101
|
Chen F, Hou W, Yu X, Wu J, Li Z, Xu J, Deng Z, Chen G, Liu B, Yin X, Yu W, Zhang L, Xu G, Ji H, Liang C, Wang Z. CBX4 deletion promotes tumorigenesis under Kras G12D background by inducing genomic instability. Signal Transduct Target Ther 2023; 8:343. [PMID: 37696812 PMCID: PMC10495400 DOI: 10.1038/s41392-023-01623-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
Chromobox protein homolog 4 (CBX4) is a component of the Polycomb group (PcG) multiprotein Polycomb repressive complexes 1 (PRC1), which is participated in several processes including growth, senescence, immunity, and tissue repair. CBX4 has been shown to have diverse, even opposite functions in different types of tissue and malignancy in previous studies. In this study, we found that CBX4 deletion promoted lung adenocarcinoma (LUAD) proliferation and progression in KrasG12D mutated background. In vitro, over 50% Cbx4L/L, KrasG12D mouse embryonic fibroblasts (MEFs) underwent apoptosis in the initial period after Adeno-Cre virus treatment, while a small portion of survival cells got increased proliferation and transformation abilities, which we called selected Cbx4-/-, KrasG12D cells. Karyotype analysis and RNA-seq data revealed chromosome instability and genome changes in selected Cbx4-/-, KrasG12D cells compared with KrasG12D cells. Further study showed that P15, P16 and other apoptosis-related genes were upregulated in the primary Cbx4-/-, KrasG12D cells due to chromosome instability, which led to the large population of cell apoptosis. In addition, multiple pathways including Hippo pathway and basal cell cancer-related signatures were altered in selected Cbx4-/-, KrasG12D cells, ultimately leading to cancer. We also found that low expression of CBX4 in LUAD was associated with poorer prognosis under Kras mutation background from the human clinical data. To sum up, CBX4 deletion causes genomic instability to induce tumorigenesis under KrasG12D background. Our study demonstrates that CBX4 plays an emerging role in tumorigenesis, which is of great importance in guiding the clinical treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Fangzhen Chen
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Wulei Hou
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China
| | - Xiangtian Yu
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Wu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Zhengda Li
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Jietian Xu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Zimu Deng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Gaobin Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Bo Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxing Yin
- Department of General Surgery, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wei Yu
- Key Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Yangjiang, Guangdong, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Guoliang Xu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chunmin Liang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China.
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China.
| |
Collapse
|
102
|
Wang G, Moitessier N, Mittermaier AK. Computational and biophysical methods for the discovery and optimization of covalent drugs. Chem Commun (Camb) 2023; 59:10866-10882. [PMID: 37609777 DOI: 10.1039/d3cc03285j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Drugs that act by covalently attaching to their targets have been used to treat human diseases for over a hundred years. However, the deliberate design of covalent drugs was discouraged due to concerns of toxicity and off-target effects. Recent successes in covalent drug discovery have sparked fresh interest in this field. New screening and testing methods aimed at covalent inhibitors can play pivotal roles in facilitating the discovery process. This feature article focuses on computational and biophysical advances originating from our labs over the past decade and how these approaches have contributed to the design of prolyl oligopeptidase (POP) and SARS-CoV-2 3CLpro covalent inhibitors.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| | - Nicolas Moitessier
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| | - Anthony K Mittermaier
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
103
|
Wu X, Song W, Cheng C, Liu Z, Li X, Cui Y, Gao Y, Li D. Small molecular inhibitors for KRAS-mutant cancers. Front Immunol 2023; 14:1223433. [PMID: 37662925 PMCID: PMC10470052 DOI: 10.3389/fimmu.2023.1223433] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Three rat sarcoma (RAS) gene isoforms, KRAS, NRAS, and HRAS, constitute the most mutated family of small GTPases in cancer. While the development of targeted immunotherapies has led to a substantial improvement in the overall survival of patients with non-KRAS-mutant cancer, patients with RAS-mutant cancers have an overall poorer prognosis owing to the high aggressiveness of RAS-mutant tumors. KRAS mutations are strongly implicated in lung, pancreatic, and colorectal cancers. However, RAS mutations exhibit diverse patterns of isoforms, substitutions, and positions in different types of cancers. Despite being considered "undruggable", recent advances in the use of allele-specific covalent inhibitors against the most common mutant form of RAS in non-small-cell lung cancer have led to the development of effective pharmacological interventions against RAS-mutant cancer. Sotorasib (AMG510) has been approved by the FDA as a second-line treatment for patients with KRAS-G12C mutant NSCLC who have received at least one prior systemic therapy. Other KRAS inhibitors are on the way to block KRAS-mutant cancers. In this review, we summarize the progress and promise of small-molecule inhibitors in clinical trials, including direct inhibitors of KRAS, pan-RAS inhibitors, inhibitors of RAS effector signaling, and immune checkpoint inhibitors or combinations with RAS inhibitors, to improve the prognosis of tumors with RAS mutations.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wenping Song
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| | - Cheng Cheng
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ziyang Liu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xiang Li
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yu Cui
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yao Gao
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ding Li
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou, China
- Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
104
|
Kargbo RB. Targeting KRAS G12D Mutations: Discovery of Small Molecule Inhibitors for the Potential Treatment of Intractable Cancers. ACS Med Chem Lett 2023; 14:1041-1042. [PMID: 37583832 PMCID: PMC10424306 DOI: 10.1021/acsmedchemlett.3c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Indexed: 08/17/2023] Open
Abstract
The KRASG12D mutation, frequently found in pancreatic cancer, is representative of various challenging cancers and is a crucial target for chemotherapy drug development. Researchers are exploring highly selective and potent small molecule inhibitors of KRASG12D to meet the needs of patients with this mutation. The Patent Highlight reveals novel compounds capable of inhibiting KRASG12D proteins, potentially useful in treating KRASG12D-associated diseases, including cancers.
Collapse
|
105
|
Affiliation(s)
- Ryan B Corcoran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
106
|
Rodon Ahnert J, Tan DSW, Garrido-Laguna I, Harb W, Bessudo A, Beck JT, Rottey S, Bahary N, Kotecki N, Zhu Z, Deng S, Kowalski K, Wei C, Pathan N, Laliberte RJ, Messersmith WA. Avelumab or talazoparib in combination with binimetinib in metastatic pancreatic ductal adenocarcinoma: dose-finding results from phase Ib of the JAVELIN PARP MEKi trial. ESMO Open 2023; 8:101584. [PMID: 37379764 PMCID: PMC10515283 DOI: 10.1016/j.esmoop.2023.101584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/07/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Combinations of avelumab [anti-programmed death-ligand 1 (anti-PD-L1)] or talazoparib [poly(adenosine diphosphate ribose) polymerase (PARP) inhibitor] with binimetinib (MEK inhibitor) were expected to result in additive or synergistic antitumor activity relative to each drug administered alone. Here, we report phase Ib results from JAVELIN PARP MEKi, which investigated avelumab or talazoparib combined with binimetinib in metastatic pancreatic ductal adenocarcinoma (mPDAC). PATIENTS AND METHODS Patients with mPDAC that had progressed with prior treatment received avelumab 800 mg every 2 weeks plus binimetinib 45 mg or 30 mg two times daily (continuous), or talazoparib 0.75 mg daily plus binimetinib 45 mg or 30 mg two times daily (7 days on/7 days off). The primary endpoint was dose-limiting toxicity (DLT). RESULTS A total of 22 patients received avelumab plus binimetinib 45 mg (n = 12) or 30 mg (n = 10). Among DLT-evaluable patients, DLT occurred in five of 11 patients (45.5%) at the 45-mg dose, necessitating de-escalation to 30 mg; DLT occurred in three of 10 patients (30.0%) at the 30-mg dose. Among patients treated at the 45-mg dose, one (8.3%) had a best overall response of partial response. Thirteen patients received talazoparib plus binimetinib 45 mg (n = 6) or 30 mg (n = 7). Among DLT-evaluable patients, DLT occurred in two of five patients (40.0%) at the 45-mg dose, necessitating de-escalation to 30 mg; DLT occurred in two of six patients (33.3%) at the 30-mg dose. No objective responses were observed. CONCLUSIONS Combinations of avelumab or talazoparib plus binimetinib resulted in higher-than-expected DLT rates. However, most DLTs were single occurrences, and the overall safety profiles were generally consistent with those reported for the single agents. CLINICAL TRIAL REGISTRATION ClinicalTrials.govNCT03637491; https://clinicaltrials.gov/ct2/show/NCT03637491.
Collapse
Affiliation(s)
- J Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, USA.
| | - D S-W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - I Garrido-Laguna
- Division of Oncology, University of Utah Huntsman Cancer Institute, Salt Lake City, USA
| | - W Harb
- Syneos Health, Morrisville, USA
| | - A Bessudo
- California Cancer Associates for Research and Excellence, San Diego, USA
| | - J T Beck
- Highlands Oncology, Springdale, USA
| | - S Rottey
- Department of Medical Oncology, UZ Gent, Gent, Belgium
| | - N Bahary
- AHN Cancer Institute, Allegheny Health Network, Pittsburgh, USA
| | - N Kotecki
- Department of Medical Oncology, Jules Bordet Institute, Brussels, Belgium
| | | | | | | | | | | | | | - W A Messersmith
- Division of Medical Oncology, University of Colorado Cancer Center, Aurora, USA
| |
Collapse
|
107
|
Pattiya Arachchillage KGG, Chandra S, Williams A, Piscitelli P, Pham J, Castillo A, Florence L, Rangan S, Artes Vivancos JM. Electrical detection of RNA cancer biomarkers at the single-molecule level. Sci Rep 2023; 13:12428. [PMID: 37528139 PMCID: PMC10393997 DOI: 10.1038/s41598-023-39450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
Cancer is a significant healthcare issue, and early screening methods based on biomarker analysis in liquid biopsies are promising avenues to reduce mortality rates. Electrical detection of nucleic acids at the single molecule level could enable these applications. We examine the electrical detection of RNA cancer biomarkers (KRAS mutants G12C and G12V) as a single-molecule proof-of-concept electrical biosensor for cancer screening applications. We show that the electrical conductance is highly sensitive to the sequence, allowing discrimination of the mutants from a wild-type KRAS sequence differing in just one base. In addition to this high specificity, our results also show that these biosensors are sensitive down to an individual molecule with a high signal-to-noise ratio. These results pave the way for future miniaturized single-molecule electrical biosensors that could be groundbreaking for cancer screening and other applications.
Collapse
Affiliation(s)
| | - Subrata Chandra
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Ajoke Williams
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Patrick Piscitelli
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Jennifer Pham
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Aderlyn Castillo
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Lily Florence
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Srijith Rangan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Juan M Artes Vivancos
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
108
|
Chmielewska I, Krawczyk P, Grenda A, Wójcik-Superczyńska M, Krzyżanowska N, Gil M, Milanowski J. Breaking the 'Undruggable' Barrier: Anti-PD-1/PD-L1 Immunotherapy for Non-Small Cell Lung Cancer Patients with KRAS Mutations-A Comprehensive Review and Description of Single Site Experience. Cancers (Basel) 2023; 15:3732. [PMID: 37509393 PMCID: PMC10378665 DOI: 10.3390/cancers15143732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Kirsten rat sarcoma viral oncogene homologue (KRAS) gene mutations are among the most commonly found oncogenic alterations in non-small cell lung cancer (NSCLC) patients. Unfortunately, KRAS mutations have been considered "undruggable" for many years, making treatment options very limited. Immunotherapy targeting programmed death-ligand 1 (PD-L1), programmed death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) has emerged as a promising therapeutic option for NSCLC patients. However, some studies have suggested a lower response rate to immunotherapy in KRAS-mutated NSCLC patients with the coexistence of mutations in the STK11 (Serine/Threonine Kinase 11) gene. However, recent clinical trials have shown promising results with the combination of immunotherapy and chemotherapy or immunotherapy and KRAS inhibitors (sotorasib, adagrasib) in such patients. In other studies, the high efficacy of immunotherapy has been demonstrated in NSCLC patients with mutations in the KRAS gene that do not coexist with other mutations or coexist with the TP53 gene mutations. In this paper, we review the available literature on the efficacy of immunotherapy in KRAS-mutated NSCLC patients. In addition, we presented single-site experience on the efficacy of immunotherapy in NSCLC patients with KRAS mutations. The effectiveness of chemoimmunotherapy or immunotherapy as well as KRAS inhibitors extends the overall survival of advanced NSCLC patients with the G12C mutation in the KRAS gene to 2-3 years. This type of management has become the new standard in the treatment of NSCLC patients. Further studies are needed to clarify the potential benefits of immunotherapy in KRAS-mutated NSCLC patients and to identify potential biomarkers that may help predict response to therapy.
Collapse
Affiliation(s)
- Izabela Chmielewska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | | | - Natalia Krzyżanowska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Michał Gil
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
109
|
Li Y, Zhang X. Pancreatic cancer in young adults - an evolving entity? Am J Cancer Res 2023; 13:2763-2772. [PMID: 37559978 PMCID: PMC10408474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/20/2023] [Indexed: 08/11/2023] Open
Abstract
The incidence of early-onset pancreatic cancer (EOPC) among young population (<50 years) is rising in the last decade, with gender, medical overtreatment, and genetic factors as the risk factors in EOPC. Nevertheless, the role of genetic factors in the development of EOPC needs further exploration since the studies were carried out with small sample size and ambiguous evidence. Notable, the high incidence of pathogenic germline variant (PGV) appears to be involved in EOPC. Compared with average-age-onset pancreatic cancer (AOPC), EOPC patients display a distinctive genomic feature on several well-known tumor suppressor and oncogenic genes including, including SMAD4, RAS wild wild-type, CDKN2A BRCA1, BRCA2 and FOXC2, which is different from the findings of studies with AOPC and LOPC, suggesting the dynamic evolving entity of EOPC. In addition, the potential gender-related incidence found in several countries also suggests the involvement of genetic or socioenvironmental factors in the development of AOPC. Therefore, further prospective epidemiological and molecular studies are warranted to elucidate the shifting epidemiology of this disease and, most importantly, to better exploit the opportunities for the early diagnosis of the disease.
Collapse
Affiliation(s)
- Yifan Li
- Hepatobiliary, Pancreatic and Gastrointestinal Surgery, Shanxi Province Carcinoma Hospital, Shanxi Hospital Affiliated to Carcinoma Hospital, Chinese Academy of Medical Sciences, Carcinoma Hospital Affiliated to Shanxi Medical UniversityTaiyuan 030013, Shanxi, PR China
| | - Xiaojuan Zhang
- Radiology Department, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuan 030013, Shanxi, PR China
| |
Collapse
|
110
|
Kargbo RB. Unveiling New KRAS G12D Inhibitors: A Promising Approach for Pancreatic Cancer Therapy. ACS Med Chem Lett 2023; 14:889-890. [PMID: 37465312 PMCID: PMC10350939 DOI: 10.1021/acsmedchemlett.3c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 07/20/2023] Open
Abstract
Pancreatic carcinoma-1 (PANC-1) is a human pancreatic cancer cell line derived from a pancreatic ductal adenocarcinoma (PDAC) tumor, often used in research to study pancreatic cancer biology, molecular mechanisms, and potential therapeutic interventions. PANC-1 cells exhibit genetic alterations characteristic of pancreatic cancer, such as mutations in the KRAS oncogene and TP53 tumor suppressor gene. Cultured in vitro, these cells enable researchers to investigate the effects of treatments, genetic manipulations, or signaling pathway modulations on cancer cell growth, survival, and migration. This Patent Highlight discloses new compounds capable of inhibiting KRASG12D proteins, potentially useful in treating KRASG12D-associated diseases, such as pancreatic cancer.
Collapse
|
111
|
Escher TE, Satchell KJF. RAS degraders: The new frontier for RAS-driven cancers. Mol Ther 2023; 31:1904-1919. [PMID: 36945775 PMCID: PMC10362401 DOI: 10.1016/j.ymthe.2023.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/20/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
The function and significance of RAS proteins in cancer have been widely studied for decades. In 2013, the National Cancer Institute established the RAS Initiative to explore innovative approaches for attacking the proteins encoded by mutant forms of RAS genes and to create effective therapies for RAS-driven cancers. This initiative spurred researchers to develop novel approaches and to discover small molecules targeting this protein that was at one time termed "undruggable." More recently, advanced efforts in RAS degraders including PROTACs, linker-based degraders, and direct proteolysis degraders have been explored as novel strategies to target RAS for cancer treatment. These RAS degraders present new opportunities for RAS therapies and may prove fruitful in understanding basic cell biology. Novel delivery strategies will further enhance the efficacy of these therapeutics. In this review, we summarize recent efforts to develop RAS degraders, including PROTACs and E3 adaptor and ligase fusions as cancer therapies. This review also details the direct RAS protease degrader, RAS/RAP1-specific endopeptidase that directly and specifically cleaves RAS.
Collapse
Affiliation(s)
- Taylor E Escher
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Research Center, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Research Center, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
112
|
Kim D, Herdeis L, Rudolph D, Zhao Y, Böttcher J, Vides A, Ayala-Santos CI, Pourfarjam Y, Cuevas-Navarro A, Xue JY, Mantoulidis A, Bröker J, Wunberg T, Schaaf O, Popow J, Wolkerstorfer B, Kropatsch KG, Qu R, de Stanchina E, Sang B, Li C, McConnell DB, Kraut N, Lito P. Pan-KRAS inhibitor disables oncogenic signalling and tumour growth. Nature 2023; 619:160-166. [PMID: 37258666 PMCID: PMC10322706 DOI: 10.1038/s41586-023-06123-3] [Citation(s) in RCA: 209] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
KRAS is one of the most commonly mutated proteins in cancer, and efforts to directly inhibit its function have been continuing for decades. The most successful of these has been the development of covalent allele-specific inhibitors that trap KRAS G12C in its inactive conformation and suppress tumour growth in patients1-7. Whether inactive-state selective inhibition can be used to therapeutically target non-G12C KRAS mutants remains under investigation. Here we report the discovery and characterization of a non-covalent inhibitor that binds preferentially and with high affinity to the inactive state of KRAS while sparing NRAS and HRAS. Although limited to only a few amino acids, the evolutionary divergence in the GTPase domain of RAS isoforms was sufficient to impart orthosteric and allosteric constraints for KRAS selectivity. The inhibitor blocked nucleotide exchange to prevent the activation of wild-type KRAS and a broad range of KRAS mutants, including G12A/C/D/F/V/S, G13C/D, V14I, L19F, Q22K, D33E, Q61H, K117N and A146V/T. Inhibition of downstream signalling and proliferation was restricted to cancer cells harbouring mutant KRAS, and drug treatment suppressed KRAS mutant tumour growth in mice, without having a detrimental effect on animal weight. Our study suggests that most KRAS oncoproteins cycle between an active state and an inactive state in cancer cells and are dependent on nucleotide exchange for activation. Pan-KRAS inhibitors, such as the one described here, have broad therapeutic implications and merit clinical investigation in patients with KRAS-driven cancers.
Collapse
Affiliation(s)
- Dongsung Kim
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Yulei Zhao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Alberto Vides
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carlos I Ayala-Santos
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yasin Pourfarjam
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio Cuevas-Navarro
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jenny Y Xue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | | | | - Rui Qu
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ben Sang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chuanchuan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Piro Lito
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
113
|
Geerinckx B, Teuwen LA, Foo T, Vandamme T, Smith A, Peeters M, Price T. Novel therapeutic strategies in pancreatic cancer: moving beyond cytotoxic chemotherapy. Expert Rev Anticancer Ther 2023; 23:1237-1249. [PMID: 37842857 DOI: 10.1080/14737140.2023.2270161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Prognosis of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC) remains disappointing with a 5-year overall survival of only 3-5%. Compared to other cancers, the evolution in standard therapeutic options has been stagnant and polychemotherapy regimens (with well-known toxicity profile and resistance pattern) remain standard of care. Only for patients (5%-7%) with a breast cancer gene (BRCA) pathogenic germline variant, prognosis has improved by the use of olaparib (poly-ADP ribose polymerase (PARP) inhibitor). AREAS COVERED This review covers emerging treatment strategies in the management of mPDAC. One of the main topics is the rigid and immunological cold tumor microenvironment (TME) of PDAC and the search for agents that impact this TME and/or engage the immune system. In addition, the use of next-generation sequencing (NGS) has elicited for some patients new targeted therapies directed at alterations in the RTK/RAS/MAPK pathway and the deoxyribonucleic acid (DNA) damage repair pathway. Other evolving treatment strategies are also discussed. EXPERT OPINION The search for new, often combination, treatment strategies for mPDAC should be encouraged and implemented in early treatment lines given the significant decline of performance status of patients in later lines. NGS analysis should be used where available, although cost-effectiveness could be debatable.
Collapse
Affiliation(s)
- Barbara Geerinckx
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville, Australia
- Department of Oncology and Multidisciplinary Oncological Center of Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - Laure-Anne Teuwen
- Department of Oncology and Multidisciplinary Oncological Center of Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - Tiffany Foo
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville, Australia
| | - Timon Vandamme
- Department of Oncology and Multidisciplinary Oncological Center of Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - Annabel Smith
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville, Australia
| | - Marc Peeters
- Department of Oncology and Multidisciplinary Oncological Center of Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - Timothy Price
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
114
|
Miller-Phillips L, Collisson EA. RAS and Other Molecular Targets in Pancreatic Cancer: The Next Wave Is Coming. Curr Treat Options Oncol 2023:10.1007/s11864-023-01096-x. [PMID: 37296367 DOI: 10.1007/s11864-023-01096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 06/12/2023]
Abstract
OPINION STATEMENT Since the discovery of oncogenes in the 1970s, cancer doctors and researchers alike have understood the promise of discovering drugs to block the dominantly acting function of mutated signaling proteins in cancer. This promise was delivered, first slowly, with early signals inhibiting HER2 and BCR-Abl in the 1990s and 2000s, and then quickly, with kinase inhibitors being approved hand over fist in non-small cell lung cancer, melanoma, and many other malignancies. The RAS proteins, however, remained recalcitrant to chemical inhibition for decades, despite being, by far, the most frequently mutated oncogenes in cancers of all types. Nowhere was this deficit more palpable than in pancreatic ductal adenocarcinoma (PDA), where > 90% of cases are driven by single nucleotide substitutions at a single codon of the KRAS gene. The ice began to crack in 2012 when Ostrem and colleagues (Nature 503(7477): 548-551, 2013) synthesized the first KRAS G12C inhibitors, which covalently bind to GDP-bound G12C-mutated KRAS and lock the oncoprotein in its inactive state. In the last decade, the scientific community has established a new foundation on this and other druggable pockets in mutant KRAS. Here we provide an up-to-date overview of drugs targeting KRAS and other molecular targets in pancreatic cancer.
Collapse
Affiliation(s)
- Lisa Miller-Phillips
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, 1450 3Rd Street HD-375, San Francisco, CA, 94158-0128, USA
| | - Eric A Collisson
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, 1450 3Rd Street HD-375, San Francisco, CA, 94158-0128, USA.
| |
Collapse
|
115
|
Kargbo RB. Discovery of Selective and Potent KRAS G12D Inhibitors as Potential Therapy in Cancer. ACS Med Chem Lett 2023; 14:689-691. [PMID: 37312844 PMCID: PMC10258824 DOI: 10.1021/acsmedchemlett.3c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 06/15/2023] Open
Abstract
Recent studies reveal that nearly one in seven human cancers exhibit KRAS alterations, contributing to an estimated 19.3 million new cancer cases worldwide in 2020. To date, no marketed mutant-selective and potent KRASG12D inhibitors are available. The current Patent Highlight presents compounds that directly bind to KRASG12D, selectively inhibiting its activity. These compounds possess a favorable therapeutic index, stability, bioavailability, and toxicity profile, suggesting potential utility in cancer therapeutics.
Collapse
|
116
|
Ni R, Jiang J, Zhao M, Huang S, Huang C. Knockdown of UBQLN1 Functions as a Strategy to Inhibit CRC Progression through the ERK-c-Myc Pathway. Cancers (Basel) 2023; 15:3088. [PMID: 37370699 DOI: 10.3390/cancers15123088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
PURPOSE Colorectal cancer (CRC) is characterized by the absence of obvious symptoms in the early stage. Due to the high rate of late diagnosis of CRC patients, the mortality rate of CRC is higher than that of other malignant tumors. Accumulating evidence has demonstrated that UBQLN1 plays an important role in many biological processes. However, the role of UBQLN1 in CRC progression is still elusive. METHODS AND RESULTS we found that UBQLN1 was significantly highly expressed in CRC tissues compared with normal tissues. Enhanced/reduced UBQLN1 promoted/inhibited CRC cell proliferation, colony formation, epithelial-mesenchymal transition (EMT) in vitro, and knockdown of UBQLN1 inhibited CRC cells' tumorigenesis and metastasis in nude mice in vivo. Moreover, the knockdown of UBQLN1 reduced the expression of c-Myc by downregulating the ERK-MAPK pathway. Furthermore, the elevation of c-Myc in UBQLN1-deficient cells rescued proliferation caused by UBQLN1 silencing. CONCLUSIONS Knockdown of UBQLN1 inhibits the progression of CRC through the ERK-c-Myc pathway, which provides new insights into the mechanism of CRC progression. UBQLN1 may be a potential prognostic biomarker and therapeutic target of CRC.
Collapse
Affiliation(s)
- Ruoxuan Ni
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianwei Jiang
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mei Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shengkai Huang
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Changzhi Huang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
117
|
Elechalawar CK, Rao G, Gulla SK, Patel MM, Frickenstein A, Means N, Roy RV, Tsiokas L, Asfa S, Panja P, Rao C, Wilhelm S, Bhattacharya R, Mukherjee P. Gold Nanoparticles Inhibit Macropinocytosis by Decreasing KRAS Activation. ACS NANO 2023; 17:9326-9337. [PMID: 37129853 PMCID: PMC10718652 DOI: 10.1021/acsnano.3c00920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The RAS-transformed cells utilize macropinocytosis to acquire amino acids to support their uncontrolled growth. However, targeting RAS to inhibit macropinocytosis remains a challenge. Here, we report that gold nanoparticles (GNP) inhibit macropinocytosis by decreasing KRAS activation. Using surface-modified and unmodified GNP, we showed that unmodified GNP specifically sequestered both wild-type and mutant KRAS and inhibited its activation, irrespective of growth factor stimulation, while surface-passivated GNP had no effect. Alteration of KRAS activation is reflected on downstream signaling cascades, macropinocytosis and tumor cell growth in vitro, and two independent preclinical human xenograft models of pancreatic cancer in vivo. The current study demonstrates NP-mediated inhibition of macropinocytosis and KRAS activation and provides translational opportunities to inhibit tumor growth in a number of cancers where activation of KRAS plays a major role.
Collapse
Affiliation(s)
- Chandra Kumar Elechalawar
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Geeta Rao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Suresh Kumar Gulla
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Maulin Mukeshchandra Patel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Alex Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Nicolas Means
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Ram Vinod Roy
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Sima Asfa
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Prasanta Panja
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Chinthalapally Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
118
|
Springfeld C, Ferrone CR, Katz MHG, Philip PA, Hong TS, Hackert T, Büchler MW, Neoptolemos J. Neoadjuvant therapy for pancreatic cancer. Nat Rev Clin Oncol 2023; 20:318-337. [PMID: 36932224 DOI: 10.1038/s41571-023-00746-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/19/2023]
Abstract
Patients with localized pancreatic ductal adenocarcinoma (PDAC) are best treated with surgical resection of the primary tumour and systemic chemotherapy, which provides considerably longer overall survival (OS) durations than either modality alone. Regardless, most patients will have disease relapse owing to micrometastatic disease. Although currently a matter of some debate, considerable research interest has been focused on the role of neoadjuvant therapy for all forms of resectable PDAC. Whilst adjuvant combination chemotherapy remains the standard of care for patients with resectable PDAC, neoadjuvant chemotherapy seems to improve OS without necessarily increasing the resection rate in those with borderline-resectable disease. Furthermore, around 20% of patients with unresectable non-metastatic PDAC might undergo resection following 4-6 months of induction combination chemotherapy with or without radiotherapy, even in the absence of a clear radiological response, leading to improved OS outcomes in this group. Distinct molecular and biological responses to different types of therapies need to be better understood in order to enable the optimal sequencing of specific treatment modalities to further improve OS. In this Review, we describe current treatment strategies for the various clinical stages of PDAC and discuss developments that are likely to determine the optimal sequence of multimodality therapies by integrating the fundamental clinical and molecular features of the cancer.
Collapse
Affiliation(s)
- Christoph Springfeld
- Department of Medical Oncology, National Center for Tumour Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip A Philip
- Wayne State University School of Medicine, Department of Oncology, Henry Ford Cancer Institute, Detroit, MI, USA
| | - Theodore S Hong
- Research and Scientific Affairs, Gastrointestinal Service Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - John Neoptolemos
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
119
|
Qi WL, Li HY, Wang Y, Xu L, Deng JT, Zhang X, Wang YX, Meng LH. Targeting PI3Kα overcomes resistance to KRas G12C inhibitors mediated by activation of EGFR and/or IGF1R. Acta Pharmacol Sin 2023; 44:1083-1094. [PMID: 36411339 PMCID: PMC10104814 DOI: 10.1038/s41401-022-01015-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022]
Abstract
Although several KRasG12C inhibitors have displayed promising efficacy in clinical settings, acquired resistance developed rapidly and circumvented the activity of KRasG12C inhibitors. To explore the mechanism rendering acquired resistance to KRasG12C inhibitors, we established a series of KRASG12C-mutant cells with acquired resistance to AMG510. We found that differential activation of receptor tyrosine kinases (RTKs) especially EGFR or IGF1R rendered resistance to AMG510 in different cellular contexts by maintaining the activation of MAPK and PI3K signaling. Simultaneous inhibition of EGFR and IGF1R restored sensitivity to AMG510 in resistant cells. PI3K integrates signals from multiple RTKs and the level of phosphorylated AKT was revealed to negatively correlate with the anti-proliferative activity of AMG510 in KRASG12C-mutant cells. Concurrently treatment of a novel PI3Kα inhibitor CYH33 with AMG510 exhibited a synergistic effect against parental and resistant KRASG12C-mutant cells in vitro and in vivo, which was accompanied with concomitant inhibition of AKT and MAPK signaling. Taken together, these findings revealed the potential mechanism rendering acquired resistance to KRasG12C inhibitors and provided a mechanistic rationale to combine PI3Kα inhibitors with KRasG12C inhibitors for therapy of KRASG12C-mutant cancers in future clinical trials.
Collapse
Affiliation(s)
- Wei-Liang Qi
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- College of Pharmacy, Nanchang University, No. 461, Bayi Road, Nanchang, 330006, China
| | - Hui-Yu Li
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yi Wang
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.501 Haike Road, Shanghai, 201203, China
| | - Lan Xu
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.501 Haike Road, Shanghai, 201203, China
| | - Jie-Ting Deng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xi Zhang
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.501 Haike Road, Shanghai, 201203, China
| | - Yu-Xiang Wang
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.501 Haike Road, Shanghai, 201203, China.
| | - Ling-Hua Meng
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.501 Haike Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
120
|
Zhou X, Ji Y, Zhou J. Multiple Strategies to Develop Small Molecular KRAS Directly Bound Inhibitors. Molecules 2023; 28:molecules28083615. [PMID: 37110848 PMCID: PMC10146153 DOI: 10.3390/molecules28083615] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
KRAS gene mutation is widespread in tumors and plays an important role in various malignancies. Targeting KRAS mutations is regarded as the "holy grail" of targeted cancer therapies. Recently, multiple strategies, including covalent binding strategy, targeted protein degradation strategy, targeting protein and protein interaction strategy, salt bridge strategy, and multivalent strategy, have been adopted to develop KRAS direct inhibitors for anti-cancer therapy. Various KRAS-directed inhibitors have been developed, including the FDA-approved drugs sotorasib and adagrasib, KRAS-G12D inhibitor MRTX1133, and KRAS-G12V inhibitor JAB-23000, etc. The different strategies greatly promote the development of KRAS inhibitors. Herein, the strategies are summarized, which would shed light on the drug discovery for both KRAS and other "undruggable" targets.
Collapse
Affiliation(s)
- Xile Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Yang Ji
- Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Jinming Zhou
- Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| |
Collapse
|
121
|
Perurena N, Lock R, Davis RA, Raghavan S, Pilla NF, Ng R, Loi P, Guild CJ, Miller AL, Sicinska E, Cleary JM, Rubinson DA, Wolpin BM, Gray NS, Santagata S, Hahn WC, Morton JP, Sansom OJ, Aguirre AJ, Cichowski K. USP9X mediates an acute adaptive response to MAPK suppression in pancreatic cancer but creates multiple actionable therapeutic vulnerabilities. Cell Rep Med 2023; 4:101007. [PMID: 37030295 PMCID: PMC10140597 DOI: 10.1016/j.xcrm.2023.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/18/2022] [Accepted: 03/17/2023] [Indexed: 04/10/2023]
Abstract
Pancreatic ductal adenocarcinomas (PDACs) frequently harbor KRAS mutations. Although MEK inhibitors represent a plausible therapeutic option, most PDACs are innately resistant to these agents. Here, we identify a critical adaptive response that mediates resistance. Specifically, we show that MEK inhibitors upregulate the anti-apoptotic protein Mcl-1 by triggering an association with its deubiquitinase, USP9X, resulting in acute Mcl-1 stabilization and protection from apoptosis. Notably, these findings contrast the canonical positive regulation of Mcl-1 by RAS/ERK. We further show that Mcl-1 inhibitors and cyclin-dependent kinase (CDK) inhibitors, which suppress Mcl-1 transcription, prevent this protective response and induce tumor regression when combined with MEK inhibitors. Finally, we identify USP9X as an additional potential therapeutic target. Together, these studies (1) demonstrate that USP9X regulates a critical mechanism of resistance in PDAC, (2) reveal an unexpected mechanism of Mcl-1 regulation in response to RAS pathway suppression, and (3) provide multiple distinct promising therapeutic strategies for this deadly malignancy.
Collapse
Affiliation(s)
- Naiara Perurena
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Rebecca Lock
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Rachel A Davis
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Srivatsan Raghavan
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Natalie F Pilla
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Raymond Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Patrick Loi
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Caroline J Guild
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Abigail L Miller
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - James M Cleary
- Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Douglas A Rubinson
- Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Brian M Wolpin
- Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Sandro Santagata
- Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - William C Hahn
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G11 1QH, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G11 1QH, UK
| | - Andrew J Aguirre
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karen Cichowski
- Genetics Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA.
| |
Collapse
|
122
|
Harwood SJ, Smith CR, Lawson JD, Ketcham JM. Selected Approaches to Disrupting Protein-Protein Interactions within the MAPK/RAS Pathway. Int J Mol Sci 2023; 24:ijms24087373. [PMID: 37108538 PMCID: PMC10139024 DOI: 10.3390/ijms24087373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Within the MAPK/RAS pathway, there exists a plethora of protein-protein interactions (PPIs). For many years, scientists have focused efforts on drugging KRAS and its effectors in hopes to provide much needed therapies for patients with KRAS-mutant driven cancers. In this review, we focus on recent strategies to inhibit RAS-signaling via disrupting PPIs associated with SOS1, RAF, PDEδ, Grb2, and RAS.
Collapse
Affiliation(s)
| | | | - J David Lawson
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| | - John M Ketcham
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| |
Collapse
|
123
|
Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, Maitra A. Pancreatic cancer: Advances and challenges. Cell 2023; 186:1729-1754. [PMID: 37059070 PMCID: PMC10182830 DOI: 10.1016/j.cell.2023.02.014] [Citation(s) in RCA: 479] [Impact Index Per Article: 239.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers. Significant efforts have largely defined major genetic factors driving PDAC pathogenesis and progression. Pancreatic tumors are characterized by a complex microenvironment that orchestrates metabolic alterations and supports a milieu of interactions among various cell types within this niche. In this review, we highlight the foundational studies that have driven our understanding of these processes. We further discuss the recent technological advances that continue to expand our understanding of PDAC complexity. We posit that the clinical translation of these research endeavors will enhance the currently dismal survival rate of this recalcitrant disease.
Collapse
Affiliation(s)
- Christopher J Halbrook
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA.
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
124
|
He H, Chen R, Wang Z, Qing L, Zhang Y, Liu Y, Pan W, Fang H, Zhang S. Design of Orally-bioavailable Tetra-cyclic phthalazine SOS1 inhibitors with high selectivity against EGFR. Bioorg Chem 2023; 136:106536. [PMID: 37054529 DOI: 10.1016/j.bioorg.2023.106536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/28/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
KRAS mutations (G12C, G12D, etc.) are implicated in the oncogenesis and progression of many deadliest cancers. Son of sevenless homolog 1 (SOS1) is a crucial regulator of KRAS to modulate KRAS from inactive to active states. We previously discovered tetra-cyclic quinazolines as an improved scaffold for inhibiting SOS1-KRAS interaction. In this work, we report the design of tetra-cyclic phthalazine derivatives for selectively inhibiting SOS1 against EGFR. The lead compound 6c displayed remarkable activity to inhibit the proliferation of KRAS(G12C)-mutant pancreas cells. 6c showed a favorable pharmacokinetic profile in vivo, with a bioavailability of 65.8% and exhibited potent tumor suppression in pancreas tumor xenograft models. These intriguing results suggested that 6c has the potential to be developed as a drug candidate for KRAS-driven tumors.
Collapse
Affiliation(s)
- Huan He
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan 430200, PR China
| | - Ruiqi Chen
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Ziwei Wang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Luolong Qing
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Yu Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Weidong Pan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China.
| | - Huaxiang Fang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Silong Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China; Wuhan Yuxiang Pharmaceutical Technology Co., Ltd., Wuhan 430200, PR China.
| |
Collapse
|
125
|
Luo G, Wang B, Hou Q, Wu X. Development of Son of Sevenless Homologue 1 (SOS1) Modulators To Treat Cancers by Regulating RAS Signaling. J Med Chem 2023; 66:4324-4341. [PMID: 36987571 DOI: 10.1021/acs.jmedchem.2c01729] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Son of sevenless homologue 1 (SOS1) protein is universally expressed in cells and plays an important role in the RAS signaling pathway. Specifically, this protein interacts with RAS in response to upstream stimuli to promote guanine nucleotide exchange in RAS and activates the downstream signaling pathways. Thus, targeting SOS1 is a new approach for treating RAS-driven cancers. In this Perspective, we briefly summarize the structural and functional aspects of SOS1 and focus on recent advances in the discovery of activators, inhibitors, and PROTACs that target SOS1. This review aims to provide a timely and updated overview on the strategies for targeting SOS1 in cancer therapy.
Collapse
Affiliation(s)
- Guangmei Luo
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Bingrui Wang
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Qiangqiang Hou
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoxing Wu
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
126
|
High-Throughput Sequencing Reveals That Rotundine Inhibits Colorectal Cancer by Regulating Prognosis-Related Genes. J Pers Med 2023; 13:jpm13030550. [PMID: 36983731 PMCID: PMC10052610 DOI: 10.3390/jpm13030550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Background: Rotundine is an herbal medicine with anti-cancer effects. However, little is known about the anti-cancer effect of rotundine on colorectal cancer. Therefore, our study aimed to investigate the specific molecular mechanism of rotundine inhibition of colorectal cancer. Methods: MTT and cell scratch assay were performed to investigate the effects of rotundine on the viability, migration, and invasion ability of SW480 cells. Changes in cell apoptosis were analyzed by flow cytometry. DEGs were detected by high-throughput sequencing after the action of rotundine on SW480 cells, and the DEGs were subjected to function enrichment analysis. Bioinformatics analyses were performed to screen out prognosis-related DEGs of COAD. Followed by enrichment analysis of prognosis-related DEGs. Furthermore, prognostic models were constructed, including ROC analysis, risk curve analysis, PCA and t-SNE, Nomo analysis, and Kaplan–Meier prognostic analysis. Results: In this study, we showed that rotundine concentrations of 50 μM, 100 μM, 150 μM, and 200 μM inhibited the proliferation, migration, and invasion of SW480 cells in a time- and concentration-dependent manner. Rotundine does not induce SW480 cell apoptosis. Compared to the control group, high-throughput results showed that there were 385 DEGs in the SW480 group. And DEGs were associated with the Hippo signaling pathway. In addition, 16 of the DEGs were significantly associated with poorer prognosis in COAD, with MEF2B, CCDC187, PSD2, RGS16, PLXDC1, HELB, ASIC3, PLCH2, IGF2BP3, CLHC1, DNHD1, SACS, H1-4, ANKRD36, and ZNF117 being highly expressed in COAD and ARV1 being lowly expressed. Prognosis-related DEGs were mainly enriched in cancer-related pathways and biological functions, such as inositol phosphate metabolism, enterobactin transmembrane transporter activity, and enterobactin transport. Prognostic modeling also showed that these 16 DEGs could be used as predictors of overall survival prognosis in COAD patients. Conclusions: Rotundine inhibits the development and progression of colorectal cancer by regulating the expression of these prognosis-related genes. Our findings could further provide new directions for the treatment of colorectal cancer.
Collapse
|
127
|
Zhou Y, Xia J, Xu S, She T, Zhang Y, Sun Y, Wen M, Jiang T, Xiong Y, Lei J. Experimental mouse models for translational human cancer research. Front Immunol 2023; 14:1095388. [PMID: 36969176 PMCID: PMC10036357 DOI: 10.3389/fimmu.2023.1095388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
The development and growth of tumors remains an important and ongoing threat to human life around the world. While advanced therapeutic strategies such as immune checkpoint therapy and CAR-T have achieved astonishing progress in the treatment of both solid and hematological malignancies, the malignant initiation and progression of cancer remains a controversial issue, and further research is urgently required. The experimental animal model not only has great advantages in simulating the occurrence, development, and malignant transformation mechanisms of tumors, but also can be used to evaluate the therapeutic effects of a diverse array of clinical interventions, gradually becoming an indispensable method for cancer research. In this paper, we have reviewed recent research progress in relation to mouse and rat models, focusing on spontaneous, induced, transgenic, and transplantable tumor models, to help guide the future study of malignant mechanisms and tumor prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tao Jiang
- *Correspondence: Jie Lei, ; Yanlu Xiong, ; Tao Jiang,
| | - Yanlu Xiong
- *Correspondence: Jie Lei, ; Yanlu Xiong, ; Tao Jiang,
| | - Jie Lei
- *Correspondence: Jie Lei, ; Yanlu Xiong, ; Tao Jiang,
| |
Collapse
|
128
|
Khan S, Budamagunta V, Zhou D. Targeting KRAS in pancreatic cancer: Emerging therapeutic strategies. Adv Cancer Res 2023; 159:145-184. [PMID: 37268395 DOI: 10.1016/bs.acr.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
KRAS, a predominant member of the RAS family, is the most frequently mutated oncogene in human pancreatic cancer (∼95% of cases). Mutations in KRAS lead to its constitutive activation and activation of its downstream signaling pathways such as RAF/MEK/ERK and PI3K/AKT/mTOR that promote cell proliferation and provide apoptosis evasion capabilities to cancer cells. KRAS had been considered 'undruggable' until the discovery of the first covalent inhibitor targeting the G12C mutation. While G12C mutations are frequently found in non-small cell lung cancer, these are relatively rare in pancreatic cancer. On the other hand, pancreatic cancer harbors other KRAS mutations such as G12D and G12V. The inhibitors targeting G12D mutation (such as MRTX1133) have been recently developed, whereas those targeting other mutations are still lacking. Unfortunately, KRAS inhibitor monotherapy-associated resistance hinders their therapeutic efficacy. Therefore, various combination strategies have been tested and some yielded promising results, such as combinations with receptor tyrosine kinase, SHP2, or SOS1 inhibitors. In addition, we recently demonstrated that the combination of sotorasib with DT2216 (a BCL-XL-selective degrader) synergistically inhibits G12C-mutated pancreatic cancer cell growth in vitro and in vivo. This is in part because KRAS-targeted therapies induce cell cycle arrest and cellular senescence, which contributes to therapeutic resistance, while their combination with DT2216 can more effectively induce apoptosis. Similar combination strategies may also work for G12D inhibitors in pancreatic cancer. This chapter will review KRAS biochemistry, signaling pathways, different mutations, emerging KRAS-targeted therapies, and combination strategies. Finally, we discuss challenges associated with KRAS targeting and future directions, emphasizing pancreatic cancer.
Collapse
Affiliation(s)
- Sajid Khan
- Department of Biochemistry & Structural Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| | - Vivekananda Budamagunta
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Daohong Zhou
- Department of Biochemistry & Structural Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| |
Collapse
|
129
|
Wang H, Chi L, Yu F, Dai H, Gao C, Si X, Wang Z, Liu L, Zheng J, Shan L, Liu H, Zhang Q. Annual review of KRAS inhibitors in 2022. Eur J Med Chem 2023; 249:115124. [PMID: 36680986 DOI: 10.1016/j.ejmech.2023.115124] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/17/2023]
Abstract
Kirsten rat sarcoma viral (KRAS) oncogene is the most commonly mutated isoform of RAS, accounting for 85% of RAS-driven human cancers. KRAS functioning as a signaling hub participates in multiple cellular signaling pathways and regulates a variety of critical processes such as cell proliferation, differentiation, growth, metabolism and migration. Over the past decades, KRAS oncoprotein has been considered as an "undruggable" target due to its smooth surface and high GTP/GDP affinity. The breakthrough in directly targeting G12C mutated-KRAS and recently approved covalent KRASG12C inhibitors sotorasib and adagrasib broke the myth of KRAS undruggable and confirmed the directly targeting KRAS as one of the most promising strategies for the treatment of cancers. Targeting KRASG12C successfully enriched the understanding of KRAS and brought opportunities for the development of inhibitors to directly target other KRAS mutations. With the stage now set for a new era in the treatment of KRAS-driven cancers, the development of KRAS inhibitors also enters a booming epoch. In this review, we overviewed the research progress of KRAS inhibitors with the potential to treat cancers covering articles published in 2022. The design strategies, discovery processes, structure-activity relationship (SAR) studies, cocrystal structure analysis as well as in vitro and in vivo activity were highlighted with the aim of providing updated sight to accelerate the further development of more potent inhibitors targeting various mutated-KRAS with favorable drug-like properties.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Lingling Chi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Fuqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Honglin Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Chao Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Zhengjie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Limin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Jiaxin Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China
| | - Lihong Shan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China.
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China.
| |
Collapse
|
130
|
Ayasun R, Saridogan T, Gaber O, Sahin IH. Systemic Therapy for Patients With Pancreatic Cancer: Current Approaches and Opportunities for Novel Avenues Toward Precision Medicine. Clin Colorectal Cancer 2023; 22:2-11. [PMID: 36418197 PMCID: PMC11219281 DOI: 10.1016/j.clcc.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/01/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis with a 5-year overall survival of 11%. The disease is usually diagnosed at advanced stages, and systemic chemotherapy is the standard-of-care treatment for the majority of patients with PDAC. Although novel treatment options, such as targeted therapy and immunotherapy, have achieved substantial progress leading to practice-changing results, with FDA approvals for several solid tumors so far, the progress achieved for PDAC is relatively limited. Recent studies uncovered potential therapeutic targets for patients with PDAC, and potential therapeutic opportunities are currently being further examined. Herein, we review recent advances in systemic therapy regimens, including cytotoxic agents, targeted therapies, immunotherapy, and novel therapeutic options for managing patients with PDAC. We also elaborate on molecular profiling to guide treatment and existing therapeutic opportunities that may further advance the clinical care of patients with this devastating disease.
Collapse
Affiliation(s)
| | | | - Ola Gaber
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ibrahim Halil Sahin
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
131
|
Santarpia M, Ciappina G, Spagnolo CC, Squeri A, Passalacqua MI, Aguilar A, Gonzalez-Cao M, Giovannetti E, Silvestris N, Rosell R. Targeted therapies for KRAS-mutant non-small cell lung cancer: from preclinical studies to clinical development-a narrative review. Transl Lung Cancer Res 2023; 12:346-368. [PMID: 36895930 PMCID: PMC9989806 DOI: 10.21037/tlcr-22-639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023]
Abstract
Background and Objective Non-small cell lung cancer (NSCLC) with Kirsten rat sarcoma viral oncogene homolog (KRAS) driver alterations harbors a poor prognosis with standard therapies, including chemotherapy and/or immunotherapy with anti-programmed cell death protein 1 (anti-PD-1) or anti-programmed death ligand-1 (anti-PD-L1) antibodies. Selective KRAS G12C inhibitors have been shown to provide significant clinical benefit in pretreated NSCLC patients with KRAS G12C mutation. Methods In this review, we describe KRAS and the biology of KRAS-mutant tumors and review data from preclinical studies and clinical trials on KRAS-targeted therapies in NSCLC patients with KRAS G12C mutation. Key Content and Findings KRAS is the most frequently mutated oncogene in human cancer. The G12C is the most common KRAS mutation found in NSCLC. Sotorasib is the first, selective KRAS G12C inhibitor to receive approval based on demonstration of significant clinical benefit and tolerable safety profile in previously treated, KRAS G12C-mutated NSCLC. Adagrasib, a highly selective covalent inhibitor of KRAS G12C, has also shown efficacy in pretreated patients and other novel KRAS inhibitors are being under evaluation in early-phase studies. Similarly to other oncogene-directed therapies, mechanisms of intrinsic and acquired resistance limiting the activity of these agents have been described. Conclusions The discovery of selective KRAS G12C inhibitors has changed the therapeutic scenario of KRAS G12C-mutant NSCLC. Various studies testing KRAS inhibitors in different settings of disease, as single-agent or in combination with targeted agents for synthetic lethality and immunotherapy, are currently ongoing in this molecularly-defined subgroup of patients to further improve clinical outcomes.
Collapse
Affiliation(s)
- Mariacarmela Santarpia
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Giuliana Ciappina
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Calogera Claudia Spagnolo
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Andrea Squeri
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Maria Ilenia Passalacqua
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Andrés Aguilar
- Oncology Institute Dr. Rosell, IOR, Dexeus University Hospital, Barcelona, Spain
| | - Maria Gonzalez-Cao
- Oncology Institute Dr. Rosell, IOR, Dexeus University Hospital, Barcelona, Spain
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.,Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, San Giuliano, Italy
| | - Nicola Silvestris
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Rafael Rosell
- Oncology Institute Dr. Rosell, IOR, Dexeus University Hospital, Barcelona, Spain.,Catalan Institute of Oncology, ICO, Badalona, Spain
| |
Collapse
|
132
|
Predicting gene mutation status via artificial intelligence technologies based on multimodal integration (MMI) to advance precision oncology. Semin Cancer Biol 2023; 91:1-15. [PMID: 36801447 DOI: 10.1016/j.semcancer.2023.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/30/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Personalized treatment strategies for cancer frequently rely on the detection of genetic alterations which are determined by molecular biology assays. Historically, these processes typically required single-gene sequencing, next-generation sequencing, or visual inspection of histopathology slides by experienced pathologists in a clinical context. In the past decade, advances in artificial intelligence (AI) technologies have demonstrated remarkable potential in assisting physicians with accurate diagnosis of oncology image-recognition tasks. Meanwhile, AI techniques make it possible to integrate multimodal data such as radiology, histology, and genomics, providing critical guidance for the stratification of patients in the context of precision therapy. Given that the mutation detection is unaffordable and time-consuming for a considerable number of patients, predicting gene mutations based on routine clinical radiological scans or whole-slide images of tissue with AI-based methods has become a hot issue in actual clinical practice. In this review, we synthesized the general framework of multimodal integration (MMI) for molecular intelligent diagnostics beyond standard techniques. Then we summarized the emerging applications of AI in the prediction of mutational and molecular profiles of common cancers (lung, brain, breast, and other tumor types) pertaining to radiology and histology imaging. Furthermore, we concluded that there truly exist multiple challenges of AI techniques in the way of its real-world application in the medical field, including data curation, feature fusion, model interpretability, and practice regulations. Despite these challenges, we still prospect the clinical implementation of AI as a highly potential decision-support tool to aid oncologists in future cancer treatment management.
Collapse
|
133
|
Lam KK, Wong SH, Cheah PY. Targeting the 'Undruggable' Driver Protein, KRAS, in Epithelial Cancers: Current Perspective. Cells 2023; 12:cells12040631. [PMID: 36831298 PMCID: PMC9954350 DOI: 10.3390/cells12040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
This review summarizes recent development in synthetic drugs and biologics targeting intracellular driver genes in epithelial cancers, focusing on KRAS, and provides a current perspective and potential leads for the field. Compared to biologics, small molecule inhibitors (SMIs) readily penetrate cells, thus being able to target intracellular proteins. However, SMIs frequently suffer from pleiotropic effects, off-target cytotoxicity and invariably elicit resistance. In contrast, biologics are much larger molecules limited by cellular entry, but if this is surmounted, they may have more specific effects and less therapy-induced resistance. Exciting breakthroughs in the past two years include engineering of non-covalent KRAS G12D-specific inhibitor, probody bispecific antibodies, drug-peptide conjugate as MHC-restricted neoantigen to prompt immune response by T-cells, and success in the adoptive cell therapy front in both breast and pancreatic cancers.
Collapse
Affiliation(s)
- Kuen Kuen Lam
- Department of Colorectal Surgery, Singapore General Hospital, Singapore 169856, Singapore
| | | | - Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital, Singapore 169856, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
134
|
Tang YL, Li DD, Duan JY, Sheng LM, Wang X. Resistance to targeted therapy in metastatic colorectal cancer: Current status and new developments. World J Gastroenterol 2023; 29:926-948. [PMID: 36844139 PMCID: PMC9950860 DOI: 10.3748/wjg.v29.i6.926] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/24/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal and common malignancies in the world. Chemotherapy has been the conventional treatment for metastatic CRC (mCRC) patients. However, the effects of chemotherapy have been unsatisfactory. With the advent of targeted therapy, the survival of patients with CRC have been prolonged. Over the past 20 years, targeted therapy for CRC has achieved substantial progress. However, targeted therapy has the same challenge of drug resistance as chemotherapy. Consequently, exploring the resistance mechanism and finding strategies to address the resistance to targeted therapy, along with searching for novel effective regimens, is a constant challenge in the mCRC treatment, and it is also a hot research topic. In this review, we focus on the current status on resistance to existing targeted therapies in mCRC and discuss future developments.
Collapse
Affiliation(s)
- Yuan-Ling Tang
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Dan-Dan Li
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yu Duan
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lei-Ming Sheng
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin Wang
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
135
|
Liu M, Zhou G, Su W, Gu Y, Gao M, Wang K, Huo R, Li Y, Zhou Z, Chen K, Zheng M, Zhang S, Xu T. Design, Synthesis, and Bioevaluation of Pyrido[2,3- d]pyrimidin-7-ones as Potent SOS1 Inhibitors. ACS Med Chem Lett 2023; 14:183-190. [PMID: 36793426 PMCID: PMC9923844 DOI: 10.1021/acsmedchemlett.2c00490] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
The use of small molecular modulators to target the guanine nucleotide exchange factor SOS1 has been demonstrated to be a promising strategy for the treatment of various KRAS-driven cancers. In the present study, we designed and synthesized a series of new SOS1 inhibitors with the pyrido[2,3-d]pyrimidin-7-one scaffold. One representative compound 8u showed comparable activities to the reported SOS1 inhibitor BI-3406 in both the biochemical assay and the 3-D cell growth inhibition assay. Compound 8u obtained good cellular activities against a panel of KRAS G12-mutated cancer cell lines and inhibited downstream ERK and AKT activation in MIA PaCa-2 and AsPC-1 cells. In addition, it displayed synergistic antiproliferative effects when used in combination with KRAS G12C or G12D inhibitors. Further modifications of the new compounds may give us a promising SOS1 inhibitor with favorable druglike properties for use in the treatment of KRAS-mutated patients.
Collapse
Affiliation(s)
- Meiying Liu
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Guizhen Zhou
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi
Road, Shanghai 201203, China
| | - Wenhong Su
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Nano
Science and Technology Institute, University
of Science and Technology of China, Suzhou 215123, China
| | - Yuejiao Gu
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingshan Gao
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kun Wang
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ruifeng Huo
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi
Road, Shanghai 201203, China
| | - Yupeng Li
- Masonic
Cancer
Center & Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zehui Zhou
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixian Chen
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi
Road, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyue Zheng
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi
Road, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou 310024, China
| | - Sulin Zhang
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, 555 Zuchongzhi
Road, Shanghai 201203, China
| | - Tianfeng Xu
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- Department
of Medicinal Chemistry, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou 310024, China
| |
Collapse
|
136
|
Liu H, Liang Z, Cheng S, Huang L, Li W, Zhou C, Zheng X, Li S, Zeng Z, Kang L. Mutant KRAS Drives Immune Evasion by Sensitizing Cytotoxic T-Cells to Activation-Induced Cell Death in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203757. [PMID: 36599679 PMCID: PMC9951350 DOI: 10.1002/advs.202203757] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The roles of oncogenic KRAS in tumor immune evasion remain poorly understood. Here, mutant KRAS is identified as a key driver of tumor immune evasion in colorectal cancer (CRC). In human CRC specimens, a significant reduction in cytotoxic CD8+ T-cell tumor infiltration is found in patients with mutant versus wild type KRAS. This phenomenon is confirmed by preclinical models of CRC, and further study showed KRAS mutant tumors exhibited poor response to anti-PD-1 and adoptive T-cell therapies. Mechanistic analysis revealed lactic acid derived from mutant KRAS-expressing tumor cells sensitized tumor-specific cytotoxic CD8+ T-cells to activation-induced cell death via NF-κB inactivation; this may underlie the inverse association between intratumoral cytotoxic CD8+ T-cells and KRAS mutation. Importantly, KRAS mutated tumor resistance to immunotherapies can be overcome by inhibiting KRAS or blocking lactic acid production. Together, this work suggests the KRAS-mediated immune program is an exploitable therapeutic approach for the treatment of patients with KRAS mutant CRC.
Collapse
Affiliation(s)
- Huashan Liu
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Zhenxing Liang
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Sijing Cheng
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- School of MedicineSun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Liang Huang
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Wenxin Li
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Chi Zhou
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of Colorectal SurgerySun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Xiaobin Zheng
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Shujuan Li
- Department of PharmacyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052P. R. China
| | - Ziwei Zeng
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- University Clinic MannheimMedical Faculty MannheimHeidelberg University68167MannheimGermany
| | - Liang Kang
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| |
Collapse
|
137
|
Zhang J, Zhang J, Leung ELH, Yao XJ. Multiple initiatives to conquer KRAS G12C inhibitor resistance from the perspective of clinical therapy. Expert Opin Investig Drugs 2023; 32:101-106. [PMID: 36749819 DOI: 10.1080/13543784.2023.2178419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION KRAS G12C targeted covalent inhibitors for cancer therapy are revolutionary. However, resistance to KRAS G12C inhibitors in clinical trials is a proven fact. AREAS COVERED The authors focus on providing coverage and emphasizing the strategy of conquering KRAS G12C inhibitor resistance from the perspective of clinical therapy. The authors also provide the readers with their expert perspectives for future development. EXPERT OPINION It is essential to improve the therapeutic effect and achieve long-term disease control through accumulating rapid exploration of drug resistance mechanisms in preclinical trials and developing rational combination dosing approaches from clinical practice. Our presentation of the perspective provides insights into drug resistance in this groundbreaking area of research.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, and Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China.,School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Juanhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, and Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China.,School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,College of Life Science, Northwest Normal University, Lanzhou, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, MOE Frontiers Science Center for Precision Oncology, and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, and Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
| |
Collapse
|
138
|
Ming H, Li B, Jiang J, Qin S, Nice EC, He W, Lang T, Huang C. Protein degradation: expanding the toolbox to restrain cancer drug resistance. J Hematol Oncol 2023; 16:6. [PMID: 36694209 PMCID: PMC9872387 DOI: 10.1186/s13045-023-01398-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/01/2023] [Indexed: 01/25/2023] Open
Abstract
Despite significant progress in clinical management, drug resistance remains a major obstacle. Recent research based on protein degradation to restrain drug resistance has attracted wide attention, and several therapeutic strategies such as inhibition of proteasome with bortezomib and proteolysis-targeting chimeric have been developed. Compared with intervention at the transcriptional level, targeting the degradation process seems to be a more rapid and direct strategy. Proteasomal proteolysis and lysosomal proteolysis are the most critical quality control systems responsible for the degradation of proteins or organelles. Although proteasomal and lysosomal inhibitors (e.g., bortezomib and chloroquine) have achieved certain improvements in some clinical application scenarios, their routine application in practice is still a long way off, which is due to the lack of precise targeting capabilities and inevitable side effects. In-depth studies on the regulatory mechanism of critical protein degradation regulators, including E3 ubiquitin ligases, deubiquitylating enzymes (DUBs), and chaperones, are expected to provide precise clues for developing targeting strategies and reducing side effects. Here, we discuss the underlying mechanisms of protein degradation in regulating drug efflux, drug metabolism, DNA repair, drug target alteration, downstream bypass signaling, sustaining of stemness, and tumor microenvironment remodeling to delineate the functional roles of protein degradation in drug resistance. We also highlight specific E3 ligases, DUBs, and chaperones, discussing possible strategies modulating protein degradation to target cancer drug resistance. A systematic summary of the molecular basis by which protein degradation regulates tumor drug resistance will help facilitate the development of appropriate clinical strategies.
Collapse
Affiliation(s)
- Hui Ming
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing, 400038, China.
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, People's Republic of China. .,Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People's Republic of China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
139
|
Thatikonda V, Lu H, Jurado S, Kostyrko K, Bristow CA, Bosch K, Feng N, Gao S, Gerlach D, Gmachl M, Lieb S, Jeschko A, Machado AA, Marszalek ED, Mahendra M, Jaeger PA, Sorokin A, Strauss S, Trapani F, Kopetz S, Vellano CP, Petronczki M, Kraut N, Heffernan TP, Marszalek JR, Pearson M, Waizenegger I, Hofmann MH. Combined KRAS G12C and SOS1 inhibition enhances and extends the anti-tumor response in KRAS G12C-driven cancers by addressing intrinsic and acquired resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525210. [PMID: 36747713 PMCID: PMC9900819 DOI: 10.1101/2023.01.23.525210] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Efforts to improve the anti-tumor response to KRASG12C targeted therapy have benefited from leveraging combination approaches. Here, we compare the anti-tumor response induced by the SOS1-KRAS interaction inhibitor, BI-3406, combined with a KRASG12C inhibitor (KRASG12Ci) to those induced by KRASG12Ci alone or combined with SHP2 or EGFR inhibitors. In lung cancer and colorectal cancer (CRC) models, BI-3406 plus KRASG12Ci induces an anti-tumor response stronger than that observed with KRASG12Ci alone and comparable to those by the other combinations. This enhanced anti-tumor response is associated with a stronger and extended suppression of RAS-MAPK signaling. Importantly, BI-3406 plus KRASG12Ci treatment delays the emergence of acquired adagrasib resistance in both CRC and lung cancer models and is associated with re-establishment of anti-proliferative activity in KRASG12Ci-resistant CRC models. Our findings position KRASG12C plus SOS1 inhibition therapy as a promising strategy for treating both KRASG12C-mutated tumors as well as for addressing acquired resistance to KRASG12Ci.
Collapse
Affiliation(s)
| | - Hengyu Lu
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sabine Jurado
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Kaja Kostyrko
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Christopher A. Bristow
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karin Bosch
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Ningping Feng
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sisi Gao
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Simone Lieb
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Annette A. Machado
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ethan D. Marszalek
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mikhila Mahendra
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher P. Vellano
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Timothy P. Heffernan
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph R. Marszalek
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Pearson
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | |
Collapse
|
140
|
Sattler M, Mohanty A, Kulkarni P, Salgia R. Precision oncology provides opportunities for targeting KRAS-inhibitor resistance. Trends Cancer 2023; 9:42-54. [PMID: 36751115 DOI: 10.1016/j.trecan.2022.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 12/28/2022]
Abstract
Novel inhibitors targeting Kirsten rat sarcoma virus homolog (KRAS) KRASG12C in various cancers have shown good initial efficacy, but therapy-related drug resistance eventually occurs in most patients. It has become apparent that cancer cells not only rely on novel mutations that provide escape mechanisms, but about half of them become resistant in the absence of apparent genetic mutations. Redundancies within the KRAS signaling pathways and cross-talk between these pathways - as well as other canonical cancer-driving mechanisms - not only provide challenges but also present opportunities for drug development and targeted approaches. We discuss the challenges for the duality of KRAS inhibitor drug resistance with an additional focus on nongenetic mechanisms and the potential for patient-centered combination treatments.
Collapse
Affiliation(s)
- Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
141
|
Schneeweis C, Diersch S, Hassan Z, Krauß L, Schneider C, Lucarelli D, Falcomatà C, Steiger K, Öllinger R, Krämer OH, Arlt A, Grade M, Schmidt-Supprian M, Hessmann E, Wirth M, Rad R, Reichert M, Saur D, Schneider G. AP1/Fra1 confers resistance to MAPK cascade inhibition in pancreatic cancer. Cell Mol Life Sci 2023; 80:12. [PMID: 36534167 PMCID: PMC9763154 DOI: 10.1007/s00018-022-04638-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Targeting KRAS downstream signaling remains an important therapeutic approach in pancreatic cancer. We used primary pancreatic ductal epithelial cells and mouse models allowing the conditional expression of oncogenic KrasG12D, to investigate KRAS signaling integrators. We observed that the AP1 family member FRA1 is tightly linked to the KRAS signal and expressed in pre-malignant lesions and the basal-like subtype of pancreatic cancer. However, genetic-loss-of-function experiments revealed that FRA1 is dispensable for KrasG12D-induced pancreatic cancer development in mice. Using FRA1 gain- and loss-of-function models in an unbiased drug screen, we observed that FRA1 is a modulator of the responsiveness of pancreatic cancer to inhibitors of the RAF-MEK-ERK cascade. Mechanistically, context-dependent FRA1-associated adaptive rewiring of oncogenic ERK signaling was observed and correlated with sensitivity to inhibitors of canonical KRAS signaling. Furthermore, pharmacological-induced degradation of FRA1 synergizes with MEK inhibitors. Our studies establish FRA1 as a part of the molecular machinery controlling sensitivity to MAPK cascade inhibition allowing the development of mechanism-based therapies.
Collapse
Affiliation(s)
- Christian Schneeweis
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675 Munich, Germany ,Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675 Munich, Germany
| | - Sandra Diersch
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675 Munich, Germany
| | - Zonera Hassan
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675 Munich, Germany
| | - Lukas Krauß
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Carolin Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Daniele Lucarelli
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675 Munich, Germany
| | - Chiara Falcomatà
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675 Munich, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, Institute of Pathology, School of Medicine, Technical Universität München, 81675 Munich, Germany ,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, TU München, 81675 Munich, Germany
| | - Oliver H. Krämer
- Department of Toxicology, University of Mainz Medical Center, 55131 Mainz, Germany
| | - Alexander Arlt
- Department for Internal Medicine and Gastroenterology, University Hospital, Klinikum Oldenburg AöR, 26133 Oldenburg, Germany
| | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany ,CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany
| | - Marc Schmidt-Supprian
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany ,Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Elisabeth Hessmann
- CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany ,University Medical Center Göttingen Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, 37075 Göttingen, Germany ,Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Matthias Wirth
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Roland Rad
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany ,Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, TU München, 81675 Munich, Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675 Munich, Germany ,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany ,Translational Pancreatic Research Cancer Center, Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675 Munich, Germany
| | - Dieter Saur
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675 Munich, Germany ,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Günter Schneider
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675 Munich, Germany ,Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675 Munich, Germany ,Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany ,CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany
| |
Collapse
|
142
|
Zhang S, Zhang Y, Chen X, Xu J, Fang H, Li Y, Liu Y, He H. Design and Structural Optimization of Orally Bioavailable SOS1 Inhibitors for the Treatment of KRAS-Driven Carcinoma. J Med Chem 2022; 65:15856-15877. [PMID: 36384290 DOI: 10.1021/acs.jmedchem.2c01517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
KRAS mutations (G12C, G12D, etc.) are implicated in the oncogenesis and progression of many refractory cancers. Son of sevenless homolog 1 (SOS1) is a key regulator of KRAS to modulate KRAS from inactive to active states. Herein, we disclosed efficacy-improving tetra-cyclic quinazoline derivatives as an enhanced scaffold for inhibiting the SOS1-KRAS interaction. Compound 37, which conjugated 1-carbonitrile-cyclopropane to tetra-cyclic quinazoline, showed a twofold higher oral drug exposure and 2.5-fold longer half-life than BI-3406 in CD-1 mouse plasma. In a Mia-paca-2 xenograft model, 37 administrated alone inhibited tumor growth by 71%. Preclinical investigations demonstrated that 37 had a limited inhibition of CYP and hERG. Overall, our studies showed that 37 was a promising drug candidate for treatment of KRAS-driven cancer.
Collapse
Affiliation(s)
- Silong Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan430081, P. R. China.,Wuhan Yuxiang Pharmaceutial Technology Co., Ltd., Wuhan430200, P. R. China
| | - Yu Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan430081, P. R. China
| | - Xin Chen
- School of Life Science and Technology & School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan430023, P. R. China
| | - Juan Xu
- Wuhan Yuxiang Pharmaceutial Technology Co., Ltd., Wuhan430200, P. R. China.,College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi435003, P. R. China
| | - Huaxiang Fang
- Wuhan Yuxiang Pharmaceutial Technology Co., Ltd., Wuhan430200, P. R. China
| | - Yuanyuan Li
- School of Life Science and Technology & School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan430023, P. R. China.,Wuhan Yuxiang Pharmaceutial Technology Co., Ltd., Wuhan430200, P. R. China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan430081, P. R. China.,School of Life Science and Technology & School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan430023, P. R. China.,State Key Laboratory of Membrane Separation and Membrane Process & Engineering Research Center of Precision Diagnosis and Treatment Technology and Equipment (MOE), School of Chemistry, Tiangong University, Tianjin300387, P. R. China
| | - Huan He
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan430081, P. R. China.,Wuhan Yuxiang Pharmaceutial Technology Co., Ltd., Wuhan430200, P. R. China
| |
Collapse
|
143
|
Abstract
Covalent drugs have been used to treat diseases for more than a century, but tools that facilitate the rational design of covalent drugs have emerged more recently. The purposeful addition of reactive functional groups to existing ligands can enable potent and selective inhibition of target proteins, as demonstrated by the covalent epidermal growth factor receptor (EGFR) and Bruton's tyrosine kinase (BTK) inhibitors used to treat various cancers. Moreover, the identification of covalent ligands through 'electrophile-first' approaches has also led to the discovery of covalent drugs, such as covalent inhibitors for KRAS(G12C) and SARS-CoV-2 main protease. In particular, the discovery of KRAS(G12C) inhibitors validates the use of covalent screening technologies, which have become more powerful and widespread over the past decade. Chemoproteomics platforms have emerged to complement covalent ligand screening and assist in ligand discovery, selectivity profiling and target identification. This Review showcases covalent drug discovery milestones with emphasis on the lessons learned from these programmes and how an evolving toolbox of covalent drug discovery techniques facilitates success in this field.
Collapse
Affiliation(s)
- Lydia Boike
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Nathaniel J Henning
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
144
|
Bröker J, Waterson AG, Smethurst C, Kessler D, Böttcher J, Mayer M, Gmaschitz G, Phan J, Little A, Abbott JR, Sun Q, Gmachl M, Rudolph D, Arnhof H, Rumpel K, Savarese F, Gerstberger T, Mischerikow N, Treu M, Herdeis L, Wunberg T, Gollner A, Weinstabl H, Mantoulidis A, Krämer O, McConnell DB, W. Fesik S. Fragment Optimization of Reversible Binding to the Switch II Pocket on KRAS Leads to a Potent, In Vivo Active KRAS G12C Inhibitor. J Med Chem 2022; 65:14614-14629. [PMID: 36300829 PMCID: PMC9661478 DOI: 10.1021/acs.jmedchem.2c01120] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 12/02/2022]
Abstract
Activating mutations in KRAS are the most frequent oncogenic alterations in cancer. The oncogenic hotspot position 12, located at the lip of the switch II pocket, offers a covalent attachment point for KRASG12C inhibitors. To date, KRASG12C inhibitors have been discovered by first covalently binding to the cysteine at position 12 and then optimizing pocket binding. We report on the discovery of the in vivo active KRASG12C inhibitor BI-0474 using a different approach, in which small molecules that bind reversibly to the switch II pocket were identified and then optimized for non-covalent binding using structure-based design. Finally, the Michael acceptor containing warhead was attached. Our approach offers not only an alternative approach to discovering KRASG12C inhibitors but also provides a starting point for the discovery of inhibitors against other oncogenic KRAS mutants.
Collapse
Affiliation(s)
- Joachim Bröker
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Alex G. Waterson
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Chris Smethurst
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Dirk Kessler
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Jark Böttcher
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Moriz Mayer
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Gerhard Gmaschitz
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Jason Phan
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Andrew Little
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Jason R. Abbott
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Qi Sun
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Michael Gmachl
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Dorothea Rudolph
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Heribert Arnhof
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Klaus Rumpel
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Fabio Savarese
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Thomas Gerstberger
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Nikolai Mischerikow
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Matthias Treu
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Lorenz Herdeis
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Tobias Wunberg
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Andreas Gollner
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Harald Weinstabl
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Andreas Mantoulidis
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Oliver Krämer
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Darryl B. McConnell
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Stephen W. Fesik
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
145
|
Targeting KRAS in Pancreatic Cancer. J Pers Med 2022; 12:jpm12111870. [PMID: 36579598 PMCID: PMC9692903 DOI: 10.3390/jpm12111870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Pancreatic cancer is mainly driven by mutations in the KRAS oncogene. While this cancer has shown remarkable therapy resistance, new approaches to inhibit mutated KRAS, KRAS activators and effectors show promise in breaking this therapeutic deadlock. Here, we review these innovations in therapies that target RAS signaling in pancreatic cancer from a clinical point of view. A number of promising approaches are currently in clinical trials or in clinical development. We focus on small-molecule drugs but also discuss immunotherapies and tumor vaccines.
Collapse
|
146
|
Hashimoto A, Handa H, Hata S, Hashimoto S. Orchestration of mesenchymal plasticity and immune evasiveness via rewiring of the metabolic program in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:1005566. [PMID: 36408139 PMCID: PMC9669439 DOI: 10.3389/fonc.2022.1005566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most fatal cancer in humans, due to its difficulty of early detection and its high metastatic ability. The occurrence of epithelial to mesenchymal transition in preinvasive pancreatic lesions has been implicated in the early dissemination, drug resistance, and cancer stemness of PDAC. PDAC cells also have a reprogrammed metabolism, regulated by driver mutation-mediated pathways, a desmoplastic tumor microenvironment (TME), and interactions with stromal cells, including pancreatic stellate cells, fibroblasts, endothelial cells, and immune cells. Such metabolic reprogramming and its functional metabolites lead to enhanced mesenchymal plasticity, and creates an acidic and immunosuppressive TME, resulting in the augmentation of protumor immunity via cancer-associated inflammation. In this review, we summarize our recent understanding of how PDAC cells acquire and augment mesenchymal features via metabolic and immunological changes during tumor progression, and how mesenchymal malignancies induce metabolic network rewiring and facilitate an immune evasive TME. In addition, we also present our recent findings on the interesting relevance of the small G protein ADP-ribosylation factor 6-based signaling pathway driven by KRAS/TP53 mutations, inflammatory amplification signals mediated by the proinflammatory cytokine interleukin 6 and RNA-binding protein ARID5A on PDAC metabolic reprogramming and immune evasion, and finally discuss potential therapeutic strategies for the quasi-mesenchymal subtype of PDAC.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
- *Correspondence: Ari Hashimoto, ; Shigeru Hashimoto,
| | - Haruka Handa
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Soichiro Hata
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
- *Correspondence: Ari Hashimoto, ; Shigeru Hashimoto,
| |
Collapse
|
147
|
Scharpf RB, Balan A, Ricciuti B, Fiksel J, Cherry C, Wang C, Lenoue-Newton ML, Rizvi HA, White JR, Baras AS, Anaya J, Landon BV, Majcherska-Agrawal M, Ghanem P, Lee J, Raskin L, Park AS, Tu H, Hsu H, Arbour KC, Awad MM, Riely GJ, Lovly CM, Anagnostou V. Genomic Landscapes and Hallmarks of Mutant RAS in Human Cancers. Cancer Res 2022; 82:4058-4078. [PMID: 36074020 PMCID: PMC9627127 DOI: 10.1158/0008-5472.can-22-1731] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 01/07/2023]
Abstract
The RAS family of small GTPases represents the most commonly activated oncogenes in human cancers. To better understand the prevalence of somatic RAS mutations and the compendium of genes that are coaltered in RAS-mutant tumors, we analyzed targeted next-generation sequencing data of 607,863 mutations from 66,372 tumors in 51 cancer types in the AACR Project GENIE Registry. Bayesian hierarchical models were implemented to estimate the cancer-specific prevalence of RAS and non-RAS somatic mutations, to evaluate co-occurrence and mutual exclusivity, and to model the effects of tumor mutation burden and mutational signatures on comutation patterns. These analyses revealed differential RAS prevalence and comutations with non-RAS genes in a cancer lineage-dependent and context-dependent manner, with differences across age, sex, and ethnic groups. Allele-specific RAS co-mutational patterns included an enrichment in NTRK3 and chromatin-regulating gene mutations in KRAS G12C-mutant non-small cell lung cancer. Integrated multiomic analyses of 10,217 tumors from The Cancer Genome Atlas (TCGA) revealed distinct genotype-driven gene expression programs pointing to differential recruitment of cancer hallmarks as well as phenotypic differences and immune surveillance states in the tumor microenvironment of RAS-mutant tumors. The distinct genomic tracks discovered in RAS-mutant tumors reflected differential clinical outcomes in TCGA cohort and in an independent cohort of patients with KRAS G12C-mutant non-small cell lung cancer that received immunotherapy-containing regimens. The RAS genetic architecture points to cancer lineage-specific therapeutic vulnerabilities that can be leveraged for rationally combining RAS-mutant allele-directed therapies with targeted therapies and immunotherapy. SIGNIFICANCE The complex genomic landscape of RAS-mutant tumors is reflective of selection processes in a cancer lineage-specific and context-dependent manner, highlighting differential therapeutic vulnerabilities that can be clinically translated.
Collapse
Affiliation(s)
- Robert B. Scharpf
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Archana Balan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Biagio Ricciuti
- Department of Medicine, Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jacob Fiksel
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Christopher Cherry
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chenguang Wang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michele L. Lenoue-Newton
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Hira A. Rizvi
- Department of Medicine, Collaborative Research Centers, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James R. White
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander S. Baras
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jordan Anaya
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Blair V. Landon
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marta Majcherska-Agrawal
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paola Ghanem
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jocelyn Lee
- AACR Project GENIE, American Association for Cancer Research, Pennsylvania
| | - Leon Raskin
- Center for Observational Research, Amgen Inc., Thousand Oaks, California
| | - Andrew S. Park
- Center for Observational Research, Amgen Inc., Thousand Oaks, California
| | - Huakang Tu
- Center for Observational Research, Amgen Inc., Thousand Oaks, California
| | - Hil Hsu
- Center for Observational Research, Amgen Inc., Thousand Oaks, California
| | - Kathryn C. Arbour
- Department of Medicine, Division of Clinical Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark M. Awad
- Department of Medicine, Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gregory J. Riely
- Department of Medicine, Division of Clinical Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christine M. Lovly
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Valsamo Anagnostou
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
148
|
Guo MZ, Murray JC, Ghanem P, Voong KR, Hales RK, Ettinger D, Lam VK, Hann CL, Forde PM, Brahmer JR, Levy BP, Feliciano JL, Marrone KA. Definitive Chemoradiation and Durvalumab Consolidation for Locally Advanced, Unresectable KRAS-mutated Non-Small Cell Lung Cancer. Clin Lung Cancer 2022; 23:620-629. [PMID: 36045016 DOI: 10.1016/j.cllc.2022.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Consolidation durvalumab immunotherapy following definitive chemoradiation (CRT) for unresectable stage III non-small cell lung cancer (NSCLC) improves overall survival. As therapeutic options for patients with KRAS-driven disease evolve, more understanding regarding genomic determinants of response and patterns of progression for durvalumab consolidation is needed to optimize outcomes. METHODS We conducted a single-institutional retrospective analysis of real-world patients with locally advanced, unresectable NSCLC who completed CRT and received durvalumab consolidation. Kaplan-Meier analyses compared progression-free survival (PFS) and overall survival (OS) from start of durvalumab consolidation between patients with KRAS-mutated and non-mutated tumors. Fisher's exact test was used to compare rates of intrathoracic or extrathoracic progression. RESULTS Of 74 response-evaluable patients, 39 had clinical genomic profiling performed. 18 patients had tumors with KRAS mutations, 7 patients had tumors with non-KRAS actionable alterations (EGFR, ALK, ERBB2, BRAF, MET, RET, or ROS1), and 14 patients had tumors without actionable alterations. Median PFS for the overall cohort was 16.1 months. PFS for patients with KRAS-mutated NSCLC was 12.6 months versus 12.7 months for patients with non-actionable tumors (P= 0.77, log-rank). Fisher's exact test revealed a statistically significantly higher rate of extrathoracic progression versus intrathoracic-only progression for patients with KRAS-driven disease compared to patients with non-actionable tumors (P= 0.015). CONCLUSION Patients with KRAS-mutated NSCLC derived similar benefit from durvalumab as patients with non-actionable tumors. A higher rate of extrathoracic progression was also observed among the patients with KRAS-mutated NSCLC compared to patients with non-actionable tumors. This highlights the potential unmet needs for novel systemic therapies and surveillance methods for KRAS-mutated stage III NSCLC.
Collapse
Affiliation(s)
- Matthew Z Guo
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Joseph C Murray
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Paola Ghanem
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - K Ranh Voong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Russell K Hales
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - David Ettinger
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Vincent K Lam
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Christine L Hann
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Patrick M Forde
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Julie R Brahmer
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Benjamin P Levy
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Josephine L Feliciano
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Kristen A Marrone
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD.
| |
Collapse
|
149
|
Burska AN, Ilyassova B, Dildabek A, Khamijan M, Begimbetova D, Molnár F, Sarbassov DD. Enhancing an Oxidative "Trojan Horse" Action of Vitamin C with Arsenic Trioxide for Effective Suppression of KRAS-Mutant Cancers: A Promising Path at the Bedside. Cells 2022; 11:3454. [PMID: 36359850 PMCID: PMC9657932 DOI: 10.3390/cells11213454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The turn-on mutations of the KRAS gene, coding a small GTPase coupling growth factor signaling, are contributing to nearly 25% of all human cancers, leading to highly malignant tumors with poor outcomes. Targeting of oncogenic KRAS remains a most challenging task in oncology. Recently, the specific G12C mutant KRAS inhibitors have been developed but with a limited clinical outcome because they acquire drug resistance. Alternatively, exploiting a metabolic breach of KRAS-mutant cancer cells related to a glucose-dependent sensitivity to oxidative stress is becoming a promising indirect cancer targeting approach. Here, we discuss the use of a vitamin C (VC) acting in high dose as an oxidative "Trojan horse" agent for KRAS-mutant cancer cells that can be potentiated with another oxidizing drug arsenic trioxide (ATO) to obtain a potent and selective cytotoxic impact. Moreover, we outline the advantages of VC's non-natural enantiomer, D-VC, because of its distinctive pharmacokinetics and lower toxicity. Thus, the D-VC and ATO combination shows a promising path to treat KRAS-mutant cancers in clinical settings.
Collapse
Affiliation(s)
- Agata N. Burska
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | | | - Aruzhan Dildabek
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Medina Khamijan
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ferdinand Molnár
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dos D. Sarbassov
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
150
|
Drugging KRAS: current perspectives and state-of-art review. J Hematol Oncol 2022; 15:152. [PMID: 36284306 PMCID: PMC9597994 DOI: 10.1186/s13045-022-01375-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
After decades of efforts, we have recently made progress into targeting KRAS mutations in several malignancies. Known as the ‘holy grail’ of targeted cancer therapies, KRAS is the most frequently mutated oncogene in human malignancies. Under normal conditions, KRAS shuttles between the GDP-bound ‘off’ state and the GTP-bound ‘on’ state. Mutant KRAS is constitutively activated and leads to persistent downstream signaling and oncogenesis. In 2013, improved understanding of KRAS biology and newer drug designing technologies led to the crucial discovery of a cysteine drug-binding pocket in GDP-bound mutant KRAS G12C protein. Covalent inhibitors that block mutant KRAS G12C were successfully developed and sotorasib was the first KRAS G12C inhibitor to be approved, with several more in the pipeline. Simultaneously, effects of KRAS mutations on tumour microenvironment were also discovered, partly owing to the universal use of immune checkpoint inhibitors. In this review, we discuss the discovery, biology, and function of KRAS in human malignancies. We also discuss the relationship between KRAS mutations and the tumour microenvironment, and therapeutic strategies to target KRAS. Finally, we review the current clinical evidence and ongoing clinical trials of novel agents targeting KRAS and shine light on resistance pathways known so far.
Collapse
|