101
|
Sweileh WM. Bibliometric analysis of global research on psychological well-being, subjective burden, and psychosocial support of family caregivers of cancer patients. Health Psychol Open 2024; 11:20551029241307994. [PMID: 39668850 PMCID: PMC11635901 DOI: 10.1177/20551029241307994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
This study delves into the realm of informal cancer caregivers. Through a meticulous bibliometric analysis, the study sheds light on the burgeoning interest in this field, with a significant focus on the psychological well-being, subjective burden, and psychosocial support for caregivers. A significant portion of the retrieved articles (n = 1366) was published after 2017 and primarily disseminated through a select number of journals. Notably, the study reveals a substantial gap in randomized controlled trials addressing interventions tailored to family caregivers, indicating a critical need for more high-quality trials to guide effective support strategies. Despite the increasing recognition of caregivers' significance, limited research collaboration was observed, emphasizing the importance of fostering collaborative efforts to address cultural differences and expand the scope of research on cancer caregivers globally. The findings underscore the urgent call for comprehensive interventions and collaborative endeavors to optimize the well-being of family caregivers.
Collapse
|
102
|
Vishakha S, Navneesh N, Kurmi BD, Gupta GD, Verma SK, Jain A, Patel P. An Expedition on Synthetic Methodology of FDA-approved Anticancer Drugs (2018-2021). Anticancer Agents Med Chem 2024; 24:590-626. [PMID: 38288815 DOI: 10.2174/0118715206259585240105051941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 05/29/2024]
Abstract
New drugs being established in the market every year produce specified structures for selective biological targeting. With medicinal insights into molecular recognition, these begot molecules open new rooms for designing potential new drug molecules. In this review, we report the compilation and analysis of a total of 56 drugs including 33 organic small molecules (Mobocertinib, Infigratinib, Sotorasib, Trilaciclib, Umbralisib, Tepotinib, Relugolix, Pralsetinib, Decitabine, Ripretinib, Selpercatinib, Capmatinib, Pemigatinib, Tucatinib, Selumetinib, Tazemetostat, Avapritinib, Zanubrutinib, Entrectinib, Pexidartinib, Darolutamide, Selinexor, Alpelisib, Erdafitinib, Gilteritinib, Larotrectinib, Glasdegib, Lorlatinib, Talazoparib, Dacomitinib, Duvelisib, Ivosidenib, Apalutamide), 6 metal complexes (Edotreotide Gallium Ga-68, fluoroestradiol F-18, Cu 64 dotatate, Gallium 68 PSMA-11, Piflufolastat F-18, 177Lu (lutetium)), 16 macromolecules as monoclonal antibody conjugates (Brentuximabvedotin, Amivantamab-vmjw, Loncastuximabtesirine, Dostarlimab, Margetuximab, Naxitamab, Belantamabmafodotin, Tafasitamab, Inebilizumab, SacituzumabGovitecan, Isatuximab, Trastuzumab, Enfortumabvedotin, Polatuzumab, Cemiplimab, Mogamulizumab) and 1 peptide enzyme (Erwiniachrysanthemi-derived asparaginase) approved by the U.S. FDA between 2018 to 2021. These drugs act as anticancer agents against various cancer types, especially non-small cell lung, lymphoma, breast, prostate, multiple myeloma, neuroendocrine tumor, cervical, bladder, cholangiocarcinoma, myeloid leukemia, gastrointestinal, neuroblastoma, thyroid, epithelioid and cutaneous squamous cell carcinoma. The review comprises the key structural features, approval times, target selectivity, mechanisms of action, therapeutic indication, formulations, and possible synthetic approaches of these approved drugs. These crucial details will benefit the scientific community for futuristic new developments in this arena.
Collapse
Affiliation(s)
- S Vishakha
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - N Navneesh
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ankit Jain
- Department of Pharmaceutical Sciences, Texas A & M University, Kingsville, 78363, Texas, United States of America
| | - Preeti Patel
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
103
|
Zeng H, Zhang F, Sun Y, Li S, Zhang W. Treatment options for neoadjuvant strategies of esophageal squamous cell carcinoma (Review). Mol Clin Oncol 2024; 20:4. [PMID: 38223404 PMCID: PMC10784769 DOI: 10.3892/mco.2023.2702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/26/2023] [Indexed: 01/16/2024] Open
Abstract
Compared with postoperative adjuvant therapy, neoadjuvant therapy has more potential advantages, such as decreasing tumor stage, killing micrometastatic cells. Because of these advantages, neoadjuvant therapy is recommended for numerous types of tumor, such as breast, lung and rectal cancer. To determine the role of neoadjuvant therapy on overall survival and adverse for patients with resectable esophageal carcinoma. we summarized clinical studies on 7 types of neoadjuvant therapies in this review. Currently, patients with esophageal cancer (EC) in China mainly receive postoperative treatment with <30% of patients receiving neoadjuvant therapy. One reason for the limited use of neoadjuvant therapy in China is inaccurate staging based on imaging and neoadjuvant treatment may increase difficulties in surgery. After neoadjuvant therapy, there may be tissue edema, blurry surgical field of view and unclear tissue gaps, resulting in greater difficulty in surgical procedures. However, oncologists are interested in neoadjuvant treatment, especially neoadjuvant immunotherapy to treat EC. Concurrent chemoradiotherapy for esophageal squamous cell carcinoma (ESCC) is the most common neoadjuvant treatment regimen and increases the pathological complete response (pCR) and 5- and 10-year survival rates. Preoperative induction chemotherapy and sequential concurrent chemoradiotherapy are currently the most widely treatments used in clinical practice in China. However, this treatment strategy does not yield long-term survival. The pCR rate of neoadjuvant immunotherapy is greater than that of concurrent chemoradiotherapy but, to the best of our knowledge, no evidence of long-term survival benefit has been found in phase I and II clinical trials. Neoadjuvant treatment should be considered for patients with locally advanced ESCC.
Collapse
Affiliation(s)
- Hai Zeng
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Fan Zhang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Yujiao Sun
- Department of Clinical Medicine, Medical School of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Shuang Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Weijia Zhang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
104
|
Han L, Meng Y, Jianguo Z. Research Progress of PD 1/PD L1 Inhibitors in the Treatment of Urological Tumors. Curr Cancer Drug Targets 2024; 24:1104-1115. [PMID: 38318829 DOI: 10.2174/0115680096278251240108152600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
Immune checkpoint inhibitors (ICIs) offer significant advantages for the treatment of urologic tumors, enhancing the immune function of anti-tumor T cells by inhibiting PD-1 and PDL1 binding. They have been shown to be well tolerated and remarkably effective in clinical practice, offering hope to many patients who are not well treated with conventional drugs. Clinical trials in recent years have shown that anti-PD-1 and PD-L1 antibodies have good efficacy and safety in the treatment of urologic tumors. These antibodies can be applied to a variety of urologic tumors, such as bladder cancer, renal cell carcinoma, and prostate cancer. They have been approved for the first-line treatment or as an option for follow-up therapy. By blocking the PD-1/PD-L1 signaling pathway, ICIs can release immune functions that are suppressed by tumor cells and enhance T-cell killing, thereby inhibiting tumor growth and metastasis. This therapeutic approach has achieved encouraging efficacy and improved survival for many patients. Although ICIs have shown remarkable results in the treatment of urologic tumors, some problems remain, such as drug resistance and adverse effects in some patients. Therefore, further studies remain important to optimize treatment strategies and improve clinical response in patients. In conclusion, PD-1/PD-L1 signaling pathway blockers have important research advances for the treatment of urologic tumors. Their emergence brings new hope for patients who have poor outcomes with traditional drug therapy and provides new options for immunotherapy of urologic tumors. The purpose of this article is to review the research progress of PD-1 and PD-L1 signaling pathway blockers in urologic tumors in recent years.
Collapse
Affiliation(s)
- Lv Han
- Guizhou Medical University, Guiyang, 550000, China
| | - Yang Meng
- Guizhou Provincial People's Hospital, Guiyang, 550000, China
| | - Zhu Jianguo
- Guizhou Provincial People's Hospital, Guiyang, 550000, China
| |
Collapse
|
105
|
Li L, Chen G, Chen EY, Strickland MR, Zhao W, Zhang J, Li Z. Development and validation of a nomogram to predict pathological complete response in patients with locally advanced gastric adenocarcinoma treated with neoadjuvant chemotherapy in combination with PD-1 antibodies. J Gastrointest Oncol 2023; 14:2373-2383. [PMID: 38196541 PMCID: PMC10772673 DOI: 10.21037/jgo-23-751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Background Currently, the survival benefits of combining neoadjuvant chemotherapy with programmed death 1 (PD-1) antibody immunotherapy in advanced gastric adenocarcinoma remain controversial. Emerging evidence suggests that the survival benefits of neoadjuvant therapy in advanced gastric adenocarcinoma hinge upon the attainment of pathological complete response (pCR). Therefore, the prediction of pCR in patients undergoing neoadjuvant chemotherapy combined with PD-1 antibody immunotherapy holds significant importance and is beneficial for the individualized treatment of gastric cancer (GC) patients. Methods Clinical and pathological characteristics of patients with GC who received neoadjuvant chemotherapy combined with PD-1 inhibitor (camrelizumab) therapy and radical gastrectomy between January 2019 and December 2020 at the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital were retrospectively analyzed. A total of 52 patients were enrolled in the study, with all subjects assigned to the training set. The neoadjuvant regimen consisted of a combination of PD-1 inhibitor and fluorouracil analogues plus oxaliplatin, comprising two drugs. The patients were divided into a pCR group and a non-pCR group according to pCR occurrence. Multifactor logistic regression analysis was applied to determine the correlation between each factor and pCR. A prediction model was developed based on the results of the logistic regression analysis. The predictive performance of the model was evaluated using the receiver operating characteristic curves. Internal verification was completed via the bootstrapping method. Results The pCR was observed in 10 out of 52 patients (19.2%). The results of binary logistic regression multivariate analysis showed that cN stage [odds ratio (OR): 0.215; P=0.03], combined positive score (CPS) (OR: 6.364; P=0.026), and tumor diameter (OR: 0.112; P=0.026) were independent predictors of pCR. The nomogram prediction model for the pCR was plotted with a concordance index of 0.923 [95% confidence interval (CI): 0.8441-1]. Conclusions Neoadjuvant chemotherapy combined with PD-1 antibodies may be the preferred option for patients with advanced gastric adenocarcinoma who have a small tumor diameter, no or few lymph node metastases, and high CPS. The presented nomogram model exhibits the potential to predict pCR in advanced gastric adenocarcinoma patients, showcasing satisfactory predictive performance and potentially facilitating the implementation of personalized treatment strategies.
Collapse
Affiliation(s)
- Liang Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Guanglong Chen
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Emerson Y. Chen
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Matthew R. Strickland
- Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Weijie Zhao
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jialin Zhang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhi Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
106
|
Heck AG, Stickdorn J, Rosenberger LJ, Scherger M, Woller J, Eigen K, Bros M, Grabbe S, Nuhn L. Polymerizable 2-Propionic-3-methylmaleic Anhydrides as a Macromolecular Carrier Platform for pH-Responsive Immunodrug Delivery. J Am Chem Soc 2023; 145:27424-27436. [PMID: 38054646 DOI: 10.1021/jacs.3c08511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The design of functional polymers coupled with stimuli-triggered drug release mechanisms is a promising achievement to overcome various biological barriers. pH trigger methods yield significant potential for controlled targeting and release of therapeutics due to their simplicity and relevance, especially upon cell internalization. Here, we introduce reactive polymers that conjugate primary or secondary amines and release potential drugs under acidic conditions. For that purpose, we introduced methacrylamide-based monomers with pendant 2-propionic-3-methylmaleic anhydride groups. Such groups allow the conjugation of primary and secondary amines but are resistant to radical polymerization conditions. We, therefore, polymerized 2-propionic-3-methylmaleic anhydride amide-based methacrylates via reversible addition-fragmentation chain transfer (RAFT) polymerization. Their amine-reactive anhydrides could sequentially be derivatized by primary or secondary amines into hydrophilic polymers. Acidic pH-triggered drug release from the polymeric systems was fine-tuned by comparing different amines. Thereby, the conjugation of primary amines led to the formation of irreversible imide bonds in dimethyl sulfoxide, while secondary amines could quantitatively be released upon acidification. In vitro, this installed pH-responsiveness can contribute to an effective release of conjugated immune stimulatory drugs under endosomal pH conditions. Interestingly, the amine-modified polymers generally showed no toxicity and a high cellular uptake. Furthermore, secondary amine-modified immune stimulatory drugs conjugated to the polymers yielded better receptor activity and immune cell maturation than their primary amine derivatives due to their pH-sensitive drug release mechanism. Consequently, 2-propionic-3-methylmaleic anhydride-based polymers can be considered as a versatile platform for pH-triggered delivery of various (immuno)drugs, thus enabling new strategies in macromolecule-assisted immunotherapy.
Collapse
Affiliation(s)
- Alina G Heck
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | | | - Laura J Rosenberger
- Department of Dermatology, University Medical Center (UMC) of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | | | - Jonas Woller
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Katharina Eigen
- Institute of Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Würzburg 97070, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center (UMC) of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center (UMC) of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
- Institute of Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Würzburg 97070, Germany
| |
Collapse
|
107
|
Zang J, Zhang J, Mei Y, Xiong Y, Ci T, Feng N. Immunogenic dead cells engineered by the sequential treatment of ultraviolet irradiation/cryo-shocking for lung-targeting delivery and tumor vaccination. Biomater Sci 2023; 12:164-175. [PMID: 37947455 DOI: 10.1039/d3bm00854a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Chemoimmunotherapy is a promising strategy in tumor treatments. In this study, immunogenic dead cells were engineered by the sequential treatment of live tumor cells with ultraviolet (UV) irradiation and cryo-shocking. The dead cells could serve as a lung-targeting vehicle and tumor vaccine after differential loading of the chemo-drug 10-hydroxycamptothecin (HCPT) and immune adjuvant Quillaja saponin-21 (QS-21) via physical absorption and chemical conjugation, respectively. After intravenous administration, the dead cells could be trapped in pulmonary capillaries and could fast release HCPT to enhance the drug accumulation in local tissues. Further, the immunogenic dead cells elicited antitumor immune responses together with the conjugated adjuvant QS-21 to achieve the elimination and long-term surveillance of tumor cells. In a lung tumor-bearing mice model, this drug-delivery system achieved synergistic antitumor efficacy and prolonged the survival of mice.
Collapse
Affiliation(s)
- Jing Zang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jinniu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yijun Mei
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu province, 210009, China
| | - Yaoxuan Xiong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Tianyuan Ci
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
108
|
Rossi M, Steklov M, Huberty F, Nguyen T, Marijsse J, Jacques-Hespel C, Najm P, Lonez C, Breman E. Efficient shRNA-based knockdown of multiple target genes for cell therapy using a chimeric miRNA cluster platform. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102038. [PMID: 37799328 PMCID: PMC10548280 DOI: 10.1016/j.omtn.2023.102038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Genome engineering technologies are powerful tools in cell-based immunotherapy to optimize or fine-tune cell functionalities. However, their use for multiple gene edits poses relevant biological and technical challenges. Short hairpin RNA (shRNA)-based cell engineering bypasses these criticalities and represents a valid alternative to CRISPR-based gene editing. Here, we describe a microRNA (miRNA)-based multiplex shRNA platform obtained by combining highly efficient miRNA scaffolds into a chimeric cluster, to deliver up to four shRNA-like sequences. Thanks to its limited size, our cassette could be deployed in a one-step process along with all the CAR components, streamlining the generation of engineered CAR T cells. The plug-and-play design of the shRNA platform allowed us to swap each shRNA-derived guide sequence without affecting the system performance. Appropriately choosing the target sequences, we were able to either achieve a functional KO, or fine-tune the expression levels of the target genes, all without the need for gene editing. Through our strategy we achieved easy, safe, efficient, and tunable modulation of multiple target genes simultaneously. This approach allows for the effective introduction of multiple functionally relevant tweaks in the transcriptome of the engineered cells, which may lead to increased performance in challenging environments, e.g., solid tumors.
Collapse
Affiliation(s)
- Matteo Rossi
- Celyad Oncology, 1435 Mont-Saint-Guibert, Belgium
| | | | | | - Thuy Nguyen
- Celyad Oncology, 1435 Mont-Saint-Guibert, Belgium
| | | | | | - Paul Najm
- Celyad Oncology, 1435 Mont-Saint-Guibert, Belgium
| | | | - Eytan Breman
- Celyad Oncology, 1435 Mont-Saint-Guibert, Belgium
| |
Collapse
|
109
|
Peng X, Wang Y, Zhang J, Zhang Z, Qi S. Intravital imaging of the functions of immune cells in the tumor microenvironment during immunotherapy. Front Immunol 2023; 14:1288273. [PMID: 38124754 PMCID: PMC10730658 DOI: 10.3389/fimmu.2023.1288273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer immunotherapy has developed rapidly in recent years and stands as one of the most promising techniques for combating cancer. To develop and optimize cancer immunotherapy, it is crucial to comprehend the interactions between immune cells and tumor cells in the tumor microenvironment (TME). The TME is complex, with the distribution and function of immune cells undergoing dynamic changes. There are several research techniques to study the TME, and intravital imaging emerges as a powerful tool for capturing the spatiotemporal dynamics, especially the movement behavior and the immune function of various immune cells in real physiological state. Intravital imaging has several advantages, such as high spatio-temporal resolution, multicolor, dynamic and 4D detection, making it an invaluable tool for visualizing the dynamic processes in the TME. This review summarizes the workflow for intravital imaging technology, multi-color labeling methods, optical imaging windows, methods of imaging data analysis and the latest research in visualizing the spatio-temporal dynamics and function of immune cells in the TME. It is essential to investigate the role played by immune cells in the tumor immune response through intravital imaging. The review deepens our understanding of the unique contribution of intravital imaging to improve the efficiency of cancer immunotherapy.
Collapse
Affiliation(s)
- Xuwen Peng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuke Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhong Qi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
110
|
Luo M, Gong W, Zhang Y, Li H, Ma D, Wu K, Gao Q, Fang Y. New insights into the stemness of adoptively transferred T cells by γc family cytokines. Cell Commun Signal 2023; 21:347. [PMID: 38049832 PMCID: PMC10694921 DOI: 10.1186/s12964-023-01354-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 12/06/2023] Open
Abstract
T cell-based adoptive cell therapy (ACT) has exhibited excellent antitumoral efficacy exemplified by the clinical breakthrough of chimeric antigen receptor therapy (CAR-T) in hematologic malignancies. It relies on the pool of functional T cells to retain the developmental potential to serially kill targeted cells. However, failure in the continuous supply and persistence of functional T cells has been recognized as a critical barrier to sustainable responses. Conferring stemness on infused T cells, yielding stem cell-like memory T cells (TSCM) characterized by constant self-renewal and multilineage differentiation similar to pluripotent stem cells, is indeed necessary and promising for enhancing T cell function and sustaining antitumor immunity. Therefore, it is crucial to identify TSCM cell induction regulators and acquire more TSCM cells as resource cells during production and after infusion to improve antitumoral efficacy. Recently, four common cytokine receptor γ chain (γc) family cytokines, encompassing interleukin-2 (IL-2), IL-7, IL-15, and IL-21, have been widely used in the development of long-lived adoptively transferred TSCM in vitro. However, challenges, including their non-specific toxicities and off-target effects, have led to substantial efforts for the development of engineered versions to unleash their full potential in the induction and maintenance of T cell stemness in ACT. In this review, we summarize the roles of the four γc family cytokines in the orchestration of adoptively transferred T cell stemness, introduce their engineered versions that modulate TSCM cell formation and demonstrate the potential of their various combinations. Video Abstract.
Collapse
Affiliation(s)
- Mengshi Luo
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjian Gong
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuewen Zhang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
111
|
Huang MY, Chen YC, Lyu WY, He XY, Ye ZH, Huang CY, He XL, Chen X, Chen X, Zhang B, Kai G, Zhang X, Li T, Huang M, Lu JJ. Ginsenoside Rh2 augmented anti-PD-L1 immunotherapy by reinvigorating CD8 + T cells via increasing intratumoral CXCL10. Pharmacol Res 2023; 198:106988. [PMID: 37984507 DOI: 10.1016/j.phrs.2023.106988] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Profiting from the sustained clinical improvement and prolonged patient survival, immune checkpoint blockade of programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis has emerged as a revolutionary cancer therapy approach. However, the anti-PD-1/PD-L1 antibodies only achieve a clinical response rate of approximately 20%. Herein, we identified a novel combination strategy that Chinese medicine ginseng-derived ginsenoside Rh2 (Rh2) markedly improved the anti-cancer efficacy of anti-PD-L1 antibody in mice bearing MC38 tumor. Rh2 combined with anti-PD-L1 antibody (combo treatment) further triggered the infiltration, proliferation and activation of CD8+ T cells in the tumor microenvironment (TME). Depletion of CD8+ T cells by mouse CD8 blocking antibody abolished the anti-cancer effect of combo treatment totally. Mechanistically, combo treatment further increased the expression of CXCL10 through activating TBK1-IRF3 signaling pathway, explaining the increased infiltration of T cells. Employing anti- CXC chemokine receptor 3 (CXCR3) blocking antibody prevented the T cells infiltration and abolished the anti-cancer effect of combo treatment. Meanwhile, combo treatment increased the percentage of M1-like macrophages and raised the ratio of M1/M2 macrophages in TME. By comparing the anti-cancer effect of combo treatment among MC38, CT26 and 4T1 tumors, resident T cells were considered as a prerequisite for the effectiveness of combo treatment. These findings demonstrated that Rh2 potentiated the anti-cancer effect of PD-L1 blockade via promoting the T cells infiltration and activation, which shed a new light on the combination strategy to enhance anti-PD-L1 immunotherapy by using natural product Rh2.
Collapse
Affiliation(s)
- Mu-Yang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Yu-Chi Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Wen-Yu Lyu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Xin-Yu He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Zi-Han Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Can-Yu Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Xin-Ling He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao Special Administrative Region of China
| | - Xiaobing Chen
- Increasepharm (Hengqin) Innovative Medicine Institute Limited, Zhuhai, China
| | - Baoxian Zhang
- Increasepharm (Hengqin) Innovative Medicine Institute Limited, Zhuhai, China
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China.
| | - Mingqing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao Special Administrative Region of China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao Special Administrative Region of China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Macao Special Administrative Region of China.
| |
Collapse
|
112
|
Wong RSJ, Ong RJM, Lim JSJ. Immune checkpoint inhibitors in breast cancer: development, mechanisms of resistance and potential management strategies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:768-787. [PMID: 38263984 PMCID: PMC10804393 DOI: 10.20517/cdr.2023.58] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 01/25/2024]
Abstract
The use of immune checkpoint inhibitors (ICIs) has increased exponentially in the past decade, although its progress specifically for breast cancer has been modest. The first U.S. Food and Drug Administration approval for ICI in breast cancer came in 2019, eight years after the first-ever approval of an ICI. At present, current indications for ICIs are relevant only to a subset of patients with triple-negative breast cancer, or those displaying high microsatellite instability or deficiency in the mismatch repair protein pathway. With an increasing understanding of the limitations of using ICIs, which stem from breast cancer being innately poorly immunogenic, as well as the presence of various intrinsic and acquired resistance pathways, ongoing trials are evaluating different combination therapies to overcome these barriers. In this review, we aim to describe the development timeline of ICIs and resistance mechanisms limiting their utility, and summarise the available approaches and ongoing trials relevant to overcoming each resistance mechanism.
Collapse
Affiliation(s)
- Rachel SJ Wong
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Rebecca JM Ong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Joline SJ Lim
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
113
|
Gulen AE, Rudraboina R, Tarique M, Ulker V, Shirwan H, Yolcu ES. A novel agonist of 4-1BB costimulatory receptor shows therapeutic efficacy against a tobacco carcinogen-induced lung cancer. Cancer Immunol Immunother 2023; 72:3567-3579. [PMID: 37605009 PMCID: PMC10991934 DOI: 10.1007/s00262-023-03507-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/23/2023] [Indexed: 08/23/2023]
Abstract
Immunotherapy utilizing checkpoint inhibitors has shown remarkable success in the treatment of cancers. In addition to immune checkpoint inhibitors, immune co-stimulation has the potential to enhance immune activation and destabilize the immunosuppressive tumor microenvironment. CD137, also known as 4-1BB, is one of the potent immune costimulatory receptors that could be targeted for effective immune co-stimulation. The interaction of the 4-1BB receptor with its natural ligand (4-1BBL) generates a strong costimulatory signal for T cell proliferation and survival. 4-1BBL lacks costimulatory activity in soluble form. To obtain co-stimulatory activity in soluble form, a recombinant 4-1BBL protein was generated by fusing the extracellular domains of murine 4-1BBL to a modified version of streptavidin (SA-4-1BBL). Treatment with SA-4-1BBL inhibited the development of lung tumors in A/J mice induced by weekly injections of the tobacco carcinogen NNK for eight weeks. The inhibition was dependent on the presence of T cells and NK cells; depletion of these cells diminished the SA-4-1BBL antitumor protective effect. The number of lung tumor nodules was significantly reduced by the administration of SA-4-1BBL to mice during ongoing exposure to NNK. The data presented in this paper suggest that utilizing an immune checkpoint stimulator as a single agent generate a protective immune response against lung cancer in the presence of a carcinogen. More broadly, this study suggests that immune checkpoint stimulation can be extended to a number of other cancer types, including breast and prostate cancers, for which improved diagnostics can detect disease at the preneoplastic stage.
Collapse
Affiliation(s)
- Ayse Ece Gulen
- Department of Child Health, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Rakesh Rudraboina
- Department of Child Health, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Mohammad Tarique
- Department of Child Health, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Vahap Ulker
- Department of Child Health, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| | - Haval Shirwan
- Department of Child Health, University of Missouri, Columbia, MO, USA.
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.
- NextGen Precision Health, University of Missouri, Columbia, MO, USA.
| | - Esma S Yolcu
- Department of Child Health, University of Missouri, Columbia, MO, USA.
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.
- NextGen Precision Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
114
|
Li Y, Ju M, Miao Y, Zhao L, Xing L, Wei M. Advancement of anti-LAG-3 in cancer therapy. FASEB J 2023; 37:e23236. [PMID: 37846808 DOI: 10.1096/fj.202301018r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/18/2023]
Abstract
Immune checkpoint inhibitors have effectively transformed the treatment of many cancers, particularly those highly devastating malignancies. With their widespread popularity, the drawbacks of immune checkpoint inhibitors are also recognized, such as drug resistance and immune-related systematic side effects. Thus, it never stops investigating novel immune checkpoint inhibitors. Lymphocyte Activation Gene-3 (LAG-3) is a well-established co-inhibitory receptor that performs negative regulation on immune responses. Recently, a novel FDA-approved LAG-3 blocking agent, together with nivolumab as a new combinational immunotherapy for metastatic melanoma, brought LAG-3 back into focus. Clinical data suggests that anti-LAG-3 agents can amplify the therapeutic response of other immune checkpoint inhibitors with manageable side effects. In this review, we elucidate the intercellular and intracellular mechanisms of LAG-3, clarify the current understanding of LAG-3 in the tumor microenvironment, identify present LAG-3-associated therapeutic agents, discuss current LAG-3-involving clinical trials, and eventually address future prospects for LAG-3 inhibitors.
Collapse
Affiliation(s)
- Yunong Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, P.R. China
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, P.R. China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, P.R. China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, P.R. China
| | - Lijuan Xing
- Precision Laboratory, Panjin Central Hospital, Panjin, P.R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, P.R. China
- Shenyang Kangwei Medical Laboratory Analysis Co. Ltd, Shenyang, P.R. China
| |
Collapse
|
115
|
Hao W, Zhang Y, Dou J, Cui P, Zhu J. S100P as a potential biomarker for immunosuppressive microenvironment in pancreatic cancer: a bioinformatics analysis and in vitro study. BMC Cancer 2023; 23:997. [PMID: 37853345 PMCID: PMC10585823 DOI: 10.1186/s12885-023-11490-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Immunosuppression is a significant factor contributing to the poor prognosis of cancer. S100P, a member of the S100 protein family, has been implicated in various cancers. However, its role in the tumor microenvironment (TME) of pancreatic cancer remains unclear. This study aimed to investigate the potential impact of S100P on TME characteristics in patients with pancreatic cancer. METHODS Multiple data (including microarray, RNA-Seq, and scRNA-Seq) were obtained from public databases. The expression pattern of S100P was comprehensively evaluated in RNA-Seq data and validated in four different microarray datasets. Prognostic value was assessed through Kaplan-Meier plotter and Cox regression analyses. Immune infiltration levels were determined using the ESTIMATE and ssGSEA algorithms and validated at the single-cell level. Spearman correlation test was used to examine the correlation between S100P expression and immune checkpoint genes, and tumor mutation burden (TMB). DNA methylation analysis was performed to investigate the change in mRNA expression. Reverse transcription PCR (RT-PCR) and immunohistochemical (IHC) were utilized to validate the expression using five cell lines and 60 pancreatic cancer tissues. RESULTS This study found that S100P was differentially expressed in pancreatic cancer and was associated with poor prognosis (P < 0.05). Notably, S100P exhibited a significant negative-correlation with immune cell infiltration, particularly CD8 + T cells. Furthermore, a close association between S100P and immunotherapy was observed, as it strongly correlated with TMB and the expression levels of TIGIT, HAVCR2, CTLA4, and BTLA (P < 0.05). Intriguingly, higher S100P expression demonstrated a negative correlation with methylation levels (cg14323984, cg27027375, cg14900031, cg14140379, cg25083732, cg07210669, cg26233331, and cg22266967), which were associated with CD8 + T cells. In vitro RT-PCR validated upregulated S100P expression across all five pancreatic cancer cell lines, and IHC confirmed high S100P levels in pancreatic cancer tissues (P < 0.05). CONCLUSION These findings suggest that S100P could serve as a promising biomarker for immunosuppressive microenvironment, which may provide a novel therapeutic way for pancreatic cancer.
Collapse
Affiliation(s)
- Weiwei Hao
- Department of gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yanyan Zhang
- Department of gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jingwen Dou
- Department of gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Pu Cui
- Department of gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jicun Zhu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
116
|
Liu C, Zhao H, Zhang R, Guo Z, Wang P, Qu Z. Prognostic value of nutritional and inflammatory markers in patients with hepatocellular carcinoma who receive immune checkpoint inhibitors. Oncol Lett 2023; 26:437. [PMID: 37664652 PMCID: PMC10472048 DOI: 10.3892/ol.2023.14024] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The emergence of immune checkpoint inhibitors (ICIs) has provided a new treatment option for patients with hepatocellular carcinoma (HCC). However, further evaluation is needed for determining biomarkers for the use of ICIs. The present study evaluated the prognostic value of certain nutritional and inflammatory markers in patients with HCC who received ICIs. In the present study, the clinical data of 151 patients with HCC who received ICIs at Harbin Medical University Cancer Hospital from January 2019 to December 2021 were collected. The blood parameters of all patients before treatment were collected to evaluate certain nutritional and inflammatory markers, including the prognostic nutrition index (PNI), nutritional risk index (NRI), geriatric NRI (GNRI), systemic immune-inflammation index (SII), systemic inflammation response index (SIRI) and advanced lung cancer inflammation index (ALI). Patients were grouped using the cut-off value calculated using receiver operating characteristic (ROC) curves, and the relationship between these biomarkers and prognosis was evaluated through survival analysis. Furthermore, the prognostic value of these biomarkers was assessed through multivariate Cox regression analysis and construction of nomograms. Finally, time-ROC curves were plotted to compare the differences in predicting prognosis between the biomarkers. In the preliminary survival analysis, all inflammatory and nutritional markers included in the present study were significantly associated with the prognosis of HCC in patients who received ICIs. Similar results were obtained in a subgroup analysis of patients with different Barcelona Clinic Liver Cancer (BCLC) stages. Multivariate Cox regression analysis demonstrated that GNRI, PNI, BCLC stage and Tumor-Node-Metastasis (TNM) stage were significantly associated with progression-free survival (PFS), whereas GNRI, BCLC stage and TNM stage were also significantly associated with overall survival (OS). Furthermore, the time-ROC curves indicated that nutritional indicators had a higher prognostic value in all indexes, especially GNRI. The C-index (95% confidence interval) of the nomograms for predicting the survival probability of patients who received ICIs were 0.801 (0.746-0.877) and 0.823 (0.761-0.898) for PFS and overall OS, respectively, which also showed high accuracy. In conclusion, the present study demonstrated that PNI, GNRI, NRI, SII, SIRI and ALI were all related to the efficacy of ICIs in HCC and could serve as non-invasive biomarkers for ICI treatment effectiveness. Moreover, compared with inflammatory markers, nutritional markers had greater predictive ability, with GNRI being the biomarker with the best prognostic value.
Collapse
Affiliation(s)
- Chunxun Liu
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Haoran Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Rujia Zhang
- Department of Operating Room, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zuoming Guo
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Peng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhaowei Qu
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
117
|
Yan W, Li Y, Zou Y, Zhu R, Wu T, Sun X, Yuan W, Lang T, Yin Q, Li Y. Breaking Tumor Immunosuppressive Network by Regulating Multiple Nodes with Triadic Drug Delivery Nanoparticles. ACS NANO 2023; 17:17826-17844. [PMID: 37690028 DOI: 10.1021/acsnano.3c03387] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Inside the tumor microenvironment, a complicated immunosuppressive network is constituted by tumor cells and suppressive immune cells as its nodes, including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and regulatory T cells, which have mutual promotion on each other and superimposed inhibition on natural killer (NK) cells and cytotoxic T cells. Breaking the whole balance of this web is critical to tumor immunotherapy since modulation on a single node may be diluted by other factors in the network. To achieve multifaceted regulation on antitumor immunity against triple-negative breast cancer, in this work, a micelle, termed BEM, co-delivering the MDSC inhibitor, entinostat (ENT), and the immune checkpoint inhibitor, BMS-1, was constructed with pH-sensitive amphiphilic poly(β-amino ester) derivatives. Then, BEM and the scavenger receptor A (SR-A) ligand dextran sulfate (DXS) formed a negatively charged nanoparticle (BEN). DXS detached from BEN in the weakly acidic tumor microenvironment and blocked SR-A on TAMs, reprogramming TAMs toward the M1 type. The positively charged BEM with facilitated intratumoral penetration and cellular uptake dissociated in the lysosomes, accompanied by the release of ENT and BMS-1 to suppress MDSCs and block the programmed cell death protein (PD)-1/PD-ligand 1 pathway, respectively. As a result, NK cells and CD8+ T cells in tumors were increased, as were their effector cytokines. The activated innate and adaptive antitumor immune responses suppressed the growth and metastasis of tumors and prolonged survival of 4T1 tumor-bearing mice. BEN provides a reliable approach for improving cancer immunotherapy by destroying the immunosuppression web in tumors via multinode regulation.
Collapse
Affiliation(s)
- Wenlu Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Yu Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiting Zou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Runqi Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Xujie Sun
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Yuan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
118
|
Guo Y, Gao F, Ahmed A, Rafiq M, Yu B, Cong H, Shen Y. Immunotherapy: cancer immunotherapy and its combination with nanomaterials and other therapies. J Mater Chem B 2023; 11:8586-8604. [PMID: 37614168 DOI: 10.1039/d3tb01358h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Immunotherapy is a new type of tumor treatment after surgery, radiotherapy and chemotherapy, and can be used to manage and destroy tumor cells through activating or strengthening the immune response. Immunotherapy has the benefits of a low recurrence rate and high specificity compared to traditional treatment methods. Immunotherapy has developed rapidly in recent years and has become a research hotspot. Currently, chimeric antigen receptor T-cell immunotherapy and immune checkpoint inhibitors are the most effective tumor immunotherapies in clinical practice. While tumor immunotherapy brings hope to patients, it also faces some challenges and still requires continuous research and progress. Combination therapy is the future direction of anti-tumor treatment. In this review, the main focus is on an overview of the research progress of immune checkpoint inhibitors, cellular therapies, tumor vaccines, small molecule inhibitors and oncolytic virotherapy in tumor treatment, as well as the combination of immunotherapy with other treatments.
Collapse
Affiliation(s)
- Yuanyuan Guo
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Adeel Ahmed
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
119
|
Larrue R, Fellah S, Boukrout N, De Sousa C, Lemaire J, Leboeuf C, Goujon M, Perrais M, Mari B, Cauffiez C, Pottier N, Van der Hauwaert C. miR-92a-3p regulates cisplatin-induced cancer cell death. Cell Death Dis 2023; 14:603. [PMID: 37704611 PMCID: PMC10499794 DOI: 10.1038/s41419-023-06125-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Non-small cell lung cancer is characterized by a dismal prognosis largely owing to inefficient diagnosis and tenacious drug resistance. Therefore, the identification of new molecular determinants underlying sensitivity of cancer cells to existing therapy is of particular importance to develop new effective combinatorial treatment strategy. MicroRNAs (miRNAs), a class of small non-coding RNAs, have been established as master regulators of a variety of cellular processes that play a key role in tumor initiation, progression and metastasis. This, along with their widespread deregulation in many distinct cancers, has triggered enthusiasm for miRNAs as novel therapeutic targets for cancer management, in particular in patients with refractory cancers such as those harboring KRAS mutations. In this study, we performed a loss-of-function screening approach to identify miRNAs whose silencing promotes sensitivity of lung adenocarcinoma (LUAD) cells to cisplatin. Our results showed in particular that antisense oligonucleotides directed against miR-92a-3p, a member of the oncogenic miR-17 ~ 92 cluster, caused the greatest increase in the sensitivity of KRAS-mutated LUAD cells to cisplatin. In addition, we demonstrated that this miRNA finely regulates the apoptotic threshold and the proliferative capacity of various tumor cell lines with distinct genetic alterations. Collectively, these data suggest that targeting miR-92a-3p may serve as an effective strategy to overcome treatment resistance of solid tumors.
Collapse
Affiliation(s)
- Romain Larrue
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Sandy Fellah
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Nihad Boukrout
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Corentin De Sousa
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Julie Lemaire
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Carolane Leboeuf
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Marine Goujon
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Michael Perrais
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Bernard Mari
- Université Côte d'Azur, CNRS UMR7275, IPMC, FHU-OncoAge, IHU RespiERA, 06560, Valbonne, France
| | - Christelle Cauffiez
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Nicolas Pottier
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Cynthia Van der Hauwaert
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France.
| |
Collapse
|
120
|
Zhang H, Cao K, Xiang J, Zhang M, Zhu M, Xi Q. Hypoxia induces immunosuppression, metastasis and drug resistance in pancreatic cancers. Cancer Lett 2023; 571:216345. [PMID: 37558084 DOI: 10.1016/j.canlet.2023.216345] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Pancreatic cancer is one of the common malignant tumors of the digestive system and is known as the "king of cancers". It is extremely difficult to diagnose at an early stage, the disease progresses rapidly, and the effect of chemotherapy and radiotherapy is poor, so the prognosis of pancreatic cancer patients is very poor. Numerous studies have suggested that hypoxia is closely related to the development and progression of pancreatic cancer. Inadequate blood supply and desmoplasia in the microenvironment of pancreatic cancer can result in its extreme hypoxia. This hypoxic microenvironment can further contribute to angiogenesis and desmoplasia. Hypoxia is mediated by the complex hypoxia inducible factor (HIF) signaling pathway and plays an important role in the formation of a highly immunosuppressive microenvironment and the metastasis of pancreatic cancer. Further work on the hypoxic microenvironment will help clarify the specific mechanisms of the role of hypoxia in pancreatic cancer and provide a basis for the realization of hypoxia-targeted therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Kailei Cao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Jingrong Xiang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
121
|
Yan J, Jiang W, Kang G, Li Q, Tao L, Wang X, Yin J. Synergistic chemo-photo anticancer therapy by using reversible Diels-Alder dynamic covalent bond mediated polyprodrug amphiphiles and immunoactivation investigation. Biomater Sci 2023; 11:5819-5830. [PMID: 37439438 DOI: 10.1039/d3bm00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Highly efficient endocytosis and multi-approach integrated therapeutic tactics are important factors in oncotherapy. With the aid of thermally reversible furan-maleimide dynamic covalent bonds and the "polyprodrug amphiphiles" concept, thermo- and reduction-responsive PEG(-COOH)Fu/MI(-SS-)CPT copolymers were fabricated by the Diels-Alder (D-A) coupling of hydrophilic Fu(-COOH)-PEG and hydrophobic MI(-SS-)-CPT building blocks. The copolymers could self-assemble to form composite nanoparticles with a photothermal conversion reagent (IR780) and maintain excellent stability. In the in vitro simulated environments, the composite nanoparticles could detach Fu(-COOH)-PEG chains by a retro-D-A reaction upon near-infrared light (NIR) irradiation and reduce the size to facilitate endocytosis. Once in the intracellular environment, glutathione (GSH) could trigger a cascade reaction to release active CPT drugs to achieve chemotherapy, which could be further promoted by NIR light induced photothermal therapy. The in vivo mouse tumor model experiments demonstrated that these nanoparticles had an excellent therapeutic effect on solid tumors and inhibited their recurrence. Not only that, the synergistic chemical and optical therapy induced body immune response was also systematically evaluated; the maturation of dendritic cells, the proliferation of T cells, the increase of high mobility group box protein 1, and the decrease of immunosuppressive regulatory T cells confirmed that such synergistic therapy could effectively provide immune protection to the body. We believe such in situ generation of small-sized therapeutic units brought by a dynamically reversible D-A reaction could expand the pathway to design next generation drug delivery systems possessing superior design philosophy and excellent practice effects compared to currently available ones.
Collapse
Affiliation(s)
- Jinhao Yan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China.
| | - Wenlong Jiang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China.
| | - Guijie Kang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University Hefei, Anhui, 230032, P. R. China.
| | - Qingjie Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China.
| | - Longxiang Tao
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University Hefei, Anhui, 230022, P. R. China.
| | - Xuefu Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University Hefei, Anhui, 230032, P. R. China.
| | - Jun Yin
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China.
| |
Collapse
|
122
|
Yuan L, Jia GD, Lv XF, Xie SY, Guo SS, Lin DF, Liu LT, Luo DH, Li YF, Deng SW, Guo L, Zeng MS, Cai XY, Liu SL, Sun XS, Li XY, Li SC, Chen QY, Tang LQ, Mai HQ. Camrelizumab combined with apatinib in patients with first-line platinum-resistant or PD-1 inhibitor resistant recurrent/metastatic nasopharyngeal carcinoma: a single-arm, phase 2 trial. Nat Commun 2023; 14:4893. [PMID: 37580352 PMCID: PMC10425437 DOI: 10.1038/s41467-023-40402-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
Immunotherapy combined with antiangiogenic targeted therapy has improved the treatment of certain solid tumors, but effective regimens remain elusive for refractory recurrent/metastatic nasopharyngeal carcinoma (RM-NPC). We conducted a phase 2 trial to evaluate the safety and activity of camrelizumab plus apatinib in platinum-resistant (cohort 1, NCT04547088) and PD-1 inhibitor resistant NPC (cohort 2, NCT04548271). Here we report on the primary outcome of objective response rate (ORR) and secondary endpoints of safety, duration of response, disease control rate, progression-free survival, and overall survival. The primary endpoint of ORR was met for cohort 1 (65%, 95% CI, 49.6-80.4, n = 40) and cohort 2 (34.3%; 95% CI, 17.0-51.8, n = 32). Grade ≥ 3 treatment-related adverse events (TRAE) were reported in 47 (65.3%) of 72 patients. Results of our predefined exploratory investigation of predictive biomarkers show: B cell markers are the most differentially expressed genes in the tumors of responders versus non-responders in cohort 1 and that tertiary lymphoid structure is associated with higher ORR; Angiogenesis gene expression signatures are strongly associated with ORR in cohort 2. Camrelizumab plus apatinib combination effectiveness is associated with high expression of PD-L1, VEGF Receptor 2 and B-cell-related genes signatures. Camrelizumab plus apatinib shows promising efficacy with a measurable safety profile in RM-NPC patients.
Collapse
Affiliation(s)
- Li Yuan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Guo-Dong Jia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xiao-Fei Lv
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Si-Yi Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Shan-Shan Guo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Da-Feng Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Li-Ting Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Dong-Hua Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yi-Fu Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Shen-Wen Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Ling Guo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Mu-Sheng Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xiu-Yu Cai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of General Internal Medicine, Sun Yat-sen University Cancer Centre, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Sai-Lan Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xue-Song Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xiao-Yun Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Su-Chen Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Qiu-Yan Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Lin-Quan Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Hai-Qiang Mai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
123
|
Zhang J, Wang S, Zhang D, He X, Wang X, Han H, Qin Y. Nanoparticle-based drug delivery systems to enhance cancer immunotherapy in solid tumors. Front Immunol 2023; 14:1230893. [PMID: 37600822 PMCID: PMC10435760 DOI: 10.3389/fimmu.2023.1230893] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Immunotherapy has developed rapidly in solid tumors, especially in the areas of blocking inhibitory immune checkpoints and adoptive T-cell transfer for immune regulation. Many patients benefit from immunotherapy. However, the response rate of immunotherapy in the overall population are relatively low, which depends on the characteristics of the tumor and individualized patient differences. Moreover, the occurrence of drug resistance and adverse reactions largely limit the development of immunotherapy. Recently, the emergence of nanodrug delivery systems (NDDS) seems to improve the efficacy of immunotherapy by encapsulating drug carriers in nanoparticles to precisely reach the tumor site with high stability and biocompatibility, prolonging the drug cycle of action and greatly reducing the occurrence of toxic side effects. In this paper, we mainly review the advantages of NDDS and the mechanisms that enhance conventional immunotherapy in solid tumors, and summarize the recent advances in NDDS-based therapeutic strategies, which will provide valuable ideas for the development of novel tumor immunotherapy regimen.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daidi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin He
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xue Wang
- Academy of Medical Science, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| | - Huiqiong Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
124
|
Chen N, Xu X, Fan Y. Immune checkpoint inhibitors in the treatment of oesophageal squamous cell carcinoma: where are we and where are we going? Ther Adv Med Oncol 2023; 15:17588359231189420. [PMID: 37547447 PMCID: PMC10399266 DOI: 10.1177/17588359231189420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Oesophageal squamous cell carcinoma (ESCC) is a kind of malignant tumour with high invasiveness and a poor prognosis. Immunotherapy, especially immune checkpoint inhibitors (ICIs), is a rapidly growing therapeutic method that activates and enhances anti-tumour immunity to treat patients with malignancy. Several clinical trials have confirmed the efficacy of ICIs in the treatment of ESCC. ICIs have been approved for the treatment of patients with ESCC. However, only a subset of patients can obtain excellent benefits from ICI therapy. In recent years, there has been a growing interest in exploring predictive biomarkers of immunotherapy response. In this review, we highlighted the predictive biomarkers for the prognosis of ESCC patients treated with ICIs and pointed out the existing problems and the direction of future research in this field.
Collapse
Affiliation(s)
- Ning Chen
- Department of Oncology, The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaoling Xu
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang 310022, China
| | - Yun Fan
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
125
|
Bao L, Zhu P, Mou Y, Song Y, Qin Y. Targeting LSD1 in tumor immunotherapy: rationale, challenges and potential. Front Immunol 2023; 14:1214675. [PMID: 37483603 PMCID: PMC10360200 DOI: 10.3389/fimmu.2023.1214675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Lysine-specific demethylase 1 (LSD1) is an enzyme that removes lysine methylation marks from nucleosome histone tails and plays an important role in cancer initiation, progression, metastasis, and recurrence. Recent research shows that LSD1 regulates tumor cells and immune cells through multiple upstream and downstream pathways, enabling tumor cells to adapt to the tumor microenvironment (TME). As a potential anti-tumor treatment strategy, immunotherapy has developed rapidly in the past few years. However, most patients have a low response rate to available immune checkpoint inhibitors (ICIs), including anti-PD-(L)1 therapy and CAR-T cell therapy, due to a broad array of immunosuppressive mechanisms. Notably, inhibition of LSD1 turns "cold tumors" into "hot tumors" and subsequently enhances tumor cell sensitivity to ICIs. This review focuses on recent advances in LSD1 and tumor immunity and discusses a potential therapeutic strategy for combining LSD1 inhibition with immunotherapy.
Collapse
Affiliation(s)
- Lei Bao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Ping Zhu
- Department of Nephrology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Yuan Mou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Yinhong Song
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Ye Qin
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| |
Collapse
|
126
|
Hosea R, Hillary S, Wu S, Kasim V. Targeting Transcription Factor YY1 for Cancer Treatment: Current Strategies and Future Directions. Cancers (Basel) 2023; 15:3506. [PMID: 37444616 DOI: 10.3390/cancers15133506] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer represents a significant and persistent global health burden, with its impact underscored by its prevalence and devastating consequences. Whereas numerous oncogenes could contribute to cancer development, a group of transcription factors (TFs) are overactive in the majority of tumors. Targeting these TFs may also combat the downstream oncogenes activated by the TFs, making them attractive potential targets for effective antitumor therapeutic strategy. One such TF is yin yang 1 (YY1), which plays crucial roles in the development and progression of various tumors. In preclinical studies, YY1 inhibition has shown efficacy in inhibiting tumor growth, promoting apoptosis, and sensitizing tumor cells to chemotherapy. Recent studies have also revealed the potential of combining YY1 inhibition with immunotherapy for enhanced antitumor effects. However, clinical translation of YY1-targeted therapy still faces challenges in drug specificity and delivery. This review provides an overview of YY1 biology, its role in tumor development and progression, as well as the strategies explored for YY1-targeted therapy, with a focus on their clinical implications, including those using small molecule inhibitors, RNA interference, and gene editing techniques. Finally, we discuss the challenges and current limitations of targeting YY1 and the need for further research in this area.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| |
Collapse
|
127
|
Lu W, Zhang H, Guo Q, Gou Z, Yao J. Selected cutaneous adverse events in patients treated with ICI monotherapy and combination therapy: a retrospective pharmacovigilance study and meta-analysis. Front Pharmacol 2023; 14:1076473. [PMID: 37332342 PMCID: PMC10272362 DOI: 10.3389/fphar.2023.1076473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction: Cutaneous adverse events are commonly reported immune-related adverse events (irAEs), some of which are serious or even life-threatening, and it is essential to study these specific cutaneous AEs to understand their characteristics and risk. Methods: We performed a meta-analysis of published clinical trials for immune checkpoint inhibitors (ICIs) to evaluate the incidence of cutaneous adverse events, using data from PubMed, Embase, and the Cochrane Library databases. Results: A total of 232 trials with 45,472 patients were involved. Results showed that anti-PD-1 and targeted therapy combinations were associated with higher risk for most of the selected cutaneous adverse events. In addition, a retrospective pharmacovigilance study was conducted using the Food and Drug Administration (FDA) Adverse Events System database. Reporting odds ratio (ROR) and Bayesian information components (IC) were used to perform the disproportionality analysis. Cases were extracted from January 2011 to September 2020. We identified 381 (20.24%) maculopapular rash, 213 (11.32%) vitiligo, 215 (11.42%) Stevens-Johnson syndrome (SJS), and 165 (8.77%) toxic epidermal necrolysis (TEN) cases. For vitiligo, anti-PD-1/L1 combined with anti-CTLA-4 therapy showed the strongest signal (ROR: 55.89; 95% CI: 42.34-73.78; IC025: 4.73). Palmar-plantar erythrodysesthesia (PPE) was reported with the most significant association with combined anti-PD-1/L1 and VEGF (R)-TKIs (ROR: 18.67; 95% CI: 14.77-23.60; IC025: 3.67). For SJS/TEN, antiPD-1 inhibitors showed the strongest signal (ROR: 3.07; 95% CI: 2.68-3.52; IC025: 1.39). The median onset time of vitiligo and SJS/TEN was 83 and 24 days, respectively. Conclusion: Overall, in selected cutaneous AEs, each of them showed specific characteristics. It is necessary to realize their differences and take appropriate interventions in patients with different regimens.
Collapse
Affiliation(s)
- Wenchao Lu
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Huiyun Zhang
- Department of Oncology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qixiang Guo
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhuoyue Gou
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
| | - Jiannan Yao
- Department of Oncology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
128
|
Liu J, Shi Y, Zhang Y. Multi-omics identification of an immunogenic cell death-related signature for clear cell renal cell carcinoma in the context of 3P medicine and based on a 101-combination machine learning computational framework. EPMA J 2023; 14:275-305. [PMID: 37275552 PMCID: PMC10236109 DOI: 10.1007/s13167-023-00327-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/14/2023] [Indexed: 06/07/2023]
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a prevalent urological malignancy associated with a high mortality rate. The lack of a reliable prognostic biomarker undermines the efficacy of its predictive, preventive, and personalized medicine (PPPM/3PM) approach. Immunogenic cell death (ICD) is a specific type of programmed cell death that is tightly associated with anti-cancer immunity. However, the role of ICD in ccRCC remains unclear. Methods Based on AddModuleScore, single-sample gene set enrichment analysis (ssGSEA), and weighted gene co-expression network (WGCNA) analyses, ICD-related genes were screened at both the single-cell and bulk transcriptome levels. We developed a novel machine learning framework that incorporated 10 machine learning algorithms and their 101 combinations to construct a consensus immunogenic cell death-related signature (ICDRS). ICDRS was evaluated in the training, internal validation, and external validation sets. An ICDRS-integrated nomogram was constructed to provide a quantitative tool for predicting prognosis in clinical practice. Multi-omics analysis was performed, including genome, single-cell transcriptome, and bulk transcriptome, to gain a more comprehensive understanding of the prognosis signature. We evaluated the response of risk subgroups to immunotherapy and screened drugs that target specific risk subgroups for personalized medicine. Finally, the expression of ICD-related genes was validated by qRT-PCR. Results We identified 131 ICD-related genes at both the single-cell and bulk transcriptome levels, of which 39 were associated with overall survival (OS). A consensus ICDRS was constructed based on a 101-combination machine learning computational framework, demonstrating outstanding performance in predicting prognosis and clinical translation. ICDRS can also be used to predict the occurrence, development, and metastasis of ccRCC. Multivariate analysis verified it as an independent prognostic factor for OS, progression-free survival (PFS), and disease-specific survival (DSS) of ccRCC. The ICDRS-integrated nomogram provided a quantitative tool in clinical practice. Moreover, we observed distinct biological functions, mutation landscapes, and immune cell infiltration in the tumor microenvironment between the high- and low-risk groups. Notably, the immunophenoscore (IPS) score showed a significant difference between risk subgroups, suggesting a better response to immunotherapy in the high-risk group. Potential drugs targeting specific risk subgroups were also identified. Conclusion Our study constructed an immunogenic cell death-related signature that can serve as a promising tool for prognosis prediction, targeted prevention, and personalized medicine in ccRCC. Incorporating ICD into the PPPM framework will provide a unique opportunity for clinical intelligence and new management approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00327-3.
Collapse
Affiliation(s)
- Jinsong Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Yanjia Shi
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Yuxin Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| |
Collapse
|
129
|
Lauriola A, Davalli P, Marverti G, Santi S, Caporali A, D'Arca D. Targeting the Interplay of Independent Cellular Pathways and Immunity: A Challenge in Cancer Immunotherapy. Cancers (Basel) 2023; 15:cancers15113009. [PMID: 37296972 DOI: 10.3390/cancers15113009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Immunotherapy is a cancer treatment that exploits the capacity of the body's immune system to prevent, control, and remove cancer. Immunotherapy has revolutionized cancer treatment and significantly improved patient outcomes for several tumor types. However, most patients have not benefited from such therapies yet. Within the field of cancer immunotherapy, an expansion of the combination strategy that targets independent cellular pathways that can work synergistically is predicted. Here, we review some consequences of tumor cell death and increased immune system engagement in the modulation of oxidative stress and ubiquitin ligase pathways. We also indicate combinations of cancer immunotherapies and immunomodulatory targets. Additionally, we discuss imaging techniques, which are crucial for monitoring tumor responses during treatment and the immunotherapy side effects. Finally, the major outstanding questions are also presented, and directions for future research are described.
Collapse
Affiliation(s)
- Angela Lauriola
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Pierpaola Davalli
- Department of Biomedical, Metabolic and Neural Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Gaetano Marverti
- Department of Biomedical, Metabolic and Neural Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Spartaco Santi
- Consiglio Nazionale delle Ricerche (CNR) Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Caporali
- BHF Centre for Cardiovascular Science, University of Edinburgh, Scotland EH4 2XU, UK
| | - Domenico D'Arca
- Department of Biomedical, Metabolic and Neural Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
130
|
Li B, Jin J, Guo D, Tao Z, Hu X. Immune Checkpoint Inhibitors Combined with Targeted Therapy: The Recent Advances and Future Potentials. Cancers (Basel) 2023; 15:2858. [PMID: 37345194 PMCID: PMC10216018 DOI: 10.3390/cancers15102858] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/23/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the therapeutic landscape of cancer and have been widely approved for use in the treatment of diverse solid tumors. Targeted therapy has been an essential part of cancer treatment for decades, and in most cases, a special drug target is required. Numerous studies have confirmed the synergistic effect of combining ICIs with targeted therapy. For example, triple therapy of PD-L1 inhibitor atezolizumab plus BRAF inhibitor vemurafenib and MEK inhibitor cobimetinib has been approved as the first-line treatment in advanced melanoma patients with BRAFV600 mutations. However, not all combinations of ICIs and targeted therapy work. Combining ICIs with EGFR inhibitors in non-small-cell lung cancer (NSCLC) with EGFR mutations only triggered toxicities and did not improve efficacy. Therefore, the efficacies of combinations of ICIs and different targeted agents are distinct. This review firstly and comprehensively covered the current status of studies on the combination of ICIs mainly referring to PD-1 and PD-L1 inhibitors and targeted drugs, including angiogenesis inhibitors, EGFR/HER2 inhibitors, PARP inhibitors and MAPK/ERK signaling pathway inhibitors, in the treatment of solid tumors. We discussed the underlying mechanisms, clinical efficacies, side effects, and potential predictive biomarkers to give an integrated view of the combination strategy and provide perspectives for future directions in solid tumors.
Collapse
Affiliation(s)
- Bin Li
- Department of Breast and Urologic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (B.L.); (J.J.); (D.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Juan Jin
- Department of Breast and Urologic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (B.L.); (J.J.); (D.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Duancheng Guo
- Department of Breast and Urologic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (B.L.); (J.J.); (D.G.)
| | - Zhonghua Tao
- Department of Breast and Urologic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (B.L.); (J.J.); (D.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xichun Hu
- Department of Breast and Urologic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (B.L.); (J.J.); (D.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
131
|
Ma K, Guo Q, Li X. Efficacy and safety of combined immunotherapy and antiangiogenic therapy for advanced non-small cell lung cancer: a real-world observation study. BMC Pulm Med 2023; 23:175. [PMID: 37208639 DOI: 10.1186/s12890-023-02470-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
PURPOSE This study was performed to investigate the efficacy and safety of combined immunotherapy and antiangiogenic therapy for advanced non-small cell lung cancer (NSCLC) in the real world. METHODS Data on clinicopathological features, efficacy and adverse events (AEs) were collected retrospectively in advanced NSCLC patients who received immunotherapy combined with antiangiogenic therapy. RESULTS A total of 85 advanced NSCLC patients were enrolled. The patients had a median progression-free survival (PFS) of 7.9 months and a median overall survival (OS) of 18.60 months. The objective response rate and disease control rate were 32.9% and 83.5%, respectively. Subgroup analysis revealed that NSCLC patients with stage IV (p = 0.042), brain metastasis (p = 0.016) and bone metastasis (p = 0.016) had shorter PFS. NSCLC patients with brain metastasis (p = 0.025), liver metastasis (p = 0.012), bone metastasis (p = 0.014) and EGFR mutations (p = 0.033) had shorter OS. Multivariate analysis revealed that brain metastasis (HR = 1.798, 95% CI: 1.038, 3.112, p = 0.036) and bone metastasis (HR = 1.824, 95% CI: 1.077, 3.090, p = 0.025) were independent predictive factors of PFS, and bone metastasis (HR = 2.00, 95% CI: 1.124, 3.558, p = 0.018) was an independent predictive factor of OS. In addition, patients receiving immunotherapy combined with antiangiogenic therapy in second-line therapy had longer OS than those receiving immunotherapy in third- or later-line therapy (p = 0.039). Patients with EGFR mutations who received combination therapy had worse OS than those with KRAS mutations (p = 0.026). Furthermore, PD-L1 expression was associated with treatment responses in advanced NSCLC (χ2 = 22.123, p = 0.000). AEs of different grades occurred in 92.9% (79/85) of NSCLC patients, most of which were mild grade 1/2 AEs. No grade 5 fatal AEs occurred. CONCLUSION Immunotherapy combined with antiangiogenic therapy was an option for advanced NSCLC patients with good safety and tolerability. Brain metastases and bone metastases were potentially independent negative predictors of PFS. Bone metastases were a potential independent negative predictor of OS. PD-L1 expression was a potential predictor of response for immunotherapy combined with antiangiogenic therapy.
Collapse
Affiliation(s)
- Ke Ma
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, No.50 Building East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Qianqian Guo
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, No.50 Building East Road, Zhengzhou, Henan, 450052, People's Republic of China
| | - Xingya Li
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, No.50 Building East Road, Zhengzhou, Henan, 450052, People's Republic of China.
| |
Collapse
|
132
|
Zheng N, Wang T, Luo Q, Liu Y, Yang J, Zhou Y, Xie G, Ma Y, Yuan X, Shen L. M2 macrophage-derived exosomes suppress tumor intrinsic immunogenicity to confer immunotherapy resistance. Oncoimmunology 2023; 12:2210959. [PMID: 37197441 PMCID: PMC10184604 DOI: 10.1080/2162402x.2023.2210959] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
T-cell-based immune checkpoint blockade therapy (ICB) can be undermined by local immunosuppressive M2-like tumor-associated macrophages (TAMs). However, modulating macrophages has proved difficult as the molecular and functional features of M2-TAMs on tumor growth are still uncertain. Here we reported that immunosuppressive M2 macrophages render cancer cells resistant to CD8+ T-cell-dependent tumor-killing refractory ICB efficacy by secreting exosomes. Proteomics and functional studies revealed that M2 macrophage-derived exosome (M2-exo) transmitted apolipoprotein E (ApoE) to cancer cells conferring ICB resistance by downregulated MHC-I expression curbing tumor intrinsic immunogenicity. Mechanistically, M2 exosomal ApoE diminished the tumor-intrinsic ATPase activity of binding immunoglobulin protein (BiP) to decrease tumor MHC-I expression. Sensitizing ICB efficacy can be achieved by the administration of ApoE ligand, EZ-482, enhancing ATPase activity of BiP to boost tumor-intrinsic immunogenicity. Therefore, ApoE may serve as a predictor and a potential therapeutic target for ICB resistance in M2-TAMs-enriched cancer patients. Collectively, our findings signify that the exosome-mediated transfer of functional ApoE from M2 macrophages to the tumor cells confers ICB resistance. Our findings also provide a preclinical rationale for treating M2-enriched tumors with ApoE ligand, EZ-482, to restore sensitivity to ICB immunotherapy.
Collapse
Affiliation(s)
- Naisheng Zheng
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Tingting Wang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Department of Clinical Laboratory, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Qin Luo
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Department of Clinical Laboratory, Affiliated Dongguan People’s Hospital, Southern Medical University, Dongguan, Guangdong, P.R. China
| | - Yi Liu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Junyao Yang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yunlan Zhou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Guohua Xie
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yanhui Ma
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiangliang Yuan
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
133
|
Hu H, Wang K, Jia R, Zeng ZX, Zhu M, Deng YL, Xiong ZJ, Tang JN, Xie H, Wang Y, Zhang P, Zhou J. Current Status in Rechallenge of Immunotherapy. Int J Biol Sci 2023; 19:2428-2442. [PMID: 37215995 PMCID: PMC10197886 DOI: 10.7150/ijbs.82776] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The treatment of malignant tumors has entered the era of immunotherapy, and immune checkpoint inhibitors (ICIs) have brought significant benefits to patients. However, some patients are required to discontinue treatment with ICIs owing to factors such as disease progression and intolerable side effects. Faced with limited subsequent treatment options and complex medical needs, we searched PubMed, Embase, Cochrane library, and the NIH clinical trials database and found that ICI rechallenge could be a relevant clinical strategy. The factors that could affect the rechallenge efficacy include the patients' characteristics, therapeutic strategy selection, and the timing of treatment. Multiple factors are used to identify target population, of which clinical features and PD-L1 expression are more potential. Both single ICI rechallenge and combination therapy may have survival benefits. Patients who have tolerated initial immunotherapy well could undergo ICI rechallenge, while patients who have experienced grade 3 or higher immune-related adverse events should be carefully assessed prior to rechallenge. Interventions and the interval between two courses of ICI will clearly have an impact on the efficacy of subsequent treatment. Preliminary data evaluation supports further investigation on ICI rechallenge to identify the factors that could contribute to its efficacy.
Collapse
Affiliation(s)
- Han Hu
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ke Wang
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Rong Jia
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zi-Xun Zeng
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Min Zhu
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan-Le Deng
- Division of Nutritional Medicine, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhu-Juan Xiong
- Division of Nutritional Medicine, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jian-Ning Tang
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hua Xie
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Zhang
- Department of Radiotherapy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
134
|
Cheng Y, Li L, Wei X, Xu F, Huang X, Qi F, Zhang Y, Li X. HNRNPC suppresses tumor immune microenvironment by activating Treg cells promoting the progression of prostate cancer. Cancer Sci 2023; 114:1830-1845. [PMID: 36718950 PMCID: PMC10154801 DOI: 10.1111/cas.15745] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Immune microenvironment could affect the biological progress in prostate cancer (PCa) through N6 methyl adenosine (m6A) methylation. The purpose of this study was to investigate the crosstalk between m6A methylation and immune microenvironment and explore potential biomarkers to improve the immunotherapeutic response. Firstly, according to 11 differentially expressed m6A genes between normal and tumor samples, PCa patients were divided into immune microenvironment subtype 1 (IMS1) and IMS2 based on m6A gene profiles extracted from The Cancer Genome Atlas (TCGA) database. IMS2 showed an immune "cold" phenotype with worse prognoses, and HNRNPC was identified as the biomarker of IMS2 by the protein-protein interaction network. Furthermore, through bioinformatics analyses and in vitro experiments, we found that HNRNPC-high patients showed a suppressive immune-infiltrating tumor microenvironment with a higher infiltration of regulatory T (Treg) cells. Finally, we cocultured transfected PCa cells with peripheral blood mononuclear cells (PBMC) and verified that HNRNPC inhibits tumor immunity by elevating the activation of Treg cells and suppression of effector CD8 T cell. In conclusion, we identified a "cold" immune phenotype in PCa, and HNRNPC regulating the activation of Treg cells. Activation of the immune microenvironment through targeting HNRNPC may be a potential therapeutic option for advanced PCa.
Collapse
Affiliation(s)
- Yifei Cheng
- Department of Urologic SurgeryJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lu Li
- State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Diagnostics Co., Ltd.NanjingChina
| | - Xiyi Wei
- Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- The State Key Lab of ReproductiveDepartment of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Fan Xu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiaochen Huang
- Department of PathologyJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| | - Feng Qi
- Department of Urologic SurgeryJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| | - Yanyan Zhang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiao Li
- Department of Urologic SurgeryJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
- Department of Scientific ResearchJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
135
|
Chen L, Zhang L, He H, Shao F, Gao Y, He J. Systemic Analyses of Cuproptosis-Related lncRNAs in Pancreatic Adenocarcinoma, with a Focus on the Molecular Mechanism of LINC00853. Int J Mol Sci 2023; 24:ijms24097923. [PMID: 37175629 PMCID: PMC10177970 DOI: 10.3390/ijms24097923] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer (PC) is a deadly malignant digestive tumor with poor prognoses and a lack of effective treatment options. Cuproptosis, a recently identified copper-dependent programmed cell death type, has been implicated in multiple cancers. Long non-coding RNAs (lncRNAs) are also linked to the progression of PC. However, the role and prognostic values of cuproptosis-related lncRNAs in pancreatic adenocarcinoma (PAAD) remain unclear. In this study, we systemically analyzed the differential expressions and prognostic values of 672 cuproptosis-related lncRNAs in PAAD. Based on this, a prognostic signature including four lncRNAs (LINC00853, AC099850.3, AC010719.1, and AC006504.7) was constructed and was able to divide PAAD patients into high- and low-risk groups with significantly different prognoses. Next, we focused on lncRNA LINC00853. The differential expressions of LINC00853 between normal tissue and PAAD samples were validated by qRT-PCR. LINC00853 was knocked down by siRNA in PC cell lines BxPC-3 and PANC-1 and the oncogenic role of LINC00853 was validated by CCK8, colony formation, and EdU assays. Subsequently, LINC00853 knockdown cells were subjected to tumor xenograft tests and exhibited decreased tumor growth in nude mice. Mechanistically, knockdown of LINC00853 significantly reduced cellular glycolysis and enhanced cellular mitochondrial respiration levels in PC cells. Moreover, knockdown of LINC00853 decreased the protein level of a glycolytic kinase PFKFB3. Finally, glycolysis tests and functional tests using LINC00853 and HA-PFKFB3 indicated that the effects of LINC00853 on glycolysis and cell proliferation were mediated by PFKFB3. In conclusion, our systemic analyses have highlighted the important roles of cuproptosis-related lncRNAs in PAAD while the prognostic signature based on them showed excellent performance in PAAD patients and is expected to provide clinical guidance for individualized treatment. In addition, our findings provide a novel mechanism by which the LINC00853-PFKFB3 axis critically regulates aerobic glycolysis and cell proliferation in PC cells.
Collapse
Affiliation(s)
- Leifeng Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Haihua He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yibo Gao
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
136
|
Nahar S, Huang Y, Nagy BA, Zebala JA, Maeda DY, Rudloff U, Oppenheim JJ, Yang D. Regression and Eradication of Triple-Negative Breast Carcinoma in 4T1 Mouse Model by Combination Immunotherapies. Cancers (Basel) 2023; 15:cancers15082366. [PMID: 37190294 DOI: 10.3390/cancers15082366] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Triple-negative breast carcinoma (TNBC) is one of the most aggressive types of solid-organ cancers. While immune checkpoint blockade (ICB) therapy has significantly improved outcomes in certain types of solid-organ cancers, patients with immunologically cold TNBC are afforded only a modest gain in survival by the addition of ICB to systemic chemotherapy. Thus, it is urgently needed to develop novel effective therapeutic approaches for TNBC. Utilizing the 4T1 murine model of TNBC, we developed a novel combination immunotherapeutic regimen consisting of intratumoral delivery of high-mobility group nucleosome binding protein 1 (HMGN1), TLR2/6 ligand fibroblast-stimulating lipopeptide (FSL-1), TLR7/8 agonist (R848/resiquimod), and CTLA-4 blockade. We also investigated the effect of adding SX682, a small-molecule inhibitor of CXCR1/2 known to reduce MDSC trafficking to tumor microenvironment, to our therapeutic approach. 4T1-bearing mice responded with significant tumor regression and tumor elimination to our therapeutic combination regimen. Mice with complete tumor regressions did not recur and became long-term survivors. Treatment with HMGN1, FSL-1, R848, and anti-CTLA4 antibody increased the number of infiltrating CD4+ and CD8+ effector/memory T cells in both tumors and draining lymph nodes and triggered the generation of 4T1-specific cytotoxic T lymphocytes (CTLs) in the draining lymph nodes. Thus, we developed a potentially curative immunotherapeutic regimen consisting of HMGN1, FSL-1, R848, plus a checkpoint inhibitor for TNBC, which does not rely on the administration of chemotherapy, radiation, or exogenous tumor-associated antigen(s).
Collapse
Affiliation(s)
- Saifun Nahar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yue Huang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Bethany A Nagy
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joost J Oppenheim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
137
|
Zhao J, Fong A, Seow SV, Toh HC. Organoids as an Enabler of Precision Immuno-Oncology. Cells 2023; 12:1165. [PMID: 37190074 PMCID: PMC10136954 DOI: 10.3390/cells12081165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Since the dawn of the past century, landmark discoveries in cell-mediated immunity have led to a greater understanding of the innate and adaptive immune systems and revolutionised the treatment of countless diseases, including cancer. Today, precision immuno-oncology (I/O) involves not only targeting immune checkpoints that inhibit T-cell immunity but also harnessing immune cell therapies. The limited efficacy in some cancers results mainly from a complex tumour microenvironment (TME) that, in addition to adaptive immune cells, comprises innate myeloid and lymphoid cells, cancer-associated fibroblasts, and the tumour vasculature that contribute towards immune evasion. As the complexity of TME has called for more sophisticated human-based tumour models, organoids have allowed the dynamic study of spatiotemporal interactions between tumour cells and individual TME cell types. Here, we discuss how organoids can study the TME across cancers and how these features may improve precision I/O. We outline the approaches to preserve or recapitulate the TME in tumour organoids and discuss their potential, advantages, and limitations. We will discuss future directions of organoid research in understanding cancer immunology in-depth and identifying novel I/O targets and treatment strategies.
Collapse
Affiliation(s)
- Junzhe Zhao
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore
- Doctor of Medicine Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antoinette Fong
- Doctor of Medicine Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - See Voon Seow
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore
| |
Collapse
|
138
|
Dussart C, Decaux-Tramoni B, Quesada S, Thomas QD, Benzerouale O, Nicolas E, Fiteni F. [Combination strategies for checkpoint inhibition: Current practices and perspectives]. Bull Cancer 2023:S0007-4551(23)00166-2. [PMID: 37055309 DOI: 10.1016/j.bulcan.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/15/2023]
Abstract
T-cell checkpoint blockade therapies have revolutionized treatment protocols and prognosis in patients with cancer. Pointed out by the success of PD-1 (programmed cell death-1) plus CTLA-4 (cytotoxic-T-lymphocyte associated antigen 4) blockade in patients with melanoma, the perspective of new synergistic immunotherapy combinations seems to be an important opportunity to improve outcomes for patients. In this article, we first focus on immunotherapy combinations that have shown their efficiency and that are currently approved in solid tumors. Then, we present a summary of emerging targets with reported pre-clinical efficacy and currently evaluated through ongoing clinical trials and other immunomodulatory molecules in the tumor microenvironment.
Collapse
Affiliation(s)
- Chloé Dussart
- CHU de Nîmes, service d'oncologie médicale, 4, rue du Professeur-Robert-Debré, 30900 Nîmes, France
| | - Baptiste Decaux-Tramoni
- CHU de Nîmes, service d'oncologie médicale, 4, rue du Professeur-Robert-Debré, 30900 Nîmes, France
| | - Stanislas Quesada
- Institut régional du cancer de Montpellier, département d'oncologie médicale, 34298 Montpellier cedex 5, France
| | - Quentin Dominique Thomas
- Institut régional du cancer de Montpellier, département d'oncologie médicale, 34298 Montpellier cedex 5, France
| | - Ouail Benzerouale
- CHU de Nîmes, service d'oncologie médicale, 4, rue du Professeur-Robert-Debré, 30900 Nîmes, France
| | - Emanuel Nicolas
- CHU de Nîmes, service d'oncologie médicale, 4, rue du Professeur-Robert-Debré, 30900 Nîmes, France; Université de Montpellier, Institut Desbrest d'épidémiologie et de santé publique, Inserm UMR 1302, 34090 Montpellier, France
| | - Frédéric Fiteni
- CHU de Nîmes, service d'oncologie médicale, 4, rue du Professeur-Robert-Debré, 30900 Nîmes, France; Université de Montpellier, Institut Desbrest d'épidémiologie et de santé publique, Inserm UMR 1302, 34090 Montpellier, France.
| |
Collapse
|
139
|
Walsh RJ, Sundar R, Lim JSJ. Immune checkpoint inhibitor combinations-current and emerging strategies. Br J Cancer 2023; 128:1415-1417. [PMID: 36747017 PMCID: PMC10070427 DOI: 10.1038/s41416-023-02181-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Affiliation(s)
- Robert J Walsh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
| | - Joline S J Lim
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Cancer Science Institute, Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
140
|
Sun L, Yao X, Liu J, Zhang Y, Hu J. Curcumin enhances the efficacy of docetaxel by promoting anti-tumor immune response in head and neck squamous cell carcinoma. Cancer Invest 2023:1-10. [PMID: 36946609 DOI: 10.1080/07357907.2023.2194420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
This study evaluated the feasibility of curcumin and docetaxel (DTX) combination therapy for head and neck squamous cell carcinoma (HNSCC). Animal assay demonstrated DTX has certain limitations in improving immunosuppressive microenvironment. Treatment with curcumin overcame this inhibition and reduced tumor progression. Curcumin synergized DTX showed significantly greater reduction in tumor burden than either treatment alone via down-regulation of MDSCs, M2 macrophages and up-regulation of CD8+ T cells, NK cells, M1 macrophages. Meanwhile, the secretion of CXCL1 was decreased in tumor. Conversely, the secretion of interferon-γ and tumor necrosis factor-α were increased. Our study provided a promising therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Lili Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hu Bei, China
| | - Xingmei Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hu Bei, China
| | - Jingmei Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hu Bei, China
| | - Yu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hu Bei, China
| | - Jian Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hu Bei, China
| |
Collapse
|
141
|
Li C, Deng T, Cao J, Zhou Y, Luo X, Feng Y, Huang H, Liu J. Identifying ITGB2 as a Potential Prognostic Biomarker in Ovarian Cancer. Diagnostics (Basel) 2023; 13:diagnostics13061169. [PMID: 36980477 PMCID: PMC10047357 DOI: 10.3390/diagnostics13061169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Epithelial ovarian cancer is by far the most lethal gynecological malignancy. The exploration of promising immunomarkers to predict prognosis in ovarian cancer patients remains challenging. In our research, we carried out an integrated bioinformatic analysis of genome expressions and their immune characteristics in the ovarian cancer microenvironment with validation in different experiments. We filtrated 332 differentially expressed genes with 10 upregulated hub genes from the Gene Expression Omnibus database. These genes were closely related to ovarian tumorigenesis. Subsequently, the survival and immune infiltration analysis demonstrated that the upregulation of five candidate genes, ITGB2, VEGFA, CLDN4, OCLN, and SPP1, were correlated with an unfavorable clinical outcome and increased immune cell infiltration in ovarian cancer. Of these genes, ITGB2 tended to be the gene most correlated with various immune cell infiltrations and had a strong correlation with significant M2 macrophages infiltration (r = 0.707, p = 4.71 × 10-39), while it had a moderate correlation with CD4+/CD8+ T cells and B cells. This characteristic explains why the high expression of ITGB2 was accompanied by immune activation but did not reverse carcinogenesis. Additionally, we confirmed that ITGB2 was over-expressed in ovarian cancer tissues and was mainly located in cytoplasm, detected by Western blotting and the immunohistochemical method. In summary, ITGB2 may serve as a prognostic immunomarker for ovarian cancer patients.
Collapse
Affiliation(s)
- Chanyuan Li
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Ting Deng
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Junya Cao
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Yun Zhou
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaolin Luo
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Yanling Feng
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - He Huang
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Jihong Liu
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
142
|
Liu JS, Liu JY, Xiao Q, Li XP, Chen J, Liu ZQ. Association of variations in the CAT and prognosis in lung cancer patients with platinum-based chemotherapy. Front Pharmacol 2023; 14:1119837. [PMID: 36969849 PMCID: PMC10033691 DOI: 10.3389/fphar.2023.1119837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
PURPOSE: To explore the relationship between ATM, ATR and CAT polymorphisms and prognosis of lung cancer patients received platinum-based chemotherapy.METHODS: 404 patients with lung cancer who received platinum-chemotherapy were enrolled and DNA typing was performed. Cox regression analysis and stratification analyses was performed to assess relationships between OS and PFS with SNPs genotypes. The prognosis of lung adenocarcinomaand squamous cell carcinomapatients was analyzed with The Cancer Genome Atlas (TCGA) database according to the grouping of CAT expression.RESULTS:CAT rs769217 was significantly related to PFS of patients with lung cancer who received platinum-chemotherapy. In the Additive model, rs769217 was associated with PFS (HR = 0.747, 95% CI = 0.581–0.960, p = 0.023). In the Dominant model, CT and TT genotypes led to lung cancer progression 0.738 times more than CC genotype. In stratification analyses of association between CAT rs769217 polymorphisms and PFS, the HR of patients at stage IV in additive model was 0.73, and HR was 0.745 (p = 0.034) in dominant model. For OS analyses, HR was 0.672 in the older lung cancer patients (>55 years old) in additive model. Meanwhile, in the Dominant model, it was found that the older patients with CT and TT genotypes had better prognosis, and the risk of death after receiving platinum-based chemotherapy was 0.692 times that of patients with CC genotype (p = 0.037). TCGA data shows that LUAD patients with high CAT expression have longer OS (p = 0.020).CONCLUSION:CAT rs769217 is significantly related to PSF of platinum-based chemotherapy in lung cancer patients and may be a biomarker for predicting the prognosis of lung cancer patients with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Jia-Si Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Human Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
| | - Jun-Yan Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Human Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
| | - Xiang-Ping Li
- 5Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Chen
- Human Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
- 5Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhao-Qian Liu, ; Juan Chen,
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Human Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
- *Correspondence: Zhao-Qian Liu, ; Juan Chen,
| |
Collapse
|
143
|
Xie XQ, Yang Y, Wang Q, Liu HF, Fang XY, Li CL, Jiang YZ, Wang S, Zhao HY, Miao JY, Ding SS, Liu XD, Yao XH, Yang WT, Jiang J, Shao ZM, Jin G, Bian XW. Targeting ATAD3A-PINK1-mitophagy axis overcomes chemoimmunotherapy resistance by redirecting PD-L1 to mitochondria. Cell Res 2023; 33:215-228. [PMID: 36627348 PMCID: PMC9977947 DOI: 10.1038/s41422-022-00766-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023] Open
Abstract
Only a small proportion of patients with triple-negative breast cancer benefit from immune checkpoint inhibitor (ICI) targeting PD-1/PD-L1 signaling in combination with chemotherapy. Here, we discovered that therapeutic response to ICI plus paclitaxel was associated with subcellular redistribution of PD-L1. In our immunotherapy cohort of ICI in combination with nab-paclitaxel, tumor samples from responders showed significant distribution of PD-L1 at mitochondria, while non-responders showed increased accumulation of PD-L1 on tumor cell membrane instead of mitochondria. Our results also revealed that the distribution pattern of PD-L1 was regulated by an ATAD3A-PINK1 axis. Mechanistically, PINK1 recruited PD-L1 to mitochondria for degradation via a mitophagy pathway. Importantly, paclitaxel increased ATAD3A expression to disrupt proteostasis of PD-L1 by restraining PINK1-dependent mitophagy. Clinically, patients with tumors exhibiting high expression of ATAD3A detected before the treatment with ICI in combination with paclitaxel had markedly shorter progression-free survival compared with those with ATAD3A-low tumors. Preclinical results further demonstrated that targeting ATAD3A reset a favorable antitumor immune microenvironment and increased the efficacy of combination therapy of ICI plus paclitaxel. In summary, our results indicate that ATAD3A serves not only as a resistant factor for the combination therapy of ICI plus paclitaxel through preventing PD-L1 mitochondrial distribution, but also as a promising target for increasing the therapeutic responses to chemoimmunotherapy.
Collapse
Affiliation(s)
- Xiao-Qing Xie
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yi Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qiang Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Hao-Fei Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xuan-Yu Fang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Cheng-Long Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
| | - Shuai Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Hong-Yu Zhao
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Ya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shuai-Shuai Ding
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xin-Dong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Wen-Tao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jun Jiang
- Department of Breast Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Key Laboratory of Breast Cancer in Shanghai, Shanghai, China
| | - Guoxiang Jin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| |
Collapse
|
144
|
Wei T, Wang K, Liu S, Fang Y, Hong Z, Liu Y, Zhang H, Yang C, Ouyang G, Wu T. Periostin deficiency reduces PD-1 + tumor-associated macrophage infiltration and enhances anti-PD-1 efficacy in colorectal cancer. Cell Rep 2023; 42:112090. [PMID: 36773295 DOI: 10.1016/j.celrep.2023.112090] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Periostin, a multifunctional extracellular protein, plays an important role in inflammatory disorders and tumorigenesis. Our previous work has demonstrated that periostin deficiency inhibits colorectal cancer (CRC) progression. Here, we aim to clarify the role of periostin in the immune microenvironment of CRC. We find that periostin deficiency significantly decreases the infiltration of programmed death receptor 1 (PD-1)+ tumor-associated macrophages (TAMs) in CRC tissues. Periostin promotes the expression of PD-1 on TAMs by integrin-ILK-nuclear factor κB (NF-κB) signaling, and PD-1+ TAMs produce interleukin-6 (IL-6) and interferon γ (IFN-γ) to induce the expression of PD-L1 on colorectal tumor cells. Moreover, combined inhibition of periostin and PD-1 significantly suppresses CRC progression compared with the inhibition of periostin or PD-1 alone. In summary, our results suggest that periostin deficiency reduces the infiltration of PD-1+ TAMs and enhances the efficacy of anti-PD-1 treatment in CRC.
Collapse
Affiliation(s)
- Tian Wei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Kangxin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shuting Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yunxuan Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zixi Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yingfu Liu
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Huimin Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen 361005, China
| | - Chaoyong Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Gaoliang Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, China.
| | - Tiantian Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, China.
| |
Collapse
|
145
|
Sun C, Yin M, Cheng Y, Kuang Z, Liu X, Wang G, Wang X, Yuan K, Min W, Dong J, Hou Y, Hu L, Zhang G, Pei W, Wang L, Sun Y, Yu X, Xiao Y, Deng H, Yang P. Novel Small-Molecule PD-L1 Inhibitor Induces PD-L1 Internalization and Optimizes the Immune Microenvironment. J Med Chem 2023; 66:2064-2083. [PMID: 36579489 DOI: 10.1021/acs.jmedchem.2c01801] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Blocking the PD-1/PD-L1 interaction has become an important strategy for tumor therapy, which has shown outstanding therapeutic effects in clinical settings. However, unsatisfactory response rates and immune-related adverse effects limit the use of anti-PD1/PD-L1 antibodies. Here, we report the discovery and identification of S4-1, an innovative small-molecule inhibitor of PD-L1. In vitro, S4-1 effectively altered the PD-L1/PD-1 interaction, induced PD-L1 dimerization and internalization, improved its localization to endoplasmic reticulum, and thus enhanced the cytotoxicity of peripheral blood mononuclear cells toward tumor cells. In vivo, S4-1 significantly inhibited tumor growth in both lung and colorectal cancer models, particularly in colorectal cancer, where it led to complete clearance of a portion of the tumor cells. Furthermore, S4-1 induced T-cell activation and inversed the inhibitory tumor microenvironment, consistent with the PD-L1/PD-1 pathway blockade. These data support the continued evaluation of S4-1 as an alternative ICB therapeutic strategy.
Collapse
Affiliation(s)
- Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Mingxiao Yin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yao Cheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zean Kuang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaojia Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Gefei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Jingwen Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi Hou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Lingrong Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Guoyu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Wenli Pei
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yanze Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xinmiao Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
146
|
Brazel D, Kumar P, Doan H, Pan T, Shen W, Gao L, Moyers JT. Genomic Alterations and Tumor Mutation Burden in Merkel Cell Carcinoma. JAMA Netw Open 2023; 6:e2249674. [PMID: 36602798 PMCID: PMC9856969 DOI: 10.1001/jamanetworkopen.2022.49674] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/15/2022] [Indexed: 01/06/2023] Open
Abstract
Importance Merkel cell carcinoma (MCC) is a rare and highly aggressive cutaneous neuroendocrine carcinoma with increasing incidence. Cytotoxic chemotherapy and checkpoint inhibitors provide treatment options in the metastatic setting; however, there are no approved or standard of care targeted therapy treatment options. Objective To identify actionable alterations annotated by the OncoKB database therapeutic evidence level in association with tumor mutation burden (TMB). Design, Setting, and Participants This is a retrospective, cross-sectional study using data from the American Association for Cancer Research Genomics Evidence Neoplasia Information Exchange, a multicenter international cancer consortium database. Patients with MCC were enrolled in participating institutions between 2017 and 2022. Data from version 11.0 of the database were released in January 2022 and analyzed from April to June 2022. Main Outcomes and Measures The main outcome was the percentage of patients with high TMB and OncoKB level 3B and 4 alterations. Results A total of 324 tumor samples from 313 patients with MCC (107 women [34.2%]; 287 White patients [91.7%]; 7 Black patients [2.2%]) were cataloged in the database. The median (range) number of alterations was 4.0 (0.0-178.0), with a mean (SD) of 13.6 (21.2) alterations. Oncogenic alterations represented 20.2% of all alterations (862 of 4259 alterations). Tissue originated from primary tumor in 55.0% of patients (172 patients) vs metastasis in 39.6% (124 patients). TMB-high (≥10 mutations per megabase) was present in 26.2% of cases (82 patients). Next-generation sequencing identified 55 patients (17.6%) with a level 3B variation for a Food and Drug Administration-approved drug for use in a biomarker-approved indication or approved drug in another indication. An additional 8.6% of patients (27 patients) had a level 4 variation. Actionable alterations were more common among high TMB cases, with 37 of 82 patients (45.1%) harboring level 3 alterations compared with only 18 of 231 patients (7.8%) with low TMB. The most common level 3B gene variants included PIK3CA (12 patients [3.8%]), BRCA1/2 (13 patients [4.2%]), ATM (7 patients [2.2%]), HRAS (5 patients [1.6%]), and TSC1/2 (6 patients [1.9%]). The most common level 4 variants include PTEN (13 patients [4.1%]), ARID1A (9 patients [2.9%]), NF1 (7 patients [2.2%]), and CDKN2A (7 patients [2.2%]). Copy number alterations and fusions were infrequent. In 61.0% of cases (191 cases), a PanCancer pathway was altered, and 39.9% (125 cases) had alterations in multiple pathways. Commonly altered pathways were RTK-RAS (119 patients [38.0%]), TP53 (103 patients [32.9%]), cell cycle (104 patients [33.2%]), PI3K (99 patients [31.6%]), and NOTCH (93 patients [29.7%]). In addition, oncogenic DNA mismatch repair gene alterations were present in 8.0% of cases (25 patients). Conclusions and Relevance In this cross-sectional retrospective study of alterations and TMB in MCC, a minority of patients had potentially actionable alterations. These findings support the investigation of targeted therapies as single agent or in combination with immunotherapy or cytotoxic chemotherapy in selected MCC populations.
Collapse
Affiliation(s)
- Danielle Brazel
- Department of Medicine, University of California, Irvine, Orange
| | - Priyanka Kumar
- Department of Medicine, University of California, Irvine, Orange
| | - Hung Doan
- Unafilliliated Independent Contractor
| | - Tianyu Pan
- Department of Statistics, University of California, Irvine
| | - Weining Shen
- Department of Statistics, University of California, Irvine
| | - Ling Gao
- Department of Dermatology, Long Beach Veterans Health Administration, Long Beach, California
| | - Justin T. Moyers
- Division of Hematology and Oncology, Department of Medicine, University of California, Irvine School of Medicine, Chao Family Comprehensive Cancer Center, Orange
| |
Collapse
|
147
|
Chen Y, Lin QX, Xu YT, Qian FJ, Lin CJ, Zhao WY, Huang JR, Tian L, Gu DN. An anoikis-related gene signature predicts prognosis and reveals immune infiltration in hepatocellular carcinoma. Front Oncol 2023; 13:1158605. [PMID: 37182175 PMCID: PMC10172511 DOI: 10.3389/fonc.2023.1158605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a global health burden with poor prognosis. Anoikis, a novel programmed cell death, has a close interaction with metastasis and progression of cancer. In this study, we aimed to construct a novel bioinformatics model for evaluating the prognosis of HCC based on anoikis-related gene signatures as well as exploring the potential mechanisms. Materials and methods We downloaded the RNA expression profiles and clinical data of liver hepatocellular carcinoma from TCGA database, ICGC database and GEO database. DEG analysis was performed using TCGA and verified in the GEO database. The anoikis-related risk score was developed via univariate Cox regression, LASSO Cox regression and multivariate Cox regression, which was then used to categorize patients into high- and low-risk groups. Then GO and KEGG enrichment analyses were performed to investigate the function between the two groups. CIBERSORT was used for determining the fractions of 22 immune cell types, while the ssGSEA analyses was used to estimate the differential immune cell infiltrations and related pathways. The "pRRophetic" R package was applied to predict the sensitivity of administering chemotherapeutic and targeted drugs. Results A total of 49 anoikis-related DEGs in HCC were detected and 3 genes (EZH2, KIF18A and NQO1) were selected out to build a prognostic model. Furthermore, GO and KEGG functional enrichment analyses indicated that the difference in overall survival between risk groups was closely related to cell cycle pathway. Notably, further analyses found the frequency of tumor mutations, immune infiltration level and expression of immune checkpoints were significantly different between the two risk groups, and the results of the immunotherapy cohort showed that patients in the high-risk group have a better immune response. Additionally, the high-risk group was found to have higher sensitivity to 5-fluorouracil, doxorubicin and gemcitabine. Conclusion The novel signature of 3 anoikis-related genes (EZH2, KIF18A and NQO1) can predict the prognosis of patients with HCC, and provide a revealing insight into personalized treatments in HCC.
Collapse
Affiliation(s)
- Yang Chen
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qiao-xin Lin
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-ting Xu
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Fang-jing Qian
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chen-jing Lin
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-ya Zhao
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-ren Huang
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ling Tian
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Ling Tian, ; Dian-na Gu,
| | - Dian-na Gu
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Ling Tian, ; Dian-na Gu,
| |
Collapse
|
148
|
Zhang Y, Zhang M, Zhang J, Zhao K, Yuan X, Di W, Liu Y, Lu P. Sintilimab combined with chemotherapy successfully treated a patient with advanced submandibular gland tumor. Immunotherapy 2023; 15:27-33. [PMID: 36617958 DOI: 10.2217/imt-2022-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Primary submandibular gland tumors are relatively rare. Due to its low incidence and broad spectrum phenotypic, biological and clinical heterogeneity types, a wide range of options have been developed to treat this tumor. To date, however, efficacious standard treatment regimens are lacking. Here, the authors present a case of a patient with an advanced submandibular gland tumor. Histological and imaging results diagnosed the case as stage IV submandibular gland adenocarcinoma with multiple metastases. The patient was subjected to systemic platinum-based chemotherapy combined with sintilimab. A primary lesion complete response was observed after six cycles of treatment. This case affirms the efficacy of the PD-1 inhibitor sintilimab combined with platinum-based chemotherapy as a first-line treatment for advanced submandibular gland tumors.
Collapse
Affiliation(s)
- Yingfang Zhang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, 453100, People's Republic of China
| | - Min Zhang
- Department of Oncology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, 453100, People's Republic of China
| | - Jing Zhang
- Department of Oncology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, 453100, People's Republic of China
| | - Kelei Zhao
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, 453100, People's Republic of China
| | - Xiaohan Yuan
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, 453100, People's Republic of China
| | - Wenyu Di
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, 453100, People's Republic of China
| | - Yanting Liu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, 453100, People's Republic of China
| | - Ping Lu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, 453100, People's Republic of China
| |
Collapse
|
149
|
Takada M, Yoshimura M, Kotake T, Kawaguchi K, Uozumi R, Kataoka M, Kato H, Yoshibayashi H, Suwa H, Tsuji W, Yamashiro H, Suzuki E, Torii M, Yamada Y, Kataoka T, Ishiguro H, Morita S, Toi M. Phase Ib/II study of nivolumab combined with palliative radiation therapy for bone metastasis in patients with HER2-negative metastatic breast cancer. Sci Rep 2022; 12:22397. [PMID: 36575361 PMCID: PMC9794767 DOI: 10.1038/s41598-022-27048-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Radiation therapy (RT) can enhance the abscopal effect of immune checkpoint blockade. This phase I/II study investigated the efficacy and safety of nivolumab plus RT in HER2-negative metastatic breast cancer requiring palliative RT for bone metastases. Cohort A included luminal-like disease, and cohort B included both luminal-like and triple-negative disease refractory to standard systemic therapy. Patients received 8 Gy single fraction RT for bone metastasis on day 0. Nivolumab was administered on day 1 for each 14-day cycle. In cohort A, endocrine therapy was administered. The primary endpoint was the objective response rate (ORR) of the unirradiated lesions. Cohorts A and B consisted of 18 and 10 patients, respectively. The ORR was 11% (90% CI 4-29%) in cohort A and 0% in cohort B. Disease control rates were 39% (90% CI 23-58%) and 0%. Median progression-free survival was 4.1 months (95% CI 2.1-6.1 months) and 2.0 months (95% CI 1.2-3.7 months). One patient in cohort B experienced a grade 3 adverse event. Palliative RT combined with nivolumab was safe and showed modest anti-tumor activity in cohort A. Further investigations to enhance the anti-tumor effect of endocrine therapy combined with RT plus immune checkpoint blockade are warranted.Trial registration number and date of registration UMIN: UMIN000026046, February 8, 2017; ClinicalTrials.gov: NCT03430479, February 13, 2018; Date of the first registration: June 22, 2017.
Collapse
Affiliation(s)
- Masahiro Takada
- grid.258799.80000 0004 0372 2033Department of Breast Surgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-Ku, Kyoto, 606-8507 Japan
| | - Michio Yoshimura
- grid.258799.80000 0004 0372 2033Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Kotake
- grid.414973.cDepartment of Medical Oncology, Kansai Electric Power Hospital, Osaka, Japan
| | - Kosuke Kawaguchi
- grid.258799.80000 0004 0372 2033Department of Breast Surgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-Ku, Kyoto, 606-8507 Japan
| | - Ryuji Uozumi
- grid.258799.80000 0004 0372 2033Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masako Kataoka
- grid.258799.80000 0004 0372 2033Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hironori Kato
- grid.410835.bDepartment of Breast Surgery, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | | | - Hirofumi Suwa
- grid.413697.e0000 0004 0378 7558Department of Breast Surgery, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Wakako Tsuji
- grid.416499.70000 0004 0595 441XDepartment of Breast Surgery, Shiga General Hospital, Moriyama, Japan
| | - Hiroyasu Yamashiro
- grid.416952.d0000 0004 0378 4277Department of Breast Surgery, Tenri Hospital, Tenri, Japan
| | - Eiji Suzuki
- grid.410843.a0000 0004 0466 8016Department of Breast Surgery, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Masae Torii
- grid.414936.d0000 0004 0418 6412Department of Breast Surgery, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Yosuke Yamada
- grid.411217.00000 0004 0531 2775Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Tatsuki Kataoka
- grid.411790.a0000 0000 9613 6383Department of Pathology, Iwate Medical University, Yahaba, Japan
| | - Hiroshi Ishiguro
- grid.412377.40000 0004 0372 168XBreast Oncology Service, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Satoshi Morita
- grid.258799.80000 0004 0372 2033Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakazu Toi
- grid.258799.80000 0004 0372 2033Department of Breast Surgery, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-Ku, Kyoto, 606-8507 Japan
| |
Collapse
|
150
|
Cui P, Ma L, Jiang P, Wang C, Wang J. PEG Gels Significantly Improve the Storage Stability of Nucleic Acid Preparations. Gels 2022; 8:gels8120819. [PMID: 36547343 PMCID: PMC9778030 DOI: 10.3390/gels8120819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Currently, nucleic acid preparations have gained much attention due to their unique working principle and application value. However, as macromolecular drugs, nucleic acid preparations have complex construction and poor stability. The current methods to promote stability face problems such as high cost and inconvenient operatios. In this study, the hydrophilic pharmaceutical excipient PEG was used to gelate nucleic acid preparations to avoid the random movements of liquid particles. The results showed that PEG gelation significantly improved the stability of PEI25K-based and liposome-based nucleic acid preparations, compared with nucleic acid preparations without PEG gelation. After being stored at 4 °C for 3 days, non-PEG gelled nucleic acid preparations almost lost transfection activity, while PEGylated preparations still maintained high transfection efficiency. Fluorescence experiments showed that this effect was caused by inhibiting particle aggregation. The method described in this study was simple and effective, and the materials used had good biocompatibility. It is believed that this study will contribute to the better development of gene therapy drugs.
Collapse
|