101
|
Meerman M, Driessen R, van Engeland NCA, Bergsma I, Steenhuijsen JLG, Kozono D, Aikawa E, Hjortnaes J, Bouten CVC. Radiation Induces Valvular Interstitial Cell Calcific Response in an in vitro Model of Calcific Aortic Valve Disease. Front Cardiovasc Med 2021; 8:687885. [PMID: 34527708 PMCID: PMC8435633 DOI: 10.3389/fcvm.2021.687885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Mediastinal ionizing radiotherapy is associated with an increased risk of valvular disease, which demonstrates pathological hallmarks similar to calcific aortic valve disease (CAVD). Despite advances in radiotherapy techniques, the prevalence of comorbidities such as radiation-associated valvular disease is still increasing due to improved survival of patients receiving radiotherapy. However, the mechanisms of radiation-associated valvular disease are largely unknown. CAVD is considered to be an actively regulated disease process, mainly controlled by valvular interstitial cells (VICs). We hypothesize that radiation exposure catalyzes the calcific response of VICs and, therefore, contributes to the development of radiation-associated valvular disease. Methods and Results: To delineate the relationship between radiation and VIC behavior (morphology, calcification, and matrix turnover), two different in vitro models were established: (1) VICs were cultured two-dimensional (2D) on coverslips in control medium (CM) or osteogenic medium (OM) and irradiated with 0, 2, 4, 8, or 16 Gray (Gy); and (2) three-dimensional (3D) hydrogel system was designed, loaded with VICs and exposed to 0, 4, or 16 Gy of radiation. In both models, a dose-dependent decrease in cell viability and proliferation was observed in CM and OM. Radiation exposure caused myofibroblast-like morphological changes and differentiation of VICs, as characterized by decreased αSMA expression. Calcification, as defined by increased alkaline phosphatase activity, was mostly present in the 2D irradiated VICs exposed to 4 Gy, while after exposure to higher doses VICs acquired a unique giant fibroblast-like cell morphology. Finally, matrix turnover was significantly affected by radiation exposure in the 3D irradiated VICs, as shown by decreased collagen staining and increased MMP-2 and MMP-9 activity. Conclusions: The presented work demonstrates that radiation exposure enhances the calcific response in VICs, a hallmark of CAVD. In addition, high radiation exposure induces differentiation of VICs into a terminally differentiated giant-cell fibroblast. Further studies are essential to elucidate the underlying mechanisms of these radiation-induced valvular changes.
Collapse
Affiliation(s)
- Manon Meerman
- Department of Cardiothoracic Surgery, Heart and Lung Division, Leiden University Medical Center, Leiden, Netherlands
| | - Rob Driessen
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology (STEM), Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nicole C A van Engeland
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology (STEM), Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands.,Åbo Akademi University, Faculty of Science and Engineering, Molecular Biosciences, Turku, Finland
| | - Irith Bergsma
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology (STEM), Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | | | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jesper Hjortnaes
- Department of Cardiothoracic Surgery, Heart and Lung Division, Leiden University Medical Center, Leiden, Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology (STEM), Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
102
|
Oikonomou EK, Siddique M, Antoniades C. Artificial intelligence in medical imaging: A radiomic guide to precision phenotyping of cardiovascular disease. Cardiovasc Res 2021; 116:2040-2054. [PMID: 32090243 DOI: 10.1093/cvr/cvaa021] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/29/2019] [Accepted: 01/23/2020] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Rapid technological advances in non-invasive imaging, coupled with the availability of large data sets and the expansion of computational models and power, have revolutionized the role of imaging in medicine. Non-invasive imaging is the pillar of modern cardiovascular diagnostics, with modalities such as cardiac computed tomography (CT) now recognized as first-line options for cardiovascular risk stratification and the assessment of stable or even unstable patients. To date, cardiovascular imaging has lagged behind other fields, such as oncology, in the clinical translational of artificial intelligence (AI)-based approaches. We hereby review the current status of AI in non-invasive cardiovascular imaging, using cardiac CT as a running example of how novel machine learning (ML)-based radiomic approaches can improve clinical care. The integration of ML, deep learning, and radiomic methods has revealed direct links between tissue imaging phenotyping and tissue biology, with important clinical implications. More specifically, we discuss the current evidence, strengths, limitations, and future directions for AI in cardiac imaging and CT, as well as lessons that can be learned from other areas. Finally, we propose a scientific framework in order to ensure the clinical and scientific validity of future studies in this novel, yet highly promising field. Still in its infancy, AI-based cardiovascular imaging has a lot to offer to both the patients and their doctors as it catalyzes the transition towards a more precise phenotyping of cardiovascular disease.
Collapse
Affiliation(s)
- Evangelos K Oikonomou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.,Department of Internal Medicine, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, USA
| | - Musib Siddique
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.,Caristo Diagnostics Ltd., Oxford, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.,Oxford Centre of Research Excellence, British Heart Foundation, Oxford, UK.,Oxford Biomedical Research Centre, National Institute of Health Research, Oxford, UK
| |
Collapse
|
103
|
Karpouzas GA, Ormseth SR, Hernandez E, Budoff MJ. The impact of statins on coronary atherosclerosis progression and long-term cardiovascular disease risk in rheumatoid arthritis. Rheumatology (Oxford) 2021; 61:1857-1866. [PMID: 34373923 DOI: 10.1093/rheumatology/keab642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To evaluate whether statins lower cardiovascular disease (CVD) risk in rheumatoid arthritis (RA) and if tentative benefits are related to changes in coronary plaque burden or composition. METHODS In an observational cohort study, 150 patients without CVD underwent coronary atherosclerosis evaluation (total, noncalcified, partially and fully calcified plaque) with computed tomography angiography. Prespecified cardiovascular events including cardiac death, myocardial infarction, unstable angina, revascularization, stroke, claudication, and heart failure were prospectively recorded. Change in plaque burden and composition was re-assessed in 102 patients within 6.9±0.3 years. RESULTS Time varying statin therapy, modeled using inverse probability treatment and censoring weights, did not significantly attenuate CVD risk in RA overall (adjusted- OR = 0.39 [95%CI=0.15-1.07], p = 0.067). However, statins associated with lower CVD risk in patients with baseline CRP>0.5mg/dL (adjusted-OR=0.09 [95%CI=0.03-0.30], p < 0.001) but not in those with CRP<0.5mg/dL (p-interaction=0.023), after controlling for Framingham-CVD score and time-varying bDMARD use. In patients treated with statin >50% of follow-up time, CRP did not associate with new plaque formation (adjusted-OR=0.42 [95%CI=0.09-1.94]), in contrast to statin-naïve (adjusted-OR=1.89 [95%CI=1.41-2.54]) and statin-treated <50% time (adjusted-OR=1.41 [95%CI=1.03-1.95], p-interaction=0.029). Statin therapy >50% follow-up time predicted dissipation (adjusted-OR=5.84 [95%CI=1.29-26.55]) and calcification of prevalent noncalcified lesions (adjusted-OR=4.16 [95%CI=1.11-15.54]), as well as new calcified plaque formation in segments without baseline plaque (adjusted-OR=2.84 [95%CI=1.09-7.41]). CONCLUSION Statin therapy associated with lower long-term cardiovascular risk in RA patients with higher inflammation. Moreover, statin therapy modified the impact of inflammation on new coronary plaque formation and predicted both regression and calcification of prevalent noncalcified lesions.
Collapse
Affiliation(s)
- George A Karpouzas
- Division of Rheumatology, Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | - Sarah R Ormseth
- Division of Rheumatology, Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | - Elizabeth Hernandez
- Division of Rheumatology, Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| | - Matthew J Budoff
- Division of Cardiology, Harbor-UCLA Medical Center and Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| |
Collapse
|
104
|
Bing R, Dweck MR. Aortic valve and coronary 18F-sodium fluoride activity: a common cause? J Nucl Cardiol 2021; 28:1532-1535. [PMID: 31562577 DOI: 10.1007/s12350-019-01901-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Rong Bing
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
105
|
Nakamoto Y, Kitagawa T, Sasaki K, Tatsugami F, Awai K, Hirokawa Y, Kihara Y. Clinical implications of 18F-sodium fluoride uptake in subclinical aortic valve calcification: Its relation to coronary atherosclerosis and its predictive value. J Nucl Cardiol 2021; 28:1522-1531. [PMID: 31482532 DOI: 10.1007/s12350-019-01879-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/21/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Uptake of 18F-sodium fluoride (18F-NaF) on positron emission tomography (PET) reflects active calcification. Application of this technique in the early phase of aortic valve calcification (AVC) is of clinical interest. We investigated clinical implications of 18F-NaF uptake in subclinical AVC evaluated simultaneously with coronary atherosclerosis, and the utility of 18F-NaF uptake in predicting AVC progression. METHODS We studied 25 patients with subclinical AVC and coronary plaques detected on computed tomography (CT) who underwent 18F-NaF PET/CT. AVC score, volume, mean density, and the presence of high-risk coronary plaque were evaluated on CT in each patient. Focal 18F-NaF uptake in AVC and in coronary plaques was quantified with the maximum tissue-to-background ratio (TBRmax). RESULTS There were positive correlations between AVC TBRmax (A-TBRmax) and AVC parameters on CT. The 14 patients with high-risk coronary plaque had significantly higher A-TBRmax than those without such plaque (1.60 ± 0.18 vs 1.42 ± 0.13, respectively; P = 0.012). A-TBRmax positively correlated with maximum TBRmax of coronary plaque per patient (r = 0.55, P = 0.0043). In the 11 patients who underwent follow-up CT scan, A-TBRmax positively correlated with subsequent increase in AVC score (r = 0.74, P = 0.0091). CONCLUSION Our 18F-NaF PET- and CT-based data indicate relationships between calcification activity in subclinical AVC and characteristics of coronary atherosclerosis. 18F-NaF PET may provide new information regarding molecular conditions and future progression of subclinical AVC.
Collapse
Affiliation(s)
- Yumiko Nakamoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Toshiro Kitagawa
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Ko Sasaki
- Hiroshima Heiwa Clinic, Hiroshima, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuo Awai
- Department of Diagnostic Radiology, Hiroshima University Hospital, Hiroshima, Japan
| | | | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
106
|
Mixing Matrix-corrected Whole-body Pharmacokinetic Modeling Using Longitudinal Micro-computed Tomography and Fluorescence-mediated Tomography. Mol Imaging Biol 2021; 23:963-974. [PMID: 34231106 PMCID: PMC8578052 DOI: 10.1007/s11307-021-01623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/30/2021] [Accepted: 06/06/2021] [Indexed: 10/29/2022]
Abstract
PURPOSE Pharmacokinetic modeling can be applied to quantify the kinetics of fluorescently labeled compounds using longitudinal micro-computed tomography and fluorescence-mediated tomography (μCT-FMT). However, fluorescence blurring from neighboring organs or tissues and the vasculature within tissues impede the accuracy in the estimation of kinetic parameters. Contributions of elimination and retention activities of fluorescent probes inside the kidneys and liver can be hard to distinguish by a kinetic model. This study proposes a deconvolution approach using a mixing matrix to model fluorescence contributions to improve whole-body pharmacokinetic modeling. PROCEDURES In the kinetic model, a mixing matrix was applied to unmix the fluorescence blurring from neighboring tissues and blood vessels and unmix the fluorescence contributions of elimination and retention in the kidney and liver compartments. Accordingly, the kinetic parameters of the hepatobiliary and renal elimination routes and five major retention sites (the kidneys, liver, bone, spleen, and lung) were investigated in simulations and in an in vivo study. In the latter, the pharmacokinetics of four fluorescently labeled compounds (indocyanine green (ICG), HITC-iodide-microbubbles (MB), Cy7-nanogels (NG), and OsteoSense 750 EX (OS)) were evaluated in BALB/c nude mice. RESULTS In the simulations, the corrected modeling resulted in lower relative errors and stronger linear relationships (slopes close to 1) between the estimated and simulated parameters, compared to the uncorrected modeling. For the in vivo study, MB and NG showed significantly higher hepatic retention rates (P<0.05 and P<0.05, respectively), while OS had smaller renal and hepatic retention rates (P<0.01 and P<0.01, respectively). Additionally, the bone retention rate of OS was significantly higher (P<0.01). CONCLUSIONS The mixing matrix correction improves pharmacokinetic modeling and thus enables a more accurate assessment of the biodistribution of fluorescently labeled pharmaceuticals by μCT-FMT.
Collapse
|
107
|
Huang J, Pu Y, Zhang H, Xie L, He L, Zhang CL, Cheng CK, Huo Y, Wan S, Chen S, Huang Y, Lau CW, Wang L, Xia Y, Huang Y, Luo JY. KLF2 Mediates the Suppressive Effect of Laminar Flow on Vascular Calcification by Inhibiting Endothelial BMP/SMAD1/5 Signaling. Circ Res 2021; 129:e87-e100. [PMID: 34157851 DOI: 10.1161/circresaha.120.318690] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Juan Huang
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, China (J.H.)
| | - Yujie Pu
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| | - Hongsong Zhang
- Department of Cardiology, Nanjing First Hospital (H.Z., S.C.), Nanjing Medical University, China
| | - Liping Xie
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (L.X.), Nanjing Medical University, China
| | - Lei He
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| | - Cheng-Lin Zhang
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| | - Chak Kwong Cheng
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| | - Yingsong Huo
- Department of Radiology, Nanjing First Hospital (Y.H.), Nanjing Medical University, China
| | - Song Wan
- Department of Surgery (S.W.), Chinese University of Hong Kong, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital (H.Z., S.C.), Nanjing Medical University, China
| | - Yuhong Huang
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| | - Chi Wai Lau
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| | - Li Wang
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| | - Yin Xia
- School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| | - Yu Huang
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| | - Jiang-Yun Luo
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China.,School of Biomedical Sciences (J.H., Y.P., L.H., C.-L.Z., C.K.C., Yuhong Huang, C.W.L., L.W., Y.X., Yu Huang, J.-Y.L.), Chinese University of Hong Kong, China
| |
Collapse
|
108
|
Engineering the Composition of Microfibers to Enhance the Remodeling of a Cell-Free Vascular Graft. NANOMATERIALS 2021; 11:nano11061613. [PMID: 34202961 PMCID: PMC8235366 DOI: 10.3390/nano11061613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
The remodeling of vascular grafts is critical for blood vessel regeneration. However, most scaffold materials have limited cell infiltration. In this study, we designed and fabricated a scaffold that incorporates a fast-degrading polymer polydioxanone (PDO) into the microfibrous structure by means of electrospinning technology. Blending PDO with base polymer decreases the density of electrospun microfibers yet did not compromise the mechanical and structural properties of the scaffold, and effectively enhanced cell infiltration. We then used this technique to fabricate a tubular scaffold with heparin conjugated to the surface to suppress thrombosis, and the construct was implanted into the carotid artery as a vascular graft in animal studies. This graft significantly promoted cell infiltration, and the biochemical cues such as immobilized stromal cell-derived factor-1α further enhanced cell recruitment and the long-term patency of the grafts. This work provides an approach to optimize the microfeatures of vascular grafts, and will have broad applications in scaffold design and fabrication for regenerative engineering.
Collapse
|
109
|
Mohindra P, Desai TA. Micro- and nanoscale biophysical cues for cardiovascular disease therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 34:102365. [PMID: 33571682 PMCID: PMC8217090 DOI: 10.1016/j.nano.2021.102365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 11/19/2022]
Abstract
After cardiovascular injury, numerous pathological processes adversely impact the homeostatic function of cardiomyocyte, macrophage, fibroblast, endothelial cell, and vascular smooth muscle cell populations. Subsequent malfunctioning of these cells may further contribute to cardiovascular disease onset and progression. By modulating cellular responses after injury, it is possible to create local environments that promote wound healing and tissue repair mechanisms. The extracellular matrix continuously provides these mechanosensitive cell types with physical cues spanning the micro- and nanoscale to influence behaviors such as adhesion, morphology, and phenotype. It is therefore becoming increasingly compelling to harness these cell-substrate interactions to elicit more native cell behaviors that impede cardiovascular disease progression and enhance regenerative potential. This review discusses recent in vitro and preclinical work that have demonstrated the therapeutic implications of micro- and nanoscale biophysical cues on cell types adversely affected in cardiovascular diseases - cardiomyocytes, macrophages, fibroblasts, endothelial cells, and vascular smooth muscle cells.
Collapse
Affiliation(s)
- Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA.
| |
Collapse
|
110
|
Bengs S, Haider A, Warnock GI, Fiechter M, Pargaetzi Y, Rampidis G, Etter D, Wijnen WJ, Portmann A, Osto E, Treyer V, Benz DC, Meisel A, Fuchs TA, Gräni C, Buechel RR, Kaufmann PA, Pazhenkottil AP, Gebhard C. Quantification of perivascular inflammation does not provide incremental prognostic value over myocardial perfusion imaging and calcium scoring. Eur J Nucl Med Mol Imaging 2021; 48:1806-1812. [PMID: 33200300 PMCID: PMC8113311 DOI: 10.1007/s00259-020-05106-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/01/2020] [Indexed: 01/07/2023]
Abstract
AIMS Perivascular fat attenuation index (FAI) has emerged as a novel coronary computed tomography angiography (CCTA)-based biomarker predicting cardiovascular outcomes by capturing early coronary inflammation. It is currently unknown whether FAI adds prognostic value beyond that provided by single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) and CCTA findings including coronary artery calcium scoring (CACS). METHODS AND RESULTS A total of 492 patients (mean age 62.5 ± 10.8 years) underwent clinically indicated multimodality CCTA and electrocardiography (ECG)-gated 99mTc-tetrofosmin SPECT-MPI between May 2005 and December 2008 at our institution, and follow-up data on major adverse cardiovascular events (MACE) was obtained for 314 patients. FAI was obtained from CCTA images and was measured around the right coronary artery (FAI[RCA]), the left anterior descending artery (FAI[LAD]), and the left main coronary artery (FAI[LMCA]). During a median follow-up of 2.7 years, FAI[RCA] > - 70.1 was associated with an increased rate of MACE (log rank p = 0.049), while no such association was seen for FAI[LAD] or FAI[LMCA] (p = NS). A multivariate Cox regression model accounting for cardiovascular risk factors, CCTA and SPECT-MPI findings identified FAI[RCA] as an independent predictor of MACE (HR 2.733, 95% CI: 1.220-6.123, p = 0.015). However, FAI[RCA] was no longer a significant predictor of MACE after adding CACS (p = 0.279). A first-order interaction term consisting of sex and FAI[RCA] was significant in both models (HR 2.119, 95% CI: 1.218-3.686, p = 0.008; and HR 2.071, 95% CI: 1.111-3.861, p = 0.022). CONCLUSION FAI does not add incremental prognostic value beyond multimodality MPI/CCTA findings including CACS. The diagnostic value of FAI[RCA] is significantly biased by sex.
Collapse
Affiliation(s)
- Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Achi Haider
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Geoffrey I Warnock
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Michael Fiechter
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
- Swiss Paraplegic Center, 6207, Nottwil, Switzerland
| | - Yves Pargaetzi
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Georgios Rampidis
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Dominik Etter
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Winandus J Wijnen
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Elena Osto
- Institute of Clinical Chemistry, University of Zurich, 8091, Zurich, Switzerland
- University Heart Center, University Hospital Zurich, 8006, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952, Schlieren, Switzerland
| | - Dominik C Benz
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Alexander Meisel
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Tobias A Fuchs
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Christoph Gräni
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Aju P Pazhenkottil
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
- University Heart Center, University Hospital Zurich, 8006, Zurich, Switzerland
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland.
| |
Collapse
|
111
|
Liu X, Chen A, Liang Q, Yang X, Dong Q, Fu M, Wang S, Li Y, Ye Y, Lan Z, Chen Y, Ou J, Yang P, Lu L, Yan J. Spermidine inhibits vascular calcification in chronic kidney disease through modulation of SIRT1 signaling pathway. Aging Cell 2021; 20:e13377. [PMID: 33969611 PMCID: PMC8208796 DOI: 10.1111/acel.13377] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/31/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022] Open
Abstract
Vascular calcification is a common pathologic condition in patients with chronic kidney disease (CKD) and aging individuals. It has been established that vascular calcification is a gene‐regulated biological process resembling osteogenesis involving osteogenic differentiation. However, there is no efficient treatment available for vascular calcification so far. The natural polyamine spermidine has been demonstrated to increase life span and protect against cardiovascular disease. It is unclear whether spermidine supplementation inhibits vascular calcification in CKD. Alizarin red staining and quantification of calcium content showed that spermidine treatment markedly reduced mineral deposition in both rat and human vascular smooth muscle cells (VSMCs) under osteogenic conditions. Additionally, western blot analysis revealed that spermidine treatment inhibited osteogenic differentiation of rat and human VSMCs. Moreover, spermidine treatment remarkably attenuated calcification of rat and human arterial rings ex vivo and aortic calcification in rats with CKD. Furthermore, treatment with spermidine induced the upregulation of Sirtuin 1 (SIRT1) in VSMCs and resulted in the downregulation of endoplasmic reticulum (ER) stress signaling components, such as activating transcription factor 4 (ATF4) and CCAAT/enhancer‐binding protein homologous protein (CHOP). Both pharmacological inhibition of SIRT1 by SIRT1 inhibitor EX527 and knockdown of SIRT1 by siRNA markedly blocked the inhibitory effect of spermidine on VSMC calcification. Consistently, EX527 abrogated the inhibitory effect of spermidine on aortic calcification in CKD rats. We for the first time demonstrate that spermidine alleviates vascular calcification in CKD by upregulating SIRT1 and inhibiting ER stress, and this may develop a promising therapeutic treatment to ameliorate vascular calcification in CKD.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - An Chen
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - Qingchun Liang
- Department of Anesthesiology The Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Xiulin Yang
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - Qianqian Dong
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - Mingwei Fu
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - Siyi Wang
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - Yining Li
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - Yuanzhi Ye
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - Zirong Lan
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - Yanting Chen
- Department of Pathophysiolgy Zhongshan School of Medicine Sun Yat‐Sen University Guangzhou China
| | - Jing‐Song Ou
- Division of Cardiac Surgery The First Affiliated Hospital Sun Yat‐Sen University Guangzhou China
| | - Pingzhen Yang
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| | - Lihe Lu
- Department of Pathophysiolgy Zhongshan School of Medicine Sun Yat‐Sen University Guangzhou China
| | - Jianyun Yan
- Department of Cardiology Laboratory of Heart Center Heart Center Zhujiang Hospital Southern Medical University Guangzhou China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease Guangzhou China
- Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure Guangzhou China
| |
Collapse
|
112
|
Sahu T, Ratre YK, Chauhan S, Bhaskar L, Nair MP, Verma HK. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol 2021; 63:102487. [DOI: 10.1016/j.jddst.2021.102487] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
113
|
Herrmann J, Gummi MR, Xia M, van der Giet M, Tölle M, Schuchardt M. Vascular Calcification in Rodent Models-Keeping Track with an Extented Method Assortment. BIOLOGY 2021; 10:biology10060459. [PMID: 34067504 PMCID: PMC8224561 DOI: 10.3390/biology10060459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Arterial vessel diseases are the leading cause of death in the elderly and their accelerated pathogenesis is responsible for premature death in patients with chronic renal failure. Since no functioning therapy concepts exist so far, the identification of the main signaling pathways is of current research interest. To develop therapeutic concepts, different experimental rodent models are needed, which should be subject to the 3R principle of Russel and Burch: “Replace, Reduce and Refine”. This review aims to summarize the current available experimental rodent models for studying vascular calcification and their quantification methods. Abstract Vascular calcification is a multifaceted disease and a significant contributor to cardiovascular morbidity and mortality. The calcification deposits in the vessel wall can vary in size and localization. Various pathophysiological pathways may be involved in disease progression. With respect to the calcification diversity, a great number of research models and detection methods have been established in basic research, relying mostly on rodent models. The aim of this review is to provide an overview of the currently available rodent models and quantification methods for vascular calcification, emphasizing animal burden and assessing prospects to use available methods in a way to address the 3R principles of Russel and Burch: “Replace, Reduce and Refine”.
Collapse
Affiliation(s)
- Jaqueline Herrmann
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (J.H.); (M.R.G.); (M.X.); (M.v.d.G.); (M.T.)
- Department of Chemistry, Biochemistry and Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Manasa Reddy Gummi
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (J.H.); (M.R.G.); (M.X.); (M.v.d.G.); (M.T.)
| | - Mengdi Xia
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (J.H.); (M.R.G.); (M.X.); (M.v.d.G.); (M.T.)
| | - Markus van der Giet
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (J.H.); (M.R.G.); (M.X.); (M.v.d.G.); (M.T.)
| | - Markus Tölle
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (J.H.); (M.R.G.); (M.X.); (M.v.d.G.); (M.T.)
| | - Mirjam Schuchardt
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (J.H.); (M.R.G.); (M.X.); (M.v.d.G.); (M.T.)
- Correspondence: ; Tel.: +49-30-450-514-690
| |
Collapse
|
114
|
Seime T, Akbulut AC, Liljeqvist ML, Siika A, Jin H, Winski G, van Gorp RH, Karlöf E, Lengquist M, Buckler AJ, Kronqvist M, Waring OJ, Lindeman JHN, Biessen EAL, Maegdefessel L, Razuvaev A, Schurgers LJ, Hedin U, Matic L. Proteoglycan 4 Modulates Osteogenic Smooth Muscle Cell Differentiation during Vascular Remodeling and Intimal Calcification. Cells 2021; 10:1276. [PMID: 34063989 PMCID: PMC8224064 DOI: 10.3390/cells10061276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 01/02/2023] Open
Abstract
Calcification is a prominent feature of late-stage atherosclerosis, but the mechanisms driving this process are unclear. Using a biobank of carotid endarterectomies, we recently showed that Proteoglycan 4 (PRG4) is a key molecular signature of calcified plaques, expressed in smooth muscle cell (SMC) rich regions. Here, we aimed to unravel the PRG4 role in vascular remodeling and intimal calcification. PRG4 expression in human carotid endarterectomies correlated with calcification assessed by preoperative computed tomographies. PRG4 localized to SMCs in early intimal thickening, while in advanced lesions it was found in the extracellular matrix, surrounding macro-calcifications. In experimental models, Prg4 was upregulated in SMCs from partially ligated ApoE-/- mice and rat carotid intimal hyperplasia, correlating with osteogenic markers and TGFb1. Furthermore, PRG4 was enriched in cells positive for chondrogenic marker SOX9 and around plaque calcifications in ApoE-/- mice on warfarin. In vitro, PRG4 was induced in SMCs by IFNg, TGFb1 and calcifying medium, while SMC markers were repressed under calcifying conditions. Silencing experiments showed that PRG4 expression was driven by transcription factors SMAD3 and SOX9. Functionally, the addition of recombinant human PRG4 increased ectopic SMC calcification, while arresting cell migration and proliferation. Mechanistically, it suppressed endogenous PRG4, SMAD3 and SOX9, and restored SMC markers' expression. PRG4 modulates SMC function and osteogenic phenotype during intimal remodeling and macro-calcification in response to TGFb1 signaling, SMAD3 and SOX9 activation. The effects of PRG4 on SMC phenotype and calcification suggest its role in atherosclerotic plaque stability, warranting further investigations.
Collapse
Affiliation(s)
- Till Seime
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Asim Cengiz Akbulut
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.A.); (R.H.v.G.); (L.J.S.)
| | - Moritz Lindquist Liljeqvist
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Antti Siika
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Hong Jin
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
- Department of Medicine, Karolinska Institutet, 17164 Stockholm, Sweden; (G.W.); (L.M.)
| | - Greg Winski
- Department of Medicine, Karolinska Institutet, 17164 Stockholm, Sweden; (G.W.); (L.M.)
| | - Rick H. van Gorp
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.A.); (R.H.v.G.); (L.J.S.)
| | - Eva Karlöf
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Mariette Lengquist
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Andrew J. Buckler
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Malin Kronqvist
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Olivia J. Waring
- Department of Pathology, CARIM, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (O.J.W.); (E.A.L.B.)
| | - Jan H. N. Lindeman
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Erik A. L. Biessen
- Department of Pathology, CARIM, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands; (O.J.W.); (E.A.L.B.)
| | - Lars Maegdefessel
- Department of Medicine, Karolinska Institutet, 17164 Stockholm, Sweden; (G.W.); (L.M.)
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München, 81679 Munich, Germany
| | - Anton Razuvaev
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Leon J. Schurgers
- Department of Biochemistry, CARIM, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.A.); (R.H.v.G.); (L.J.S.)
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, 52062 Aachen, Germany
| | - Ulf Hedin
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| | - Ljubica Matic
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17164 Stockholm, Sweden; (T.S.); (M.L.L.); (A.S.); (H.J.); (E.K.); (M.L.); (A.J.B.); (M.K.); (A.R.); (U.H.)
| |
Collapse
|
115
|
Kutikhin AG, Feenstra L, Kostyunin AE, Yuzhalin AE, Hillebrands JL, Krenning G. Calciprotein Particles: Balancing Mineral Homeostasis and Vascular Pathology. Arterioscler Thromb Vasc Biol 2021; 41:1607-1624. [PMID: 33691479 PMCID: PMC8057528 DOI: 10.1161/atvbaha.120.315697] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anton G. Kutikhin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Lian Feenstra
- Department of Pathology and Medical Biology, Division of Pathology (L.F., J.-L.H.), University Medical Center Groningen, University of Groningen, the Netherlands
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology (L.F., G.K.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Alexander E. Kostyunin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Arseniy E. Yuzhalin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology (L.F., J.-L.H.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology (L.F., G.K.), University Medical Center Groningen, University of Groningen, the Netherlands
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726 GN, Groningen, the Netherlands (G.K.)
| |
Collapse
|
116
|
Si-Mohamed SA, Sigovan M, Hsu JC, Tatard-Leitman V, Chalabreysse L, Naha PC, Garrivier T, Dessouky R, Carnaru M, Boussel L, Cormode DP, Douek PC. In Vivo Molecular K-Edge Imaging of Atherosclerotic Plaque Using Photon-counting CT. Radiology 2021; 300:98-107. [PMID: 33944628 PMCID: PMC8217298 DOI: 10.1148/radiol.2021203968] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background Macrophage burden is a major factor in the risk of atherosclerotic plaque rupture, and its evaluation remains challenging with molecular noninvasive imaging approaches. Photon-counting CT (PCCT) with k-edge imaging aims to allow for the specific detection of macrophages using gold nanoparticles. Purpose To perform k-edge imaging in combination with gold nanoparticles to detect and quantify the macrophage burden within the atherosclerotic aortas of rabbits. Materials and Methods Atherosclerotic and control New Zealand white rabbits were imaged before and at several time points up to 2 days after intravenous injection of gold nanoparticles (3.5 mL/kg, 65 mg gold per milliliter). Aortic CT angiography was performed at the end of the follow-up using an intravenous injection of an iodinated contrast material. Gold k-edge and conventional CT images were reconstructed for qualitative and quantitative assessment of the macrophage burden. PCCT imaging results were compared with findings at histologic examination, quantitative histomorphometry, transmission electron microscopy, and quantitative inductively coupled plasma optical emission spectrometry. Pearson correlations between the macrophage area measured in immunostained sections and the concentration of gold and attenuation measured in the corresponding PCCT sections were calculated. Results Seven rabbits with atherosclerosis and four control rabbits without atherosclerosis were analyzed. In atherosclerotic rabbits, calcifications were observed along the aortic wall before injection. At 2 days after injection of gold nanoparticles, only gold k-edge images allowed for the distinction of plaque enhancement within calcifications and for lumen enhancement during angiography. A good correlation was observed between the gold concentration measured within the wall and the macrophage area in 35 plaques (five per rabbit) (r = 0.82; 95% CI: 0.67, 0.91; P < .001), which was higher than that observed on conventional CT images (r = 0.41; 95% CI: 0.09, 0.65; P = .01). Transmission electron microscopy and inductively coupled plasma optical emission spectrometry analyses confirmed the gold k-edge imaging findings. Conclusion Photon-counting CT with gold nanoparticles allowed for the noninvasive evaluation of both molecular and anatomic information in vivo in rabbits with atherosclerotic plaques. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Leiner in this issue.
Collapse
Affiliation(s)
- Salim A Si-Mohamed
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Monica Sigovan
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Jessica C Hsu
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Valérie Tatard-Leitman
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Lara Chalabreysse
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Pratap C Naha
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Thibaut Garrivier
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Riham Dessouky
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Miruna Carnaru
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Loic Boussel
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - David P Cormode
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| | - Philippe C Douek
- From the University of Lyon, National Institute of Applied Sciences of Lyon, University Claude Bernard Lyon 1, Jean Monnet University-Saint Etienne, French National Centre for Scientific Research, Institut national de la santé et de la recherche médicale, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé Unité mixte de recherche 5220, U1206, F-69621, Lyon, France (S.A.S.M., M.S., V.T.L., R.D., L.B., P.C.D.); Departments of Radiology (S.A.S.M., T.G., L.B., P.C.D.) and Pathology (L.C.), Hospices Civils de Lyon, Lyon, France; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (J.C.H., P.C.N., D.P.C.); Department of Radiology, Faculty of Medicine, Zagazig University, Egypt (R.D.); and Department of Rheumatology, Allergy, and Immunology, Yale University, New Haven, Conn (M.C.)
| |
Collapse
|
117
|
van Gorp RH, Dijkgraaf I, Bröker V, Bauwens M, Leenders P, Jennen D, Dweck MR, Bucerius J, Briedé JJ, van Ryn J, Brandenburg V, Mottaghy F, Spronk HMH, Reutelingsperger CP, Schurgers LJ. Off-target effects of oral anticoagulants - vascular effects of vitamin K antagonist and non-vitamin K antagonist oral anticoagulant dabigatran etexilate. J Thromb Haemost 2021; 19:1348-1363. [PMID: 33687782 PMCID: PMC8252511 DOI: 10.1111/jth.15289] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Vitamin K antagonists (VKA) and non-vitamin K oral antagonist anticoagulants (NOAC) are used in the clinic to reduce risk of thrombosis. However, they also exhibit vascular off-target effects. The aim of this study is to compare VKA and NOAC on atherosclerosis progression and calcification in an experimental setup. MATERIAL AND METHODS Female Apoe-/- mice (age 12 weeks) were fed Western-type diet as control or supplemented with dabigatran etexilate or warfarin for 6 or 18 weeks. Vascular calcification was measured in whole aortic arches using µCT and [18 F]-NaF. Atherosclerotic burden was assessed by (immuno)histochemistry. Additionally, in vitro effects of warfarin, thrombin, and dabigatran on primary vascular smooth muscle cells (VSMC) were assessed. RESULTS Short-term treatment with warfarin promoted formation of atherosclerotic lesions with a pro-inflammatory phenotype, and more rapid plaque progression compared with control and dabigatran. In contrast, dabigatran significantly reduced plaque progression compared with control. Long-term warfarin treatment significantly increased both presence and activity of plaque calcification compared with control and dabigatran. Calcification induced by warfarin treatment was accompanied by increased presence of uncarboxylated matrix Gla protein. In vitro, both warfarin and thrombin significantly increased VSMC oxidative stress and extracellular vesicle release, which was prevented by dabigatran. CONCLUSION Warfarin aggravates atherosclerotic disease activity, increasing plaque inflammation, active calcification, and plaque progression. Dabigatran lacks undesired vascular side effects and reveals beneficial effects on atherosclerosis progression and calcification. The choice of anticoagulation impacts atherosclerotic disease by differential off target effect. Future clinical studies should test whether this beneficial effect also applies to patients.
Collapse
Affiliation(s)
- Rick H. van Gorp
- Department of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
- Nattopharma ASAOsloNorway
| | - Ingrid Dijkgraaf
- Department of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Vanessa Bröker
- Department of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Matthias Bauwens
- Department of Radiology and Nuclear MedicineMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands
| | - Peter Leenders
- Department of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Danyel Jennen
- Department of ToxicogenomicsGROW School of Oncology and Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - Marc R. Dweck
- Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - Jan Bucerius
- Department of Radiology and Nuclear MedicineMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands
| | - Jacco J. Briedé
- Department of ToxicogenomicsGROW School of Oncology and Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - Joanne van Ryn
- Department of Cardiometabolic ResearchBoehringer IngelheimBiberachGermany
| | - Vincent Brandenburg
- Klinik Für Kardiologie und NephrologieRhein‐Maas Klinikum WürselenWürselenGermany
| | - Felix Mottaghy
- Department of Radiology and Nuclear MedicineMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands
- Department of Nuclear MedicineUniversity Hospital RWTH Aachen UniversityAachenGermany
| | - Henri M. H. Spronk
- Department of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Chris P. Reutelingsperger
- Department of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Leon J. Schurgers
- Department of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
- Institute of Experimental Medicine and Systems BiologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
118
|
Lorenzatti AJ. Anti-inflammatory Treatment and Cardiovascular Outcomes: Results of Clinical Trials. Eur Cardiol 2021; 16:e15. [PMID: 33976710 PMCID: PMC8086421 DOI: 10.15420/ecr.2020.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/20/2021] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disorder of the vasculature where cholesterol accumulates in the arterial wall stimulating infiltration of immune cells. This plays an important role in plaque formation, as well as complications caused by its build up. Pro-inflammatory cytokines and chemokines are implicated throughout the progression of the disease and different therapies that aim to resolve this chronic inflammation, reduce cardiovascular (CV) events and improve clinical outcomes have been tested. The results from the pivotal CANTOS trial show that targeting the pro-inflammatory cytokine IL-1β successfully reduces the incidence of secondary CV events. This review briefly assesses the role of inflammation in atherosclerosis, providing a picture of the multiple players involved in the process and offering a perspective on targeting inflammation to prevent atherosclerotic CV events, as well as focusing on the results of the latest Phase III clinical trials.
Collapse
|
119
|
Hu CT, Shao YD, Liu YZ, Xiao X, Cheng ZB, Qu SL, Huang L, Zhang C. Oxidative stress in vascular calcification. Clin Chim Acta 2021; 519:101-110. [PMID: 33887264 DOI: 10.1016/j.cca.2021.04.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022]
Abstract
Vascular calcification (VC), which is closely associated with significant mortality in cardiovascular disease, chronic kidney disease (CKD), and/or diabetes mellitus, is characterized by abnormal deposits of hydroxyapatite minerals in the arterial wall. The impact of oxidative stress (OS) on the onset and progression of VC has not been well described. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, myeloperoxidase (MPO), nitric oxide synthases (NOSs), superoxide dismutase (SOD) and paraoxonases (PONs) are relevant factors that influence the production of reactive oxygen species (ROS). Furthermore, excess ROS-induced OS has emerged as a critical mediator promoting VC through several mechanisms, including phosphate balance, differentiation of vascular smooth muscle cells (VSMCs), inflammation, DNA damage, and extracellular matrix remodeling. Because OS is a significant regulator of VC, antioxidants may be considered as novel treatment options.
Collapse
Affiliation(s)
- Chu-Ting Hu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Medical Laboratory, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yi-Duo Shao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Stomatology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yi-Zhang Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xuan Xiao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Zhe-Bin Cheng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Stomatology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
120
|
Castro SA, Muser D, Lee H, Hancin EC, Borja AJ, Acosta O, Werner TJ, Thomassen A, Constantinescu C, Høilund-Carlsen PF, Alavi A. Carotid artery molecular calcification assessed by [ 18F]fluoride PET/CT: correlation with cardiovascular and thromboembolic risk factors. Eur Radiol 2021; 31:8050-8059. [PMID: 33866386 DOI: 10.1007/s00330-021-07917-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVES There is growing evidence that sodium fluoride ([18F]fluoride) PET/CT can detect active arterial calcifications at the molecular stage. We investigated the relationship between arterial mineralization in the left common carotid artery (LCC) assessed by [18F]fluoride PET/CT and cardiovascular/thromboembolic risk. METHODS In total, 128 subjects (mean age 48 ± 14 years, 51% males) were included. [18F]fluoride uptake in the LCC was quantitatively assessed by measuring the blood-pool-corrected maximum standardized uptake value (SUVmax) on each axial slice. Average SUVmax (aSUVmax) was calculated over all slices and correlated with 10-year risk of cardiovascular events estimated by the Framingham model, CHA2DS2-VASc score, and level of physical activity (LPA). RESULTS The aSUVmax was significantly higher in patients with increased risk of cardiovascular (one-way ANOVA, p < 0.01) and thromboembolic (one-way ANOVA, p < 0.01) events, and it was significantly lower in patients with greater LPA (one-way ANOVA, p = 0.02). On multivariable linear regression analysis, age ( = 0.07, 95% CI 0.05 - 0.10, p < 0.01), body mass index ( = 0.02, 95% CI 0.01 - 0.03, p < 0.01), arterial hypertension ( = 0.15, 95% CI 0.08 - 0.23, p < 0.01), and LPA ( = -0.10, 95% CI -0.19 to -0.02, p=0.02) were independent associations of aSUVmax. CONCLUSIONS Carotid [18F]fluoride uptake is significantly increased in patients with unfavorable cardiovascular and thromboembolic risk profiles. [18F]fluoride PET/CT could become a valuable tool to estimate subjects' risk of future cardiovascular events although still major trials are needed to further evaluate the associations found in this study and their potential clinical usefulness. KEY POINTS • Sodium fluoride ([18F]fluoride) PET/CT imaging identifies patients with early-stage atherosclerosis. • Carotid [18F]fluoride uptake is significantly higher in patients with increased risk of cardiovascular and thromboembolic events and inversely correlated with the level of physical activity. • Early detection of arterial mineralization at a molecular level could help guide clinical decisions in the context of cardiovascular risk assessment.
Collapse
Affiliation(s)
- Simon A Castro
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.,Cardiac Electrophysiology, Cardiovascular Medicine Division, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Quinnipiac University, St Vincent's Medical Center, Bridgeport, CT, USA
| | - Daniele Muser
- Cardiac Electrophysiology, Cardiovascular Medicine Division, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Hwan Lee
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.,Quinnipiac University, St Vincent's Medical Center, Bridgeport, CT, USA
| | - Emily C Hancin
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.,Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Austin J Borja
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Oswaldo Acosta
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Anders Thomassen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Caius Constantinescu
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.
| |
Collapse
|
121
|
Karpouzas GA, Bui VL, Ronda N, Hollan I, Ormseth SR. Biologics and atherosclerotic cardiovascular risk in rheumatoid arthritis: a review of evidence and mechanistic insights. Expert Rev Clin Immunol 2021; 17:355-374. [PMID: 33673792 DOI: 10.1080/1744666x.2021.1899809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Cardiovascular disease is a leading comorbidity in rheumatoid arthritis. Timely introduction of biologic therapies in a treat-to-target approach has optimized disease-related outcomes and attenuated accrual of comorbidities, including cardiovascular risk.Areas covered: A literature search in MEDLINE (via PubMed) was performed between January 2009 and November 2020. This manuscript explores recent developments in atherosclerotic cardiovascular risk in RA compared with non-RA individuals; it synopsizes differences in vascular function and inflammation, prevalence, burden, vulnerability, and progression of atherosclerotic plaque and their underlying cellular and molecular mechanisms. Finally, it reviews the recent literature on cardioprotective benefits of biologics and draws mechanistic links with inhibition of new plaque formation, stabilization of high-risk lesions and improvement in endothelial function, arterial stiffness, lipid metabolism, and traditional cardiac risk factors.Expert opinion: Increasing evidence points to a solid cardioprotective influence of earlier, longer, and ongoing use of biologic treatments in RA. Nevertheless, the precise mechanistic effects of plaque progression and remodeling, vascular stiffness, endothelial dysfunction, lipid metabolism, and traditional cardiac risk factors are less rigorously characterized.
Collapse
Affiliation(s)
- George A Karpouzas
- Division of Rheumatology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Viet L Bui
- Division of Rheumatology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Ivana Hollan
- The Norwegian University of Science and Technology, Gjøvik, Norway.,Beitostølen Sport and Health Centre, Beitostølen, Norway
| | - Sarah R Ormseth
- Division of Rheumatology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
122
|
Cardiac Computed Tomography Radiomics for the Non-Invasive Assessment of Coronary Inflammation. Cells 2021; 10:cells10040879. [PMID: 33921502 PMCID: PMC8069372 DOI: 10.3390/cells10040879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022] Open
Abstract
Radiomics, via the extraction of quantitative information from conventional radiologic images, can identify imperceptible imaging biomarkers that can advance the characterization of coronary plaques and the surrounding adipose tissue. Such an approach can unravel the underlying pathophysiology of atherosclerosis which has the potential to aid diagnostic, prognostic and, therapeutic decision making. Several studies have demonstrated that radiomic analysis can characterize coronary atherosclerotic plaques with a level of accuracy comparable, if not superior, to current conventional qualitative and quantitative image analysis. While there are many milestones still to be reached before radiomics can be integrated into current clinical practice, such techniques hold great promise for improving the imaging phenotyping of coronary artery disease.
Collapse
|
123
|
Xian JZ, Lu M, Fong F, Qiao R, Patel NR, Abeydeera D, Iriana S, Demer LL, Tintut Y. Statin Effects on Vascular Calcification: Microarchitectural Changes in Aortic Calcium Deposits in Aged Hyperlipidemic Mice. Arterioscler Thromb Vasc Biol 2021; 41:e185-e192. [PMID: 33472400 PMCID: PMC7990692 DOI: 10.1161/atvbaha.120.315737] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Joshua Zhaojun Xian
- Department of Medicine (J.Z.X., M.L., F.F., R.Q., N.R.P., D.A., S.I., L.L.D., Y.T.), University of California, Los Angeles
| | - Mimi Lu
- Department of Medicine (J.Z.X., M.L., F.F., R.Q., N.R.P., D.A., S.I., L.L.D., Y.T.), University of California, Los Angeles
| | - Felicia Fong
- Department of Medicine (J.Z.X., M.L., F.F., R.Q., N.R.P., D.A., S.I., L.L.D., Y.T.), University of California, Los Angeles
| | - Rong Qiao
- Department of Medicine (J.Z.X., M.L., F.F., R.Q., N.R.P., D.A., S.I., L.L.D., Y.T.), University of California, Los Angeles
| | - Nikhil Rajesh Patel
- Department of Medicine (J.Z.X., M.L., F.F., R.Q., N.R.P., D.A., S.I., L.L.D., Y.T.), University of California, Los Angeles
| | - Dishan Abeydeera
- Department of Medicine (J.Z.X., M.L., F.F., R.Q., N.R.P., D.A., S.I., L.L.D., Y.T.), University of California, Los Angeles
| | - Sidney Iriana
- Department of Medicine (J.Z.X., M.L., F.F., R.Q., N.R.P., D.A., S.I., L.L.D., Y.T.), University of California, Los Angeles
| | - Linda L Demer
- Department of Medicine (J.Z.X., M.L., F.F., R.Q., N.R.P., D.A., S.I., L.L.D., Y.T.), University of California, Los Angeles
- Department of Bioengineering (L.L.D.), University of California, Los Angeles
- Department of Physiology (L.L.D., Y.T.), University of California, Los Angeles
| | - Yin Tintut
- Department of Medicine (J.Z.X., M.L., F.F., R.Q., N.R.P., D.A., S.I., L.L.D., Y.T.), University of California, Los Angeles
- Department of Physiology (L.L.D., Y.T.), University of California, Los Angeles
- Department of Orthopaedic Surgery (Y.T.), University of California, Los Angeles
| |
Collapse
|
124
|
Nanoanalytical analysis of bisphosphonate-driven alterations of microcalcifications using a 3D hydrogel system and in vivo mouse model. Proc Natl Acad Sci U S A 2021; 118:1811725118. [PMID: 33795519 PMCID: PMC8040669 DOI: 10.1073/pnas.1811725118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The most common cause of heart attacks or strokes is the rupture of thin fibrous caps that cover vulnerable plaques within blood vessels. Small mineral deposits, called microcalcifications, increase local tissue stress and thereby increase the risk of cap rupture. We report here the use of a three-dimensional collagen hydrogel model of fibrous cap calcification and a complementary mouse model of plaque formation to determine whether bisphosphonate (BiP) therapy, commonly used to treat bone loss, alters microcalcification formation. The results showed that BiP treatment resulted in time-dependent changes in microcalcification size and mineral morphology, dependent on whether BiP treatment was initiated before or after the expected onset of microcalcification formation. Vascular calcification predicts atherosclerotic plaque rupture and cardiovascular events. Retrospective studies of women taking bisphosphonates (BiPs), a proposed therapy for vascular calcification, showed that BiPs paradoxically increased morbidity in patients with prior acute cardiovascular events but decreased mortality in event-free patients. Calcifying extracellular vesicles (EVs), released by cells within atherosclerotic plaques, aggregate and nucleate calcification. We hypothesized that BiPs block EV aggregation and modify existing mineral growth, potentially altering microcalcification morphology and the risk of plaque rupture. Three-dimensional (3D) collagen hydrogels incubated with calcifying EVs were used to mimic fibrous cap calcification in vitro, while an ApoE−/− mouse was used as a model of atherosclerosis in vivo. EV aggregation and formation of stress-inducing microcalcifications was imaged via scanning electron microscopy (SEM) and atomic force microscopy (AFM). In both models, BiP (ibandronate) treatment resulted in time-dependent changes in microcalcification size and mineral morphology, dependent on whether BiP treatment was initiated before or after the expected onset of microcalcification formation. Following BiP treatment at any time, microcalcifications formed in vitro were predicted to have an associated threefold decrease in fibrous cap tensile stress compared to untreated controls, estimated using finite element analysis (FEA). These findings support our hypothesis that BiPs alter EV-driven calcification. The study also confirmed that our 3D hydrogel is a viable platform to study EV-mediated mineral nucleation and evaluate potential therapies for cardiovascular calcification.
Collapse
|
125
|
Gonzalez-Galofre ZN, Alcaide-Corral CJ, Tavares AAS. Effects of administration route on uptake kinetics of 18F-sodium fluoride positron emission tomography in mice. Sci Rep 2021; 11:5512. [PMID: 33750874 PMCID: PMC7970902 DOI: 10.1038/s41598-021-85073-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/19/2021] [Indexed: 12/01/2022] Open
Abstract
18F-sodium fluoride (18F-NaF) is a positron emission tomography (PET) radiotracer widely used in skeletal imaging and has also been proposed as a biomarker of active calcification in atherosclerosis. Like most PET radiotracers, 18F-NaF is typically administered intravenously. However in small animal research intravenous administrations can be challenging, because partial paravenous injection is common due to the small calibre of the superficial tail veins and repeat administrations via tail veins can lead to tissue injury therefore limiting the total number of longitudinal scanning points. In this paper, the feasibility of using intra-peritoneal route of injection of 8F-NaF to study calcification in mice was studied by looking at the kinetic and uptake profiles of normal soft tissues and bones versus intra-vascular injections. Dynamic PET was performed for 60 min on nineteen isoflurane-anesthetized male Swiss mice after femoral artery (n = 7), femoral vein (n = 6) or intraperitoneal (n = 6) injection of 8F-NaF. PET data were reconstructed and the standardised uptake value (SUV) and standardised uptake value ratio (SUVr) were estimated from the last three frames between 45- and 60-min and 8F-NaF uptake constant (Ki) was derived by Patlak graphical analysis. In soft tissue, the 18F-NaF perfusion phase changes depending on the type on injection route, whereas the uptake phase is similar regardless of the administration route. In bone tissue SUV, SUVr and Ki measures were not significantly different between the three administration routes. Comparison between PET and CT measures showed that bones that had the highest CT density displayed the lowest PET activity and conversely, bones where CT units were low had high 8F-NaF uptake. Intraperitoneal injection is a valid and practical alternative to the intra-vascular injections in small-animal 18F-NaF PET imaging providing equivalent pharmacokinetic data. CT outcome measures report on sites of stablished calcification whereas PET measures sites of higher complexity and active calcification.
Collapse
Affiliation(s)
- Zaniah N Gonzalez-Galofre
- British Heart Foundation/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute (QMRI), Little France Campus, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.,Edinburgh Imaging, University of Edinburgh, Little France Campus, Edinburgh, EH16 4TJ, UK
| | - Carlos J Alcaide-Corral
- British Heart Foundation/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute (QMRI), Little France Campus, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.,Edinburgh Imaging, University of Edinburgh, Little France Campus, Edinburgh, EH16 4TJ, UK
| | - Adriana A S Tavares
- British Heart Foundation/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute (QMRI), Little France Campus, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK. .,Edinburgh Imaging, University of Edinburgh, Little France Campus, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
126
|
Canet-Soulas E, Bessueille L, Mechtouff L, Magne D. The Elusive Origin of Atherosclerotic Plaque Calcification. Front Cell Dev Biol 2021; 9:622736. [PMID: 33768090 PMCID: PMC7985066 DOI: 10.3389/fcell.2021.622736] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
It has been known for decades or even centuries that arteries calcify as they age. Vascular calcification probably affects all adults, since virtually all have atherosclerotic plaques: an accumulation of lipids, inflammatory cells, necrotic debris, and calcium phosphate crystals. A high vascular calcium score is associated with a high cardiovascular mortality risk, and relatively recent data suggest that even microcalcifications that form in early plaques may destabilize plaques and trigger a cardiovascular event. If the cellular and molecular mechanisms of plaque calcification have been relatively well characterized in mice, human plaques appear to calcify through different mechanisms that remain obscure. In this context, we will first review articles reporting the location and features of early calcifications in human plaques and then review the articles that explored the mechanisms though which human and mouse plaques calcify.
Collapse
Affiliation(s)
- Emmanuelle Canet-Soulas
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, University of Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurence Bessueille
- ICBMS, CNRS, INSA Lyon, CPE, University of Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Laura Mechtouff
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, University of Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Stroke Department, Hospices Civils de Lyon, Lyon, France
| | - David Magne
- ICBMS, CNRS, INSA Lyon, CPE, University of Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
127
|
Could aortic arch calcification help in detection of hypertensive retinopathy? Blood Press Monit 2021; 26:118-123. [PMID: 33234808 DOI: 10.1097/mbp.0000000000000498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Hypertension-induced end-organ damage is one of the important determinants of morbidity and mortality in patients with hypertension. All types of hypertension-induced end-organ damages start with vascular damage. Vascular calcification is a marker of vascular damage and aortic arch calcification (AAC) is one of the easily identifiable types of vascular calcification. We hypothesized that AAC predicts retinopathy in hypertensive patients. METHODS Consecutive hypertensive patients without diabetes mellitus were included. Chest radiography in the posterior-anterior was used to assess the presence of AAC. All patients underwent ophthalmologic examination for retinopathy. RESULTS We included 495 hypertensive patients in this study. Of these, 306 (62%) had hypertensive retinopathy. Patients with hypertensive retinopathy had significantly higher prevalence of AAC as compared to the patients without hypertensive retinopathy (88% vs. 22%, P < 0.001). We found a strong and positive correlation between hypertensive retinopathy and AAC grades (r = 639, P < 0.001). Receiver operator characteristics curve analysis yielded a strong predictive ability of AAC for the presence of hypertensive retinopathy [area under curve = 0.814, 95% confidence interval (CI): 0.775-0.853, P < 0.0001]. In multivariate logistic regression analysis, presence of AAC [odds ratio (OR) 13.128; CI: 7.894-21.832] and serum glucose levels (OR 1.020; CI: 1.003-1.037) were strongly and independently associated with hypertensive retinopathy. CONCLUSION Presence of AAC on chest radiograph is strongly and independently associated with retinopathy in nondiabetic hypertensive patients. This simple, inexpensive and widely available tool may help in early detection of retinopathy in patients with hypertension.
Collapse
|
128
|
Kim HO, Kim CJ, Cho JM, Soeda T, Kurihara O, Russo M, Araki M, Lee H, Minami Y, Jang IK. Characteristics of non-culprit plaques in acute coronary syndrome patients with calcified plaque at the culprit lesion. Catheter Cardiovasc Interv 2021; 97:E298-E305. [PMID: 32463983 DOI: 10.1002/ccd.29005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/15/2020] [Accepted: 05/12/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVES To investigate the non-culprit plaques (NCPs) characteristics in acute coronary syndrome (ACS) patients with calcified plaques (CP). BACKGROUND Recently, a new in vivo classification of calcified culprit plaques in patients with ACS was proposed. Characteristics of NCPs in this group of patients are unknown. METHODS A total of 692 NCPs from 492 ACS patients were retrospectively compared based on the culprit plaque phenotype: 71 from CP patients, 383 from plaque rupture (PR) patients, 238 from plaque erosion (PE) patients. RESULTS NCPs of CP patients had greater maximal calcium thickness, wider calcium arc, longer calcium length, and greater calcium index, compared to PR or PE patients (CP vs. PR: all p < .001, CP vs. PE: all p < .001). Thin-cap fibroatheroma was less prevalent (p = .023), fibrous cap was thicker (p = .035), and mean lipid arc was narrower in CP than in PR (p < .001). CONCLUSIONS In conclusion, NCPs of CP patients had greater calcium burden and less vulnerability. This information may help to better understand the underlying mechanisms of ACS and to develop strategy for tailored management.
Collapse
Affiliation(s)
- Hyung Oh Kim
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Chong Jin Kim
- Department of Cardiovascular Medicine, Kyung Hee University, Seoul, South Korea
| | - Jin-Man Cho
- Department of Cardiovascular Medicine, Kyung Hee University, Seoul, South Korea
| | - Tsunenari Soeda
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Osamu Kurihara
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michele Russo
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Makoto Araki
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hang Lee
- Division of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yoshiyasu Minami
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ik-Kyung Jang
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Cardiovascular Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
129
|
Hu Y, Hu P, Hu B, Chen W, Cheng D, Shi H. Dynamic monitoring of active calcification in atherosclerosis by 18F-NaF PET imaging. Int J Cardiovasc Imaging 2021; 37:731-739. [PMID: 32926308 DOI: 10.1007/s10554-020-02019-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/20/2020] [Indexed: 11/26/2022]
Abstract
The objective was to dynamically monitor the progression of atherosclerotic plaques in ApoE-/- mice with 18F-NaF PET imaging. The ApoE-/- mice were used to develop atherosclerosis models, and the C57BL/6 J mice were used as control. 18F-NaF PET was performed when the mice were 12, 20, and 30 weeks of age. Serum lipids and lipoproteins profiles, inflammatory cytokines, and calcification factors were tested by ELISA. The lipid distribution, morphology, and calcification of plaque were evaluated by Oil Red O, HE, and alizarin red staining. The correlation between imaging and the extent of calcification was analyzed by Pearson correlation analysis. The uptake of 18F-NaF in the aorta was gradually increased with each weekly extension. Compared with the ApoE-/- mice at the age of 12 weeks and 20 weeks, the levels of lipoprotein, inflammatory cytokines, and calcification factors were higher at 30 weeks. In Oil Red O, HE, and alizarin red staining, the extent of the lipid area and calcification increased with time. The correlation analysis showed that the uptake of 18F-NaF in the aorta was related to the extent of calcification. 18F-NaF may dynamically monitor the progression of atherosclerotic plaques and ongoing microcalcification formation.
Collapse
Affiliation(s)
- Yan Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Pengcheng Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Bingxin Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Weijia Chen
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
130
|
Vidavsky N, Kunitake JAMR, Estroff LA. Multiple Pathways for Pathological Calcification in the Human Body. Adv Healthc Mater 2021; 10:e2001271. [PMID: 33274854 PMCID: PMC8724004 DOI: 10.1002/adhm.202001271] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization of skeletal components (e.g., bone and teeth) is generally accepted to occur under strict cellular regulation, leading to mineral-organic composites with hierarchical structures and properties optimized for their designated function. Such cellular regulation includes promoting mineralization at desired sites as well as inhibiting mineralization in soft tissues and other undesirable locations. In contrast, pathological mineralization, with potentially harmful health effects, can occur as a result of tissue or metabolic abnormalities, disease, or implantation of certain biomaterials. This progress report defines mineralization pathway components and identifies the commonalities (and differences) between physiological (e.g., bone remodeling) and pathological calcification formation pathways, based, in part, upon the extent of cellular control within the system. These concepts are discussed in representative examples of calcium phosphate-based pathological mineralization in cancer (breast, thyroid, ovarian, and meningioma) and in cardiovascular disease. In-depth mechanistic understanding of pathological mineralization requires utilizing state-of-the-art materials science imaging and characterization techniques, focusing not only on the final deposits, but also on the earlier stages of crystal nucleation, growth, and aggregation. Such mechanistic understanding will further enable the use of pathological calcifications in diagnosis and prognosis, as well as possibly provide insights into preventative treatments for detrimental mineralization in disease.
Collapse
Affiliation(s)
- Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Jennie A M R Kunitake
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
| |
Collapse
|
131
|
Advances in Quantitative Analysis of 18F-Sodium Fluoride Coronary Imaging. Mol Imaging 2021; 2021:8849429. [PMID: 33746631 PMCID: PMC7953548 DOI: 10.1155/2021/8849429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/05/2020] [Indexed: 11/22/2022] Open
Abstract
18F-sodium fluoride (18F-NaF) positron emission tomography (PET) has emerged as a promising noninvasive imaging tool for the assessment of active calcification processes in coronary artery disease. 18F-NaF uptake colocalizes to high-risk and ruptured atherosclerotic plaques. Most recently, 18F-NaF coronary uptake was shown to be a robust and independent predictor of myocardial infarction in patients with advanced coronary artery disease. In this review, we provide an overview of the advances in coronary 18F-NaF imaging. In particular, we discuss the recently developed and validated motion correction techniques which address heart contractions, tidal breathing, and patient repositioning during the prolonged PET acquisitions. Additionally, we discuss a novel quantification approach—the coronary microcalcification activity (which has been inspired by the widely employed method in oncology total active tumor volume measurement). This new method provides a single number encompassing 18F-NaF activity within the entire coronary vasculature rather than just information regarding a single area of most intense tracer uptake.
Collapse
|
132
|
Lee HY, Lim S, Park S. Role of Inflammation in Arterial Calcification. Korean Circ J 2021; 51:114-125. [PMID: 33525066 PMCID: PMC7853899 DOI: 10.4070/kcj.2020.0517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 01/11/2023] Open
Abstract
Arterial calcification, characterized by calcium phosphate deposition in the arteries, can be divided into intimal calcification and medial calcification. The former is the predominant form of calcification in coronary artery plaques; the latter mostly affects peripheral arteries and aortas. Both forms of arterial calcification have strong correlations with adverse cardiovascular events. Intimal microcalcification is associated with increased risk of plaque disruption while the degree of burden of coronary calcification, measured by coronary calcium score, is a marker of overall plaque burden. Continuous research on vascular calcification has been performed during the past few decades, and several cellular and molecular mechanisms and therapeutic targets were identified. However, despite clinical trials to evaluate the efficacy of drug therapies to treat vascular calcification, none have been shown to have efficacy until the present. Therefore, more extensive research is necessary to develop appropriate therapeutic strategies based on a thorough understanding of vascular calcification. In this review, we mainly focus on intimal calcification, namely the pathobiology of arterial calcification, and its clinical implications.
Collapse
Affiliation(s)
- Hae Young Lee
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Korea
| | - Sungha Park
- Division of Cardiology, Severance Cardiovascular Hospital and Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
133
|
Shea S, Navas-Acien A, Shimbo D, Brown ER, Budoff M, Bancks MP, Graham Barr R, Kronmal R. Spatially Weighted Coronary Artery Calcium Score and Coronary Heart Disease Events in the Multi-Ethnic Study of Atherosclerosis. Circ Cardiovasc Imaging 2021; 14:e011981. [PMID: 33461306 PMCID: PMC7987729 DOI: 10.1161/circimaging.120.011981] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/25/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND A limitation of the Agatston coronary artery calcium (CAC) score is that it does not use all of the calcium density information in the computed tomography scan such that many individuals have a score of zero. We examined the predictive validity for incident coronary heart disease (CHD) events of the spatially weighted coronary calcium score (SWCS), an alternative scoring method for CAC that assigns scores to individuals with Agatston CAC=0. METHODS The MESA (Multi-Ethnic Study of Atherosclerosis) is a longitudinal study that conducted a baseline exam from 2000 to 2002 in 6814 participants including computed tomography scanning for CAC. Subsequent exams and systematic follow-up of the cohort for outcomes were performed. Statistical models were adjusted using the MESA risk score based on age, sex, race/ethnicity, systolic blood pressure, use of hypertension medications, diabetes, total and HDL (high-density lipoprotein) cholesterol, use of lipid-lowering medications, smoking status, and family history of heart attack. RESULTS In the 3286 participants with Agatston CAC=0 at baseline and for whom SWCS was computed, 98 incident CHD events defined as definite or probably myocardial infarction or definite CHD death occurred during a median follow-up of 15.1 years. In this group, SWCS predicted incident CHD events after multivariable adjustment (hazard ratio=1.30 per SD of natural logarithm [SWCS] [95% CI, 1.04-1.60]; P=0.005); and progression from Agatston CAC=0 at baseline to CAC>0 at subsequent exams (multivariable-adjusted incidence rate difference per SD of natural logarithm [SWCS] per 100 person-years 1.68 [95% CI, 1.03-2.33]; P<0.0001). CONCLUSIONS SWCS predicts incident CHD events in individuals with Agatston CAC score=0 as well as conversion to Agatston CAC>0 at repeat computed tomography scanning at later exams. SWCS has predictive validity as a subclinical phenotype and marker of CHD risk in individuals with Agatston CAC=0.
Collapse
Affiliation(s)
- Steven Shea
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Daichi Shimbo
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Elizabeth R. Brown
- Fred Hutchison Cancer Research Center, University of Washington, Seattle, WA
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Matthew Budoff
- Lundquist Institute, University of California, Los Angeles, Torrance, CA
- Biomedical Research Institute, University of California, Los Angeles, Los Angeles, CA
| | - Michael P. Bancks
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | - R. Graham Barr
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Richard Kronmal
- Department of Biostatistics, University of Washington, Seattle, WA
| |
Collapse
|
134
|
Choi B, Kim EY, Kim JE, Oh S, Park SO, Kim SM, Choi H, Song JK, Chang EJ. Evogliptin Suppresses Calcific Aortic Valve Disease by Attenuating Inflammation, Fibrosis, and Calcification. Cells 2021; 10:E57. [PMID: 33401457 PMCID: PMC7824080 DOI: 10.3390/cells10010057] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve disease (CAVD) accompanies inflammatory cell infiltration, fibrosis, and ultimately calcification of the valve leaflets. We previously demonstrated that dipeptidyl peptidase-4 (DPP-4) is responsible for the progression of aortic valvular calcification in CAVD animal models. As evogliptin, one of the DPP-4 inhibitors displays high specific accumulation in cardiac tissue, we here evaluated its therapeutic potency for attenuating valvular calcification in CAVD animal models. Evogliptin administration markedly reduced calcific deposition accompanied by a reduction in proinflammatory cytokine expression in endothelial nitric oxide synthase-deficient mice in vivo, and significantly ameliorated the mineralization of the primary human valvular interstitial cells (VICs), with a reduction in the mRNA expression of bone-associated and fibrosis-related genes in vitro. In addition, evogliptin ameliorated the rate of change in the transaortic peak velocity and mean pressure gradients in our rabbit model as assessed by echocardiography. Importantly, evogliptin administration in a rabbit model was found to suppress the effects of a high-cholesterol diet and of vitamin D2-driven fibrosis in association with a reduction in macrophage infiltration and calcific deposition in aortic valves. These results have indicated that evogliptin prohibits inflammatory cytokine expression, fibrosis, and calcification in a CAVD animal model, suggesting its potential as a selective therapeutic agent for the inhibition of valvular calcification during CAVD progression.
Collapse
Affiliation(s)
- Bongkun Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun-Young Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Ji-Eun Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Soyoon Oh
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Si-On Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang-Min Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyuksu Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jae-Kwan Song
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Biochemistry, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
135
|
Osborn EA, Albaghdadi M, Libby P, Jaffer FA. Molecular Imaging of Atherosclerosis. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
136
|
Aikawa E, Blaser MC. 2020 Jeffrey M. Hoeg Award Lecture: Calcifying Extracellular Vesicles as Building Blocks of Microcalcifications in Cardiovascular Disorders. Arterioscler Thromb Vasc Biol 2021; 41:117-127. [PMID: 33115271 PMCID: PMC7832175 DOI: 10.1161/atvbaha.120.314704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022]
Abstract
Cardiovascular calcification is an insidious form of ectopic tissue mineralization that presents as a frequent comorbidity of atherosclerosis, aortic valve stenosis, diabetes, renal failure, and chronic inflammation. Calcification of the vasculature and heart valves contributes to mortality in these diseases. An inability to clinically image or detect early microcalcification coupled with an utter lack of pharmaceutical therapies capable of inhibiting or regressing entrenched and detectable macrocalcification has led to a prominent and deadly gap in care for a growing portion of our rapidly aging population. Recognition of this mounting concern has arisen over the past decade and led to a series of revolutionary works that has begun to pull back the curtain on the pathogenesis, mechanistic basis, and causative drivers of cardiovascular calcification. Central to this progress is the discovery that calcifying extracellular vesicles act as active precursors of cardiovascular microcalcification in diverse vascular beds. More recently, the omics revolution has resulted in the collection and quantification of vast amounts of molecular-level data. As the field has become poised to leverage these resources for drug discovery, new means of deriving relevant biological insights from these rich and complex datasets have come into focus through the careful application of systems biology and network medicine approaches. As we look onward toward the next decade, we envision a growing need to standardize approaches to study this complex and multifaceted clinical problem and expect that a push to translate mechanistic findings into therapeutics will begin to finally provide relief for those impacted by this disease.
Collapse
Affiliation(s)
- Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark C. Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
137
|
Zeng P, Yang J, Liu L, Yang X, Yao Z, Ma C, Zhu H, Su J, Zhao Q, Feng K, Yang S, Zhu Y, Li X, Wang W, Duan Y, Han J, Chen Y. ERK1/2 inhibition reduces vascular calcification by activating miR-126-3p-DKK1/LRP6 pathway. Am J Cancer Res 2021; 11:1129-1146. [PMID: 33391525 PMCID: PMC7738895 DOI: 10.7150/thno.49771] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Rationale: Vascular microcalcification increases the risk of rupture of vulnerable atherosclerotic lesions. Inhibition of ERK1/2 reduces atherosclerosis in animal models while its role in vascular calcification and the underlying mechanisms remains incompletely understood. Methods: Levels of activated ERK1/2, DKK1, LRP6 and BMP2 in human calcific aortic valves were determined. ApoE deficient mice received ERK1/2 inhibitor (U0126) treatment, followed by determination of atherosclerosis, calcification and miR-126-3p production. C57BL/6J mice were used to determine the effect of U0126 on Vitamin D3 (VD3)-induced medial arterial calcification. HUVECs, HAECs and HASMCs were used to determine the effects of ERK1/2 inhibitor or siRNA on SMC calcification and the involved mechanisms. Results: We observed the calcification in human aortic valves was positively correlated to ERK1/2 activity. At cellular and animal levels, U0126 reduced intimal calcification in atherosclerotic lesions of high-fat diet-fed apoE deficient mice, medial arterial calcification in VD3-treated C57BL/6J mice, and calcification in cultured SMCs and arterial rings. The reduction of calcification was attributed to ERK1/2 inhibition-reduced expression of ALP, BMP2 and RUNX2 by activating DKK1 and LRP6 expression, and consequently inactivating both canonical and non-canonical Wnt signaling pathways in SMCs. Furthermore, we determined ERK1/2 inhibition activated miR-126-3p production by facilitating its maturation through activation of AMPKα-mediated p53 phosphorylation, and the activated miR-126-3p from ECs and SMCs played a key role in anti-vascular calcification actions of ERK1/2 inhibition. Conclusions: Our study demonstrates that activation of miR-126-3p production in ECs/SMCs and interactions between ECs and SMCs play an important role in reduction of vascular calcification by ERK1/2 inhibition.
Collapse
|
138
|
Karpouzas GA, Ormseth SR, Hernandez E, Bui VL, Budoff MJ. Beta-2-glycoprotein-I IgA antibodies predict coronary plaque progression in rheumatoid arthritis. Semin Arthritis Rheum 2020; 51:20-27. [PMID: 33360226 DOI: 10.1016/j.semarthrit.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/22/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To evaluate whether anti-Beta-2-Glycoprotein-I (anti-β2GPI) IgA antibodies associate with progression of coronary atherosclerosis and cardiovascular disease (CVD) events in rheumatoid arthritis (RA). METHODS One hundred-fifty patients underwent plaque evaluation (total, non-calcified, mixed and calcified) with coronary computed tomography angiography; 101 were re-imaged within 6.9±0.3 years to assess progression. The Framingham-D'Agostino score assessed cardiovascular risk. Coronary artery calcium (CAC) and segment involvement score quantified plaque burden. RESULTS Anti-β2GPI IgA were seen in 45 (30%) patients. Despite no link to baseline plaque burden, anti-β2GPI IgA associated with segment involvement score increase (adjusted-RR=1.64 [95%CI 1.02-2.63]), CAC change (adjusted-β=0.33 [95%CI 0.002-0.656]) and developing new extensive or obstructive plaque at follow-up (adjusted-OR=4.24 [95%CI 1.30-13.87]). Adding anti-β2GPI IgA to logistic regression models with conventional risk factors predicting plaque progression outcomes increased Area under the receiver-operator curve and improved Net Reclassification and Integrated Discrimination Improvement indices (all P<0.05). In per-segment analyses, anti-β2GPI IgA predicted mixed plaque formation (adjusted-OR=3.20 [95%CI 1.01-10.09]) and lower likelihood of transition of mixed to calcified plaque (adjusted-OR=0.19 [95%CI 0.04-0.96]). Anti-β2GPI IgA moderated the effect of C-reactive protein on CAC change such that C-reactive protein associated with CAC change (β=0.26 [95%CI 0.14-0.38]) and CVD risk (adjusted-HR=1.89 [95%CI 1.02-3.51]) only in anti-β2GPI IgA positive patients. CONCLUSION Anti-β2GPI IgA addition to clinical risk models improved prediction accuracy of CAC, plaque progression and transition to extensive/obstructive disease. They associated with new high-risk mixed plaques and delayed healing to calcified lesions. Anti-β2GPI IgA further modified the effect of inflammation on plaque progression and CVD events.
Collapse
Affiliation(s)
- George A Karpouzas
- Division of Rheumatology, Harbor-UCLA Medical Center and Lundquist Institute for Biomedical Innovation, 1124 West Carson Street, Building E4-R17, Torrance, CA 90502, USA.
| | - Sarah R Ormseth
- Division of Rheumatology, Harbor-UCLA Medical Center and Lundquist Institute for Biomedical Innovation, 1124 West Carson Street, Building E4-R17, Torrance, CA 90502, USA
| | - Elizabeth Hernandez
- Division of Rheumatology, Harbor-UCLA Medical Center and Lundquist Institute for Biomedical Innovation, 1124 West Carson Street, Building E4-R17, Torrance, CA 90502, USA
| | - Viet L Bui
- Division of Rheumatology, Harbor-UCLA Medical Center and Lundquist Institute for Biomedical Innovation, 1124 West Carson Street, Building E4-R17, Torrance, CA 90502, USA
| | - Matthew J Budoff
- Division of Cardiology, Harbor-UCLA Medical Center and Lundquist Institute for Biomedical Innovation, Torrance, CA, USA
| |
Collapse
|
139
|
Doris MK, Meah MN, Moss AJ, Andrews JPM, Bing R, Gillen R, Weir N, Syed M, Daghem M, Shah A, Williams MC, van Beek EJR, Forsyth L, Dey D, Slomka PJ, Dweck MR, Newby DE, Adamson PD. Coronary 18F-Fluoride Uptake and Progression of Coronary Artery Calcification. Circ Cardiovasc Imaging 2020; 13:e011438. [PMID: 33297761 PMCID: PMC7771641 DOI: 10.1161/circimaging.120.011438] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Supplemental Digital Content is available in the text. Background Positron emission tomography (PET) using 18F-sodium fluoride (18F-fluoride) to detect microcalcification may provide insight into disease activity in coronary atherosclerosis. This study aimed to investigate the relationship between 18F-fluoride uptake and progression of coronary calcification in patients with clinically stable coronary artery disease. Methods Patients with established multivessel coronary atherosclerosis underwent 18F-fluoride PET-computed tomography angiography and computed tomography calcium scoring, with repeat computed tomography angiography and calcium scoring at one year. Coronary PET uptake was analyzed qualitatively and semiquantitatively in diseased vessels by measuring maximum tissue-to-background ratio. Coronary calcification was quantified by measuring calcium score, mass, and volume. Results In a total of 183 participants (median age 66 years, 80% male), 116 (63%) patients had increased 18F-fluoride uptake in at least one vessel. Individuals with increased 18F-fluoride uptake demonstrated more rapid progression of calcification compared with those without uptake (change in calcium score, 97 [39–166] versus 35 [7–93] AU; P<0.0001). Indeed, the calcium score only increased in coronary segments with 18F-fluoride uptake (from 95 [30–209] to 148 [61–289] AU; P<0.001) and remained unchanged in segments without 18F-fluoride uptake (from 46 [16–113] to 49 [20–115] AU; P=0.329). Baseline coronary 18F-fluoride maximum tissue-to-background ratio correlated with 1-year change in calcium score, calcium volume, and calcium mass (Spearman ρ=0.37, 0.38, and 0.46, respectively; P<0.0001 for all). At the segmental level, baseline 18F-fluoride activity was an independent predictor of calcium score at 12 months (P<0.001). However, at the patient level, this was not independent of age, sex, and baseline calcium score (P=0.50). Conclusions Coronary 18F-fluoride uptake identifies both patients and individual coronary segments with more rapid progression of coronary calcification, providing important insights into disease activity within the coronary circulation. At the individual patient level, total calcium score remains an important marker of disease burden and progression. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02110303.
Collapse
Affiliation(s)
- Mhairi K Doris
- British Heart Foundation Centre for Cardiovascular Science (M.K.D., M.N.M., A.J.M., J.P.M.A., R.B., M.S., M.D., A.S., M.C.W., E.J.R.v.B., M.R.D., D.E.N., P.D.A.), University of Edinburgh, United Kingdom
| | - Mohammed N Meah
- British Heart Foundation Centre for Cardiovascular Science (M.K.D., M.N.M., A.J.M., J.P.M.A., R.B., M.S., M.D., A.S., M.C.W., E.J.R.v.B., M.R.D., D.E.N., P.D.A.), University of Edinburgh, United Kingdom
| | - Alastair J Moss
- British Heart Foundation Centre for Cardiovascular Science (M.K.D., M.N.M., A.J.M., J.P.M.A., R.B., M.S., M.D., A.S., M.C.W., E.J.R.v.B., M.R.D., D.E.N., P.D.A.), University of Edinburgh, United Kingdom
| | - Jack P M Andrews
- British Heart Foundation Centre for Cardiovascular Science (M.K.D., M.N.M., A.J.M., J.P.M.A., R.B., M.S., M.D., A.S., M.C.W., E.J.R.v.B., M.R.D., D.E.N., P.D.A.), University of Edinburgh, United Kingdom
| | - Rong Bing
- British Heart Foundation Centre for Cardiovascular Science (M.K.D., M.N.M., A.J.M., J.P.M.A., R.B., M.S., M.D., A.S., M.C.W., E.J.R.v.B., M.R.D., D.E.N., P.D.A.), University of Edinburgh, United Kingdom
| | - Rebecca Gillen
- Edinburgh Imaging, Queen's Medical Research Institute University of Edinburgh, Edinburgh, United Kingdom (Rebecca Gillen, Nick Weir, Michelle C Williams, Edwin JR van Beek, David E Newby)
| | - Nick Weir
- Edinburgh Imaging, Queen's Medical Research Institute University of Edinburgh, Edinburgh, United Kingdom (Rebecca Gillen, Nick Weir, Michelle C Williams, Edwin JR van Beek, David E Newby)
| | - Maaz Syed
- British Heart Foundation Centre for Cardiovascular Science (M.K.D., M.N.M., A.J.M., J.P.M.A., R.B., M.S., M.D., A.S., M.C.W., E.J.R.v.B., M.R.D., D.E.N., P.D.A.), University of Edinburgh, United Kingdom
| | - Marwa Daghem
- British Heart Foundation Centre for Cardiovascular Science (M.K.D., M.N.M., A.J.M., J.P.M.A., R.B., M.S., M.D., A.S., M.C.W., E.J.R.v.B., M.R.D., D.E.N., P.D.A.), University of Edinburgh, United Kingdom
| | - Anoop Shah
- British Heart Foundation Centre for Cardiovascular Science (M.K.D., M.N.M., A.J.M., J.P.M.A., R.B., M.S., M.D., A.S., M.C.W., E.J.R.v.B., M.R.D., D.E.N., P.D.A.), University of Edinburgh, United Kingdom
| | - Michelle C Williams
- British Heart Foundation Centre for Cardiovascular Science (M.K.D., M.N.M., A.J.M., J.P.M.A., R.B., M.S., M.D., A.S., M.C.W., E.J.R.v.B., M.R.D., D.E.N., P.D.A.), University of Edinburgh, United Kingdom.,Edinburgh Imaging, Queen's Medical Research Institute University of Edinburgh, Edinburgh, United Kingdom (Rebecca Gillen, Nick Weir, Michelle C Williams, Edwin JR van Beek, David E Newby)
| | - Edwin J R van Beek
- British Heart Foundation Centre for Cardiovascular Science (M.K.D., M.N.M., A.J.M., J.P.M.A., R.B., M.S., M.D., A.S., M.C.W., E.J.R.v.B., M.R.D., D.E.N., P.D.A.), University of Edinburgh, United Kingdom.,Edinburgh Imaging, Queen's Medical Research Institute University of Edinburgh, Edinburgh, United Kingdom (Rebecca Gillen, Nick Weir, Michelle C Williams, Edwin JR van Beek, David E Newby)
| | - Laura Forsyth
- Edinburgh Clinical Trials Unit (L.F.), University of Edinburgh, United Kingdom
| | - Damini Dey
- Division of Nuclear Medicine, Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (D.D., P.J.S.)
| | - Piotr J Slomka
- Division of Nuclear Medicine, Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (D.D., P.J.S.)
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science (M.K.D., M.N.M., A.J.M., J.P.M.A., R.B., M.S., M.D., A.S., M.C.W., E.J.R.v.B., M.R.D., D.E.N., P.D.A.), University of Edinburgh, United Kingdom
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science (M.K.D., M.N.M., A.J.M., J.P.M.A., R.B., M.S., M.D., A.S., M.C.W., E.J.R.v.B., M.R.D., D.E.N., P.D.A.), University of Edinburgh, United Kingdom.,Edinburgh Imaging, Queen's Medical Research Institute University of Edinburgh, Edinburgh, United Kingdom (Rebecca Gillen, Nick Weir, Michelle C Williams, Edwin JR van Beek, David E Newby)
| | - Philip D Adamson
- British Heart Foundation Centre for Cardiovascular Science (M.K.D., M.N.M., A.J.M., J.P.M.A., R.B., M.S., M.D., A.S., M.C.W., E.J.R.v.B., M.R.D., D.E.N., P.D.A.), University of Edinburgh, United Kingdom.,Christchurch Heart Institute, University of Otago, Christchurch, NZ (P.D.A.)
| |
Collapse
|
140
|
Multimodality imaging beyond CLEM: Showcases of combined in-vivo preclinical imaging and ex-vivo microscopy to detect murine mural vascular lesions. Methods Cell Biol 2020; 162:389-415. [PMID: 33707020 DOI: 10.1016/bs.mcb.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In imaging, penetration depth comes at the expense of lateral resolution, which restricts the scope of 3D in-vivo imaging of small animals at micrometer resolution. Bioimaging will need to expand beyond correlative light and electron microscopy (CLEM) approaches to combine insights about in-vivo dynamics in a physiologically relevant 3D environment with ex-vivo information at micrometer resolution (or beyond) within the spatial, structural and biochemical contexts. Our report demonstrates the immense potential for biomedical discovery and diagnosis made available by bridging preclinical in-vivo imaging with ex-vivo biological microscopy to zoom in from the whole organism to individual structures and by adding localized spectroscopic information to structural and functional information. We showcase the use of two novel imaging pipelines to zoom into mural lesions (occlusions/hyperplasia and micro-calcifications) in murine vasculature in a truly correlative manner, that is using exactly the same animal for all integrated imaging modalities. This correlated multimodality imaging (CMI) approach includes well-established technologies such as Positron Emission Tomography (microPET), Autoradiography, Magnetic Resonance Imaging (microMRI) and Computed Tomography (microCT), and imaging approaches that are more novel in the biomedical setting, such as X-Ray Fluorescence Spectroscopy (microXRF) and High Resolution Episcopic Microscopy (HREM). Although the current pipelines are focused on mural lesions, they would also be beneficial in preclinical and clinical investigations of vascular diseases in general.
Collapse
|
141
|
Navas-Acien A, Martinez-Morata I, Hilpert M, Rule A, Shimbo D, LoIacono NJ. Early Cardiovascular Risk in E-cigarette Users: the Potential Role of Metals. Curr Environ Health Rep 2020; 7:353-361. [PMID: 33242201 PMCID: PMC7959158 DOI: 10.1007/s40572-020-00297-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW Electronic cigarettes (e-cigs) are a source of metals. Epidemiologic and experimental evidence support that metals are toxic to the cardiovascular system. Little is known, however, about the role that e-cig metals may play as toxicants for the possible cardiovascular effects of e-cig use. The goal of this narrative review is to summarize the evidence on e-cig use and metal exposure and on e-cig use and cardiovascular toxicity and discuss the research needs. RECENT FINDINGS In vitro studies show cytotoxicity and increased oxidative stress in myocardial cells and vascular endothelial cells exposed to e-liquids and e-cig aerosols, with effects partially reversed with antioxidant treatment. There is some evidence that the heating coil plays a role in cell toxicity. Mice exposed to e-cigs for several weeks showed higher levels of oxidative stress, inflammation, platelet activation, and thrombogenesis. Cross-over clinical experiments show e-cig use alters nitric oxide-mediated flow-mediated dilation, endothelial progenitor cells, and arterial stiffness. Cross-sectional evidence from large nationally representative samples in the USA support that e-cig use is associated with self-reported myocardial infarction. Smaller studies found associations of e-cig use with higher oxidized low-density protein and heart variability compared to healthy controls. Numerous studies have measured elevated levels of toxic metals in e-cig aerosols including lead, nickel, chromium, and manganese. Arsenic has been measured in some e-liquids. Several of these metals are well known to be cardiotoxic. Numerous studies show that e-cigs are a source of cardiotoxic metals. Experimental studies (in vitro, in vivo, and clinical studies) show acute toxicity of e-cigs to the vascular system. Studies of long-term toxicity in animals and humans are missing. Longitudinal studies with repeated measures of metal exposure and subclinical cardiovascular outcomes (e.g., coronary artery calcification) could contribute to determine the long-term cardiovascular effects of e-cigs and the potential role of metals in those effects.
Collapse
Affiliation(s)
- Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th Street, New York, NY, 10032, USA
| | - Irene Martinez-Morata
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th Street, New York, NY, 10032, USA
| | - Markus Hilpert
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th Street, New York, NY, 10032, USA
| | - Ana Rule
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Daichi Shimbo
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nancy J LoIacono
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
142
|
Fender AC, Dobrev D. Contemporary plaque imaging for risk stratification of coronary artery disease: Are we getting there? IJC HEART & VASCULATURE 2020; 31:100678. [PMID: 33294585 PMCID: PMC7695964 DOI: 10.1016/j.ijcha.2020.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Anke C. Fender
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
143
|
MacAskill MG, McDougald W, Alcaide-Corral C, Newby DE, Tavares AA, Hadoke PW, Wu J. Characterisation of an atherosclerotic micro-calcification model using ApoE -/- mice and PET/CT. IJC HEART & VASCULATURE 2020; 31:100672. [PMID: 33251323 PMCID: PMC7680769 DOI: 10.1016/j.ijcha.2020.100672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Mark G. MacAskill
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Wendy McDougald
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Carlos Alcaide-Corral
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - David E. Newby
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Adriana A.S. Tavares
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Patrick W.F. Hadoke
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Junxi Wu
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
144
|
Khraishah H, Jaffer FA. Intravascular Molecular Imaging: Near-Infrared Fluorescence as a New Frontier. Front Cardiovasc Med 2020; 7:587100. [PMID: 33330648 PMCID: PMC7719823 DOI: 10.3389/fcvm.2020.587100] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/30/2020] [Indexed: 11/13/2022] Open
Abstract
Despite exciting advances in structural intravascular imaging [intravascular ultrasound (IVUS) and optical coherence tomography (OCT)] that have enabled partial assessment of atheroma burden and high-risk features associated with acute coronary syndromes, structural-based imaging modalities alone do not comprehensively phenotype the complex pathobiology of atherosclerosis. Near-infrared fluorescence (NIRF) is an emerging molecular intravascular imaging modality that allows for in vivo visualization of pathobiological and cellular processes at atheroma plaque level, including inflammation, oxidative stress, and abnormal endothelial permeability. Established intravascular NIRF imaging targets include macrophages, cathepsin protease activity, oxidized low-density lipoprotein and abnormal endothelial permeability. Structural and molecular intravascular imaging provide complementary information about plaque microstructure and biology. For this reason, integrated hybrid catheters that combine NIRF-IVUS or NIRF-OCT have been developed to allow co-registration of morphological and molecular processes with a single pullback, as performed for standalone IVUS or OCT. NIRF imaging is approaching application in clinical practice. This will be accelerated by the use of FDA-approved indocyanine green (ICG), which illuminates lipid- and macrophage-rich zones of permeable atheroma. The ability to comprehensively phenotype coronary pathobiology in patients will enable a deeper understanding of plaque pathobiology, improve local and patient-based risk prediction, and usher in a new era of personalized therapy.
Collapse
Affiliation(s)
- Haitham Khraishah
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States.,Division of Cardiology, Cardiovascular Research Center and Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Farouc A Jaffer
- Division of Cardiology, Cardiovascular Research Center and Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States.,Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
145
|
Moss AJ, Sim AM, Adamson PD, Seidman MA, Andrews JPM, Doris MK, Shah ASV, BouHaidar R, Alcaide-Corral CJ, Williams MC, Leipsic JA, Dweck MR, MacRae VE, Newby DE, Tavares AAS, Sellers SL. Ex vivo 18F-fluoride uptake and hydroxyapatite deposition in human coronary atherosclerosis. Sci Rep 2020; 10:20172. [PMID: 33214599 PMCID: PMC7677392 DOI: 10.1038/s41598-020-77391-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/27/2020] [Indexed: 01/02/2023] Open
Abstract
Early microcalcification is a feature of coronary plaques with an increased propensity to rupture and to cause acute coronary syndromes. In this ex vivo imaging study of coronary artery specimens, the non-invasive imaging radiotracer, 18F-fluoride, was highly selective for hydroxyapatite deposition in atherosclerotic coronary plaque. Specifically, coronary 18F-fluoride uptake had a high signal to noise ratio compared with surrounding myocardium that makes it feasible to identify coronary mineralisation activity. Areas of 18F-fluoride uptake are associated with osteopontin, an inflammation-associated glycophosphoprotein that mediates tissue mineralisation, and Runt-related transcription factor 2, a nuclear protein involved in osteoblastic differentiation. These results suggest that 18F-fluoride is a non-invasive imaging biomarker of active coronary atherosclerotic mineralisation.
Collapse
Affiliation(s)
- Alastair J Moss
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK. .,British Heart Foundation Cardiovascular Research Centre, University of Leicester, Leicester, UK.
| | - Alisia M Sim
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Philip D Adamson
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.,Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Michael A Seidman
- Department of Pathology, St Paul's Hospital and University of British Columbia, Vancouver, Canada
| | - Jack P M Andrews
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Mhairi K Doris
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Anoop S V Shah
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Ralph BouHaidar
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Carlos J Alcaide-Corral
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Michelle C Williams
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Jonathon A Leipsic
- Department of Radiology and Centre for Heart Lung Innovation, St Paul's Hospital and University of British Columbia, Vancouver, Canada
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Vicky E MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Adriana A S Tavares
- BHF Centre for Cardiovascular Science, Chancellor's Building, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Stephanie L Sellers
- Department of Radiology and Centre for Heart Lung Innovation, St Paul's Hospital and University of British Columbia, Vancouver, Canada
| |
Collapse
|
146
|
Regulation of Vascular Calcification by Reactive Oxygen Species. Antioxidants (Basel) 2020; 9:antiox9100963. [PMID: 33049989 PMCID: PMC7599480 DOI: 10.3390/antiox9100963] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification is the deposition of hydroxyapatite crystals in the medial or intimal layers of arteries that is usually associated with other pathological conditions including but not limited to chronic kidney disease, atherosclerosis and diabetes. Calcification is an active, cell-regulated process involving the phenotype transition of vascular smooth muscle cells (VSMCs) from contractile to osteoblast/chondrocyte-like cells. Diverse triggers and signal transduction pathways have been identified behind vascular calcification. In this review, we focus on the role of reactive oxygen species (ROS) in the osteochondrogenic phenotype switch of VSMCs and subsequent calcification. Vascular calcification is associated with elevated ROS production. Excessive ROS contribute to the activation of certain osteochondrogenic signal transduction pathways, thereby accelerating osteochondrogenic transdifferentiation of VSMCs. Inhibition of ROS production and ROS scavengers and activation of endogenous protective mechanisms are promising therapeutic approaches in the prevention of osteochondrogenic transdifferentiation of VSMCs and subsequent vascular calcification. The present review discusses the formation and actions of excess ROS in different experimental models of calcification, and the potential of ROS-lowering strategies in the prevention of this deleterious condition.
Collapse
|
147
|
Ma X, Ma H, Yun Y, Chen S, Zhang X, Zhao D, Liu Y, Shen H, Wu C, Zheng J, Zhang T, Xu Z, Sun L, Zhang H, Zhang W, Zou C, Wang Z. Lymphocyte-to-monocyte ratio in predicting the calcific aortic valve stenosis in a Chinese case-control study. Biomark Med 2020; 14:1329-1339. [PMID: 33064019 DOI: 10.2217/bmm-2020-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022] Open
Abstract
Aim: This study examined the role of lymphocyte-to-monocyte ratio (LMR), an inflammatory biomarker, in predicting the severity of calcific aortic valve stenosis (CAVS) in a Chinese case-control study. Results: The LMR significantly decreased in the patients with CAVS compared with healthy controls. An inverse correlation was observed between the severity of stenosis and LMR in the patients. Additionally, the LMR was identified in the multivariate analysis as an independent predictor of severe CAVS. Conclusion: This study provides evidence of an inverse correlation between the severity of CAVS and LMR. LMR could potentially be applied as an independent predictor of severe CAVS and could be incorporated into a novel predictive model.
Collapse
Affiliation(s)
- Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Huibo Ma
- Qingdao University Medical College, 308 Ningxia Road, Qingdao University, Qingdao, Shandong 266071, China
| | - Yan Yun
- Department of Radiology, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Shanghao Chen
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Xiaofeng Zhang
- Department of Cardiovascular Surgery, The Second Hospital of Shandong University, No. 247 Beiyuan Road, Tianqiao District, Jinan 250033, Shandong Province, China
| | - Diming Zhao
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Yanwu Liu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Hechen Shen
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Chuanni Wu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Jing Zheng
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Tao Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Zhenqiang Xu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Liangong Sun
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Haizhou Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Wenlong Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Chengwei Zou
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| | - Zhengjun Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong 250021, China
| |
Collapse
|
148
|
Khatun S, Biswas S, Mahanta AK, Joseph MM, Vidyalekshmi MS, Podder A, Maiti P, Maiti KK, Bhuniya S. Biocompatible fluorescent probe for detecting mitochondrial alkaline phosphatase activity in live cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 212:112043. [PMID: 33022468 DOI: 10.1016/j.jphotobiol.2020.112043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 11/18/2022]
Abstract
Alkaline phosphatase (ALP) is an enzyme that actively plays a significant role in the various metabolic processes by transferring a phosphate group to the protein, nucleic acid, etc. The elevated level of ALP in blood plasma is the hallmark of inflammation/cancer. The hyperactive mitochondria in cancer cells produce an excess of ATP to fulfill the high energy demand. Thus, we have developed a fluorescent probe Mito-Phos for ALP, which can detect phosphatase expression in mitochondria in live cells. The probe Mito-Phos has shown ~15-fold fluorescence intensity increments at 450 nm in the presence of 500 ng/mL of ALP. It takes about 60 min to consume the whole amount of ALP (500 ng/mL) in physiological buffer saline. It can selectively react with ALP even in the presence of other probable cellular reactive components. It is highly biocompatible and nontoxic to the live cells. It has shown ALP expression in a dose-dependent manner by providing concomitant fluorescence images in the blue-channel region. It has localized exclusively in the mitochondria in live cells. The probe Mito-Phos is highly biocompatible with the ability to assess ALP expression in mitochondria in live cells.
Collapse
Affiliation(s)
- Sabina Khatun
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Coimbatore 64112, Amrita Vishwa Vidyapeetham, India
| | - Shayeri Biswas
- Centre for Interdisciplinary Science, JIS Institute of Advanced Studies and Research, JIS University, Kolkata 700091, India
| | - Arun Kumar Mahanta
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221-005, India
| | - Manu M Joseph
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academic of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Murukan S Vidyalekshmi
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academic of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arup Podder
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Coimbatore 64112, Amrita Vishwa Vidyapeetham, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221-005, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academic of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sankarprasad Bhuniya
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Coimbatore 64112, Amrita Vishwa Vidyapeetham, India; Centre for Interdisciplinary Science, JIS Institute of Advanced Studies and Research, JIS University, Kolkata 700091, India.
| |
Collapse
|
149
|
Shi X, Han Y, Li M, Yin Q, Liu R, Wang F, Xu X, Xiong Y, Ye R, Liu X. Superficial Calcification With Rotund Shape Is Associated With Carotid Plaque Rupture: An Optical Coherence Tomography Study. Front Neurol 2020; 11:563334. [PMID: 33071946 PMCID: PMC7530839 DOI: 10.3389/fneur.2020.563334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/14/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Plaque rupture is an important etiology for symptomatic carotid stenosis. The role of calcification in the plaque vulnerability has been controversial. We aimed to detect the geometric features of calcifications in carotid plaque and to examine its association with plaque rupture. Methods: Optical coherence tomography assessment of carotid plaque was performed in 88 patients. Calcification shape was evaluated through quantitative measurements of the long and short axis, area size, circumference, calcification arc, and longitudinal length. Calcification location was analyzed through the distance to the lumen. Furthermore, we developed idealized fluid-structure interaction models to investigate the association of calcification shape and plaque stress. Results: A total of 33 ruptured plaques and 30 non-ruptured plaques were recognized. Ruptured plaques had more multiple calcifications and protruded calcifications. The calcifications in the ruptured plaques displayed a remarkably lower long-axis/short-axis (L/S) ratio than in the non-ruptured plaques (p = 0.001). We classified calcification shape into crescentic calcification (L/S > 2.5) and rotund calcification (L/S ≤ 2.5). Rotund-shaped calcifications were more common in ruptured plaques than in non-ruptured plaques (p = 0.02). Superficial calcifications with minimal distance to the lumen ≤ 50 μm accounted for 79.4% of all calcifications in the ruptured plaques, and only 7.7% in the non-ruptured plaques (p < 0.001). Biomechanical analysis showed that the plaque with rotund-shaped calcification developed 7.91-fold higher von Mises stress than the plaque with crescentic calcification. Conclusions: Superficial calcifications and rotund-shaped calcifications are associated with carotid plaque rupture, suggesting that calcification location and shape may play a key role in plaque vulnerability.
Collapse
Affiliation(s)
- Xuan Shi
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yunfei Han
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Min Li
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qin Yin
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rui Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fang Wang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaohui Xu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yunyun Xiong
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruidong Ye
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinfeng Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
150
|
Fong F, Xian J, Demer LL, Tintut Y. Serotonin receptor type 2B activation augments TNF-α-induced matrix mineralization in murine valvular interstitial cells. J Cell Biochem 2020; 122:249-258. [PMID: 32901992 DOI: 10.1002/jcb.29847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/01/2023]
Abstract
Calcification, fibrosis, and chronic inflammation are the predominant features of calcific aortic valve disease, a life-threatening condition. Drugs that induce serotonin (5-hydroxytryptamine [5-HT]) are known to damage valves, and activated platelets, which carry peripheral serotonin, are known to promote calcific aortic valve stenosis. However, the role of 5-HT in valve leaflet pathology is not known. We tested whether serotonin mediates inflammation-induced matrix mineralization in valve cells. Real-time reverse transcription-polymerase chain reaction analysis showed that murine aortic valve interstitial cells (VICs) expressed both serotonin receptor types 2A and 2B (Htr2a and Htr2b). Although Htr2a expression was greater at baseline, Htr2b expression was induced several-fold more than Htr2a in response to the pro-calcific tumor necrosis factor-α (TNF-α) treatment. 5-HT also augmented TNF-α-induced osteoblastic differentiation and matrix mineralization of VIC, but 5-HT alone had no effects. Inhibition of serotonin receptor type 2B, using specific inhibitors or lentiviral knockdown in VIC, attenuated 5-HT effects on TNF-α-induced osteoblastic differentiation and mineralization. 5-HT treatment also augmented TNF-α-induced matrix metalloproteinase-3 expression, which was also attenuated by Htr2b knockdown. Htr2b expression in aortic roots and serum levels of peripheral 5-HT were also greater in the hyperlipidemic Apoe-/- mice than in control normolipemic mice. These findings suggest a new role for serotonin signaling in inflammation-induced calcific valvulopathy.
Collapse
Affiliation(s)
- Felicia Fong
- Department of Medicine, University of California, Los Angeles, California, USA
| | - Joshua Xian
- Department of Medicine, University of California, Los Angeles, California, USA
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA.,Department of Physiology, University of California, Los Angeles, California, USA
| | - Yin Tintut
- Department of Medicine, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA.,Department of Orthopedic Surgery, University of California, Los Angeles, California, USA
| |
Collapse
|