
| | - Stephanie A. Kazane
- California Institute for Biomedical Research; 11119 N Torrey Pines Rd La Jolla CA 92037 USA
| | - Timothy M. Wright
- California Institute for Biomedical Research; 11119 N Torrey Pines Rd La Jolla CA 92037 USA
| | - Chan Hyuk Kim
- California Institute for Biomedical Research; 11119 N Torrey Pines Rd La Jolla CA 92037 USA
- Present address: Department of Biological Sciences, Korea Advanced Institute of Science and Technology; 291 Daehak-ro Yuseong-gu Daejeon 34141 Korea
| | - Peter G. Schultz
- Department of Chemistry and The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 N Torrey Pines Rd La Jolla CA 92037 USA
- California Institute for Biomedical Research; 11119 N Torrey Pines Rd La Jolla CA 92037 USA
| | - Travis S. Young
- California Institute for Biomedical Research; 11119 N Torrey Pines Rd La Jolla CA 92037 USA
| |
Collapse
|
140
|
Cao Y, Rodgers DT, Du J, Ahmad I, Hampton EN, Ma JSY, Mazagova M, Choi SH, Yun HY, Xiao H, Yang P, Luo X, Lim RKV, Pugh HM, Wang F, Kazane SA, Wright TM, Kim CH, Schultz PG, Young TS. Design of Switchable Chimeric Antigen Receptor T Cells Targeting Breast Cancer. Angew Chem Int Ed Engl 2016; 55:7520-4. [PMID: 27145250 DOI: 10.1002/anie.201601902] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/29/2016] [Indexed: 01/03/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cells have demonstrated promising results against hematological malignancies, but have encountered significant challenges in translation to solid tumors. To overcome these hurdles, we have developed a switchable CAR-T cell platform in which the activity of the engineered cell is controlled by dosage of an antibody-based switch. Herein, we apply this approach to Her2-expressing breast cancers by engineering switch molecules through site-specific incorporation of FITC or grafting of a peptide neo-epitope (PNE) into the anti-Her2 antibody trastuzumab (clone 4D5). We demonstrate that both switch formats can be readily optimized to redirect CAR-T cells (specific for the corresponding FITC or PNE) to Her2-expressing tumor cells, and afford dose-titratable activation of CAR-T cells ex vivo and complete clearance of the tumor in rodent xenograft models. This strategy may facilitate the application of immunotherapy to solid tumors by affording comparable efficacy with improved safety owing to switch-based control of the CAR-T response.
Collapse
Affiliation(s)
- Yu Cao
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - David T Rodgers
- California Institute for Biomedical Research, 11119 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Juanjuan Du
- California Institute for Biomedical Research, 11119 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Insha Ahmad
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Eric N Hampton
- California Institute for Biomedical Research, 11119 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Jennifer S Y Ma
- California Institute for Biomedical Research, 11119 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Magdalena Mazagova
- California Institute for Biomedical Research, 11119 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Sei-Hyun Choi
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA.,Present address: Daegu-Gyeongbook Medical Innovation Center, 80 Chembok-ro, Dong-gu, Daegu, 41061, Korea
| | - Hwa Young Yun
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Han Xiao
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Pengyu Yang
- California Institute for Biomedical Research, 11119 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Xiaozhou Luo
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Reyna K V Lim
- California Institute for Biomedical Research, 11119 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Holly M Pugh
- California Institute for Biomedical Research, 11119 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Feng Wang
- California Institute for Biomedical Research, 11119 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Stephanie A Kazane
- California Institute for Biomedical Research, 11119 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Timothy M Wright
- California Institute for Biomedical Research, 11119 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Chan Hyuk Kim
- California Institute for Biomedical Research, 11119 N Torrey Pines Rd, La Jolla, CA, 92037, USA. .,Present address: Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| | - Peter G Schultz
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, USA. .,California Institute for Biomedical Research, 11119 N Torrey Pines Rd, La Jolla, CA, 92037, USA.
| | - Travis S Young
- California Institute for Biomedical Research, 11119 N Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
141
|
Bispecific antibodies and CARs: generalized immunotherapeutics harnessing T cell redirection. Curr Opin Immunol 2016; 40:24-35. [PMID: 26963133 DOI: 10.1016/j.coi.2016.02.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/31/2022]
Abstract
To realize the full potential of cancer immunotherapy, the latest generation immunotherapeutics are designed to harness the potent tumor-killing capacity of T cells. Thus, to mobilize T cells, new optimized bispecific antibody (BsAb) designs, enabling efficient polyclonal redirection of cytotoxic activity through binding to CD3 and a Tumor Associated Antigen (TAA) and refined genetically modified T cells have recently expanded the arsenal of available options for cancer treatment. This review presents the current understanding of the parameters crucial to the design of optimal T cell redirecting BsAb and chimeric antigen receptor (CAR)-modified T cells. However, there are additional questions that require thorough elucidation. Both modalities will benefit from design changes that may increase the therapeutic window. One such approach could employ the discrimination afforded by multiple TAA to significantly increase selectivity.
Collapse
|
142
|
Versatile strategy for controlling the specificity and activity of engineered T cells. Proc Natl Acad Sci U S A 2016; 113:E450-8. [PMID: 26759368 DOI: 10.1073/pnas.1524193113] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adoptive transfer of autologous T cells engineered to express a chimeric antigen receptor (CAR) has emerged as a promising cancer therapy. Despite impressive clinical efficacy, the general application of current CAR-T--cell therapy is limited by serious treatment-related toxicities. One approach to improve the safety of CAR-T cells involves making their activation and proliferation dependent upon adaptor molecules that mediate formation of the immunological synapse between the target cancer cell and T-cell. Here, we describe the design and synthesis of structurally defined semisynthetic adaptors we refer to as "switch" molecules, in which anti-CD19 and anti-CD22 antibody fragments are site-specifically modified with FITC using genetically encoded noncanonical amino acids. This approach allows the precise control over the geometry and stoichiometry of complex formation between CD19- or CD22-expressing cancer cells and a "universal" anti-FITC-directed CAR-T cell. Optimization of this CAR-switch combination results in potent, dose-dependent in vivo antitumor activity in xenograft models. The advantage of being able to titrate CAR-T-cell in vivo activity was further evidenced by reduced in vivo toxicity and the elimination of persistent B-cell aplasia in immune-competent mice. The ability to control CAR-T cell and cancer cell interactions using intermediate switch molecules may expand the scope of engineered T-cell therapy to solid tumors, as well as indications beyond cancer therapy.
Collapse
|
143
|
Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proc Natl Acad Sci U S A 2016; 113:E459-68. [PMID: 26759369 DOI: 10.1073/pnas.1524155113] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has produced impressive results in clinical trials for B-cell malignancies. However, safety concerns related to the inability to control CAR-T cells once infused into the patient remain a significant challenge. Here we report the engineering of recombinant antibody-based bifunctional switches that consist of a tumor antigen-specific Fab molecule engrafted with a peptide neo-epitope, which is bound exclusively by a peptide-specific switchable CAR-T cell (sCAR-T). The switch redirects the activity of the bio-orthogonal sCAR-T cells through the selective formation of immunological synapses, in which the sCAR-T cell, switch, and target cell interact in a structurally defined and temporally controlled manner. Optimized switches specific for CD19 controlled the activity, tissue-homing, cytokine release, and phenotype of sCAR-T cells in a dose-titratable manner in a Nalm-6 xenograft rodent model of B-cell leukemia. The sCAR-T-cell dosing regimen could be tuned to provide efficacy comparable to the corresponding conventional CART-19, but with lower cytokine levels, thereby offering a method of mitigating cytokine release syndrome in clinical translation. Furthermore, we demonstrate that this methodology is readily adaptable to targeting CD20 on cancer cells using the same sCAR-T cell, suggesting that this approach may be broadly applicable to heterogeneous and resistant tumor populations, as well as other liquid and solid tumor antigens.
Collapse
|
144
|
Abstract
Natural killer (NK) cells are the prototype innate lymphoid cells endowed with potent cytolytic function that provide host defence against microbial infection and tumours. Here, we review evidence for the role of NK cells in immune surveillance against cancer and highlight new therapeutic approaches for targeting NK cells in the treatment of cancer.
Collapse
Affiliation(s)
- Maelig G Morvan
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California 94143, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
145
|
D'Aloia MM, Caratelli S, Palumbo C, Battella S, Arriga R, Lauro D, Palmieri G, Sconocchia G, Alimandi M. T lymphocytes engineered to express a CD16-chimeric antigen receptor redirect T-cell immune responses against immunoglobulin G-opsonized target cells. Cytotherapy 2015; 18:278-90. [PMID: 26705740 DOI: 10.1016/j.jcyt.2015.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/27/2015] [Accepted: 10/31/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND AIMS Chimeric antigen receptors (CARs) designed for adoptive immunotherapy need to achieve two functions: antigen recognition and triggering of the lytic machinery of reprogrammed effector cells. Cytotoxic T cells have been engineered with FcγRIII (CD16) chimeric molecules to be redirected against malignant cells by monoclonal antibodies (mAbs). These cells have been proven to mediate granule-dependent cellular cytotoxicity, but it is not clear whether they can also kill malignant cells by a granule-independent mechanism of cell cytotoxicity. METHODS We engineered a CD16A-CAR equipped with the extracellular CD16A, the hinge spacer and the transmembrane region of CD8, and the ζ-chain of the T-cell receptor/CD3 complex in tandem with the CD28 co-stimulatory signal transducer module. The CD16A-CAR was expressed and functionally tested in the MD45 cell line, a murine T-cell hybridoma with a defective granular exocytosis pathway but capable of killing target cells by a Fas ligand-mediated lysis. RESULTS Our results indicate that in vitro cross-linking of CD16A-CAR on MD45 cells by the Fc fragment of mAb opsonized tumor cells induced interleukin-2 release and granule-independent cellular cytotoxicity. CONCLUSIONS We conclude that strategies aimed to implement the therapeutic functions of mAbs used in the clinic with T-dependent immune responses driven by engineered T cells expressing FcγR-CAR can boost the antitumor efficacy of mAbs used in the clinic.
Collapse
Affiliation(s)
- Maria Michela D'Aloia
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Sara Caratelli
- Department of Biomedicine, Institute of Translational Pharmacology, CNR, Rome, Italy; Laboratory of Molecular Medicine, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, Tor Vergata University, Rome, Italy
| | - Simone Battella
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Arriga
- Laboratory of Molecular Medicine, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Davide Lauro
- Laboratory of Molecular Medicine, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Gabriella Palmieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Sconocchia
- Department of Biomedicine, Institute of Translational Pharmacology, CNR, Rome, Italy.
| | - Maurizio Alimandi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
146
|
Harris DT, Kranz DM. Adoptive T Cell Therapies: A Comparison of T Cell Receptors and Chimeric Antigen Receptors. Trends Pharmacol Sci 2015; 37:220-230. [PMID: 26705086 DOI: 10.1016/j.tips.2015.11.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/23/2015] [Accepted: 11/12/2015] [Indexed: 01/04/2023]
Abstract
The tumor-killing properties of T cells provide tremendous opportunities to treat cancer. Adoptive T cell therapies have begun to harness this potential by endowing a functionally diverse repertoire of T cells with genetically modified, tumor-specific recognition receptors. Normally, this antigen recognition function is mediated by an αβ T cell receptor (TCR), but the dominant therapeutic forms currently in development are synthetic constructs called chimeric antigen receptors (CARs). While CAR-based adoptive cell therapies are already showing great promise, their basic mechanistic properties have been studied in less detail compared with those of αβ TCRs. In this review, we compare and contrast various features of TCRs versus CARs, with a goal of highlighting issues that need to be addressed to fully exploit the therapeutic potential of both.
Collapse
Affiliation(s)
- Daniel T Harris
- Department of Biochemistry, University of Illinois, 600 S. Matthews Avenue, Urbana, IL 61801, USA
| | - David M Kranz
- Department of Biochemistry, University of Illinois, 600 S. Matthews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
147
|
Whilding LM, Maher J. CAR T-cell immunotherapy: The path from the by-road to the freeway? Mol Oncol 2015; 9:1994-2018. [PMID: 26563646 PMCID: PMC5528729 DOI: 10.1016/j.molonc.2015.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptors are genetically encoded artificial fusion molecules that can re-program the specificity of peripheral blood polyclonal T-cells against a selected cell surface target. Unparallelled clinical efficacy has recently been demonstrated using this approach to treat patients with refractory B-cell malignancy. However, the approach is technically challenging and can elicit severe toxicity in patients. Moreover, solid tumours have largely proven refractory to this approach. In this review, we describe the important structural features of CARs and how this may influence function. Emerging clinical experience is summarized in both solid tumours and haematological malignancies. Finally, we consider the particular challenges imposed by solid tumours to the successful development of CAR T-cell immunotherapy, together with a number of innovative strategies that have been developed in an effort to reverse the balance in favour of therapeutic benefit.
Collapse
Affiliation(s)
- Lynsey M Whilding
- King's College London, King's Health Partners Integrated Cancer Centre, Department of Research Oncology, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK.
| | - John Maher
- King's College London, King's Health Partners Integrated Cancer Centre, Department of Research Oncology, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK; Department of Immunology, Barnet Hospital, Royal Free London NHS Foundation Trust, Barnet, Hertfordshire, EN5 3DJ, UK; Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
148
|
Abstract
Chimeric antigen receptors (CARs) are synthetic receptors capable of directing potent antigen-specific anti-tumor T cell responses. A recent report by Wu et al. extends a series of strategies aiming to curb excessive T cell activity, utilizing in this instance a chemical dimerizer to aggregate antigen-binding, T cell-activating and costimulatory domains.
Collapse
Affiliation(s)
- Jie Sun
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Immunology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Immunology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
149
|
Yang Z, Zhuan B, Yan Y, Jiang S, Wang T. Integrated analyses of copy number variations and gene differential expression in lung squamous-cell carcinoma. Biol Res 2015; 48:47. [PMID: 26297502 PMCID: PMC4546326 DOI: 10.1186/s40659-015-0038-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/12/2015] [Indexed: 12/30/2022] Open
Abstract
Background Although numerous efforts have been made, the pathogenesis underlying lung squamous-cell carcinoma (SCC) remains unclear. This study aimed to identify the CNV-driven genes by an integrated analysis of both the gene differential expression and copy number variation (CNV). Results A higher burden of the CNVs was found in 10–50 kb length. The 16 CNV-driven genes mainly located in chr 1 and chr 3 were enriched in immune response [e.g. complement factor H (CFH) and Fc fragment of IgG, low affinity IIIa, receptor (FCGR3A)], starch and sucrose metabolism [e.g. amylase alpha 2A (AMY2A)]. Furthermore, 38 TFs were screened for the 9 CNV-driven genes and then the regulatory network was constructed, in which the GATA-binding factor 1, 2, and 3 (GATA1, GATA2, GATA3) jointly regulated the expression of TP63. Conclusions The above CNV-driven genes might be potential contributors to the development of lung SCC.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Department of Respiratory and Critical Care Medicine, Ningxia People's Hospital, Yinchuan, 750011, China.
| | - Bing Zhuan
- Department of Respiratory and Critical Care Medicine, Ningxia People's Hospital, Yinchuan, 750011, China.
| | - Ying Yan
- Department of Respiratory and Critical Care Medicine, Ningxia People's Hospital, Yinchuan, 750011, China.
| | - Simin Jiang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
150
|
Abstract
There is rapidly growing interest in learning how to engineer immune cells, such as T lymphocytes, because of the potential of these engineered cells to be used for therapeutic applications such as the recognition and killing of cancer cells. At the same time, our knowhow and capability to logically engineer cellular behavior is growing rapidly with the development of synthetic biology. Here we describe how synthetic biology approaches are being used to rationally alter the behavior of T cells to optimize them for therapeutic functions. We also describe future developments that will be important in order to construct safe and precise T cell therapeutics.
Collapse
Affiliation(s)
- Chia-Yung Wu
- Dept. of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, United States
| | - Levi J Rupp
- Dept. of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, United States
| | - Kole T Roybal
- Dept. of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, United States
| | - Wendell A Lim
- Dept. of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, United States; Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, United States.
| |
Collapse
|