101
|
Differentially Detectable Mycobacterium tuberculosis Cells in Sputum from Treatment-Naive Subjects in Haiti and Their Proportionate Increase after Initiation of Treatment. mBio 2018; 9:mBio.02192-18. [PMID: 30459198 PMCID: PMC6247085 DOI: 10.1128/mbio.02192-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Measurement of the reduction in CFU in sputum of patients with TB up to 2 weeks after the initiation of treatment is the gateway test for a new TB treatment. Reports have suggested that CFU assays fail to detect the majority of viable M. tuberculosis cells in sputum samples from the majority of patients when the number of M. tuberculosis is estimated by limiting dilution (LD). In an effort to avoid potential methodologic confounders, we applied a modified version of the LD assay in a study of a geographically distinct population. We confirmed that differentially detectable (DD) M. tuberculosis is often found before treatment, albeit at lower proportionate levels than in earlier reports. Strikingly, the prevalence and proportionate representation of DD M. tuberculosis increased during standard treatment. Sublethal exposure to certain antibiotics may help generate DD M. tuberculosis cells or enrich their representation among the surviving bacteria, and this may contribute to the need for prolonged treatment with those agents in order to achieve durable cures. Recent reports indicate that the sputum of 80% or more of treatment-naive subjects with tuberculosis recruited in England or South Africa contained more viable Mycobacterium tuberculosis cells detected by limiting dilution (LD) in liquid culture than detected as CFU. Efforts to generate such differentially detectable (DD) M. tuberculosis populations in vitro have been difficult to reproduce, and the LD assay is prone to artifact. Here, we applied a stringent version of the LD assay to sputum from 33 treatment-naive, HIV-negative Haitian subjects with drug-sensitive tuberculosis (TB) and to a second sputum sample after two weeks of standard treatment with isoniazid, rifampin, pyrazinamide, and ethambutol (HRZE) for 13 of these subjects. Twenty-one percent had statistically defined levels of DD M. tuberculosis in their pretreatment sputum at an average proportional excess over CFU of 3-fold. Sixty-nine percent of those who received HRZE had statistically defined levels of DD M. tuberculosis in their sputum, and of these, the mean proportionate excess over CFU was 7.9-fold. Thus, DD M. tuberculosis is detectable in pretreatment sputum from a significant proportion of subjects in the Western Hemisphere, and certain drugs or drug regimens, while reducing CFU, may at the same time increase the proportional representation of DD M. tuberculosis among the surviving bacilli. Monitoring DD M. tuberculosis may improve our ability to predict the efficacy of efforts to shorten treatment.
Collapse
|
102
|
Mubin N, Pahari S, Owais M, Zubair S. Mycobacterium tuberculosis host cell interaction: Role of latency associated protein Acr-1 in differential modulation of macrophages. PLoS One 2018; 13:e0206459. [PMID: 30395609 PMCID: PMC6218195 DOI: 10.1371/journal.pone.0206459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/13/2018] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) contrives intracellular abode as a strategy to combat antibody onslaught. Additionally, to thrive against hostile ambiance inside host macrophages, the pathogen inhibits phago-lysosomal fusion. Finally, to further defy host cell offensives, M.tb opts for dormant phase, where it turns off or slows down most of its metabolic process as an added stratagem. While M.tb restrains most of its metabolic activities during dormancy, surprisingly latency-associated alpha-crystallin protein (Acr-1) is expressed most prominently during this phase. Interestingly, several previous studies described the potential of Acr-1 to induce the robust immuno-prophylactic response in the immunized host. It is intriguing to comprehend the apparent discrepancy that the microbe M.tb overexpresses a protein that has the potential to prime host immune system against the pathogen itself. Keeping this apparent ambiguity into consideration, it is imperative to unravel intricacies involved in the exploitation of Acr-1 by M.tb during its interaction with host immune cells. The present study suggests that Acr-1 exhibits diverse role in the maturation of macrophages (MΦs) and related immunological responses. The early encounter of bone marrow derived immune cells (pre-exposure during differentiation to MΦs) with Acr-1 (AcrMΦpre), results in hampering of their function. The pre-exposure of naïve MΦs with Acr-1 induces the expression of TIM-3 and IL-10. In contrast, exposure of fully differentiated MΦs to Acr-1 results in their down-modulation and induces the phosphorylation of STAT-1 and STAT-4 in host MΦs. Furthermore, Acr-1 mediated activation of MΦs results in the induction of Th1 and Th17 phenotype by activated T lymphocyte.
Collapse
Affiliation(s)
- Nida Mubin
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Susanta Pahari
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mohammad Owais
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
- * E-mail: (SZ); (MO)
| | - Swaleha Zubair
- Department of Computer Science, Aligarh Muslim University, Aligarh, India
- * E-mail: (SZ); (MO)
| |
Collapse
|
103
|
Sierra R, Viollier P, Renzoni A. Linking toxin-antitoxin systems with phenotypes: A Staphylococcus aureus viewpoint. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:742-751. [PMID: 30056132 DOI: 10.1016/j.bbagrm.2018.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/04/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Toxin-antitoxin systems (TAS) are genetic modules controlling different aspects of bacterial physiology. They operate with versatility in an incredibly wide range of mechanisms. New TA modules with unexpected functions are continuously emerging from genome sequencing projects. Their discovery and functional studies have shed light on different characteristics of bacterial metabolism that are now applied to understanding clinically relevant questions and even proposed as antimicrobial treatment. Our main source of knowledge of TA systems derives from Gram-negative bacterial studies, but studies in Gram-positives are becoming more prevalent and provide new insights to TA functional mechanisms. In this review, we present an overview of the present knowledge of TA systems in the clinical pathogen Staphylococcus aureus, their implications in bacterial physiology and discuss relevant aspects that are driving TAS research. "This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier".
Collapse
Affiliation(s)
- Roberto Sierra
- Geneva University Hospital, Service of Infectious Diseases, Geneva, Switzerland; Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
| | - Patrick Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
| | - Adriana Renzoni
- Geneva University Hospital, Service of Infectious Diseases, Geneva, Switzerland.
| |
Collapse
|
104
|
Moxifloxacin Replacement in Contemporary Tuberculosis Drug Regimens Is Ineffective against Persistent Mycobacterium tuberculosis in the Cornell Mouse Model. Antimicrob Agents Chemother 2018; 62:AAC.00190-18. [PMID: 29661869 DOI: 10.1128/aac.00190-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/09/2018] [Indexed: 12/27/2022] Open
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis, remains a leading killer worldwide, and disease control is hampered by the ineffective control of persistent infections. Substitution of moxifloxacin for isoniazid or ethambutol in standard anti-TB regimens reduces the treatment duration and relapse rates in animal studies, and 4-month regimens were not noninferior in clinical trials. Resuscitation-promoting factor (RPF)-dependent bacilli have recently been implicated in M. tuberculosis persistence. We aimed to investigate the therapeutic effects of the substitution of moxifloxacin for a drug used in the standard drug regimen in eradicating CFU count-positive and RPF-dependent persistent M. tuberculosis using the Cornell murine model. M. tuberculosis-infected mice were treated with regimens in which either isoniazid or ethambutol was replaced by moxifloxacin in the standard regimen. The efficacy of the regimens for bacterial CFU count elimination and removal of persistent tubercle bacilli, evaluated using culture filtrate (CF) derived from M. tuberculosis strain H37Rv, was compared to that of the standard regimen. We also measured disease relapse rates. The regimen in which moxifloxacin replaced isoniazid achieved total organ CFU count clearance at 11 weeks posttreatment, which was faster than that by the standard regimen (14 weeks), and showed a 34% lower relapse rate. The regimen in which moxifloxacin replaced ethambutol was similar to standard regimens in these regards. Importantly, neither the regimen in which moxifloxacin replaced isoniazid or ethambutol nor the standard regimen could remove CF-dependent persistent bacilli. The finding of CF-dependent persistent M. tuberculosis in TB treatment requires confirmation in human studies and has implications for future drug design, testing, and clinical applications.
Collapse
|
105
|
Antonova AV, Gryadunov DA, Zimenkov DV. Molecular Mechanisms of Drug Tolerance in Mycobacterium tuberculosis. Mol Biol 2018. [DOI: 10.1134/s0026893318030020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
106
|
Patterson B, Morrow C, Singh V, Moosa A, Gqada M, Woodward J, Mizrahi V, Bryden W, Call C, Patel S, Warner D, Wood R. Detection of Mycobacterium tuberculosis bacilli in bio-aerosols from untreated TB patients. Gates Open Res 2018; 1:11. [PMID: 29355225 PMCID: PMC5757796 DOI: 10.12688/gatesopenres.12758.2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2018] [Indexed: 12/02/2022] Open
Abstract
Background: Tuberculosis (TB) is predominantly an airborne disease. However, quantitative and qualitative analysis of bio-aerosols containing the aetiological agent, Mycobacterium tuberculosis (Mtb), has proven very challenging. Our objective is to sample bio-aerosols from newly diagnosed TB patients for detection and enumeration of Mtb bacilli. Methods: We monitored each of 35 newly diagnosed, GeneXpert sputum-positive, TB patients during 1 hour confinement in a custom-built Respiratory Aerosol Sampling Chamber (RASC). The RASC (a small clean-room of 1.4m ) incorporates aerodynamic particle size detection, viable and non-viable sampling devices, real-time CO 2 monitoring, and cough sound-recording. Microbiological culture and droplet digital polymerase chain reaction (ddPCR) were used to detect Mtb in each of the bio-aerosol collection devices. Results: Mtb was detected in 27/35 (77.1%) of aerosol samples; 15/35 (42.8%) samples were positive by mycobacterial culture and 25/27 (92.96%) were positive by ddPCR. Culturability of collected bacilli was not predicted by radiographic evidence of pulmonary cavitation, sputum smear positivity. A correlation was found between cough rate and culturable bioaerosol. Mtb was detected on all viable cascade impactor stages with a peak at aerosol sizes 2.0-3.5μm. This suggests a median of 0.09 CFU/litre of exhaled air (IQR: 0.07 to 0.3 CFU/l) for the aerosol culture positives and an estimated median concentration of 4.5x10 CFU/ml (IQR: 2.9x10 -5.6x10 ) of exhaled particulate bio-aerosol. Conclusions: Mtb was identified in bio-aerosols exhaled by the majority of untreated TB patients using the RASC. Molecular detection was more sensitive than mycobacterial culture on solid media, suggesting that further studies are required to determine whether this reflects a significant proportion of differentially detectable bacilli in these samples.
Collapse
Affiliation(s)
- Benjamin Patterson
- Division of Infectious Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Carl Morrow
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Desmond Tutu HIV Centre,Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Vinayak Singh
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Atica Moosa
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Melitta Gqada
- Desmond Tutu HIV Centre,Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Jeremy Woodward
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | | | - Shwetak Patel
- Computer Science and Engineering, Electrical Engineering DUB group, University of Washington, Seattle, USA
| | - Digby Warner
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Robin Wood
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Desmond Tutu HIV Centre,Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| |
Collapse
|
107
|
Schwenk S, Arnvig KB. Regulatory RNA in Mycobacterium tuberculosis, back to basics. Pathog Dis 2018; 76:4966984. [PMID: 29796669 PMCID: PMC7615687 DOI: 10.1093/femspd/fty035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/09/2018] [Indexed: 01/17/2023] Open
Abstract
Since the turn of the millenium, RNA-based control of gene expression has added an extra dimension to the central dogma of molecular biology. Still, the roles of Mycobacterium tuberculosis regulatory RNAs and the proteins that facilitate their functions remain elusive, although there can be no doubt that RNA biology plays a central role in the baterium's adaptation to its many host environments. In this review, we have presented examples from model organisms and from M. tuberculosis to showcase the abundance and versatility of regulatory RNA, in order to emphasise the importance of these 'fine-tuners' of gene expression.
Collapse
MESH Headings
- Aconitate Hydratase/genetics
- Aconitate Hydratase/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Host-Pathogen Interactions
- Humans
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/metabolism
- Mycobacterium tuberculosis/pathogenicity
- Nucleic Acid Conformation
- RNA Stability
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Small Cytoplasmic/genetics
- RNA, Small Cytoplasmic/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Regulatory Sequences, Ribonucleic Acid
- Riboswitch
- Tuberculosis/microbiology
Collapse
Affiliation(s)
- Stefan Schwenk
- Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Kristine B Arnvig
- Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
108
|
Lupoli TJ, Vaubourgeix J, Burns-Huang K, Gold B. Targeting the Proteostasis Network for Mycobacterial Drug Discovery. ACS Infect Dis 2018; 4:478-498. [PMID: 29465983 PMCID: PMC5902792 DOI: 10.1021/acsinfecdis.7b00231] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the world's deadliest infectious diseases and urgently requires new antibiotics to treat drug-resistant strains and to decrease the duration of therapy. During infection, Mtb encounters numerous stresses associated with host immunity, including hypoxia, reactive oxygen and nitrogen species, mild acidity, nutrient starvation, and metal sequestration and intoxication. The Mtb proteostasis network, composed of chaperones, proteases, and a eukaryotic-like proteasome, provides protection from stresses and chemistries of host immunity by maintaining the integrity of the mycobacterial proteome. In this Review, we explore the proteostasis network as a noncanonical target for antibacterial drug discovery.
Collapse
Affiliation(s)
- Tania J. Lupoli
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| | - Kristin Burns-Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| |
Collapse
|
109
|
|
110
|
Arroyo L, Marín D, Franken KLMC, Ottenhoff THM, Barrera LF. Potential of DosR and Rpf antigens from Mycobacterium tuberculosis to discriminate between latent and active tuberculosis in a tuberculosis endemic population of Medellin Colombia. BMC Infect Dis 2018; 18:26. [PMID: 29310595 PMCID: PMC5759254 DOI: 10.1186/s12879-017-2929-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/17/2017] [Indexed: 01/07/2023] Open
Abstract
Background Tuberculosis (TB) remains one of the most deadly infectious diseases. One-third to one-fourth of the human population is estimated to be infected with Mycobacterium tuberculosis (Mtb) without showing clinical symptoms, a condition called latent TB infection (LTBI). Diagnosis of Mtb infection is based on the immune response to a mixture of mycobacterial antigens (PPD) or to Mtb specific ESAT-6/CFP10 antigens (IGRA), highly expressed during the initial phase of infection. However, the immune response to PPD and IGRA antigens has a low power to discriminate between LTBI and PTB. The T-cell response to a group of so-called latency (DosR-regulon-encoded) and Resuscitation Promoting (Rpf) antigens of Mtb has been proved to be significantly higher in LTBI compared to active TB across many populations, suggesting their potential use as biomarkers to differentiate latent from active TB. Methods PBMCs from a group LTBI (n = 20) and pulmonary TB patients (PTB, n = 21) from an endemic community for TB of the city of Medellín, Colombia, were in vitro stimulated for 7 days with DosR- (Rv1737c, Rv2029c, and Rv2628), Rpf- (Rv0867c and Rv2389c), the recombinant fusion protein ESAT-6-CFP10 (E6-C10)-, or PPD-antigen. The induced IFNγ levels detectable in the supernatants of the antigen-stimulated cells were then used to calculate specificity and sensitivity in discriminating LTBI from PTB, using different statistical approaches. Results IFNγ production in response to DosR and Rpf antigens was significantly higher in LTBI compared to PTB. ROC curve analyses of IFNγ production allowed differentiation of LTBI from PTB with areas under the curve higher than 0.70. Furthermore, Multiple Correspondence Analysis (MCA) revealed that LTBI is associated with higher levels of IFNγ in response to the different antigens compared to PTB. Analysis based on decision trees showed that the IFNγ levels produced in response to Rv2029c was the leading variable that best-classified disease status. Finally, logistic regression analysis predicted that IFNγ produced by PBMCs in response to E6-C10, Rv2029c, Rv0867c (RpfA) and Rv2389c (RpfA) antigens correlates best with the probability of being latently infected. Conclusions The Mtb antigens E6-C10, Rv2029c (PfkB), Rv0867c (RpfA) and Rv2389c (RpfA), may be potential candidates to discriminate LTBI from PTB. Electronic supplementary material The online version of this article (doi: 10.1186/s12879-017-2929-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leonar Arroyo
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Albinusdreef 2, 2333, Leiden, ZA, Netherlands
| | - Diana Marín
- Universidad Pontificia Bolivariana (UPB), Albinusdreef 2, 2333, Leiden, ZA, Netherlands
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333, Leiden, ZA, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333, Leiden, ZA, Netherlands
| | - Luis F Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Albinusdreef 2, 2333, Leiden, ZA, Netherlands. .,Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
111
|
Multifaceted remodeling by vitamin C boosts sensitivity of Mycobacterium tuberculosis subpopulations to combination treatment by anti-tubercular drugs. Redox Biol 2018; 15:452-466. [PMID: 29413958 PMCID: PMC5975079 DOI: 10.1016/j.redox.2017.12.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 12/03/2022] Open
Abstract
Bacterial dormancy is a major impediment to the eradication of tuberculosis (TB), because currently used drugs primarily target actively replicating bacteria. Therefore, decoding of the critical survival pathways in dormant tubercle bacilli is a research priority to formulate new approaches for killing these bacteria. Employing a network-based gene expression analysis approach, we demonstrate that redox active vitamin C (vit C) triggers a multifaceted and robust adaptation response in Mycobacterium tuberculosis (Mtb) involving ~ 67% of the genome. Vit C-adapted bacteria display well-described features of dormancy, including growth stasis and progression to a viable but non-culturable (VBNC) state, loss of acid-fastness and reduction in length, dissipation of reductive stress through triglyceride (TAG) accumulation, protective response to oxidative stress, and tolerance to first line TB drugs. VBNC bacteria are reactivatable upon removal of vit C and they recover drug susceptibility properties. Vit C synergizes with pyrazinamide, a unique TB drug with sterilizing activity, to kill dormant and replicating bacteria, negating any tolerance to rifampicin and isoniazid in combination treatment in both in-vitro and intracellular infection models. Finally, the vit C multi-stress redox models described here also offer a unique opportunity for concurrent screening of compounds/combinations active against heterogeneous subpopulations of Mtb. These findings suggest a novel strategy of vit C adjunctive therapy by modulating bacterial physiology for enhanced efficacy of combination chemotherapy with existing drugs, and also possible synergies to guide new therapeutic combinations towards accelerating TB treatment. Vitamin C induces dormancy and reversible VBNC state in M. tuberculosis. Dormancy is achieved through a well-coordinated multifaceted bacterial response. Vitamin C synergy with pyrazinamide negates bacterial tolerance to other TB drugs. Vitamin C adjunctive therapy is a potential strategy for shortening chemotherapy. Vitamin C-based models are novel screening platforms for new compounds/combinations.
Collapse
|
112
|
Shoemaker WR, Lennon JT. Evolution with a seed bank: The population genetic consequences of microbial dormancy. Evol Appl 2018; 11:60-75. [PMID: 29302272 PMCID: PMC5748526 DOI: 10.1111/eva.12557] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/08/2017] [Indexed: 12/31/2022] Open
Abstract
Dormancy is a bet‐hedging strategy that allows organisms to persist through conditions that are suboptimal for growth and reproduction by entering a reversible state of reduced metabolic activity. Dormancy allows a population to maintain a reservoir of genetic and phenotypic diversity (i.e., a seed bank) that can contribute to the long‐term survival of a population. This strategy can be potentially adaptive and has long been of interest to ecologists and evolutionary biologists. However, comparatively little is known about how dormancy influences the fundamental evolutionary forces of genetic drift, mutation, selection, recombination, and gene flow. Here, we investigate how seed banks affect the processes underpinning evolution by reviewing existing theory, implementing novel simulations, and determining how and when dormancy can influence evolution as a population genetic process. We extend our analysis to examine how seed banks can alter macroevolutionary processes, including rates of speciation and extinction. Through the lens of population genetic theory, we can understand the extent that seed banks influence the evolutionary dynamics of microorganisms as well as other taxa.
Collapse
Affiliation(s)
| | - Jay T Lennon
- Department of Biology Indiana University Bloomington IN USA
| |
Collapse
|
113
|
Liu Y, Pertinez H, Ortega-Muro F, Alameda-Martin L, Harrison T, Davies G, Coates A, Hu Y. Optimal doses of rifampicin in the standard drug regimen to shorten tuberculosis treatment duration and reduce relapse by eradicating persistent bacteria. J Antimicrob Chemother 2017; 73:724-731. [DOI: 10.1093/jac/dkx467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/08/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yingjun Liu
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 ORE, UK
| | - Henry Pertinez
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GF, UK
| | - Fatima Ortega-Muro
- GlaxoSmithKline Research and Development, Diseases of Developing World, Severo Ochoa 2, 28760 Tres Cantos (Madrid), Spain
| | - Laura Alameda-Martin
- GlaxoSmithKline Research and Development, Diseases of Developing World, Severo Ochoa 2, 28760 Tres Cantos (Madrid), Spain
| | - Thomas Harrison
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 ORE, UK
| | - Geraint Davies
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GF, UK
| | - Anthony Coates
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 ORE, UK
| | - Yanmin Hu
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, London SW17 ORE, UK
| |
Collapse
|
114
|
Dartois V, Saito K, Warrier T, Nathan C. New Evidence for the Complexity of the Population Structure of Mycobacterium tuberculosis Increases the Diagnostic and Biologic Challenges. Am J Respir Crit Care Med 2017; 194:1448-1451. [PMID: 27976945 DOI: 10.1164/rccm.201607-1431ed] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Véronique Dartois
- 1 Public Health Research Institute Rutgers, The State University of New Jersey Newark, New Jersey and
| | | | | | | |
Collapse
|
115
|
Pourazar Dizaji S, Taala A, Masoumi M, Ebrahimzadeh N, Fateh A, Siadat SD, Vaziri F. Sub-minimum inhibitory concentration of rifampin: a potential risk factor for resuscitation of Mycobacterium tuberculosis. Antimicrob Resist Infect Control 2017; 6:116. [PMID: 29163940 PMCID: PMC5686893 DOI: 10.1186/s13756-017-0273-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/08/2017] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Mycobacterium tuberculosis possesses five resuscitation-promoting factors, Rpf A to E, which are required for the resuscitation of dormancy in mycobacteria. This study explores the transcriptional profile of all five rpfs of M. tuberculosis, in response to sub-MIC concentration of rifampin, in multidrug and mono-rifampin resistant clinical isolates. METHODS Thirteen multidrug and two rifampin mono resistant clinical isolates were analyzed. Drug susceptibility testing and determination of MIC were performed. The relative expression of rpfs was measured, by real-time quantitative PCR. RESULTS A significant upregulation of relative expression (p < 0.05) was observed, as follows: 7/15(46.66%); 5/15(33.33%); 9/15(60%); 10/15(66.66%) and 9/15(60%) in rpfA, rpfB, rpfC, rpfD and rpfE, respectively. CONCLUSION Our results showed that the rpfs could be overexpressed in some extent in the presence of sub-MIC concentration of rifampin in multidrug and mono drug resistant M. tuberculosis. These results highlight the potential risk of sub-MIC rifampin concentrations, as a risk factor for tuberculosis reactivation.
Collapse
Affiliation(s)
- Shahin Pourazar Dizaji
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Taala
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Masoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Nayereh Ebrahimzadeh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
116
|
Patterson B, Morrow C, Singh V, Moosa A, Gqada M, Woodward J, Mizrahi V, Bryden W, Call C, Patel S, Warner D, Wood R. Detection of Mycobacterium tuberculosis bacilli in bio-aerosols from untreated TB patients. Gates Open Res 2017; 1:11. [PMID: 29355225 PMCID: PMC5757796 DOI: 10.12688/gatesopenres.12758.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 11/20/2022] Open
Abstract
Background: Tuberculosis (TB) is predominantly an airborne disease. However, quantitative and qualitative analysis of bio-aerosols containing the aetiological agent, Mycobacterium tuberculosis (Mtb), has proven very challenging. Our objective is to sample bio-aerosols from newly diagnosed TB patients for detection and enumeration of Mtb bacilli. Methods: We monitored each of 35 newly diagnosed, GeneXpert sputum-positive, TB patients during 1 hour confinement in a custom-built Respiratory Aerosol Sampling Chamber (RASC). The RASC (a small clean-room of 1.4m ) incorporates aerodynamic particle size detection, viable and non-viable sampling devices, real-time CO 2 monitoring, and cough sound-recording. Microbiological culture and droplet digital polymerase chain reaction (ddPCR) were used to detect Mtb in each of the bio-aerosol collection devices. Results: Mtb was detected in 27/35 (77.1%) of aerosol samples; 15/35 (42.8%) samples were positive by mycobacterial culture and 25/27 (92.96%) were positive by ddPCR. Culturability of collected bacilli was not predicted by radiographic evidence of pulmonary cavitation, sputum smear positivity, or cough rate. Mtb was detected on all viable cascade impactor stages with a peak at aerosol sizes 2.0-3.5μm. This suggests a median of 0.09 CFU/litre of exhaled air (IQR: 0.07 to 0.3 CFU/l) for the aerosol culture positives and an estimated median concentration of 4.5x10 CFU/ml (IQR: 2.9x10 -5.6x10 ) of exhaled particulate bio-aerosol. Conclusions: Mtb was identified in bio-aerosols exhaled by the majority of untreated TB patients using the RASC. Molecular detection was more sensitive than mycobacterial culture on solid media, suggesting that further studies are required to determine whether this reflects a significant proportion of differentially detectable bacilli in these samples.
Collapse
Affiliation(s)
- Benjamin Patterson
- Division of Infectious Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Carl Morrow
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Desmond Tutu HIV Centre,Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Vinayak Singh
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Atica Moosa
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Melitta Gqada
- Desmond Tutu HIV Centre,Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Jeremy Woodward
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | | | - Shwetak Patel
- Computer Science and Engineering, Electrical Engineering DUB group, University of Washington, Seattle, USA
| | - Digby Warner
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Robin Wood
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Desmond Tutu HIV Centre,Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| |
Collapse
|
117
|
AlMatar M, Makky EA, Yakıcı G, Var I, Kayar B, Köksal F. Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacol Res 2017; 128:288-305. [PMID: 29079429 DOI: 10.1016/j.phrs.2017.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) presently accounts for high global mortality and morbidity rates, despite the introduction four decades ago of the affordable and efficient four-drugs (isoniazid, rifampicin, pyrazinamide and ethambutol). Thus, a strong need exists for new drugs with special structures and uncommon modes of action to effectively overcome M. tuberculosis. Within this scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides that comprise a section of the innate immune system, are currently the leading potential agents for the treatment of TB. Many studies have recently illustrated the capability of anti-mycobacterial peptides to disrupt the normal mycobacterial cell wall function through various modes, thereby interacting with the intracellular targets, as well as encompassing nucleic acids, enzymes and organelles. This review presents a wide array of antimicrobial activities, alongside the associated properties of the AMPs that could be utilized as potential agents in therapeutic tactics for TB treatment.
Collapse
Affiliation(s)
- Manaf AlMatar
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitüsü) Çukurova University, Adana, Turkey.
| | - Essam A Makky
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Gülfer Yakıcı
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Işıl Var
- Department of Food Engineering, Agricultural Faculty, Çukurova University, Adana, Turkey
| | - Begüm Kayar
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
118
|
Datta S, Sherman JM, Tovar MA, Bravard MA, Valencia T, Montoya R, Quino W, D'Arcy N, Ramos ES, Gilman RH, Evans CA. Sputum Microscopy With Fluorescein Diacetate Predicts Tuberculosis Infectiousness. J Infect Dis 2017; 216:514-524. [PMID: 28510693 PMCID: PMC5853787 DOI: 10.1093/infdis/jix229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/11/2017] [Indexed: 01/03/2023] Open
Abstract
Background Sputum from patients with tuberculosis contains subpopulations of metabolically active and inactive Mycobacterium tuberculosis with unknown implications for infectiousness. Methods We assessed sputum microscopy with fluorescein diacetate (FDA, evaluating M. tuberculosis metabolic activity) for predicting infectiousness. Mycobacterium tuberculosis was quantified in pretreatment sputum of patients with pulmonary tuberculosis using FDA microscopy, culture, and acid-fast microscopy. These 35 patients’ 209 household contacts were followed with prevalence surveys for tuberculosis disease for 6 years. Results FDA microscopy was positive for a median of 119 (interquartile range [IQR], 47–386) bacteria/µL sputum, which was 5.1% (IQR, 2.4%–11%) the concentration of acid-fast microscopy–positive bacteria (2069 [IQR, 1358–3734] bacteria/μL). Tuberculosis was diagnosed during follow-up in 6.4% (13/209) of contacts. For patients with lower than median concentration of FDA microscopy–positive M. tuberculosis, 10% of their contacts developed tuberculosis. This was significantly more than 2.7% of the contacts of patients with higher than median FDA microscopy results (crude hazard ratio [HR], 3.8; P = .03). This association maintained statistical significance after adjusting for disease severity, chemoprophylaxis, drug resistance, and social determinants (adjusted HR, 3.9; P = .02). Conclusions Mycobacterium tuberculosis that was FDA microscopy negative was paradoxically associated with greater infectiousness. FDA microscopy–negative bacteria in these pretreatment samples may be a nonstaining, slowly metabolizing phenotype better adapted to airborne transmission.
Collapse
Affiliation(s)
- Sumona Datta
- Innovation for Health and Development (IFHAD), Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru.,Infectious Diseases and Immunity and Wellcome Trust Centre for Global Health Research, Imperial College London, United Kingdom.,Innovacion por la Salud y el Desarollo (IPSYD), Asociación Benéfica Prisma, Lima, Peru
| | - Jonathan M Sherman
- Innovation for Health and Development (IFHAD), Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marco A Tovar
- Innovation for Health and Development (IFHAD), Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru.,Innovacion por la Salud y el Desarollo (IPSYD), Asociación Benéfica Prisma, Lima, Peru
| | - Marjory A Bravard
- Innovation for Health and Development (IFHAD), Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Teresa Valencia
- Innovation for Health and Development (IFHAD), Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Rosario Montoya
- Innovacion por la Salud y el Desarollo (IPSYD), Asociación Benéfica Prisma, Lima, Peru
| | - Willi Quino
- Innovation for Health and Development (IFHAD), Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru.,Innovacion por la Salud y el Desarollo (IPSYD), Asociación Benéfica Prisma, Lima, Peru
| | - Nikki D'Arcy
- Innovation for Health and Development (IFHAD), Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru.,Innovacion por la Salud y el Desarollo (IPSYD), Asociación Benéfica Prisma, Lima, Peru
| | - Eric S Ramos
- Innovation for Health and Development (IFHAD), Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Robert H Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Carlton A Evans
- Innovation for Health and Development (IFHAD), Laboratory of Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru.,Infectious Diseases and Immunity and Wellcome Trust Centre for Global Health Research, Imperial College London, United Kingdom.,Innovacion por la Salud y el Desarollo (IPSYD), Asociación Benéfica Prisma, Lima, Peru
| |
Collapse
|
119
|
Baron VO, Chen M, Clark SO, Williams A, Hammond RJH, Dholakia K, Gillespie SH. Label-free optical vibrational spectroscopy to detect the metabolic state of M. tuberculosis cells at the site of disease. Sci Rep 2017; 7:9844. [PMID: 28852109 PMCID: PMC5575044 DOI: 10.1038/s41598-017-10234-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/07/2017] [Indexed: 02/01/2023] Open
Abstract
Tuberculosis relapse is a barrier to shorter treatment. It is thought that lipid rich cells, phenotypically resistant to antibiotics, may play a major role. Most studies investigating relapse use sputum samples although tissue bacteria may play an important role. We developed a non-destructive, label-free technique combining wavelength modulated Raman (WMR) spectroscopy and fluorescence detection (Nile Red staining) to interrogate Mycobacterium tuberculosis cell state. This approach could differentiate single "dormant" (lipid rich, LR) and "non-dormant" (lipid poor, LP) cells with high sensitivity and specificity. We applied this to experimentally infected guinea pig lung sections and were able to distinguish both cell types showing that the LR phenotype dominates in infected tissue. Both in-vitro and ex-vivo spectra correlated well, showing for the first time that Mycobacterium tuberculosis, likely to be phenotypically resistant to antibiotics, are present in large numbers in tissue. This is an important step in understanding the pathology of relapse supporting the idea that they may be caused by M. tuberculosis cells with lipid inclusions.
Collapse
Affiliation(s)
- Vincent O Baron
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK
| | - Mingzhou Chen
- SUPA, School of Physics and Astronomy, University of St Andrews, KY16 9SS, St Andrews, UK.
| | - Simon O Clark
- Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Ann Williams
- Public Health England, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | | | - Kishan Dholakia
- SUPA, School of Physics and Astronomy, University of St Andrews, KY16 9SS, St Andrews, UK
| | | |
Collapse
|
120
|
Maitra A, Kamil TK, Shaik M, Danquah CA, Chrzastek A, Bhakta S. Early diagnosis and effective treatment regimens are the keys to tackle antimicrobial resistance in tuberculosis (TB): A report from Euroscicon's international TB Summit 2016. Virulence 2017; 8:1005-1024. [PMID: 27813702 PMCID: PMC5626228 DOI: 10.1080/21505594.2016.1256536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
To say that tuberculosis (TB) has regained a strong foothold in the global human health and wellbeing scenario would be an understatement. Ranking alongside HIV/AIDS as the top reason for mortality due to a single infectious disease, the impact of TB extends far into socio-economic context worldwide. As global efforts led by experts and political bodies converge to mitigate the predicted outcome of growing antimicrobial resistance, the academic community of students, practitioners and researchers have mobilised to develop integrated, inter-disciplinary programmes to bring the plans of the former to fruition. Enabling this crucial requirement for unimpeded dissemination of scientific discovery was the TB Summit 2016, held in London, United Kingdom. This report critically discusses the recent breakthroughs made in diagnostics and treatment while bringing to light the major hurdles in the control of the disease as discussed in the course of the 3-day international event. Conferences and symposia such as these are the breeding grounds for successful local and global collaborations and therefore must be supported to expand the understanding and outreach of basic science research.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Tengku Karmila Kamil
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Monisha Shaik
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Cynthia Amaning Danquah
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Alina Chrzastek
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| |
Collapse
|
121
|
The Capacity of Mycobacterium tuberculosis To Survive Iron Starvation Might Enable It To Persist in Iron-Deprived Microenvironments of Human Granulomas. mBio 2017; 8:mBio.01092-17. [PMID: 28811344 PMCID: PMC5559634 DOI: 10.1128/mbio.01092-17] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study was conducted to investigate the role of iron deprivation in the persistence of Mycobacterium tuberculosis. We present evidence of iron restriction in human necrotic granulomas and demonstrate that under iron starvation M. tuberculosis persists, refractive to antibiotics and capable of restarting replication when iron is made available. Transcriptomics and metabolomic analyses indicated that the persistence of M. tuberculosis under iron starvation is dependent on strict control of endogenous Fe utilization and is associated with upregulation of pathogenicity and intrinsic antibiotic resistance determinants. M. tuberculosis mutants compromised in their ability to survive Fe starvation were identified. The findings of this study advance the understanding of the physiological settings that may underpin the chronicity of human tuberculosis (TB) and are relevant to the design of effective antitubercular therapies. One-third of the world population may harbor persistent M. tuberculosis, causing an asymptomatic infection that is refractory to treatment and can reactivate to become potentially lethal tuberculosis disease. However, little is known about the factors that trigger and maintain M. tuberculosis persistence in infected individuals. Iron is an essential nutrient for M. tuberculosis growth. In this study, we show, first, that in human granulomas the immune defense creates microenvironments in which M. tuberculosis likely experiences drastic Fe deprivation and, second, that Fe-starved M. tuberculosis is capable of long-term persistence without growth. Together, these observations suggest that Fe deprivation in the lung might trigger a state of persistence in M. tuberculosis and promote chronic TB. We also identified vulnerabilities of iron-restricted persistent M. tuberculosis, which can be exploited for the design of new antitubercular therapies.
Collapse
|
122
|
Nathan C. Kunkel Lecture: Fundamental immunodeficiency and its correction. J Exp Med 2017; 214:2175-2191. [PMID: 28701368 PMCID: PMC5551579 DOI: 10.1084/jem.20170637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 02/05/2023] Open
Abstract
"Fundamental immunodeficiency" is the inability of the encoded immune system to protect an otherwise healthy host from every infection that could threaten its life. In contrast to primary immunodeficiencies, fundamental immunodeficiency is not rare but nearly universal. It results not from variation in a given host gene but from the rate and extent of variation in the genes of other organisms. The remedy for fundamental immunodeficiency is "adopted immunity," not to be confused with adaptive or adoptive immunity. Adopted immunity arises from four critical societal contributions to the survival of the human species: sanitation, nutrition, vaccines, and antimicrobial agents. Immunologists have a great deal to contribute to the development of vaccines and antimicrobial agents, but they have focused chiefly on vaccines, and vaccinology is thriving. In contrast, the effect of antimicrobial agents in adopted immunity, although fundamental, is fragile and failing. Immunologists can aid the development of sorely needed antimicrobial agents, and the study of antimicrobial agents can help immunologists discover targets and mechanisms of host immunity.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
123
|
Abstract
The interaction between the host and the pathogen is extremely complex and is affected by anatomical, physiological, and immunological diversity in the microenvironments, leading to phenotypic diversity of the pathogen. Phenotypic heterogeneity, defined as nongenetic variation observed in individual members of a clonal population, can have beneficial consequences especially in fluctuating stressful environmental conditions. This is all the more relevant in infections caused by Mycobacterium tuberculosis wherein the pathogen is able to survive and often establish a lifelong persistent infection in the host. Recent studies in tuberculosis patients and in animal models have documented the heterogeneous and diverging trajectories of individual lesions within a single host. Since the fate of the individual lesions appears to be determined by the local tissue environment rather than systemic response of the host, studying this heterogeneity is very relevant to ensure better control and complete eradication of the pathogen from individual lesions. The heterogeneous microenvironments greatly enhance M. tuberculosis heterogeneity influencing the growth rates, metabolic potential, stress responses, drug susceptibility, and eventual lesion resolution. Single-cell approaches such as time-lapse microscopy using microfluidic devices allow us to address cell-to-cell variations that are often lost in population-average measurements. In this review, we focus on some of the factors that could be considered as drivers of phenotypic heterogeneity in M. tuberculosis as well as highlight some of the techniques that are useful in addressing this issue.
Collapse
|
124
|
Abstract
Infection with Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), results in a range of clinical presentations in humans. Most infections manifest as a clinically asymptomatic, contained state that is termed latent TB infection (LTBI); a smaller subset of infected individuals present with symptomatic, active TB. Within these two seemingly binary states, there is a spectrum of host outcomes that have varying symptoms, microbiologies, immune responses and pathologies. Recently, it has become apparent that there is diversity of infection even within a single individual. A good understanding of the heterogeneity that is intrinsic to TB - at both the population level and the individual level - is crucial to inform the development of intervention strategies that account for and target the unique, complex and independent nature of the local host-pathogen interactions that occur in this infection. In this Review, we draw on model systems and human data to discuss multiple facets of TB biology and their relationship to the overall heterogeneity observed in the human disease.
Collapse
|
125
|
Chengalroyen MD, Beukes GM, Gordhan BG, Streicher EM, Churchyard G, Hafner R, Warren R, Otwombe K, Martinson N, Kana BD. Detection and Quantification of Differentially Culturable Tubercle Bacteria in Sputum from Patients with Tuberculosis. Am J Respir Crit Care Med 2017; 194:1532-1540. [PMID: 27387272 DOI: 10.1164/rccm.201604-0769oc] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Recent studies suggest that baseline tuberculous sputum comprises a mixture of routinely culturable and differentially culturable tubercle bacteria (DCTB). The latter seems to be drug tolerant and dependent on resuscitation-promoting factors (Rpfs). OBJECTIVES To further explore this, we assessed sputum from patients with tuberculosis for DCTB and studied the impact of exogenous culture filtrate (CF) supplementation ex vivo. METHODS Sputum samples from adults with tuberculosis and HIV-1 and adults with no HIV-1 were used for most probable number (MPN) assays supplemented with CF and Rpf-deficient CF, to detect CF-dependent and Rpf-independent DCTB, respectively. MEASUREMENTS AND MAIN RESULTS In 110 individuals, 19.1% harbored CF-dependent DCTB and no Rpf-independent DCTB. Furthermore, 11.8% yielded Rpf-independent DCTB with no CF-dependent DCTB. In addition, 53.6% displayed both CF-dependent and Rpf-independent DCTB, 1.8% carried CF-independent DCTB, and 13.6% had no DCTB. Sputum from individuals without HIV-1 yielded higher CF-supplemented MPN counts compared with counterparts with HIV-1. Furthermore, individuals with HIV-1 with CD4 counts greater than 200 cells/mm3 displayed higher CF-supplemented MPN counts compared with participants with HIV-1 with CD4 counts less than 200 cells/mm3. CF supplementation allowed for detection of mycobacteria in 34 patients with no culturable bacteria on solid media. Additionally, the use of CF enhanced detection of sputum smear-negative individuals. CONCLUSIONS These observations demonstrate a novel Rpf-independent DCTB population in sputum and reveal that reduced host immunity is associated with lower prevalence of CF-responsive bacteria. Quantification of DCTB in standard TB diagnosis would be beneficial because these organisms provide a putative biomarker to monitor treatment response and risk of disease recurrence.
Collapse
Affiliation(s)
- Melissa D Chengalroyen
- 1 Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Germar M Beukes
- 1 Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Bhavna G Gordhan
- 1 Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Elizabeth M Streicher
- 2 Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | | | - Richard Hafner
- 4 Tuberculosis Clinical Research Team, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Robin Warren
- 2 Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Kennedy Otwombe
- 5 Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; and
| | - Neil Martinson
- 1 Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa.,5 Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; and.,6 Center for Tuberculosis Research, Johns Hopkins University, Baltimore, Maryland
| | - Bavesh D Kana
- 1 Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
126
|
The importance of clinical pharmacokinetic-pharmacodynamic studies in unraveling the determinants of early and late tuberculosis outcomes. ACTA ACUST UNITED AC 2017; 2:195-212. [PMID: 30283633 PMCID: PMC6161803 DOI: 10.4155/ipk-2017-0004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022]
Abstract
Tuberculosis remains a major infectious cause of morbidity and mortality worldwide. Current antibiotic regimens, constructed prior to the development of modern pharmacokinetic-pharmacodynamic (PK–PD) tools, are based on incomplete understanding of exposure–response relationships in drug susceptible and multidrug resistant tuberculosis. Preclinical and population PK data suggest that clinical PK–PD studies may enable therapeutic drug monitoring for some agents and revised dosing for others. Future clinical PK–PD challenges include: incorporation of PK methods to assay free concentrations for all active metabolites; selection of appropriate early outcome measures which reflect therapeutic response; elucidation of genetic contributors to interindividual PK variability; conduct of targeted studies on special populations (including children); and measurement of PK–PD parameters at the site of disease.
Collapse
|
127
|
Rifamycin action on RNA polymerase in antibiotic-tolerant Mycobacterium tuberculosis results in differentially detectable populations. Proc Natl Acad Sci U S A 2017; 114:E4832-E4840. [PMID: 28559332 DOI: 10.1073/pnas.1705385114] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) encounters stresses during the pathogenesis and treatment of tuberculosis (TB) that can suppress replication of the bacteria and render them phenotypically tolerant to most available drugs. Where studied, the majority of Mtb in the sputum of most untreated subjects with active TB have been found to be nonreplicating by the criterion that they do not grow as colony-forming units (cfus) when plated on agar. However, these cells are viable because they grow when diluted in liquid media. A method for generating such "differentially detectable" (DD) Mtb in vitro would aid studies of the biology and drug susceptibility of this population, but lack of independent confirmation of reported methods has contributed to skepticism about their existence. Here, we identified confounding artifacts that, when avoided, allowed development of a reliable method of producing cultures of ≥90% DD Mtb in starved cells. We then characterized several drugs according to whether they contribute to the generation of DD Mtb or kill them. Of the agents tested, rifamycins led to DD Mtb generation, an effect lacking in a rifampin-resistant strain with a mutation in rpoB, which encodes the canonical rifampin target, the β subunit of RNA polymerase. In contrast, thioridazine did not generate DD Mtb from starved cells but killed those generated by rifampin.
Collapse
|
128
|
de Knegt GJ, Dickinson L, Pertinez H, Evangelopoulos D, McHugh TD, Bakker-Woudenberg IAJM, Davies GR, de Steenwinkel JEM. Assessment of treatment response by colony forming units, time to culture positivity and the molecular bacterial load assay compared in a mouse tuberculosis model. Tuberculosis (Edinb) 2017; 105:113-118. [PMID: 28610782 DOI: 10.1016/j.tube.2017.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/01/2017] [Accepted: 05/07/2017] [Indexed: 01/03/2023]
Abstract
The aim of the study is to compare counting of colony forming units (CFU), the time to positivity (TTP) assay and the molecular bacterial load (MBL) assay, and explore whether the last assays can detect a subpopulation which is unable to grown on solid media. CFU counting, TTP and the MBL assay were used to determine the mycobacterial load in matched lung samples of a murine tuberculosis model. Mice were treated for 24 weeks with 4 treatment arms: isoniazid (H) - rifampicin (R) - pyrazinamide (Z), HRZ-Streptomycin (S), HRZ - ethambutol (E) or ZES. Inverse relationships were observed when comparing TPP with CFU or MBL. Positive associations were observed when comparing CFU with MBL. Description of the net elimination of bacteria was performed for CFU vs. time, MBL vs. time and 1/TTP vs. time and fitted by nonlinear regression. CFU vs. time and 1/TTP vs. time showed bi-phasic declines with the exception of HRZE. A similar rank order, based on the alpha slope, was found comparing CFU vs. time and TTP vs. time, respectively HRZE, HRZ, HRZS and ZES. In contrast, MBL vs. time showed a mono-phasic decline with a flat gradient of elimination and a different rank order respectively, ZES, HRZ, HRZE and HRZS. The correlations found between methods reflects the ability of each to discern the general mycobacterial load. Based on the description of net elimination, we conclude that the MBL assay can detect a subpopulation of Mycobacterium tuberculosis which is not detected by the CFU or TTP assays.
Collapse
Affiliation(s)
- Gerjo J de Knegt
- Erasmus MC, University Medical Centre Rotterdam, Department of Medical Microbiology & Infectious Diseases, Rotterdam, The Netherlands.
| | - Laura Dickinson
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Henry Pertinez
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | | | - Timothy D McHugh
- Centre for Clinical Microbiology, University College London, London, United Kingdom
| | - Irma A J M Bakker-Woudenberg
- Erasmus MC, University Medical Centre Rotterdam, Department of Medical Microbiology & Infectious Diseases, Rotterdam, The Netherlands
| | - Gerry R Davies
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Jurriaan E M de Steenwinkel
- Erasmus MC, University Medical Centre Rotterdam, Department of Medical Microbiology & Infectious Diseases, Rotterdam, The Netherlands
| |
Collapse
|
129
|
McIvor A, Koornhof H, Kana BD. Relapse, re-infection and mixed infections in tuberculosis disease. Pathog Dis 2017; 75:3003284. [PMID: 28334088 DOI: 10.1093/femspd/ftx020] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/16/2017] [Indexed: 01/19/2023] Open
Abstract
Tuberculosis (TB) disease can be characterized by genotypic and phenotypic complexity in Mycobacterium tuberculosis bacilli within a single patient. This microbiological heterogeneity has become an area of intense study due its perceived importance in drug tolerance, drug resistance and as a surrogate measure of transmission rates. This review presents a descriptive analysis of research describing the prevalence of mixed-strain TB infections in geographically distinct locations. Despite significant variation in disease burden and a rampant human immunodeficiency virus (HIV)-TB co-epidemic, there was no difference in the prevalence range of mixed infections reported in African countries when compared to the rest of the world. The occurrence of recurrent TB was associated with a higher prevalence of mixed-strain infections, but this difference was not reported as statistically significant. These interpretations were limited by differences in the design and overall size of the studies assessed. Factors such as sputum quality, culture media, number of repeated culture steps, molecular typing methods and HIV-infection status can affect the detection of mixed-strain infection. It is recommended that future clinical studies should focus on settings with varying TB burdens, with a common sample processing protocol to gain further insight into these phenomena and develop novel transmission blocking strategies.
Collapse
Affiliation(s)
- Amanda McIvor
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa
| | - Hendrik Koornhof
- Centre for Tuberculosis, National Institute for Communicable Diseases and National Health Laboratory Service, Johannesburg, 2000, South Africa
| | - Bavesh Davandra Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa.,CAPRISA, Centre for the AIDS Programme of Research in South Africa, Durban, 4001, South Africa
| |
Collapse
|
130
|
Rosser A, Stover C, Pareek M, Mukamolova GV. Resuscitation-promoting factors are important determinants of the pathophysiology in Mycobacterium tuberculosis infection. Crit Rev Microbiol 2017; 43:621-630. [PMID: 28338360 DOI: 10.1080/1040841x.2017.1283485] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Resuscitation promoting factors (Rpf) are peptidoglycan-hydrolyzing enzymes that are pivotal in the resuscitation of quiescent actinobacteria including Mycobacterium tuberculosis. From the published data, it is clear that Rpf are required for the resuscitation of non-replicating bacilli and pathogenesis in murine infection model of tuberculosis, although their direct influence on human Mycobacterium tuberculosis infection is ill-defined. In this review, we describe the progress in the understanding of the roles that Rpf play in human tuberculosis pathogenesis and importance of bacilli dependent upon Rpf for growth for the outcome of human tuberculosis. We outline how this research is opening up important opportunities for the diagnosis, treatment and prevention of human disease, progress in which is essential to attain the ultimate goal of tuberculosis eradication.
Collapse
Affiliation(s)
- Andrew Rosser
- a Department of Infection, Immunity and Inflammation , University of Leicester , Leicester , UK.,b Department of Infection and Tropical Medicine , University Hospitals of Leicester NHS Trust , Leicester , UK
| | - Cordula Stover
- a Department of Infection, Immunity and Inflammation , University of Leicester , Leicester , UK
| | - Manish Pareek
- a Department of Infection, Immunity and Inflammation , University of Leicester , Leicester , UK.,b Department of Infection and Tropical Medicine , University Hospitals of Leicester NHS Trust , Leicester , UK
| | - Galina V Mukamolova
- a Department of Infection, Immunity and Inflammation , University of Leicester , Leicester , UK
| |
Collapse
|
131
|
Nikitushkin VD, Demina GR, Kaprelyants AS. Rpf proteins are the factors of reactivation of the dormant forms of actinobacteria. BIOCHEMISTRY (MOSCOW) 2017; 81:1719-1734. [DOI: 10.1134/s0006297916130095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
132
|
Abstract
Tuberculosis is a difficult disease to treat, a process made more harder as tools to monitor treatment response only provide a result long after the patient has provided a sample. The mycobacterial load assay (MBLA) provides a simple molecular test to quantify and determine the viability of M. tuberculosis in human or other samples.
Collapse
Affiliation(s)
- Stephen H Gillespie
- School of Medicine, University of St Andrews, North Haugh, North Street, St Andrews, KY16 9AJ, UK.
| | - Wilber Sabiiti
- School of Medicine, University of St Andrews, North Haugh, North Street, St Andrews, KY16 9AJ, UK
| | - Katarina Oravcova
- School of Medicine, University of St Andrews, North Haugh, North Street, St Andrews, KY16 9AJ, UK
| |
Collapse
|
133
|
Gold B, Nathan C. Targeting Phenotypically Tolerant Mycobacterium tuberculosis. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0031-2016. [PMID: 28233509 PMCID: PMC5367488 DOI: 10.1128/microbiolspec.tbtb2-0031-2016] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 01/08/2023] Open
Abstract
While the immune system is credited with averting tuberculosis in billions of individuals exposed to Mycobacterium tuberculosis, the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of M. tuberculosis. The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render M. tuberculosis profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in clinical settings. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of posttreatment relapse. Some promising drugs to treat tuberculosis, such as rifampin and bedaquiline, only kill nonreplicating M. tuberculosisin vitro at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating M. tuberculosis. With this goal, we review methods of high-throughput screening to target nonreplicating M. tuberculosis and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating M. tuberculosis revealed a rich diversity in pharmacophores.
Collapse
Affiliation(s)
- Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
134
|
Abstract
Tuberculosis (TB) remains a global threat with more than 9 million new infections. Treatment remains difficult and there has been no change in the duration of the standard regimen since the early 1980s. Moreover, many patients are unable to tolerate this treatment and discontinue therapy, increasing the risk of resistance. There is a growing tide of multidrug resistance and few effective antibiotics to tackle the problem. Since the turn of the millennium there has been a surge in interest in developing new therapies for TB and a number of new drugs have been developed. In this review the repurposing of moxifloxacin, an 8-methoxy-fluoroquinolone, for TB treatment is discussed. The evidence that underpins the development of this agent is reviewed. The results of the recently completed phase III trials are summarised and the reasons for the unexpected outcome are explored. Finally, the design of new trials that incorporate moxifloxacin, and that address both susceptible disease and multidrug resistance, is described.
Collapse
|
135
|
Development of an In Vitro Assay for Detection of Drug-Induced Resuscitation-Promoting-Factor-Dependent Mycobacteria. Antimicrob Agents Chemother 2016; 60:6227-33. [PMID: 27503641 PMCID: PMC5038329 DOI: 10.1128/aac.00518-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis is a major infectious disease that requires prolonged chemotherapy with a combination of four drugs. Here we present data suggesting that treatment of Mycobacterium tuberculosis, the causative agent of tuberculosis, and Mycobacterium smegmatis, a model organism widely used for the screening of antituberculosis agents, with first-line drugs resulted in the generation of substantial populations that could be recovered only by the addition of a culture supernatant from growing mycobacteria. These bacilli failed to grow in standard media, resulting in significant underestimation of the numbers of viable mycobacteria in treated samples. We generated M. smegmatis strains overexpressing M. tuberculosis resuscitation-promoting factors (Rpfs) and demonstrated their application for the detection of Rpf-dependent mycobacteria generated after drug exposure. Our data offer novel opportunities for validation of the sterilizing activity of antituberculosis agents.
Collapse
|
136
|
Kang HK, Jeong BH, Lee H, Park HY, Jeon K, Huh HJ, Ki CS, Lee NY, Koh WJ. Clinical significance of smear positivity for acid-fast bacilli after ≥5 months of treatment in patients with drug-susceptible pulmonary tuberculosis. Medicine (Baltimore) 2016; 95:e4540. [PMID: 27495111 PMCID: PMC4979865 DOI: 10.1097/md.0000000000004540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Patients with pulmonary tuberculosis (TB) with acid-fast bacilli (AFB)-positive sputum smear at 5 months or later during treatment are considered to be cases of treatment failure according to World Health Organization guidelines. This study evaluated the proportion, clinical characteristics, and significance of positive sputum smears after ≥5 months of standard treatment in patients with drug-susceptible pulmonary TB.This was a retrospective cohort study of 1611 patients with culture-confirmed drug-susceptible pulmonary TB who received standard anti-TB treatment from January 2009 to February 2014. Forty-one patients (2.5%) who were smear-positive after ≥5 months of treatment and 123 age- and sex-matched control patients were evaluated.Among the 41 smear-positive patients, culture of the sputum specimens yielded Mycobacterium tuberculosis (MTB) in 1 patient (2.4%), nontuberculous mycobacteria (NTM) in 7 (17.1%), and no growth in the remaining 33 patients (80.5%). Treatment was successfully completed in 40 patients (97.6%) with prolongation of the continuation phase regimens without change to second-line anti-TB treatment. In patients with smear positivity after ≥5 months of treatment compared with controls, cavitation on chest radiographs (53.7% vs. 25.2%, P = 0.001), bilateral involvement (51.2% vs. 30.1%, P = 0.01) and combined pleural effusion (26.8% vs. 10.6%, P = 0.01) were found more frequently at the time of treatment initiation, and paradoxical response occurred more commonly (19.5% vs. 3.3%, P = 0.002) during treatment.Smear-positive sputum after ≥5 months of standard anti-TB treatment was mainly because of nonviable MTB bacilli or NTM in patients with drug-susceptible pulmonary TB. AFB smear alone should not be used to assess treatment failure and careful examination of microbiologic status, including culture and drug susceptibility testing, is needed before making changes to retreatment regimens or empirical second-line anti-TB regimens in these patients.
Collapse
Affiliation(s)
- Hyung Koo Kang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Ilsan Paik Hospital, Inje University School of Medicine, Goyang, Gyeonggi
| | - Byeong-Ho Jeong
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Hyun Lee
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Hye Yun Park
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Kyeongman Jeon
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Won-Jung Koh
- Department of Medicine, Division of Pulmonary and Critical Care Medicine
- Correspondence: Won-Jung Koh, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea (e-mail: )
| |
Collapse
|
137
|
Investigation of Elimination Rate, Persistent Subpopulation Removal, and Relapse Rates of Mycobacterium tuberculosis by Using Combinations of First-Line Drugs in a Modified Cornell Mouse Model. Antimicrob Agents Chemother 2016; 60:4778-85. [PMID: 27216065 PMCID: PMC4958161 DOI: 10.1128/aac.02548-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/20/2016] [Indexed: 11/20/2022] Open
Abstract
Currently, the most effective tuberculosis control method involves case finding and 6 months of chemotherapy. There is a need to improve our understanding about drug interactions, combination activities, and the ability to remove persistent bacteria using the current regimens, particularly in relation to relapse. We aimed to investigate the therapeutic effects of three main components, rifampin (RMP), isoniazid (INH), and pyrazinamide (PZA), in current drug regimens using a modified version of the Cornell mouse model. We evaluated the posttreatment levels of persistent Mycobacterium tuberculosis in the organs of mice using culture filtrate derived from M. tuberculosis strain H37Rv. When RMP was combined with INH, PZA, or INH-PZA, significant additive activities were observed compared to each of the single-drug treatments. However, the combination of INH and PZA showed a less significant additive effect than either of the drugs used on their own. Apparent culture negativity of mouse organs was achieved at 14 weeks of treatment with RMP-INH, RMP-PZA, and RMP-INH-PZA, but not with INH-PZA, when conventional tests, namely, culture on solid agar and in liquid broth, indicated that the organs were negative for bacteria. The relapse rates for RMP-containing regimens were not significantly different from a 100% relapse rate at the numbers of mice examined in this study. In parallel, we examined the organs for the presence of culture filtrate-dependent persistent bacilli after 14 weeks of treatment. Culture filtrate treatment of the organs revealed persistent M. tuberculosis. Modeling of mycobacterial elimination rates and evaluation of culture filtrate-dependent organisms showed promise as surrogate methods for efficient factorial evaluation of drug combinations in tuberculosis in mouse models and should be further evaluated against relapse. The presence of culture filtrate-dependent persistent M. tuberculosis is the likely cause of disease relapse in this modified Cornell mouse model.
Collapse
|
138
|
A Flow Cytometry Method for Rapidly Assessing Mycobacterium tuberculosis Responses to Antibiotics with Different Modes of Action. Antimicrob Agents Chemother 2016; 60:3869-83. [PMID: 26902767 PMCID: PMC4914659 DOI: 10.1128/aac.02712-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/13/2016] [Indexed: 12/22/2022] Open
Abstract
Current methods for assessing the drug susceptibility of Mycobacterium tuberculosis are lengthy and do not capture information about viable organisms that are not immediately culturable under standard laboratory conditions as a result of antibiotic exposure. We have developed a rapid dual-fluorescence flow cytometry method using markers for cell viability and death. We show that the fluorescent marker calcein violet with an acetoxy-methyl ester group (CV-AM) can differentiate between populations of M. tuberculosis growing at different rates, while Sytox green (SG) can differentiate between live and dead mycobacteria. M. tuberculosis was exposed to isoniazid or rifampin at different concentrations over time and either dual stained with CV-AM and SG and analyzed by flow cytometry or plated to determine the viability of the cells. Although similar trends in the loss of viability were observed when the results of flow cytometry and the plate counting methods were compared, there was a lack of correlation between these two approaches, as the flow cytometry analysis potentially captured information about cell populations that were unable to grow under standard conditions. The flow cytometry approach had an additional advantage in that it could provide insights into the mode of action of the drug: antibiotics targeting the cell wall gave a flow cytometry profile distinct from those inhibiting intracellular processes. This rapid drug susceptibility testing method could identify more effective antimycobacterials, provide information about their potential mode of action, and accelerate their progress to the clinic.
Collapse
|
139
|
Lipworth S, Hammond RJH, Baron VO, Hu Y, Coates A, Gillespie SH. Defining dormancy in mycobacterial disease. Tuberculosis (Edinb) 2016; 99:131-142. [PMID: 27450015 DOI: 10.1016/j.tube.2016.05.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/06/2016] [Accepted: 05/23/2016] [Indexed: 11/19/2022]
Abstract
Tuberculosis remains a threat to global health and recent attempts to shorten therapy have not succeeded mainly due to cases of clinical relapse. This has focussed attention on the importance of "dormancy" in tuberculosis. There are a number of different definitions of the term and a similar multiplicity of different in vitro and in vivo models. The danger with this is the implicit assumption of equivalence between the terms and models, which will make even more difficult to unravel this complex conundrum. In this review we summarise the main models and definitions and their impact on susceptibility of Mycobacterium tuberculosis. We also suggest a potential nomenclature for debate. Dormancy researchers agree that factors underpinning this phenomenon are complex and nuanced. If we are to make progress we must agree the terms to be used and be consistent in using them.
Collapse
Affiliation(s)
- S Lipworth
- School of Medicine, University of St Andrews, Biomedical Science Building, North Haugh, St Andrews KY16 9TF, United Kingdom
| | - R J H Hammond
- School of Medicine, University of St Andrews, Biomedical Science Building, North Haugh, St Andrews KY16 9TF, United Kingdom
| | - V O Baron
- School of Medicine, University of St Andrews, Biomedical Science Building, North Haugh, St Andrews KY16 9TF, United Kingdom
| | - Yanmin Hu
- Institute for Infection and Immunity, St George's, University of London, London SW17 ORE, United Kingdom
| | - A Coates
- Institute for Infection and Immunity, St George's, University of London, London SW17 ORE, United Kingdom
| | - S H Gillespie
- School of Medicine, University of St Andrews, Biomedical Science Building, North Haugh, St Andrews KY16 9TF, United Kingdom.
| |
Collapse
|
140
|
Svensson RJ, Simonsson U. Application of the Multistate Tuberculosis Pharmacometric Model in Patients With Rifampicin-Treated Pulmonary Tuberculosis. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2016; 5:264-73. [PMID: 27299939 PMCID: PMC4873565 DOI: 10.1002/psp4.12079] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/30/2016] [Indexed: 12/11/2022]
Abstract
This is the first clinical implementation of the Multistate Tuberculosis Pharmacometric (MTP) model describing fast-, slow-, and nonmultiplying bacterial states of Mycobacterium tuberculosis. Colony forming unit data from 19 patients treated with rifampicin were analyzed. A previously developed rifampicin population pharmacokinetic (PK) model was linked to the MTP model previously developed using in vitro data. Drug effect was implemented as exposure-response relationships tested at several effect sites, both alone and in combination. All MTP model parameters were fixed to in vitro estimates except Bmax . Drug effect was described by an on/off effect inhibiting growth of fast-multiplying bacteria in addition to linear increase of the stimulation of the death rate of slow- and nonmultiplying bacteria with increasing drug exposure. Clinical trial simulations predicted well three retrospective clinical trials using the final model that confirmed the potential utility of the MTP model in antitubercular drug development.
Collapse
Affiliation(s)
- R J Svensson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ush Simonsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
141
|
Honeyborne I, McHugh TD, Kuittinen I, Cichonska A, Evangelopoulos D, Ronacher K, van Helden PD, Gillespie SH, Fernandez-Reyes D, Walzl G, Rousu J, Butcher PD, Waddell SJ. Profiling persistent tubercule bacilli from patient sputa during therapy predicts early drug efficacy. BMC Med 2016; 14:68. [PMID: 27055815 PMCID: PMC4825072 DOI: 10.1186/s12916-016-0609-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/23/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND New treatment options are needed to maintain and improve therapy for tuberculosis, which caused the death of 1.5 million people in 2013 despite potential for an 86 % treatment success rate. A greater understanding of Mycobacterium tuberculosis (M.tb) bacilli that persist through drug therapy will aid drug development programs. Predictive biomarkers for treatment efficacy are also a research priority. METHODS AND RESULTS Genome-wide transcriptional profiling was used to map the mRNA signatures of M.tb from the sputa of 15 patients before and 3, 7 and 14 days after the start of standard regimen drug treatment. The mRNA profiles of bacilli through the first 2 weeks of therapy reflected drug activity at 3 days with transcriptional signatures at days 7 and 14 consistent with reduced M.tb metabolic activity similar to the profile of pre-chemotherapy bacilli. These results suggest that a pre-existing drug-tolerant M.tb population dominates sputum before and after early drug treatment, and that the mRNA signature at day 3 marks the killing of a drug-sensitive sub-population of bacilli. Modelling patient indices of disease severity with bacterial gene expression patterns demonstrated that both microbiological and clinical parameters were reflected in the divergent M.tb responses and provided evidence that factors such as bacterial load and disease pathology influence the host-pathogen interplay and the phenotypic state of bacilli. Transcriptional signatures were also defined that predicted measures of early treatment success (rate of decline in bacterial load over 3 days, TB test positivity at 2 months, and bacterial load at 2 months). CONCLUSIONS This study defines the transcriptional signature of M.tb bacilli that have been expectorated in sputum after two weeks of drug therapy, characterizing the phenotypic state of bacilli that persist through treatment. We demonstrate that variability in clinical manifestations of disease are detectable in bacterial sputa signatures, and that the changing M.tb mRNA profiles 0-2 weeks into chemotherapy predict the efficacy of treatment 6 weeks later. These observations advocate assaying dynamic bacterial phenotypes through drug therapy as biomarkers for treatment success.
Collapse
Affiliation(s)
- Isobella Honeyborne
- Centre for Clinical Microbiology, University College London, London, NW3 2PF, UK
| | - Timothy D McHugh
- Centre for Clinical Microbiology, University College London, London, NW3 2PF, UK
| | - Iitu Kuittinen
- Department of Computer Science, Helsinki Institute for Information Technology HIIT, Aalto University, Espoo, Finland
| | - Anna Cichonska
- Department of Computer Science, Helsinki Institute for Information Technology HIIT, Aalto University, Espoo, Finland.,Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | | | - Katharina Ronacher
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research and Medical Research Council Centre for TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Western Cape, South Africa
| | - Paul D van Helden
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research and Medical Research Council Centre for TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Western Cape, South Africa
| | - Stephen H Gillespie
- Medical and Biological Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9TF, UK
| | - Delmiro Fernandez-Reyes
- Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, UK.,Department of Paediatrics, University College Hospital, College of Medicine of the University of Ibadan, Ibadan, Nigeria
| | - Gerhard Walzl
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research and Medical Research Council Centre for TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Western Cape, South Africa
| | - Juho Rousu
- Department of Computer Science, Helsinki Institute for Information Technology HIIT, Aalto University, Espoo, Finland
| | - Philip D Butcher
- Institute for Infection and Immunity, St George's University of London, London, SW17 0RE, UK
| | - Simon J Waddell
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK.
| |
Collapse
|
142
|
Clewe O, Aulin L, Hu Y, Coates ARM, Simonsson USH. A multistate tuberculosis pharmacometric model: a framework for studying anti-tubercular drug effects in vitro. J Antimicrob Chemother 2016; 71:964-74. [PMID: 26702921 PMCID: PMC4790616 DOI: 10.1093/jac/dkv416] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Mycobacterium tuberculosis can exist in different states in vitro, which can be denoted as fast multiplying, slow multiplying and non-multiplying. Characterizing the natural growth of M. tuberculosis could provide a framework for accurate characterization of drug effects on the different bacterial states. METHODS The natural growth data of M. tuberculosis H37Rv used in this study consisted of viability defined as cfu versus time based on data from an in vitro hypoxia system. External validation of the natural growth model was conducted using data representing the rate of incorporation of radiolabelled methionine into proteins by the bacteria. Rifampicin time-kill curves from log-phase (0.25-16 mg/L) and stationary-phase (0.5-64 mg/L) cultures were used to assess the model's ability to describe drug effects by evaluating different linear and non-linear exposure-response relationships. RESULTS The final pharmacometric model consisted of a three-compartment differential equation system representing fast-, slow- and non-multiplying bacteria. Model predictions correlated well with the external data (R(2) = 0.98). The rifampicin effects on log-phase and stationary-phase cultures were separately and simultaneously described by including the drug effect on the different bacterial states. The predicted reduction in log10 cfu after 14 days and at 0.5 mg/L was 2.2 and 0.8 in the log-phase and stationary-phase systems, respectively. CONCLUSIONS The model provides predictions of the change in bacterial numbers for the different bacterial states with and without drug effect and could thus be used as a framework for studying anti-tubercular drug effects in vitro.
Collapse
Affiliation(s)
- Oskar Clewe
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Linda Aulin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Yanmin Hu
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Anthony R M Coates
- Institute for Infection and Immunity, St George's University of London, London, UK
| | | |
Collapse
|
143
|
Rockwood N, du Bruyn E, Morris T, Wilkinson RJ. Assessment of treatment response in tuberculosis. Expert Rev Respir Med 2016; 10:643-54. [PMID: 27030924 DOI: 10.1586/17476348.2016.1166960] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antibiotic treatment of tuberculosis has a duration of several months. There is significant variability of the host immune response and the pharmacokinetic-pharmacodynamic properties of Mycobacterium tuberculosis sub-populations at the site of disease. A limitation of sputum-based measures of treatment response may be sub-optimal detection and monitoring of Mycobacterium tuberculosis sub-populations. Potential biomarkers and surrogate endpoints should be benchmarked against hard clinical outcomes (failure/relapse/death) and may need tailoring to specific patient populations. Here, we assess the evidence supporting currently utilized and future potential host and pathogen-based models and biomarkers for monitoring treatment response in active and latent tuberculosis. Biomarkers for monitoring treatment response in extrapulmonary, pediatric and drug resistant tuberculosis are research priorities.
Collapse
Affiliation(s)
- Neesha Rockwood
- a Department of Medicine , Imperial College London , London , UK.,b Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine and Department of Medicine , University of Cape Town , Observatory , South Africa
| | - Elsa du Bruyn
- b Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine and Department of Medicine , University of Cape Town , Observatory , South Africa
| | - Thomas Morris
- a Department of Medicine , Imperial College London , London , UK
| | - Robert J Wilkinson
- a Department of Medicine , Imperial College London , London , UK.,b Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine and Department of Medicine , University of Cape Town , Observatory , South Africa.,c The Francis Crick Institute Mill Hill Laboratory , London , UK
| |
Collapse
|
144
|
Phenotypically Adapted Mycobacterium tuberculosis Populations from Sputum Are Tolerant to First-Line Drugs. Antimicrob Agents Chemother 2016; 60:2476-83. [PMID: 26883695 PMCID: PMC4808147 DOI: 10.1128/aac.01380-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 02/06/2016] [Indexed: 12/12/2022] Open
Abstract
Tuberculous sputum contains multiple Mycobacterium tuberculosis populations with different requirements for isolation in vitro. These include cells that form colonies on solid media (plateable M. tuberculosis), cells requiring standard liquid medium for growth (nonplateable M. tuberculosis), and cells requiring supplementation of liquid medium with culture supernatant (SN) for growth (SN-dependent M. tuberculosis). Here, we describe protocols for the cryopreservation and direct assessment of antimicrobial tolerance of these M. tuberculosis populations within sputum. Our results show that first-line drugs achieved only modest bactericidal effects on all three populations over 7 days (1 to 2.5 log10 reductions), and SN-dependent M. tuberculosis was more tolerant to streptomycin and isoniazid than the plateable and nonplateable M. tuberculosis strains. Susceptibility of plateable M. tuberculosis to bactericidal drugs was significantly increased after passage in vitro; thus, tolerance observed in the sputum samples from the population groups was likely associated with mycobacterial adaptation to the host environment at some time prior to expectoration. Our findings support the use of a simple ex vivo system for testing drug efficacies against mycobacteria that have phenotypically adapted during tuberculosis infection.
Collapse
|
145
|
Warner DF. Defining a diagnostic gene signature for tuberculosis. THE LANCET RESPIRATORY MEDICINE 2016; 4:170-1. [PMID: 26907219 DOI: 10.1016/s2213-2600(16)00063-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Digby F Warner
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa.
| |
Collapse
|
146
|
Arroyo L, Rojas M, Ortíz BL, Franken KLMC, García LF, Ottenhoff THM, Barrera LF. Dynamics of the T cell response to Mycobacterium tuberculosis DosR and Rpf antigens in a Colombian population of household contacts of recently diagnosed pulmonary tuberculosis patients. Tuberculosis (Edinb) 2016; 97:97-107. [PMID: 26980501 DOI: 10.1016/j.tube.2015.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/21/2015] [Accepted: 12/26/2015] [Indexed: 11/28/2022]
Abstract
Immune response to DosR and Rpf antigens from Mycobacterium tuberculosis (Mtb) seems to be important for latency maintenance. Little is known about the dynamics of the immune response to these antigens in an endemic community. Thus, the IFNγ response and cytokine production in response to PPD, Esat6-Cfp10 (E6-C10), DosR and Rpf antigens in healthy HHC of tuberculosis (TB) patients over a 12 (T12) months period (short-term, stLTBI) was investigated. This response was compared with a group of LTBI, who have remained healthy for 5-7 years (long-term, ltLTBI). According to the IFNγ response, two groups of HHCs were identified in stLTBI in response to E6-C10. At T12, E6-C10(+) HHCs displayed a decrease in the IFNγ levels and a generalized decrease in cytokines production. The E6-C10(-) HHC showed an increase in the IFNγ response and cytokine levels. In stLTBI, the responses to E6-C10, DosR, and Rpf may be interpreted as a protective immune response controlling Mtb infection and may be leading to a state of latent infection. Comparing the response of stLTBI and ltLTBI, we observed significant changes in the proportions of CD45RO(+)CD27(+) T cells to specific DosR and Rpf, which may indicate a persistent immune response to Mtb antigens in ltLTBI.
Collapse
Affiliation(s)
- Leonar Arroyo
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Colombia.
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Colombia; Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Blanca L Ortíz
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Colombia; Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands.
| | - Luis F García
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Colombia; Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands.
| | - Luis F Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Colombia; Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
147
|
Toward an Evidence-Based Nonclinical Road Map for Evaluating the Efficacy of New Tuberculosis (TB) Drug Regimens: Proceedings of a Critical Path to TB Drug Regimens-National Institute of Allergy and Infectious Diseases In Vivo Pharmacology Workshop for TB Drug Development. Antimicrob Agents Chemother 2016; 60:1177-82. [PMID: 26824941 DOI: 10.1128/aac.02041-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel tuberculosis (TB) drug regimens are urgently needed, and their development will be enabled by improved preclinical approaches that more effectively inform and ensure safe selection of clinical candidates and drug combination/regimens. An evidence-based approach for the assessment of nonclinical models supporting TB drug development has been proposed by a joint partnership between the National Institute of Allergy and Infectious Diseases (NIAID) and the Critical Path to TB Drug Regimens (CPTR) Consortium.
Collapse
|
148
|
Kell DB, Kenny LC. A Dormant Microbial Component in the Development of Preeclampsia. Front Med (Lausanne) 2016; 3:60. [PMID: 27965958 PMCID: PMC5126693 DOI: 10.3389/fmed.2016.00060] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022] Open
Abstract
Preeclampsia (PE) is a complex, multisystem disorder that remains a leading cause of morbidity and mortality in pregnancy. Four main classes of dysregulation accompany PE and are widely considered to contribute to its severity. These are abnormal trophoblast invasion of the placenta, anti-angiogenic responses, oxidative stress, and inflammation. What is lacking, however, is an explanation of how these themselves are caused. We here develop the unifying idea, and the considerable evidence for it, that the originating cause of PE (and of the four classes of dysregulation) is, in fact, microbial infection, that most such microbes are dormant and hence resist detection by conventional (replication-dependent) microbiology, and that by occasional resuscitation and growth it is they that are responsible for all the observable sequelae, including the continuing, chronic inflammation. In particular, bacterial products such as lipopolysaccharide (LPS), also known as endotoxin, are well known as highly inflammagenic and stimulate an innate (and possibly trained) immune response that exacerbates the inflammation further. The known need of microbes for free iron can explain the iron dysregulation that accompanies PE. We describe the main routes of infection (gut, oral, and urinary tract infection) and the regularly observed presence of microbes in placental and other tissues in PE. Every known proteomic biomarker of "preeclampsia" that we assessed has, in fact, also been shown to be raised in response to infection. An infectious component to PE fulfills the Bradford Hill criteria for ascribing a disease to an environmental cause and suggests a number of treatments, some of which have, in fact, been shown to be successful. PE was classically referred to as endotoxemia or toxemia of pregnancy, and it is ironic that it seems that LPS and other microbial endotoxins really are involved. Overall, the recognition of an infectious component in the etiology of PE mirrors that for ulcers and other diseases that were previously considered to lack one.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of Chemistry, The University of Manchester, Manchester, UK
- The Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, UK
- *Correspondence: Douglas B. Kell,
| | - Louise C. Kenny
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
| |
Collapse
|
149
|
Yew WW, Koh WJ. Emerging strategies for the treatment of pulmonary tuberculosis: promise and limitations? Korean J Intern Med 2016; 31:15-29. [PMID: 26767853 PMCID: PMC4712419 DOI: 10.3904/kjim.2016.31.1.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 01/03/2023] Open
Abstract
A worsening scenario of drug-resistant tuberculosis has increased the need for new treatment strategies to tackle this worldwide emergency. There is a pressing need to simplify and shorten the current 6-month treatment regimen for drug-susceptible tuberculosis. Rifamycins and fluoroquinolones, as well as several new drugs, are potential candidates under evaluation. At the same time, treatment outcomes of patients with drug-resistant tuberculosis should be improved through optimizing the use of fluoroquinolones, repurposed agents and newly developed drugs. In this context, the safety and tolerance of new therapeutic approaches must be addressed.
Collapse
Affiliation(s)
- Wing Wai Yew
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong
- Correspondence to Wing Wai Yew, M.D. Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong Tel: +852-2252-8884 Fax: +852-2635-4977 E-mail:
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
150
|
Fechner K, Schäfer J, Wiegel C, Ludwig J, Münster P, Sharifi AR, Wemheuer W, Czerny CP. Distribution of Mycobacterium avium subsp. paratuberculosis in a Subclinical Naturally Infected German Fleckvieh Bull. Transbound Emerg Dis 2015; 64:916-928. [PMID: 26671341 DOI: 10.1111/tbed.12459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 12/13/2022]
Abstract
Although it has been known for years that Mycobacterium avium subsp. paratuberculosis (MAP) is detectable in the reproductive organs and semen of infected bulls, only few studies have been conducted on this topic worldwide. This study surveyed the MAP status of a bull, naturally infected due to close contact with its subclinically infected parents over a period of 4 years. From the age of 7 weeks to necropsy, faecal, blood and, after sexual maturity, semen samples were drawn repeatedly. Already at the first sampling day, MAP-DNA was detected in faeces by semi-nested PCR. True infection was confirmed by the detection of MAP-DNA in blood at the age of 40 weeks. In total, MAP-DNA was present in 25% faecal (34/139), 16% blood (23/140) and 5% semen (4/89) samples, including MAP-free intervals of up to 9 weeks. MAP genome equivalents (MAP-GE) of up to 6.3 × 106 /g faeces and 1.8 × 105 /ml blood were determined. Cultivation of MAP occurred only in three of 137 faecal and two of 109 blood, but never in semen samples. Over the whole period, the bull was a serological negative MAP shedder. During necropsy, 42 tissue samples were collected. Neither macroscopic nor histological lesions characteristic of a MAP infection were observed. Cultivation of MAP in tissue sections failed. However, MAP-DNA was spread widely in the host, including in tissues of the lymphatic system (7/15), digestive tract (5/14) and the urogenital tract (5/9) with concentrations of up to 3.9 × 106 MAP-GE/g tissue. The study highlighted the detection of MAP in male reproductive organs and semen. It supports the hypothesis that bulls may probably transmit MAP, at least under natural mating conditions. In artificial insemination, this might not be relevant, due to antibiotics included currently in semen extenders. However, the survivability of MAP in this microenvironment should be investigated in detail.
Collapse
Affiliation(s)
- K Fechner
- Division of Microbiology and Animal Hygiene, Institute of Veterinary Medicine, Department of Animal Sciences, Faculty of Agricultural Sciences, Georg-August University, Göttingen, Germany
| | - J Schäfer
- Division of Microbiology and Animal Hygiene, Institute of Veterinary Medicine, Department of Animal Sciences, Faculty of Agricultural Sciences, Georg-August University, Göttingen, Germany
| | - C Wiegel
- Division of Microbiology and Animal Hygiene, Institute of Veterinary Medicine, Department of Animal Sciences, Faculty of Agricultural Sciences, Georg-August University, Göttingen, Germany
| | - J Ludwig
- Division of Microbiology and Animal Hygiene, Institute of Veterinary Medicine, Department of Animal Sciences, Faculty of Agricultural Sciences, Georg-August University, Göttingen, Germany
| | - P Münster
- Division of Microbiology and Animal Hygiene, Institute of Veterinary Medicine, Department of Animal Sciences, Faculty of Agricultural Sciences, Georg-August University, Göttingen, Germany
| | - A R Sharifi
- Division of Animal Breeding and Genetics, Department of Animal Sciences, Faculty of Agricultural Sciences, Georg-August University, Göttingen, Germany
| | - W Wemheuer
- Division of Reproduction and Biotechnology, Department of Animal Science, Faculty of Agricultural Sciences, Georg-August University, Göttingen, Germany
| | - C-P Czerny
- Division of Microbiology and Animal Hygiene, Institute of Veterinary Medicine, Department of Animal Sciences, Faculty of Agricultural Sciences, Georg-August University, Göttingen, Germany
| |
Collapse
|