101
|
Liu D, Zhang M, Xie W, Lan G, Cheng HP, Gong D, Huang C, Lv YC, Yao F, Tan YL, Li L, Zheng XL, Tang CK. MiR-486 regulates cholesterol efflux by targeting HAT1. Biochem Biophys Res Commun 2015; 472:418-24. [PMID: 26654953 DOI: 10.1016/j.bbrc.2015.11.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/27/2015] [Indexed: 12/21/2022]
Abstract
RATIONALE Excessive cholesterol accumulation in macrophages is a major factor of foam cell formation and development of atherosclerosis. Previous studies suggested that miR-486 plays an important role in cardiovascular diseases, but the underlying mechanism is still unknown. OBJECTIVE The purpose of this study is to determine whether miR-486 regulates ATP-binding cassette transporter A1 (ABCA1) mediated cholesterol efflux, and also explore the underlying mechanism. METHODS AND RESULTS Based on bioinformatics analysis and luciferase reporter assay, we transfected miR-486 mimic and miR-486 inhibitor into THP-1 macrophage-derived foam cells, and found that miR-486 directly bound to histone acetyltransferase-1 (HAT1) 3'UTR, and downregulated its mRNA and protein expression. In addition, our studies through transfection with wildtype HAT1 or shHAT1 (short hairpin HAT1) revealed that HAT1 could promote the expression of ABCA1 at both mRNA and protein levels. At the same time, the acetylation levels of the lysines 5 and 12 of histone H4 were upregulated after overexpression with HAT1. Meanwhile, the results of liquid scintillation counter and high performance liquid chromatography (HPLC) showed that miR-486 promoted cholesterol accumulation in THP-1 macrophages. CONCLUSION These data indicated that miR-486 aggravate the cholesterol accumulation in THP-1 cells by targeting HAT1.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Min Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Wei Xie
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Gang Lan
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Hai-Peng Cheng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Duo Gong
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Chong Huang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Yun-Cheng Lv
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Feng Yao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Yu-Lin Tan
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Liang Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary T2N 4N1, Alberta, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
102
|
Fan A, Wang Q, Yuan Y, Cheng J, Chen L, Guo X, Li Q, Chen B, Huang X, Huang Q. Liver X receptor-α and miR-130a-3p regulate expression of sphingosine 1-phosphate receptor 2 in human umbilical vein endothelial cells. Am J Physiol Cell Physiol 2015; 310:C216-26. [PMID: 26669941 DOI: 10.1152/ajpcell.00102.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023]
Abstract
Recent studies have shown that activation of liver X receptors (LXRs) attenuates the development of atherosclerosis, not only by regulating lipid metabolism but also by suppressing inflammatory signaling. Sphingosine 1-phosphate receptor 2 (S1PR2), an important inflammatory gene product, plays a role in the development of various inflammatory diseases. It was proposed that S1PR2 might be regulated by LXR-α. In the present study, the effect of LXR-α on tumor necrosis factor-α (TNF-α)-induced S1PR2 expression in human umbilical vein endothelial cells (HUVECs) was investigated and the underlying mechanism was explored. The results demonstrated that TNF-α led to an increase in S1PR2 expression and triggered a downregulation of LXR-α expression in HUVECs as well. Downregulation of LXR-α with specific small interfering RNA (siRNA) remarkably enhanced the primary as well as TNF-α-induced expression of S1PR2 in HUVECs. Activation of LXR-α by agonist GW3965 inhibited both primary and TNF-α-induced S1PR2 expression. GW3965 also attenuated S1PR2-induced endothelial barrier dysfunction. The data further showed that TNF-α induced a significant decrease in miR-130a-3p expression. Overexpression of miR-130a-3p with mimic product reduced S1PR2 protein expression, and inhibition of miR-130a-3p by specific inhibitor resulted in an increase in S1PR2 protein expression. Furthermore, activation of LXRs with agonist enhanced the expression of miR-130a-3p, and knockdown of LXR-α by siRNA suppressed miR-130a-3p expression. These results suggest that LXR-α might downregulate S1PR2 expression via miR-130a-3p in quiescent HUVECs. Stimulation of TNF-α attenuates the activity of LXR-α and results in enhanced S1PR2 expression.
Collapse
Affiliation(s)
- Aihui Fan
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China; Department of Physiology, Guangdong Medical College, Dongguan, People's Republic of China; and
| | - Qian Wang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| | - Yongjun Yuan
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| | - Jilun Cheng
- Department of Pharmacology, Guangdong Medical College, Dongguan, People's Republic of China
| | - Lixian Chen
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaohua Guo
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| | - Qiang Li
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| | - Bo Chen
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| | - Xuliang Huang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China;
| | - Qiaobing Huang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
103
|
LIU JIA, LIU XUEQING, LIU YING, SUN YANAN, LI SI, LI CHUNMEI, LI JIE, TIAN WEI, SHANG XIAOMING, ZHOU YUNTAO. MicroRNA 28-5p regulates ATP-binding cassette transporter A1 via inhibiting extracellular signal-regulated kinase 2. Mol Med Rep 2015; 13:433-40. [DOI: 10.3892/mmr.2015.4563] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 07/29/2015] [Indexed: 11/05/2022] Open
|
104
|
Marques MR, Fontanari GG, Pimenta DC, Soares-Freitas RM, Arêas JAG. Proteolytic hydrolysis of cowpea proteins is able to release peptides with hypocholesterolemic activity. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.04.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
105
|
Goedeke L, Rotllan N, Canfrán-Duque A, Aranda JF, Ramírez CM, Araldi E, Lin CS, Anderson NN, Wagschal A, de Cabo R, Horton JD, Lasunción MA, Näär AM, Suárez Y, Fernández-Hernando C. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat Med 2015; 21:1280-9. [PMID: 26437365 PMCID: PMC4711995 DOI: 10.1038/nm.3949] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/20/2015] [Indexed: 02/07/2023]
Abstract
The hepatic low-density lipoprotein receptor (LDLR) pathway is essential for clearing circulating LDL-cholesterol (LDL-C). While the transcriptional regulation of LDLR is well-characterized, the post-transcriptional mechanisms which govern LDLR expression are just beginning to emerge. Here, we developed a high-throughput genome-wide screening assay to systematically identify microRNAs (miRNAs) that regulate LDLR activity in human hepatic cells. From this screen, we characterize miR-148a as a negative regulator of LDLR expression and activity, and define a novel SREBP1-mediated pathway by which miR-148a regulates LDL-C uptake. Importantly, inhibition of miR-148a increases hepatic LDLR expression and decreases plasma LDL-C in vivo. We also provide evidence that miR-148a regulates hepatic ABCA1 expression and circulating HDL-C levels. Collectively, these studies uncover miR-148a as an important regulator of hepatic LDL-C clearance through direct regulation of LDLR expression, and demonstrate the therapeutic potential of inhibiting miR-148a to ameliorate the elevated LDL-C/HDL-C ratio, a prominent risk factor for cardiovascular disease.
Collapse
Affiliation(s)
- Leigh Goedeke
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA.,Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Juan F Aranda
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Cristina M Ramírez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Elisa Araldi
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA.,Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Chin-Sheng Lin
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA.,Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Norma N Anderson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alexandre Wagschal
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jay D Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Miguel A Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Madrid, Spain
| | - Anders M Näär
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA.,Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA.,Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
106
|
Abente EJ, Subramanian M, Ramachandran V, Najafi-Shoushtari SH. MicroRNAs in obesity-associated disorders. Arch Biochem Biophys 2015; 589:108-19. [PMID: 26416722 DOI: 10.1016/j.abb.2015.09.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 02/08/2023]
Abstract
The emergence of a worldwide obesity epidemic has dramatically increased the prevalence of insulin resistance and metabolic syndrome, predisposing individuals to a greater risk for the development of non-alcoholic fatty liver disease, type II diabetes and atherosclerotic cardiovascular diseases. Current available pharmacological interventions combined with diet and exercise-based managements are still poorly effective for weight management, likely in part due to an incomplete understanding of regulatory mechanisms and pathways contributing to the systemic metabolic abnormalities under disturbed energy homeostasis. MicroRNAs, small non-coding RNAs that regulate posttranscriptional gene expression, have been increasingly described to influence shifts in metabolic pathways under various obesity-related disease settings. Here we review recent discoveries of the mechanistic role that microRNAs play in regulating metabolic functions in liver and adipose tissues involved in obesity associated disorders, and briefly discusses the potential candidates that are being pursued as viable therapeutic targets.
Collapse
Affiliation(s)
- Eugenio J Abente
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York 10021, NY, USA; Weill Cornell Medical College-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Murugan Subramanian
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York 10021, NY, USA; Weill Cornell Medical College-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Vimal Ramachandran
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York 10021, NY, USA; Weill Cornell Medical College-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - S Hani Najafi-Shoushtari
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York 10021, NY, USA; Weill Cornell Medical College-Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
107
|
Daimiel-Ruiz L, Klett-Mingo M, Konstantinidou V, Micó V, Aranda JF, García B, Martínez-Botas J, Dávalos A, Fernández-Hernando C, Ordovás JM. Dietary lipids modulate the expression of miR-107, a miRNA that regulates the circadian system. Mol Nutr Food Res 2015; 59:1865-78. [DOI: 10.1002/mnfr.201570094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lidia Daimiel-Ruiz
- Nutritional Genomics of Cardiovascular Disease and Obesity; IMDEA-Food Institute, CEI UAM+CSIC; Madrid Spain
| | - Mercedes Klett-Mingo
- Nutritional Genomics of Cardiovascular Disease and Obesity; IMDEA-Food Institute, CEI UAM+CSIC; Madrid Spain
| | - Valentini Konstantinidou
- Nutritional Genomics of Cardiovascular Disease and Obesity; IMDEA-Food Institute, CEI UAM+CSIC; Madrid Spain
| | - Victor Micó
- Nutritional Genomics of Cardiovascular Disease and Obesity; IMDEA-Food Institute, CEI UAM+CSIC; Madrid Spain
| | - Juan Francisco Aranda
- Vascular Biology and Therapeutics Program; Yale University School of Medicine; New Haven CT USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program; Section of Comparative Medicine, Yale University School of Medicine; New Haven CT USA
| | - Belén García
- Nutritional Genomics of Cardiovascular Disease and Obesity; IMDEA-Food Institute, CEI UAM+CSIC; Madrid Spain
| | - Javier Martínez-Botas
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
| | - Alberto Dávalos
- Nutritional Genomics of Cardiovascular Disease and Obesity; IMDEA-Food Institute, CEI UAM+CSIC; Madrid Spain
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program; Yale University School of Medicine; New Haven CT USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program; Section of Comparative Medicine, Yale University School of Medicine; New Haven CT USA
| | - José Maria Ordovás
- Nutritional Genomics of Cardiovascular Disease and Obesity; IMDEA-Food Institute, CEI UAM+CSIC; Madrid Spain
- Nutrition and Genomics Laboratory; JM-USDA Human Nutrition Research Center on Aging at Tufts University; Boston MA USA
| |
Collapse
|
108
|
Sud N, Taher J, Su Q. MicroRNAs and Noncoding RNAs in Hepatic Lipid and Lipoprotein Metabolism: Potential Therapeutic Targets of Metabolic Disorders. Drug Dev Res 2015; 76:318-27. [PMID: 26286650 DOI: 10.1002/ddr.21269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Noncoding RNAs and microRNAs (miRNAs) represent an important class of regulatory molecules that modulate gene expression. The role of miRNAs in diverse cellular processes such as cancer, apoptosis, cell differentiation, cardiac remodeling, and inflammation has been intensively explored. Recent studies further demonstrated the important roles of miRNAs and noncoding RNAs in modulating a broad spectrum of genes involved in lipid synthesis and metabolic pathways. This overview focuses on the role of miRNAs in hepatic lipid and lipoprotein metabolism and their potential as therapeutic targets for metabolic syndrome. This includes recent advances made in the understanding of their target pathways and the clinical development of miRNAs in lipid metabolic disorders.
Collapse
Affiliation(s)
- Neetu Sud
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jennifer Taher
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Qiaozhu Su
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
109
|
DiMarco DM, Fernandez ML. The Regulation of Reverse Cholesterol Transport and Cellular Cholesterol Homeostasis by MicroRNAs. BIOLOGY 2015; 4:494-511. [PMID: 26226008 PMCID: PMC4588146 DOI: 10.3390/biology4030494] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that have the ability to post-transcriptionally regulate gene expression. Hundreds of miRNAs have been identified in humans and they are involved in the regulation of almost every process, including cholesterol transport, metabolism, and maintenance of cholesterol homeostasis. Because of their small size and their ability to very specifically regulate gene expression, miRNAs are attractive targets for the regulation of dyslipidemias and other lipid-related disorders. However, the complex interactions between miRNAs, transcription factors, and gene expression raise great potential for side effects as a result of miRNA overexpression or inhibition. Many dietary components can also target specific miRNAs, altering the expression of downstream genes. Therefore, much more research is necessary to fully understand the role(s) of each miRNA in the body and how they may be impacted by diet and health. The present review aims to summarize the known roles of miRNAs in the regulation of reverse cholesterol transport and the maintenance of cholesterol homeostasis, as well as the potential clinical consequences of their manipulation.
Collapse
Affiliation(s)
- Diana M DiMarco
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
110
|
Bian Y, Qian W, Li H, Zhao RC, Shan WX, Weng X. Pathogenesis of glucocorticoid-induced avascular necrosis: A microarray analysis of gene expression in vitro. Int J Mol Med 2015; 36:678-84. [PMID: 26151338 PMCID: PMC4533777 DOI: 10.3892/ijmm.2015.2273] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/19/2015] [Indexed: 01/07/2023] Open
Abstract
Avascular necrosis of the femoral head (ANFH) occurs following exposure to corticosteroids, and the proliferative capacity of the mesenchymal stem cells (MSCs) belonging to ANFH was reduced. The previous studies indicate that microRNA (miRNA) has an important regulatory role during proliferation and osteogenic differentiation of MSCs. Therefore, MSCs were obtained from healthy adults, and were cultured and osteogenically-induced by different dexamethasone concentrations. The proliferation and osteogenic differentiation capacities were examined through observing cellular morphology, alkaline phosphatase and alizarin red; miRNA expression was investigated using an miRNA gene chip and miRNA of differential expressions were retrieved through a database to analyze its regulatory effect. Dexamethasone at a concentration of 10−7 mol/l induced the proliferation and osteogenic differentiation of MSCs and resulted in evident miRNA expression profile changes. In total, 11 miRNAs were upregulated at 10−7 mol/l while 6 were downregulated, and partial miRNA was identified to participate in the regulation of cell proliferation and cell apoptosis, MSC osteogenic differentiation, lipid metabolism and other processes.
Collapse
Affiliation(s)
- Yanyan Bian
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Wenwei Qian
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Hongling Li
- Institute of Basic Medical Science, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Science, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Wang Xing Shan
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xisheng Weng
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
111
|
Rea IM, Dellet M, Mills KI. Living long and ageing well: is epigenomics the missing link between nature and nurture? Biogerontology 2015; 17:33-54. [PMID: 26133292 DOI: 10.1007/s10522-015-9589-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/22/2015] [Indexed: 12/12/2022]
Abstract
Human longevity is a complex trait and increasingly we understand that both genes and lifestyle interact in the longevity phenotype. Non-genetic factors, including diet, physical activity, health habits, and psychosocial factors contribute approximately 50% of the variability in human lifespan with another 25% explained by genetic differences. Family clusters of nonagenarian and centenarian siblings, who show both exceptional age-span and health-span, are likely to have inherited facilitatory gene groups, but also have nine decades of life experiences and behaviours which have interacted with their genetic profiles. Identification of their shared genes is just one small step in the link from genes to their physical and psychological profiles. Behavioural genomics is beginning to demonstrate links to biological mechanisms through regulation of gene expression, which directs the proteome and influences the personal phenotype. Epigenetics has been considered the missing link between nature and nurture. Although there is much that remains to be discovered, this article will discuss some of genetic and environmental factors which appear important in good quality longevity and link known epigenetic mechanisms to themes identified by nonagenarians themselves related to their longevity. Here we suggest that exceptional 90-year old siblings have adopted a range of behaviours and life-styles which have contributed to their ageing-well-phenotype and which link with important public health messages.
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK. .,School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK.
| | - Margaret Dellet
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK.,Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast , Belfast, Northern Ireland, UK
| | - Ken I Mills
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK.,Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK
| | | |
Collapse
|
112
|
Huang Y, Ren HT, Wang ZB, Sun XH. Identification and validation of novel microrna molecule from the Pelodiscus sinensis by bioinformatics approaches. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1068162015040147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
113
|
miR-28-5p Involved in LXR-ABCA1 Pathway is Increased in the Plasma of Unstable Angina Patients. Heart Lung Circ 2015; 24:724-30. [DOI: 10.1016/j.hlc.2014.12.160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 11/21/2022]
|
114
|
Nguyen MA, Karunakaran D, Rayner KJ. Unlocking the door to new therapies in cardiovascular disease: microRNAs hold the key. Curr Cardiol Rep 2015; 16:539. [PMID: 25303893 DOI: 10.1007/s11886-014-0539-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
MicroRNAs are the most abundant class of regulatory noncoding RNA and are estimated to regulate over half of all human protein-coding genes. The heart is comprised of some of the most complex and highly conserved genetic networks and is thus under tight regulation by post-transcriptional mechanisms. MicroRNAs (miRNAs) have been found to regulate virtually all aspects of cardiac physiology and pathophysiology, from the development of inflammatory atherosclerosis to hypertrophic remodeling in heart failure. Owing to the wide-spread involvement of miRNAs in the development of and protection from many diseases, there has been increasing excitement surrounding their potential as novel therapeutic targets to treat and prevent the worldwide epidemic of cardiovascular disease.
Collapse
Affiliation(s)
- My-Anh Nguyen
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | | | | |
Collapse
|
115
|
[Epigenetics in atherosclerosis]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2015; 28:102-19. [PMID: 26088002 DOI: 10.1016/j.arteri.2015.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 12/13/2022]
Abstract
The association studies based on candidate genes carried on for decades have helped in visualizing the influence of the genetic component in complex diseases such as atherosclerosis, also showing the interaction between different genes and environmental factors. Even with all the knowledge accumulated, there is still some way to go to decipher the individual predisposition to disease, and if we consider the great influence that environmental factors play in the development and progression of atherosclerosis, epigenetics is presented as a key element in trying to expand our knowledge on individual predisposition to atherosclerosis and cardiovascular disease. Epigenetics can be described as the discipline that studies the mechanisms of transcriptional regulation, independent of changes in the sequence of DNA, and mostly induced by environmental factors. This review aims to describe what epigenetics is and how epigenetic mechanisms are involved in atherosclerosis.
Collapse
|
116
|
Zhang N, Lei J, Lei H, Ruan X, Liu Q, Chen Y, Huang W. MicroRNA-101 overexpression by IL-6 and TNF-α inhibits cholesterol efflux by suppressing ATP-binding cassette transporter A1 expression. Exp Cell Res 2015; 336:33-42. [PMID: 26033364 DOI: 10.1016/j.yexcr.2015.05.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/24/2015] [Accepted: 05/27/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND MicroRNAs play key roles in regulating cholesterol homeostasis. Here, we investigated the role of microRNA-101 (miR-101) in regulating ATP-binding cassette transporter A1 (ABCA1) expression and cholesterol efflux under non-inflammatory and inflammatory conditions in human THP-1-derived macrophages and HepG2 hepatoblastoma cells. METHODS The cell lines were transfected with one of four lentiviral vectors: miR-101, miR-101 control, anti-miR-101, or anti-miR-101 control. A luciferase reporter assay was used to examine miR-101 binding to the 3' untranslated region (UTR) of ABCA1. Western blotting was conducted to assess ABCA1 protein expression. Cells were loaded with BODIPY-cholesterol and stained with oil red O to assess cholesterol efflux. RESULTS The luciferase activity assay revealed that wild-type miR-101 binding at site 2 significantly repressed ABCA1 3' UTR activity, suggesting that miR-101 directly targets the ABCA1 mRNA at site 2. In both cell lines, Western blotting revealed that miR-101 expression negatively regulates ABCA1 protein expression and significantly suppresses cholesterol efflux to ApoA1 under both low-density lipoprotein (LDL) and non-LDL conditions, which was confirmed by pronounced lipid inclusions visible by oil red O staining. In HepG2 cells, both IL-6 and TNF-α treatments produced significant miR-101 overexpression; however, in THP-1-derived macrophages, only IL-6 treatment produced significant miR-101 overexpression. Anti-mir-101 transfection under both IL-6 and TNF-α treatment conditions led to ABCA1 upregulation, indicating that miR-101 expression represses ABCA1 expression under inflammatory conditions. CONCLUSIONS miR-101 promotes intracellular cholesterol retention under inflammatory conditions through suppressing ABCA1 expression and suggests that the miR-101-ABCA1 axis may play an intermediary role in the development of NAFLD and vascular atherosclerosis.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - JiaYan Lei
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Lei
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiongzhong Ruan
- Centre for Lipid Research, Key Laboratory of Metabolism on Lipid and Glucose, Chongqing Medical University, Chongqing, China; John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Qing Liu
- Centre for Clinical Research, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Centre for Lipid Research, Key Laboratory of Metabolism on Lipid and Glucose, Chongqing Medical University, Chongqing, China
| | - Wei Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
117
|
Nishi H, Fisher EA. Cholesterol homeostasis regulation by miR-223: basic science mechanisms and translational implications. Circ Res 2015; 116:1112-4. [PMID: 25814681 DOI: 10.1161/circresaha.115.305467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hitoo Nishi
- From the Marc and Ruti Bell Program in Vascular Biology, Center for the Prevention of Cardiovascular Disease, Departments of Medicine (Cardiology) and Cell Biology, New York University School of Medicine
| | - Edward A Fisher
- From the Marc and Ruti Bell Program in Vascular Biology, Center for the Prevention of Cardiovascular Disease, Departments of Medicine (Cardiology) and Cell Biology, New York University School of Medicine.
| |
Collapse
|
118
|
Geurden I, Mennigen J, Plagnes-Juan E, Veron V, Cerezo T, Mazurais D, Zambonino-Infante J, Gatesoupe J, Skiba-Cassy S, Panserat S. High or low dietary carbohydrate:protein ratios during first-feeding affect glucose metabolism and intestinal microbiota in juvenile rainbow trout. ACTA ACUST UNITED AC 2015; 217:3396-406. [PMID: 25274323 DOI: 10.1242/jeb.106062] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Based on the concept of nutritional programming in mammals, we tested whether an acute hyperglucidic-hypoproteic stimulus during first feeding could induce long-term changes in nutrient metabolism in rainbow trout. Trout alevins received during the five first days of exogenous feeding either a hyperglucidic (40% gelatinized starch + 20% glucose) and hypoproteic (20%) diet (VLP diet) or a high-protein (60%) glucose-free diet (HP diet, control). Following a common 105-day period on a commercial diet, both groups were then challenged (65 days) with a carbohydrate-rich diet (28%). Short- and long-term effects of the early stimuli were evaluated in terms of metabolic marker gene expressions and intestinal microbiota as initial gut colonisation is essential for regulating the development of the digestive system. In whole alevins (short term), diet VLP relative to HP rapidly increased gene expressions of glycolytic enzymes, while those involved in gluconeogenesis and amino acid catabolism decreased. However, none of these genes showed persistent molecular adaptation in the liver of challenged juveniles (long term). By contrast, muscle of challenged juveniles subjected previously to the VLP stimulus displayed downregulated expression of markers of glycolysis and glucose transport (not seen in the short term). These fish also had higher plasma glucose (9 h postprandial), suggesting impaired glucose homeostasis induced by the early stimulus. The early stimulus did not modify the expression of the analysed metabolism-related microRNAs, but had short- and long-term effects on intestinal fungi (not bacteria) profiles. In summary, our data show that a short hyperglucidic-hypoproteic stimulus during early life may have a long-term influence on muscle glucose metabolism and intestinal microbiota in trout.
Collapse
Affiliation(s)
- I Geurden
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - J Mennigen
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - E Plagnes-Juan
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - V Veron
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - T Cerezo
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - D Mazurais
- IFREMER, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons (ARN), UMR 6539 LEMAR (Laboratoire des Sciences de l'Environnement Marin), Technopôle Brest-Iroise, BP 10070, 29280 Plouzané, France
| | - J Zambonino-Infante
- IFREMER, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons (ARN), UMR 6539 LEMAR (Laboratoire des Sciences de l'Environnement Marin), Technopôle Brest-Iroise, BP 10070, 29280 Plouzané, France
| | - J Gatesoupe
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France IFREMER, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons (ARN), UMR 6539 LEMAR (Laboratoire des Sciences de l'Environnement Marin), Technopôle Brest-Iroise, BP 10070, 29280 Plouzané, France
| | - S Skiba-Cassy
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - S Panserat
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| |
Collapse
|
119
|
Dávalos A, Chroni A. Antisense oligonucleotides, microRNAs, and antibodies. Handb Exp Pharmacol 2015; 224:649-89. [PMID: 25523006 DOI: 10.1007/978-3-319-09665-0_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The specificity of Watson-Crick base pairing and the development of several chemical modifications to oligonucleotides have enabled the development of novel drug classes for the treatment of different human diseases. This review focuses on promising results of recent preclinical or clinical studies on targeting HDL metabolism and function by antisense oligonucleotides and miRNA-based therapies. Although many hurdles regarding basic mechanism of action, delivery, specificity, and toxicity need to be overcome, promising results from recent clinical trials and recent approval of these types of therapy to treat dyslipidemia suggest that the treatment of HDL dysfunction will benefit from these unique clinical opportunities. Moreover, an overview of monoclonal antibodies (mAbs) developed for the treatment of dyslipidemia and cardiovascular disease and currently being tested in clinical studies is provided. Initial studies have shown that these compounds are generally safe and well tolerated, but ongoing large clinical studies will assess their long-term safety and efficacy.
Collapse
Affiliation(s)
- Alberto Dávalos
- Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, Ctra. de Cantoblanco 8, 28049, Madrid, Spain,
| | | |
Collapse
|
120
|
Abstract
Atherosclerosis is characterised by the accumulation of lipid-laden macrophages in atherosclerotic lesions and occurs preferentially at arterial branching points, which are prone to inflammation during hyperlipidaemic stress. The increased susceptibility at branching sites of arteries is attributable to poor adaptation of arterial endothelial cells to disturbed blood flow. In the past 5 years, several studies have provided mechanistic insights into the regulatory roles of microRNAs (miRNAs) in inflammatory activation, proliferation, and regeneration of endothelial cells during this maladaptive process. The intercellular transfer of vesicle-bound miRNAs contributes to arterial homeostasis, and the combinatorial effect of multiple miRNAs controls the unresolved inflammation orchestrated by macrophages in atherosclerotic lesions. In this Review, we highlight the miRNA-dependent regulation of the endothelial phenotype and the proliferative reserve that occurs in response to altered haemodynamic conditions as a prerequisite for atherogenic inflammation. In particular, we discuss the regulation of transcriptional modules by miRNAs and the protective role of complementary strand pairs, which encompasses remote miRNA signalling. In addition, we review the roles of miRNA tandems and describe the relevance of RNA target selection and competition to the behaviour of lesional macrophages. Elucidating miRNA-mediated regulatory mechanisms can aid the development of novel diagnostic and therapeutic strategies for atherosclerosis.
Collapse
|
121
|
Andreou I, Sun X, Stone PH, Edelman ER, Feinberg MW. miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends Mol Med 2015; 21:307-18. [PMID: 25771097 DOI: 10.1016/j.molmed.2015.02.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 01/28/2015] [Accepted: 02/10/2015] [Indexed: 02/03/2023]
Abstract
Atherosclerosis is a chronic immune-inflammatory disorder that integrates multiple cell types and a diverse set of inflammatory mediators. miRNAs are emerging as important post-transcriptional regulators of gene expression in most, if not all, vertebrate cells, and constitute central players in many physiological and pathological processes. Rapidly accumulating experimental studies reveal their key role in cellular and molecular processes related to the development of atherosclerosis. We review current evidence for the involvement of miRNAs in early atherosclerotic lesion formation and in plaque rupture and erosion. We conclude with a perspective on the clinical relevance, therapeutic opportunities, and future challenges of miRNA biology in understanding the pathogenesis of this complex disease.
Collapse
Affiliation(s)
- Ioannis Andreou
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xinghui Sun
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peter H Stone
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elazer R Edelman
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark W Feinberg
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
122
|
Affiliation(s)
- Iris Zeller
- From the Institute of Molecular Cardiology and Diabetes and Obesity Center, University of Louisville, KY 40202
| | - Sanjay Srivastava
- From the Institute of Molecular Cardiology and Diabetes and Obesity Center, University of Louisville, KY 40202.
| |
Collapse
|
123
|
Daimiel-Ruiz L, Klett-Mingo M, Konstantinidou V, Micó V, Aranda JF, García B, Martínez-Botas J, Dávalos A, Fernández-Hernando C, Ordovás JM. Dietary lipids modulate the expression of miR-107, an miRNA that regulates the circadian system. Mol Nutr Food Res 2015; 59:552-65. [PMID: 25522185 DOI: 10.1002/mnfr.201400616] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/01/2014] [Accepted: 12/07/2014] [Indexed: 02/06/2023]
Abstract
SCOPE The increased prevalence of cardiovascular diseases (CVDs) has been hypothesized to be the result of an increased exposure to a host of atherogenic environmental factors, paramount among them being unhealthy dietary habits. Long-chain n-3 polyunsaturated fatty acids have been shown to have cardio protective effects, partially due to their ability to regulate gene expression. In this regard, increasing attention has been devoted to the role of miRNAs as regulators of multiple metabolic pathways whose deregulation has been associated with CVD risk. METHODS AND RESULTS In this work, we investigated whether miRNA expression was regulated by docosahexanoic acid, conjugated linoleic acid, and cholesterol in Caco-2 cells. The modulated miRNAs, miR-107 was differentially expressed by all treatments and this modulation was independent of its hosting gene, PANK1, possibly through its own promoter, which contains binding sites for metabolically relevant transcription factors. Among the putative target genes of miR-107, we found some genes with key roles in circadian rhythm. Specifically, we demonstrated that binding of miR-107 to the CLOCK gene results in the deregulation of the circadian rhythm of the cells. CONCLUSION Since chronodisruption has been linked to metabolic disorders such as type 2 diabetes, atherosclerosis, obesity, and CVD, our findings suggests that miR-107 could represent a new approach for pharmacological treatment of these diseases.
Collapse
Affiliation(s)
- Lidia Daimiel-Ruiz
- Nutritional Genomics of Cardiovascular Disease and Obesity, IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Tarling EJ, Ahn H, de Aguiar Vallim TQ. The nuclear receptor FXR uncouples the actions of miR-33 from SREBP-2. Arterioscler Thromb Vasc Biol 2015; 35:787-95. [PMID: 25593129 DOI: 10.1161/atvbaha.114.304179] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To determine whether activation of farnesoid X receptor (FXR) alters cellular and plasma cholesterol homeostasis as a result of regulation of Srebp-2 and miR-33. APPROACH AND RESULTS Chromatin immunoprecipitation sequencing data identified an FXR response element within intron 10 of the Srebp-2 gene. Consistent with this observation, treatment of mice with FXR-specific agonists (GSK2324 or GW4064) rapidly increased hepatic levels of Srebp-2 mRNA, precursor sterol response element binding protein 2 (pSREBP-2) protein, and miR-33. Furthermore, miR-33 targets, that include ABCA1 (ATP binding cassette transporter A1), NSF (N-ethylmaleimide-sensitive factor), and CPT1 (carnitine palmitoyltransferase 1), were all reduced in GSK2324-treated mice. In contrast, neither nuclear SREBP-2 protein (nSREBP-2) nor SREBP-2 target genes were induced after FXR activation. The inability to process pSREBP-2 to nSREBP-2 is likely a consequence of the induction of insulin INSIG-2A (induced gene 2A) by FXR agonists. Finally, we show that FXR-dependent induction of both Srebp-2 and miR-33 is ablated in Scap(-/-) mice that lack nuclear SREBP-2. CONCLUSIONS We demonstrate that the activation of FXR uncouples the expression of nuclear SREBP-2 and miR-33, and the regulation of their respective target genes. Further, we conclude that the FXR agonist-dependent increase in miR-33 requires transcription of the Srebp-2 gene.
Collapse
Affiliation(s)
- Elizabeth J Tarling
- From the Division of Cardiology, Departments of Medicine (E.J.T., H.A., T.Q.d.A.V.), and The Molecular Biology Institute (E.J.T.), University of California, Los Angeles
| | - Hannah Ahn
- From the Division of Cardiology, Departments of Medicine (E.J.T., H.A., T.Q.d.A.V.), and The Molecular Biology Institute (E.J.T.), University of California, Los Angeles
| | - Thomas Q de Aguiar Vallim
- From the Division of Cardiology, Departments of Medicine (E.J.T., H.A., T.Q.d.A.V.), and The Molecular Biology Institute (E.J.T.), University of California, Los Angeles.
| |
Collapse
|
125
|
Li L, He M, Zhou L, Miao X, Wu F, Huang S, Dai X, Wang T, Wu T. A solute carrier family 22 member 3 variant rs3088442 G→A associated with coronary heart disease inhibits lipopolysaccharide-induced inflammatory response. J Biol Chem 2015; 290:5328-40. [PMID: 25561729 DOI: 10.1074/jbc.m114.584953] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent genome-wide association studies have identified single-nucleotide polymorphism (SNPs) within the SLC22A3 (solute carrier family 22 member 3) gene associated with coronary heart disease (CHD) in the Caucasian population. We performed molecular analysis to investigate the potential role of SLC22A3 variants in CHD. Our study showed that the common polymorphism rs3088442 G→A, which is localized in the 3' UTR of the SLC22A3 gene, was associated with a decreased risk of CHD in the Chinese population by a case control study. In silico analysis indicated that G→A substitution of SNP rs3088442 created a putative binding site for miR-147 in the SLC22A3 mRNA. By overexpressing miR-147 or inhibiting endogenous miR-147, we demonstrated that SNP rs3088442 G→A recruited miR-147 to inhibit SLC22A3 expression. Moreover, SLC22A3 deficiency significantly decreased LPS-induced monocytic inflammatory response by interrupting NF-κB and MAPK signaling cascades in a histamine-dependent manner. Notably, the expression of SLC22A3(A) was also suppressed by LPS stimulus. Our findings might indicate a negative feedback mechanism against inflammatory response by which SLC22A3 polymorphisms decreased the risk of CHD.
Collapse
Affiliation(s)
- Lu Li
- From the Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei
| | - Meian He
- From the Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei
| | - Li Zhou
- From the Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei
| | - Xiaoping Miao
- From the Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei
| | - Fangqing Wu
- the Department of Cardiology, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, and
| | - Suli Huang
- From the Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, the Key Laboratory of Molecular Biology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, China
| | - Xiayun Dai
- From the Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei
| | - Tian Wang
- From the Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei
| | - Tangchun Wu
- From the Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei,
| |
Collapse
|
126
|
Kardassis D, Gafencu A, Zannis VI, Davalos A. Regulation of HDL genes: transcriptional, posttranscriptional, and posttranslational. Handb Exp Pharmacol 2015; 224:113-179. [PMID: 25522987 DOI: 10.1007/978-3-319-09665-0_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
HDL regulation is exerted at multiple levels including regulation at the level of transcription initiation by transcription factors and signal transduction cascades; regulation at the posttranscriptional level by microRNAs and other noncoding RNAs which bind to the coding or noncoding regions of HDL genes regulating mRNA stability and translation; as well as regulation at the posttranslational level by protein modifications, intracellular trafficking, and degradation. The above mechanisms have drastic effects on several HDL-mediated processes including HDL biogenesis, remodeling, cholesterol efflux and uptake, as well as atheroprotective functions on the cells of the arterial wall. The emphasis is on mechanisms that operate in physiologically relevant tissues such as the liver (which accounts for 80% of the total HDL-C levels in the plasma), the macrophages, the adrenals, and the endothelium. Transcription factors that have a significant impact on HDL regulation such as hormone nuclear receptors and hepatocyte nuclear factors are extensively discussed both in terms of gene promoter recognition and regulation but also in terms of their impact on plasma HDL levels as was revealed by knockout studies. Understanding the different modes of regulation of this complex lipoprotein may provide useful insights for the development of novel HDL-raising therapies that could be used to fight against atherosclerosis which is the underlying cause of coronary heart disease.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Department of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology of Hellas, Heraklion, Crete, 71110, Greece,
| | | | | | | |
Collapse
|
127
|
Grimaldi V, Vietri MT, Schiano C, Picascia A, De Pascale MR, Fiorito C, Casamassimi A, Napoli C. Epigenetic reprogramming in atherosclerosis. Curr Atheroscler Rep 2015; 17:476. [PMID: 25433555 DOI: 10.1007/s11883-014-0476-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent data support the involvement of epigenetic alterations in the pathogenesis of atherosclerosis. The most widely investigated epigenetic mechanism is DNA methylation although also histone code changes occur during the diverse steps of atherosclerosis, such as endothelial cell proliferation, vascular smooth muscle cell (SMC) differentiation, and inflammatory pathway activation. In this review, we focus on the main genes that are epigenetically modified during the atherogenic process, particularly nitric oxide synthase (NOS), estrogen receptors (ERs), collagen type XV alpha 1 (COL15A1), vascular endothelial growth factor receptor (VEGFR), and ten-eleven translocation (TET), which are involved in endothelial dysfunction; gamma interferon (IFN-γ), forkhead box p3 (FOXP3), and tumor necrosis factor-α (TNF-α), associated with atherosclerotic inflammatory process; and p66shc, lectin-like oxLDL receptor (LOX1), and apolipoprotein E (APOE) genes, which are regulated by high cholesterol and homocysteine (Hcy) levels. Furthermore, we also discuss the role of non-coding RNAs (ncRNA) in atherosclerosis. NcRNAs are involved in epigenetic regulation of endothelial function, SMC proliferation, cholesterol synthesis, lipid metabolism, and inflammatory response.
Collapse
Affiliation(s)
- Vincenzo Grimaldi
- U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU), Second University of Naples (SUN), Piazza L. Miraglia 2, 80138, Naples, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Zhang X, Dong H, Tian Y. miRNA Biology in Pathological Processes. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2015. [DOI: 10.1007/978-3-662-47293-4_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
129
|
Novák J, Olejníčková V, Tkáčová N, Santulli G. Mechanistic Role of MicroRNAs in Coupling Lipid Metabolism and Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 887:79-100. [PMID: 26662987 PMCID: PMC4871243 DOI: 10.1007/978-3-319-22380-3_5] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs, miRs) represent a group of powerful and versatile posttranscriptional regulators of gene expression being involved in the fine control of a plethora of physiological and pathological processes. Besides their well-established crucial roles in the regulation of cell cycle, embryogenesis or tumorigenesis, these tiny molecules have also been shown to participate in the regulation of lipid metabolism. In particular, miRs orchestrate cholesterol and fatty acids synthesis, transport, and degradation and low-density and high-density lipoprotein (LDL and HDL) formation. It is thus not surprising that they have also been reported to affect the development and progression of several lipid metabolism-related disorders including liver steatosis and atherosclerosis. Mounting evidence suggests that miRs might represent important "posttranscriptional hubs" of lipid metabolism, which means that one miR usually targets 3'-untranslated regions of various mRNAs that are involved in different steps of one precise metabolic/signaling pathway, e.g., one miR targets mRNAs of enzymes important for cholesterol synthesis, degradation, and transport. Therefore, changes in the levels of one key miR affect various steps of one pathway, which is thereby promoted or inhibited. This makes miRs potent future diagnostic and even therapeutic tools for personalized medicine. Within this chapter, the most prominent microRNAs involved in lipid metabolism, e.g., miR-27a/b, miR-33/33*, miR-122, miR-144, or miR-223, and their intracellular and extracellular functions will be extensively discussed, in particular focusing on their mechanistic role in the pathophysiology of atherosclerosis. Special emphasis will be given on miR-122, the first microRNA currently in clinical trials for the treatment of hepatitis C and on miR-223, the most abundant miR in lipoprotein particles.
Collapse
Affiliation(s)
- Jan Novák
- 2nd Department of Internal Medicine, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A18, Brno, 62500, Czech Republic.
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A20, Brno, 62500, Czech Republic.
| | - Veronika Olejníčková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A20, Brno, 62500, Czech Republic
| | - Nikola Tkáčová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-building A20, Brno, 62500, Czech Republic
| | - Gaetano Santulli
- Columbia University Medical Center, New York Presbyterian Hospital —Manhattan, New York, NY, USA; “Federico II” University Hospital, Naples, Italy
| |
Collapse
|
130
|
Meiler S, Baumer Y, Toulmin E, Seng K, Boisvert WA. MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis. Arterioscler Thromb Vasc Biol 2014; 35:323-31. [PMID: 25524771 DOI: 10.1161/atvbaha.114.304878] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Macrophage foam cell formation is a key feature of atherosclerosis. Recent studies have shown that specific microRNAs (miRs) are regulated in modified low-density lipoprotein-treated macrophages, which can affect the cellular cholesterol homeostasis. Undertaking a genome-wide screen of miRs regulated in primary macrophages by modified low-density lipoprotein, miR-302a emerged as a potential candidate that may play a key role in macrophage cholesterol homeostasis. APPROACH AND RESULTS The objective of this study was to assess the involvement of miR-302a in macrophage lipid homeostasis and if it can influence circulating lipid levels and atherosclerotic development when it is inhibited in a murine atherosclerosis model. We found that transfection of primary macrophages with either miR-302a or anti-miR-302a regulated the expression of ATP-binding cassette (ABC) transporter ABCA1 mRNA and protein. Luciferase reporter assays showed that miR-302a repressed the 3' untranslated regions (UTR) activity of mouse Abca1 by 48% and human ABCA1 by 45%. In addition, transfection of murine macrophages with miR-302a attenuated cholesterol efflux to apolipoprotein A-1 (apoA-1) by 38%. Long-term in vivo administration of anti-miR-302a to mice with low-density lipoprotein receptor deficiency (Ldlr(-/-)) fed an atherogenic diet led to an increase in ABCA1 in the liver and aorta as well as an increase in circulating plasma high-density lipoprotein levels by 35% compared with that of control mice. The anti-miR-302a-treated mice also displayed reduced atherosclerotic plaque size by ≈25% and a more stable plaque morphology with reduced signs of inflammation. CONCLUSIONS These studies identify miR-302a as a novel modulator of cholesterol efflux and a potential therapeutic target for suppressing atherosclerosis.
Collapse
Affiliation(s)
- Svenja Meiler
- From the Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu (S.M., Y.B., E.T., K.S., W.A.B.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (S.M.); and Kazan Federal University, Kazan, Russia (W.A.B.)
| | - Yvonne Baumer
- From the Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu (S.M., Y.B., E.T., K.S., W.A.B.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (S.M.); and Kazan Federal University, Kazan, Russia (W.A.B.)
| | - Emma Toulmin
- From the Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu (S.M., Y.B., E.T., K.S., W.A.B.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (S.M.); and Kazan Federal University, Kazan, Russia (W.A.B.)
| | - Kosal Seng
- From the Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu (S.M., Y.B., E.T., K.S., W.A.B.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (S.M.); and Kazan Federal University, Kazan, Russia (W.A.B.)
| | - William A Boisvert
- From the Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu (S.M., Y.B., E.T., K.S., W.A.B.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (S.M.); and Kazan Federal University, Kazan, Russia (W.A.B.).
| |
Collapse
|
131
|
Williams R. Circulation Research
“In This Issue” Anthology. Circ Res 2014. [DOI: 10.1161/res.0000000000000042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
132
|
Christian P, Su Q. MicroRNA regulation of mitochondrial and ER stress signaling pathways: implications for lipoprotein metabolism in metabolic syndrome. Am J Physiol Endocrinol Metab 2014; 307:E729-37. [PMID: 25184990 DOI: 10.1152/ajpendo.00194.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of metabolic syndrome is closely associated with the deregulation of lipid metabolism. Emerging evidence has demonstrated that microRNAs (miRNAs) are intensively engaged in lipid and lipoprotein metabolism by regulating genes involved in control of intracellular lipid synthesis, mitochondrial fatty acid oxidation, and lipoprotein assembly. Mitochondrial dysfunction induced by altered miRNA expression has been proposed to be a contributing factor in the onset of metabolic diseases, while at the same time, aberrant expression of certain miRNAs is associated with the induction of endoplasmic reticulum (ER) stress induced by nutrient-surplus. These studies position miRNAs as a link between oxidative stress and ER stress, two cellular stress pathways that are deregulated in metabolic disease and are associated with very-low-density lipoprotein (VLDL) overproduction. Dyslipoproteinemia frequently accompanied with metabolic syndrome is initiated largely by the overproduction of VLDL and altered biogenesis of high-density lipoprotein (HDL). In this review, we highlight recent findings on the regulatory impact of miRNAs on the metabolic homeostasis of mitochondria and ER as well as their contribution to the aberrant biogenesis of both VLDL and HDL in the context of metabolic disorders, in an attempt to gain further insights into the molecular mechanisms of dyslipidemia in the metabolic syndrome.
Collapse
Affiliation(s)
- Patricia Christian
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Qiaozhu Su
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
133
|
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid-activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein-coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
134
|
Calway T, Kim GH. Harnessing the Therapeutic Potential of MicroRNAs for Cardiovascular Disease. J Cardiovasc Pharmacol Ther 2014; 20:131-43. [PMID: 25261390 DOI: 10.1177/1074248414552902] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are one of the most common causes of death in humans and are responsible for billions of dollars in health care expenditures. As the molecular basis of cardiac diseases continues to be explored, there remains the hope for identification of more effective therapeutics. MicroRNAs (miRNAs) are recognized as important regulators of numerous biological pathways and stress responses, including those found in cardiovascular diseases. MicroRNA signatures of cardiovascular diseases can provide targets for miRNA adjustment and offer the possibility of changing gene and protein expression to treat certain pathologies. These adjustments can be conferred using advances in oligonucleotide delivery methods, which can target single miRNAs, families of miRNAs, and certain tissue types. In this review, we will discuss the use of miRNAs in vivo and recent advances in their use for cardiovascular disease in mammalian models.
Collapse
Affiliation(s)
- Tyler Calway
- Institute for Cardiovascular Research, University of Chicago, Chicago, IL, USA
| | - Gene H Kim
- Institute for Cardiovascular Research, University of Chicago, Chicago, IL, USA
| |
Collapse
|
135
|
Meaney S. Epigenetic regulation of cholesterol homeostasis. Front Genet 2014; 5:311. [PMID: 25309573 PMCID: PMC4174035 DOI: 10.3389/fgene.2014.00311] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/20/2014] [Indexed: 01/15/2023] Open
Abstract
Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g., the Hedgehog system). A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more “traditional” regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review.
Collapse
Affiliation(s)
- Steve Meaney
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology Dublin, Ireland ; Environmental Sustainability and Health Institute, Dublin Institute of Technology Dublin, Ireland
| |
Collapse
|
136
|
Abstract
MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223), an miRNA previously associated with inflammation, also controls multiple mechanisms associated with cholesterol metabolism. miR-223 promoter activity and mature levels were found to be linked to cellular cholesterol states in hepatoma cells. Moreover, hypercholesterolemia was associated with increased hepatic miR-223 levels in athero-prone mice. miR-223 was found to regulate high-density lipoprotein-cholesterol (HDL-C) uptake, through direct targeting and repression of scavenger receptor BI, and to inhibit cholesterol biosynthesis through the direct repression of sterol enzymes 3-hydroxy-3-methylglutaryl-CoA synthase 1 and methylsterol monooxygenase 1 in humans. Additionally, miR-223 was found to indirectly promote ATP-binding cassette transporter A1 expression (mRNA and protein) through Sp3, thereby enhancing cellular cholesterol efflux. Finally, genetic ablation of miR-223 in mice resulted in increased HDL-C levels and particle size, as well as increased hepatic and plasma total cholesterol levels. In summary, we identified a critical role for miR-223 in systemic cholesterol regulation by coordinated posttranscriptional control of multiple genes in lipoprotein and cholesterol metabolism.
Collapse
|
137
|
Fu H, Tang YY, Ouyang XP, Tang SL, Su H, Li X, Huang LP, He M, Lv YC, He PP, Yao F, Tan YL, Xie W, Zhang M, Wu J, Li Y, Chen K, Liu D, Lan G, Zeng MY, Zheng XL, Tang CK. Interleukin-27 inhibits foam cell formation by promoting macrophage ABCA1 expression through JAK2/STAT3 pathway. Biochem Biophys Res Commun 2014; 452:881-7. [PMID: 25194807 DOI: 10.1016/j.bbrc.2014.08.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/23/2014] [Indexed: 12/24/2022]
Abstract
The purpose of this study is to determine whether IL-27 regulates macrophage ABCA1 expression, foam cell formation, and also explore the underlying mechanisms. Here, we revealed that IL-27 decreased lipid accumulation in THP-1 derived macrophages through markedly enhancing cholesterol efflux and increasing ABCA1 expression at both protein and mRNA levels. Our study further demonstrated that IL-27 increased ABCA1 level via activation of signal transducer and activator of transcription 3 (STAT3). Inhibition of Janus kinase 2, (JAK2)/STAT3 suppressed the stimulatory effects of IL-27 on ABCA1 expression. The present study concluded that IL-27 reduces lipid accumulation of foam cell by upregulating ABCA1 expression via JAK2/STAT3. Therefore, targeting IL-27 may offer a promising strategy to treat atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Hui Fu
- Department of ICU, First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Yan-Yan Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Xin-Ping Ouyang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Shi-Lin Tang
- Department of ICU, First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Hua Su
- Department of ICU, First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Xiaotao Li
- Department of ICU, First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Li-Ping Huang
- Department of ICU, First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Miao He
- Department of ICU, First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Yun-Cheng Lv
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Feng Yao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Yu-Lin Tan
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Wei Xie
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Min Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Jianfeng Wu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Yuan Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Kong Chen
- Department of Cardiovascular Medicine, Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Dan Liu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Gang Lan
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Meng-Ya Zeng
- Department of Cardiovascular Medicine, Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
138
|
Abstract
According to the World Health Organization, cardiovascular disease accounts for approximately 30% of all deaths in the United States, and is the worldwide leading cause of morbidity and mortality. Over the last several years, microRNAs have emerged as critical regulators of physiological homeostasis in multiple organ systems, including the cardiovascular system. The focus of this review is to provide an overview of the current state of knowledge of the molecular mechanisms contributing to the multiple causes of cardiovascular disease with respect to regulation by microRNAs. A major challenge in understanding the roles of microRNAs in the pathophysiology of cardiovascular disease is that cardiovascular disease may arise from perturbations in intracellular signaling in multiple cell types including vascular smooth muscle and endothelial cells, cardiac myocytes and fibroblasts, as well as hepatocytes, pancreatic β-cells, and others. Additionally, perturbations in intracellular signaling cascades may also have profound effects on heterocellular communication via secreted cytokines and growth factors. There has been much progress in recent years to identify the microRNAs that are both dysregulated under pathological conditions, as well as the signaling pathway(s) regulated by an individual microRNA. The goal of this review is to summarize what is currently known about the mechanisms whereby microRNAs maintain cardiovascular homeostasis and to attempt to identify some key unresolved questions that require further study.
Collapse
Affiliation(s)
- Ronald L Neppl
- Boston Children's Hospital, Department of Cardiology ; Harvard Medical School, Department of Pediatrics Boston MA, 02115
| | - Da-Zhi Wang
- Boston Children's Hospital, Department of Cardiology ; Harvard Medical School, Department of Pediatrics Boston MA, 02115
| |
Collapse
|
139
|
Allen RM, Vickers KC. Coenzyme Q10 increases cholesterol efflux and inhibits atherosclerosis through microRNAs. Arterioscler Thromb Vasc Biol 2014; 34:1795-7. [PMID: 25142877 PMCID: PMC4142520 DOI: 10.1161/atvbaha.114.303741] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Researchers have identified a novel microRNA (miRNA) regulatory module that connects a popular vitamin-like supplement, Coenzyme Q10 (CoQ10), to ATP-cassette transport G1 (ABCG1)-mediated macrophage cholesterol efflux. CoQ10 was found to inhibit the expression of c-Jun, and thus the activity of the AP-1 complex, which was determined to be a transcriptional activator of miR-378. miR-378 directly targets ABCG1 and loss of miR-378 suppression resulted in increased cholesterol efflux and atheroprotection in mice. Here we discuss the merits of a recent study by Wang, D et al. , and place their acute observations in the current landscape of miRNA regulation of cholesterol efflux and atherosclerosis.
Collapse
Affiliation(s)
- Ryan M Allen
- From the Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Kasey C Vickers
- From the Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN.
| |
Collapse
|
140
|
Nesan D, Ng DS. Revising the high-density lipoprotein targeting strategies - insights from human and preclinical studies. Crit Rev Clin Lab Sci 2014; 51:321-31. [PMID: 25115413 DOI: 10.3109/10408363.2014.937523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, the high-density lipoprotein (HDL) hypothesis has been challenged. Several completed randomized clinical trials continue to fall short in demonstrating HDL, or at least HDL-cholesterol (HDL-C) levels, as being a consistent target in the prevention of cardiovascular diseases. However, population studies and findings in lipid modifying trials continue to strongly support HDL-C as a superb risk predictor. It is increasingly evident that the complexity of HDL metabolism confounds the use of HDL-C concentration as a unified target. However, important insights continue to emerge from the post hoc analyses of recently completed (i) fibrate-based FIELD and ACCORD trials, including the unexpected beneficial effect of fibrates in microvascular diseases, (ii) the niacin-based AIM-HIGH and HPS2-THRIVE studies, (iii) recombinant HDL-based as well as (iv) the completed CETP inhibitor-based trials. These together with on-going mechanistic studies on novel pathways, which include the unique roles of microRNAs, post-translational remodeling of HDL and novel pathways related to HDL modulators will provide valuable insights to guide how best to refocus and redesign the conceptual framework for selecting HDL-based targets.
Collapse
Affiliation(s)
- Dinushan Nesan
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital , Toronto, Ontario , Canada
| | | |
Collapse
|
141
|
Smolle E, Haybaeck J. Non-coding RNAs and lipid metabolism. Int J Mol Sci 2014; 15:13494-513. [PMID: 25093715 PMCID: PMC4159807 DOI: 10.3390/ijms150813494] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 07/14/2014] [Accepted: 07/28/2014] [Indexed: 12/12/2022] Open
Abstract
A high percentage of the mammalian genome consists of non-coding RNAs (ncRNAs). Among ncRNAs two main subgroups have been identified: long ncRNAs (lncRNAs) and micro RNAs (miRNAs). ncRNAs have been demonstrated to play a role in a vast variety of diseases, since they regulate gene transcription and are involved in post-transcriptional regulation. They have the potential to function as molecular signals or as guides for transcription factors and to regulate epigenetic modifiers. In this literature review we have summarized data on miRNAs and lncRNAs and their involvement in dyslipidaemia, atherosclerosis, insulin resistance and adipogenesis. Outlining certain ncRNAs as disease biomarkers and/or therapeutic targets, and testing them in vivo, will be the next steps in future research.
Collapse
Affiliation(s)
- Elisabeth Smolle
- Institute of Pathology, Medical University Graz, Auenbruggerplatz 25, A-8036 Graz, Austria.
| | - Johannes Haybaeck
- Institute of Pathology, Medical University Graz, Auenbruggerplatz 25, A-8036 Graz, Austria.
| |
Collapse
|
142
|
Van Eck M. ATP-binding cassette transporter A1: key player in cardiovascular and metabolic disease at local and systemic level. Curr Opin Lipidol 2014; 25:297-303. [PMID: 24992457 DOI: 10.1097/mol.0000000000000088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW ATP-binding cassette transporter A1 (ABCA1) facilitates cellular cholesterol efflux to lipid-poor apolipoprotein AI (apoAI) and plays a key role in the formation and function of HDL. This review summarizes the advances and new insights in the role of ABCA1 in cardiovascular and metabolic diseases from studies in genetically engineered mice. RECENT FINDINGS Recent studies show that low HDL associated with liver-specific deletion of ABCA1 does not affect macrophage reverse cholesterol transport or atherosclerosis susceptibility. In the intestine, ABCA1 contributes to the packaging of dietary cholesterol into HDL. Locally in the arterial wall, ABCA1 influences atherosclerosis by acting not only in bone marrow-derived cells but also in endothelial cells and smooth muscle cells. Furthermore, other than its established role in regulating insulin secretion by β-cells, evidence is provided that adipocyte-specific ABCA1 prevents fat storage and the development of impaired glucose tolerance. Moreover, new insights are provided on the post-transcriptional regulation of ABCA1 expression by microRNAs. SUMMARY Recent studies underscore the importance of ABCA1 in the prevention of cardiovascular and metabolic diseases. Furthermore, the discovery of the extensive regulation of ABCA1 expression by microRNAs has unraveled novel therapeutic targets for ABCA1-based strategies for the treatment of these diseases.
Collapse
Affiliation(s)
- Miranda Van Eck
- Division of Biopharmaceutics, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| |
Collapse
|
143
|
Abstract
PURPOSE OF REVIEW The objective of this review article is to summarize the recent findings about the importance of microRNAs (miRNAs) in regulating lipoprotein metabolism. We highlight the recent findings that uncover the importance of miRNAs in controlling plasma LDL-cholesterol (LDL-C) levels. RECENT FINDINGS In 2013, several studies reported a number of miRNAs that regulate plasma LDL-C levels, including miR-30c. In this review article, we discuss those miRNAs that modulate LDL-C levels and lipoprotein secretion. We also discuss the numerous studies that demonstrate the critical role of miRNAs in governing the many facets of HDL metabolism, such as the ATP transporters, ABCA1, and ABCG1, and the scavenger receptor, SRB1. SUMMARY The understanding of how these miRNAs modulate lipoprotein metabolism promises to reveal new therapeutic targets to treat dyslipidemias and related cardiovascular disorders.
Collapse
Affiliation(s)
- Leigh Goedeke
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Departments of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Juan F. Aranda
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
144
|
Price NL, Ramírez CM, Fernández-Hernando C. Relevance of microRNA in metabolic diseases. Crit Rev Clin Lab Sci 2014; 51:305-20. [PMID: 25034902 DOI: 10.3109/10408363.2014.937522] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome is a complex metabolic condition caused by abnormal adipose deposition and function, dyslipidemia and hyperglycemia, which affects >47 million American adults and ∼1 million children. Individuals with the metabolic syndrome have essentially twice the risk for developing cardiovascular disease (CVD) and Type 2 diabetes mellitus (T2D), compared to those without the syndrome. In the search for improved and novel therapeutic strategies, microRNAs (miRNA) have been shown to be interesting targets due to their regulatory role on gene networks controlling different crucial aspects of metabolism, including lipid and glucose homeostasis. More recently, the discovery of circulating miRNAs suggest that miRNAs may be involved in facilitating metabolic crosstalk between organs as well as serving as novel biomarkers of diseases, including T2D and atherosclerosis. These findings highlight the importance of miRNAs for regulating pathways that underlie metabolic diseases, and their potential as therapeutic targets for the development of novel treatments.
Collapse
|
145
|
Sontakke SD, Mohammed BT, McNeilly AS, Donadeu FX. Characterization of microRNAs differentially expressed during bovine follicle development. Reproduction 2014; 148:271-83. [PMID: 24920665 DOI: 10.1530/rep-14-0140] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several different miRNAs have been proposed to regulate ovarian follicle function; however, very limited information exists on the spatiotemporal patterns of miRNA expression during follicle development. The objective of this study was to identify, using microarray, miRNA profiles associated with growth and regression of dominant-size follicles in the bovine monovular ovary and to characterize their spatiotemporal distribution during development. The follicles were collected from abattoir ovaries and classified as small (4-8 mm) or large (12-17 mm); the latter were further classified as healthy or atretic based on estradiol and CYP19A1 levels. Six pools of small follicles and individual large healthy (n=6) and large atretic (n=5) follicles were analyzed using Exiqon's miRCURY LNA microRNA Array 6th gen, followed by qPCR validation. A total of 17 and 57 sequences were differentially expressed (greater than or equal to twofold; P<0.05) between large healthy and each of small and large atretic follicles respectively. Bovine miRNAs confirmed to be upregulated in large healthy follicles relative to small follicles (bta-miR-144, bta-miR-202, bta-miR-451, bta-miR-652, and bta-miR-873) were further characterized. Three of these miRNAs (bta-miR-144, bta-miR-202, and bta-miR-873) were also downregulated in large atretic follicles relative to large healthy follicles. Within the follicle, these miRNAs were predominantly expressed in mural granulosa cells. Further, body-wide screening revealed that bta-miR-202, but not other miRNAs, was expressed exclusively in the gonads. Finally, a total of 1359 predicted targets of the five miRNAs enriched in large healthy follicles were identified, which mapped to signaling pathways involved in follicular cell proliferation, steroidogenesis, prevention of premature luteinization, and oocyte maturation.
Collapse
Affiliation(s)
- Sadanand D Sontakke
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter Bush, Midlothian EH25 9RG, UKThe Queen's Medical Research InstituteMRC Centre for Reproductive Health, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Bushra T Mohammed
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter Bush, Midlothian EH25 9RG, UKThe Queen's Medical Research InstituteMRC Centre for Reproductive Health, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Alan S McNeilly
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter Bush, Midlothian EH25 9RG, UKThe Queen's Medical Research InstituteMRC Centre for Reproductive Health, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - F Xavier Donadeu
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter Bush, Midlothian EH25 9RG, UKThe Queen's Medical Research InstituteMRC Centre for Reproductive Health, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
146
|
Goedeke L, Fernández-Hernando C. MicroRNAs: a connection between cholesterol metabolism and neurodegeneration. Neurobiol Dis 2014; 72 Pt A:48-53. [PMID: 24907491 DOI: 10.1016/j.nbd.2014.05.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/13/2014] [Accepted: 05/27/2014] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of cholesterol metabolism in the brain has been associated with many neurodegenerative disorders such as Alzheimer's disease, Niemann-Pick type C disease, Smith-Lemli-Opitz syndrome, Hungtington's disease and Parkinson's disease. Specifically, genes involved in cholesterol biosynthesis (24-dehydrocholesterol reductase, DHCR24) and cholesterol efflux (ATP-binding cassete transporter, ABCA1, and apolipoprotein E, APOE) have been associated with developing Alzheimer's disease. Indeed, APOE was the first gene variation found to increase the risk of Alzheimer's disease and remains the risk gene with the greatest known impact. Mutations in another cholesterol biosynthetic gene, 7-dehydrocholesterol reductase (DHCR7), cause Smith-Lemli-Opitz syndrome and impairment in cellular cholesterol trafficking caused by mutations in the NPC1 protein results in Niemann-Pick type C disease. Taken together, these findings provide strong evidence that cholesterol metabolism needs to be controlled at very tight levels in the brain. Recent studies have implicated microRNAs (miRNAs) as novel regulators of cholesterol metabolism in several tissues. These small non-coding RNAs regulate gene expression at the post-transcriptional level by either suppressing translation or inducing mRNA degradation. This review article focuses on how cholesterol homeostasis is regulated by miRNAs and their potential implication in several neurodegenerative disorders, such as Alzheimer's disease. Finally, we also discuss how antagonizing miRNA expression could be a potential therapy for treating cholesterol related diseases.
Collapse
Affiliation(s)
- Leigh Goedeke
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
147
|
Canfrán-Duque A, Ramírez CM, Goedeke L, Lin CS, Fernández-Hernando C. microRNAs and HDL life cycle. Cardiovasc Res 2014; 103:414-22. [PMID: 24895349 DOI: 10.1093/cvr/cvu140] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
miRNAs have emerged as important regulators of lipoprotein metabolism. Work over the past few years has demonstrated that miRNAs control the expression of most of the genes associated with high-density lipoprotein (HDL) metabolism, including the ATP transporters, ABCA1 and ABCG1, and the scavenger receptor SRB1. These findings strongly suggest that miRNAs regulate HDL biogenesis, cellular cholesterol efflux, and HDL cholesterol (HDL-C) uptake in the liver, thereby controlling all of the steps of reverse cholesterol transport. Recent work in animal models has demonstrated that manipulating miRNA levels including miR-33 can increase circulating HDL-C. Importantly, antagonizing miR-33 in vivo enhances the regression and reduces the progression of atherosclerosis. These findings support the idea of developing miRNA inhibitors for the treatment of dyslipidaemia and related cardiovascular disorders such as atherosclerosis. This review article focuses on how HDL metabolism is regulated by miRNAs and how antagonizing miRNA expression could be a potential therapy for treating cardiometabolic diseases.
Collapse
Affiliation(s)
- Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, Amistad Research Building, Room 337C, New Haven 06510, CT, USA Integrative Cell Signalling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Cristina M Ramírez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, Amistad Research Building, Room 337C, New Haven 06510, CT, USA Integrative Cell Signalling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Leigh Goedeke
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, Amistad Research Building, Room 337C, New Haven 06510, CT, USA Integrative Cell Signalling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chen-Kung Rd., Neihu 114, Taipei, Taiwan
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, Amistad Research Building, Room 337C, New Haven 06510, CT, USA Integrative Cell Signalling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
148
|
Fu X, Huang X, Li P, Chen W, Xia M. 7-Ketocholesterol inhibits isocitrate dehydrogenase 2 expression and impairs endothelial function via microRNA-144. Free Radic Biol Med 2014; 71:1-15. [PMID: 24642088 DOI: 10.1016/j.freeradbiomed.2014.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/15/2014] [Accepted: 03/10/2014] [Indexed: 11/30/2022]
Abstract
Oxysterol is associated with the induction of endothelial oxidative stress and impaired endothelial function. Mitochondria play a central role in oxidative energy metabolism and the maintenance of proper redox status. The purpose of this study was to determine the effects and mechanisms of 7-ketocholesterol (7-KC) on isocitrate dehydrogenase 2 (IDH2) and its impact on endothelial function in both human aortic endothelial cells (HAECs) and C57BL/6J mice. HAECs treated with 7-KC showed significant reductions of IDH2 mRNA and protein levels and enzyme activity, leading to decreased NADPH concentration and an increased ratio of reduced-to-oxidized glutathione in the mitochondria. 7-KC induced the expression of a specific microRNA, miR-144, which in turn targets and downregulates IDH2. In silico analysis predicted that miR-144 could bind to the 3'-untranslated region of IDH2 mRNA. Overexpression of miR-144 decreased the expression of IDH2 and the levels of NADPH. A complementary finding is that a miR-144 inhibitor increased the mRNA and protein expression levels of IDH2. Furthermore, miR-144 level was elevated in HAECs in response to 7-KC. Anti-Ago1/2 immunoprecipitation coupled with a real-time polymerase chain reaction assay revealed that 7-KC increased the functional targeting of miR-144/IDH2 mRNA in HAECs. Infusion of 7-KC in vivo decreased vascular IDH2 expression and impaired vascular reactivity via miR-144. 7-KC controls miR-144 expression, which in turn decreases IDH2 expression and attenuates NO bioavailability to impair endothelial homeostasis. The newly identified 7-KC-miR-144-IDH2 pathway may contribute to atherosclerosis progression and provides new insight into 7-KC function and microRNA biology in cardiovascular disease.
Collapse
Affiliation(s)
- Xiaodong Fu
- Department of Physiology, School of Basic Science, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiuwei Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China; Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China
| | - Ping Li
- Department of Physiology, School of Basic Science, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Weiyu Chen
- Department of Physiology, School of Basic Science, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China; Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China.
| |
Collapse
|
149
|
Abstract
Cholesterol plays an indispensable role in regulating the properties of cell membranes in mammalian cells. Accumulation of cholesterol and its intermediates, such as oxysterols, lead to activation of the nuclear receptors LXRs (liver X receptors). LXR is an important regulator of cholesterol homoeostasis by controlling its transport and its neo-synthesis. Accumulating evidence indicates that the endogenous ligands of LXRs, oxysterols, play an active and important role in regulating the fate and function of immune cells. Indeed, LXRs are negative regu-lators of innate immunity by interfering with macrophage activation. Recent advances have highlighted a controversial role for LXR in cancer. In this issue of the Biochemical Journal, Wang et al. propose that LXR agonist directly controls IFN-γ (interferon-γ) expression, which limits tumour growth. This protective effect mediated by LXR appears to be dependent on IFN-γ. Thus, despite accumulation of endogenous ligand of LXR in cancer, activation of LXR seems protective. This novel evidence provides a new perspective for targeting LXR in cancer, although controversial studies can be also found in the literature. In order to avoid side effects associated with LXR agonists, molecular and cellular studies are required to decipher this unexpected action of LXRs.
Collapse
|
150
|
Tomkin GH, Owens D. Investigational therapies for the treatment of atherosclerosis. Expert Opin Investig Drugs 2014; 23:1411-21. [DOI: 10.1517/13543784.2014.922950] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|