101
|
Hubbard MA, Thorkildson P, Welch WH, Kozel TR. Stereo-selective binding of monoclonal antibodies to the poly-γ-D-glutamic acid capsular antigen of Bacillus anthracis. Mol Immunol 2013; 55:337-44. [PMID: 23602451 PMCID: PMC3783358 DOI: 10.1016/j.molimm.2013.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/04/2013] [Accepted: 03/13/2013] [Indexed: 01/06/2023]
Abstract
Bacillus anthracis is surrounded by an anti-phagocytic capsule that is entirely composed of γ-linked D-glutamic acid (γDPGA). γDPGA is required for virulence and is produced in large quantities following spore germination. We have previously described the isolation of several γDPGA-reactive mAbs. The reagents are effective in both immunoprotection and diagnostic applications. The current work was done to further investigate the specificity of γDPGA-reactive mAbs. The specificity of each mAb was characterized using surface plasmon resonance. Our results indicate that each mAb is stereoselective for binding to D-glutamic acid oligomers, but to varying degrees. In particular, mAb F26G3 is highly selective for γDPGA; alterations in stereochemistry disrupted recognition. These differences in mAb reactivity suggest that binding of γDPGA by mAb F26G3 is more specific than non-directional ionic interactions between a negatively charged antigen and a positively charged antibody.
Collapse
Affiliation(s)
- Mark A. Hubbard
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, Nevada, 89557 USA
- Cellular and Molecular Biology Graduate Program, University of Nevada School of Medicine, Reno, Nevada, 89557 USA
| | - Peter Thorkildson
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, Nevada, 89557 USA
| | - William H. Welch
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada, 89557 USA
| | - Thomas R. Kozel
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, Nevada, 89557 USA
- Cellular and Molecular Biology Graduate Program, University of Nevada School of Medicine, Reno, Nevada, 89557 USA
| |
Collapse
|
102
|
Characterization of AmiBA2446, a novel bacteriolytic enzyme active against Bacillus species. Appl Environ Microbiol 2013; 79:5899-906. [PMID: 23872558 DOI: 10.1128/aem.02235-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There continues to be a need for developing efficient and environmentally friendly treatments for Bacillus anthracis, the causative agent of anthrax. One emerging approach for inactivation of vegetative B. anthracis is the use of bacteriophage endolysins or lytic enzymes encoded by bacterial genomes (autolysins) with highly evolved specificity toward bacterium-specific peptidoglycan cell walls. In this work, we performed in silico analysis of the genome of Bacillus anthracis strain Ames, using a consensus binding domain amino acid sequence as a probe, and identified a novel lytic enzyme that we termed AmiBA2446. This enzyme exists as a homodimer, as determined by size exclusion studies. It possesses N-acetylmuramoyl-l-alanine amidase activity, as determined from liquid chromatography-mass spectrometry (LC-MS) analysis of muropeptides released due to the enzymatic digestion of peptidoglycan. Phylogenetic analysis suggested that AmiBA2446 was an autolysin of bacterial origin. We characterized the effects of enzyme concentration and phase of bacterial growth on bactericidal activity and observed close to a 5-log reduction in the viability of cells of Bacillus cereus 4342, a surrogate for B. anthracis. We further tested the bactericidal activity of AmiBA2446 against various Bacillus species and demonstrated significant activity against B. anthracis and B. cereus strains. We also demonstrated activity against B. anthracis spores after pretreatment with germinants. AmiBA2446 enzyme was also stable in solution, retaining its activity after 4 months of storage at room temperature.
Collapse
|
103
|
Hubbard MA, Thorkildson P, Kozel TR, AuCoin DP. Constant domains influence binding of mouse-human chimeric antibodies to the capsular polypeptide of Bacillus anthracis. Virulence 2013; 4:483-8. [PMID: 23863605 DOI: 10.4161/viru.25711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Our laboratory previously described the binding characteristics of the murine IgG3 monoclonal antibody (MuAb) F26G3. This antibody binds the poly-glutamic acid capsule (PGA) of Bacillus anthracis, an essential virulence factor in the progression of anthrax. F26G3 IgG3 MuAb binds PGA with a relatively high functional affinity (10 nM), produces a distinct "rim" quellung reaction, and is protective in a murine model of pulmonary anthrax. This study engineered an IgG subclass family of F26G3 mouse-human chimeric antibodies (ChAb). The F26G3 ChAbs displayed 9- to 20-fold decreases in functional affinity, as compared with the parent IgG3 MuAb. Additionally, the quellung reactions that were produced by the ChAbs all differed from the parent IgG3 MuAb in that they appeared "puffy" in nature. This study demonstrates that human constant domains may influence multiple facets of antibody binding to microbial capsular antigens despite their spatial separation from the traditional antigen-binding site.
Collapse
Affiliation(s)
- Mark A Hubbard
- Department of Microbiology and Immunology; University of Nevada School of Medicine, Reno, NV, USA.
| | | | | | | |
Collapse
|
104
|
Seifert R, Dove S. Inhibitors of Bacillus anthracis edema factor. Pharmacol Ther 2013; 140:200-12. [PMID: 23850654 DOI: 10.1016/j.pharmthera.2013.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/17/2013] [Indexed: 01/09/2023]
Abstract
Edema factor (EF) is a calmodulin (CaM)-activated adenylyl cyclase (AC) toxin from Bacillus anthracis that contributes to anthrax pathogenesis. Anthrax is an important medical problem, but treatment of B. anthracis infections is still unsatisfying. Thus, selective EF inhibitors could be valuable drugs in the treatment of anthrax infection, most importantly shock. The catalytic site of EF, the EF/CaM interaction site and allosteric sites constitute potential drug targets. To this end, most efforts have been directed towards targeting the catalytic site. A major challenge in the field is to obtain compounds with high selectivity for AC toxins relative to mammalian membranous ACs (mACs). 3'-(N-methyl)anthraniloyl-2'-deoxyadenosine-5'-triphosphate is the most potent EF inhibitor known so far (Ki, 10nM), but selectivity relative to mACs needs to be improved (currently ~5-50-fold, depending on the specific mAC isoform considered). AC toxin inhibitors can be identified in virtual screening studies based on available EF crystal structures and examined in cellular test systems or at the level of purified toxin using classic radioisotopic or non-radioactive fluorescence assays. Binding of certain MANT-nucleotides to AC toxins elicits large direct fluorescence- or fluorescence resonance energy transfer signals upon interaction with CaM, and these signals can be used to identify toxin inhibitors in competition binding studies. Collectively, potent EF inhibitors are available, but before they can be used clinically, selectivity against mACs must be improved. However, several methodological approaches, complementing each other, are now available to direct the development of potent, selective, orally applicable and clinically useful EF inhibitors.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | | |
Collapse
|
105
|
Coggeshall KM, Lupu F, Ballard J, Metcalf JP, James JA, Farris D, Kurosawa S. The sepsis model: an emerging hypothesis for the lethality of inhalation anthrax. J Cell Mol Med 2013; 17:914-20. [PMID: 23742651 PMCID: PMC3729634 DOI: 10.1111/jcmm.12075] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/29/2013] [Indexed: 01/19/2023] Open
Abstract
Inhalation anthrax is often described as a toxin-mediated disease. However, the toxaemia model does not account for the high mortality of inhalation anthrax relative to other forms of the disease or for the pathology present in inhalation anthrax. Patients with inhalation anthrax consistently show extreme bacteraemia and, in contrast to animals challenged with toxin, signs of sepsis. Rather than toxaemia, we propose that death in inhalation anthrax results from an overwhelming bacteraemia that leads to severe sepsis. According to our model, the central role of anthrax toxin is to permit the vegetative bacteria to escape immune detection. Other forms of B. anthracis infection have lower mortality because their overt symptoms early in the course of disease cause patients to seek medical care at a time when the infection and its sequelae can still be reversed by antibiotics. Thus, the sepsis model explains key features of inhalation anthrax and may offer a more complete understanding of disease pathology for researchers as well as those involved in the care of patients.
Collapse
Affiliation(s)
- Kenneth Mark Coggeshall
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | | | | | | | | | | | | |
Collapse
|
106
|
A human/murine chimeric fab antibody neutralizes anthrax lethal toxin in vitro. Clin Dev Immunol 2013; 2013:475809. [PMID: 23861692 PMCID: PMC3687597 DOI: 10.1155/2013/475809] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 12/21/2022]
Abstract
Human anthrax infection caused by exposure to Bacillus anthracis cannot always be treated by antibiotics. This is mostly because of the effect of the remaining anthrax toxin in the body. Lethal factor (LF) is a component of lethal toxin (LeTx), which is the major virulence of anthrax toxin. A murine IgG monoclonal antibody (mAb) against LF with blocking activity (coded LF8) was produced in a previous study. In this report, a human/murine chimeric Fab mAb (coded LF8-Fab) was developed from LF8 by inserting murine variable regions into human constant regions using antibody engineering to reduce the incompatibility of the murine antibody for human use. The LF8-Fab expressed in Escherichia coli could specifically identify LF with an affinity of 3.46 × 107 L/mol and could neutralize LeTx with an EC50 of 85 μg/mL. Even after LeTx challenge at various time points, the LF8-Fab demonstrated protection of J774A.1 cells in vitro. The results suggest that the LF8-Fab might be further characterized and potentially be used for clinical applications against anthrax infection.
Collapse
|
107
|
Qiu P, Li Y, Shiloach J, Cui X, Sun J, Trinh L, Kubler-Kielb J, Vinogradov E, Mani H, Al-Hamad M, Fitz Y, Eichacker PQ. Bacillus anthracis cell wall peptidoglycan but not lethal or edema toxins produces changes consistent with disseminated intravascular coagulation in a rat model. J Infect Dis 2013; 208:978-89. [PMID: 23737601 DOI: 10.1093/infdis/jit247] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Disseminated intravascular coagulation (DIC) appears to be important in the pathogenesis of Bacillus anthracis infection, but its causes are unclear. Although lethal toxin (LT) and edema toxin (ET) could contribute, B. anthracis cell wall peptidoglycan (PGN), not the toxins, stimulates inflammatory responses associated with DIC. METHODS AND RESULTS To better understand the pathogenesis of DIC during anthrax, we compared the effects of 24-hour infusions of PGN, LT, ET, or diluent (control) on coagulation measures 6, 24, or 48 hours after infusion initiation in 135 rats. No control recipient died. Lethality rates (approximately 30%) did not differ among PGN, LT, and ET recipients (P = .78). Thirty-three of 35 deaths (94%) occurred between 6 and 24 hours after the start of challenge. Among challenge components, PGN most consistently altered coagulation measures. Compared with control at 6 hours, PGN decreased platelet and fibrinogen levels and increased prothrombin and activated partial thromboplastin times and tissue factor, tissue factor pathway inhibitor, protein C, plasminogen activator inhibitor (PAI), and thrombin-antithrombin complex levels, whereas LT and ET only decreased the fibrinogen level or increased the PAI level (P ≤ .05). Nearly all effects associated with PGN infusion significantly differed from changes associated with toxin infusion (P ≤ .05 for all comparisons except for PAI level). CONCLUSION DIC during B. anthracis infection may be related more to components such as PGN than to LT or ET.
Collapse
Affiliation(s)
- Ping Qiu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Li Y, Cui X, Solomon SB, Remy K, Fitz Y, Eichacker PQ. B. anthracis edema toxin increases cAMP levels and inhibits phenylephrine-stimulated contraction in a rat aortic ring model. Am J Physiol Heart Circ Physiol 2013; 305:H238-50. [PMID: 23585140 DOI: 10.1152/ajpheart.00185.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
B. anthracis edema toxin (ET) and lethal toxin (LT) are each composed of protective antigen (PA), necessary for toxin uptake by host cells, and their respective toxic moieties, edema factor (EF) and lethal factor (LF). Although both toxins likely contribute to shock during infection, their mechanisms are unclear. To test whether ET and LT produce arterial relaxation, their effects on phenylephrine (PE)-stimulated contraction in a Sprague-Dawley rat aortic ring model were measured. Rings were prepared and connected to pressure transducers. Their viability was confirmed, and peak contraction with 60 mM KCl was determined. Compared with PA pretreatment (control, 60 min), ET pretreatment at concentrations similar to those noted in vivo decreased the mean (±SE) maximum contractile force (MCF; percent peak contraction) in rings generated during stimulation with increasing PE concentrations (96.2 ± 7.0 vs. 57.3 ± 9.1) and increased the estimated PE concentration producing half the MCF (EC50; 10(-7) M, 1.1 ± 0.3 vs. 3.7 ± 0.8, P ≤ 0.002). ET inhibition with PA-directed monoclonal antibodies, selective EF inhibition with adefovir, or removal of the ring endothelium inhibited the effects of ET on MCF and EC50 (P ≤ 0.02). Consistent with its adenyl cyclase activity, ET increased tissue cAMP in endothelium-intact but not endothelium-denuded rings (P < 0.0001 and 0.25, respectively). LT pretreatment, even in high concentrations, did not significantly decrease MCF or increase EC50 (all P > 0.05). In rings precontracted with PE compared with posttreatment with PA (90 min), ET posttreatment produced progressive reductions in contractile force and increases in relaxation in endothelium-intact rings (P < 0.0001) but not endothelium-denuded rings (P = 0.51). Thus, ET may contribute to shock by producing arterial relaxation.
Collapse
Affiliation(s)
- Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
109
|
Genome Sequence of the Attenuated Carbosap Vaccine Strain of Bacillus anthracis. GENOME ANNOUNCEMENTS 2013; 1:genomeA00067-12. [PMID: 23405332 PMCID: PMC3569327 DOI: 10.1128/genomea.00067-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/07/2012] [Indexed: 11/20/2022]
Abstract
The Bacillus anthracis Carbosap genome, which includes the pXO1 and pXO2 plasmids, has been shown to encode the major B. anthracis virulence factors, yet this strain’s attenuation has not yet been explained. Here we report the draft genome sequence of this strain, and a comparison to fully virulent B. anthracis.
Collapse
|
110
|
D'Souza AJM, Mar KD, Huang J, Majumdar S, Ford BM, Dyas B, Ulrich RG, Sullivan VJ. Rapid Deamidation of Recombinant Protective Antigen when Adsorbed on Aluminum Hydroxide Gel Correlates with Reduced Potency of Vaccine. J Pharm Sci 2013; 102:454-61. [DOI: 10.1002/jps.23422] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/13/2012] [Accepted: 11/28/2012] [Indexed: 12/26/2022]
|
111
|
Brote de carbunco en una zona rural de Etiopía. Rev Clin Esp 2012; 212:e73-5. [DOI: 10.1016/j.rce.2012.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 05/27/2012] [Indexed: 11/23/2022]
|
112
|
Calugi C, Trabocchi A, Lalli C, Guarna A. d-Proline-based peptidomimetic inhibitors of anthrax lethal factor. Eur J Med Chem 2012; 56:96-107. [DOI: 10.1016/j.ejmech.2012.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/17/2012] [Accepted: 08/20/2012] [Indexed: 11/27/2022]
|
113
|
Kummerfeldt CE, Huggins JT, Sahn SA. Unusual bacterial infections and the pleura. Open Respir Med J 2012; 6:75-81. [PMID: 22977649 PMCID: PMC3439802 DOI: 10.2174/1874306401206010075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 08/07/2012] [Accepted: 08/14/2012] [Indexed: 01/24/2023] Open
Abstract
Rickettsiosis, Q fever, tularemia, and anthrax are all bacterial diseases that can affect the pleura. Rocky Mountain Spotted Fever (RMSF) and Mediterranean Spotted Fever (MSF) are caused by Rickettsia rickettsii and Rickettsia conorii, respectively. Pleural fluid from a patient with MSF had a neutrophil-predominant exudate. Coxiellaburnetii is the causative agent of Q fever. Of the two cases described in the literature, one was an exudate with a marked eosinophilia while the other case was a transudate due to a constrictive pericarditis. Francisella tularensis is the causative agent of tularemia. Pleural fluid from three tularemia patients showed a lymphocyte predominant exudate. Bacillusanthracis is the causative agent of anthrax. Cases of inhalational anthrax from a recent bioterrorist attack evidenced the presence of a serosanguineous exudative pleural effusion. These four bacterial microorganisms should be suspected in patients presenting with a clinical history, exposure to known risk factors and an unexplained pleural effusion.
Collapse
Affiliation(s)
- Carlos E Kummerfeldt
- Division of Pulmonary and Critical Care, Medical University of South Carolina, USA
| | | | | |
Collapse
|
114
|
Göttle M, Dove S, Seifert R. Bacillus anthracis edema factor substrate specificity: evidence for new modes of action. Toxins (Basel) 2012; 4:505-35. [PMID: 22852066 PMCID: PMC3407890 DOI: 10.3390/toxins4070505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/15/2012] [Accepted: 06/27/2012] [Indexed: 12/20/2022] Open
Abstract
Since the isolation of Bacillus anthracis exotoxins in the 1960s, the detrimental activity of edema factor (EF) was considered as adenylyl cyclase activity only. Yet the catalytic site of EF was recently shown to accomplish cyclization of cytidine 5'-triphosphate, uridine 5'-triphosphate and inosine 5'-triphosphate, in addition to adenosine 5'-triphosphate. This review discusses the broad EF substrate specificity and possible implications of intracellular accumulation of cyclic cytidine 3':5'-monophosphate, cyclic uridine 3':5'-monophosphate and cyclic inosine 3':5'-monophosphate on cellular functions vital for host defense. In particular, cAMP-independent mechanisms of action of EF on host cell signaling via protein kinase A, protein kinase G, phosphodiesterases and CNG channels are discussed.
Collapse
Affiliation(s)
- Martin Göttle
- Department of Neurology, Emory University School of Medicine, 6302 Woodruff Memorial Research Building, 101 Woodruff Circle, Atlanta, GA 30322, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-404-727-1678; Fax: +1-404-727-3157
| | - Stefan Dove
- Department of Medicinal/Pharmaceutical Chemistry II, University of Regensburg, D-93040 Regensburg, Germany;
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany;
| |
Collapse
|
115
|
Molecular epidemiology of the Bacillus anthracis isolates collected throughout Turkey from 1983 to 2011. Eur J Clin Microbiol Infect Dis 2012; 31:2783-90. [PMID: 22576652 DOI: 10.1007/s10096-012-1628-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
The main perspective of this study was to determine cross-transmissions amongst anthrax cases and provide detailed information regarding the genotypes of Bacillus anthracis isolates circulating in Turkey. A total of 251 B. anthracis isolates were obtained from human (93 isolates), animal (155 isolates), and environmental (three isolates) samples in various provinces of Turkey. All isolates were susceptible to quinolones, vancomycin, tigecycline, and linezolid, but not to ceftriaxone. Excluding human isolates, one of the animal isolates was found to be resistant to penicillin, erythromycin, and doxycycline. Multiple-locus variable-number tandem repeats analysis including 8 loci (MLVA8) revealed 12 genotypes, in which genotype 43 was observed at the highest frequency (41.8 %), followed by genotype 35 (25.5 %) and genotype 27 (10.4 %). Major subtype A3.a was the predominant cluster, including 86.8 % of the isolates. The MLVA25 analysis for the 251 isolates yielded 62 different genotypes, 33 of which had only one isolate, while the remaining 29 genotypes had 2 to 43 isolates, with a total of 218 isolates (86.9 %). These findings indicate very high cross-transmission rates within anthrax cases in Turkey. The genotypes diagnosed in Turkey are populated in the A major cluster. Penicillin prescribed as the first-choice antibiotic for the treatment of anthrax is still effective.
Collapse
|
116
|
Hicks CW, Sweeney DA, Cui X, Li Y, Eichacker PQ. An overview of anthrax infection including the recently identified form of disease in injection drug users. Intensive Care Med 2012; 38:1092-104. [PMID: 22527064 DOI: 10.1007/s00134-012-2541-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/14/2012] [Indexed: 02/06/2023]
Abstract
PURPOSE Bacillus anthracis infection (anthrax) can be highly lethal. Two recent outbreaks related to contaminated mail in the USA and heroin in the UK and Europe and its potential as a bioterrorist weapon have greatly increased concerns over anthrax in the developed world. METHODS This review summarizes the microbiology, pathogenesis, diagnosis, and management of anthrax. RESULTS AND CONCLUSIONS Anthrax, a gram-positive bacterium, has typically been associated with three forms of infection: cutaneous, gastrointestinal, and inhalational. However, the anthrax outbreak among injection drug users has emphasized the importance of what is now considered a fourth disease form (i.e., injectional anthrax) that is characterized by severe soft tissue infection. While cutaneous anthrax is most common, its early stages are distinct and prompt appropriate treatment commonly produces a good outcome. However, early symptoms with the other three disease forms can be nonspecific and mistaken for less lethal conditions. As a result, patients with gastrointestinal, inhalational, or injectional anthrax may have advanced infection at presentation that can be highly lethal. Once anthrax is suspected, the diagnosis can usually be made with gram stain and culture from blood or tissue followed by confirmatory testing (e.g., PCR). While antibiotics are the mainstay of anthrax treatment, use of adjunctive therapies such as anthrax toxin antagonists are a consideration. Prompt surgical therapy appears to be important for successful management of injectional anthrax.
Collapse
Affiliation(s)
- Caitlin W Hicks
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44122, USA
| | | | | | | | | |
Collapse
|
117
|
Dixon SD, Janes BK, Bourgis A, Carlson PE, Hanna PC. Multiple ABC transporters are involved in the acquisition of petrobactin in Bacillus anthracis. Mol Microbiol 2012; 84:370-82. [PMID: 22429808 DOI: 10.1111/j.1365-2958.2012.08028.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In Bacillus anthracis the siderophore petrobactin is vital for iron acquisition and virulence. The petrobactin-binding receptor FpuA is required for these processes. Here additional components of petrobactin reacquisition are described. To identify these proteins, mutants of candidate permease and ATPase genes were generated allowing for characterization of multiple petrobactin ATP-binding cassette (ABC)-import systems. Either of two distinct permeases, FpuB or FatCD, is required for iron acquisition and play redundant roles in petrobactin transport. A mutant strain lacking both permeases, ΔfpuBΔfatCD, was incapable of using petrobactin as an iron source and exhibited attenuated virulence in a murine model of inhalational anthrax infection. ATPase mutants were generated in either of the permease mutant backgrounds to identify the ATPase(s) interacting with each individual permease channel. Mutants lacking the FpuB permease and FatE ATPase (ΔfpuBΔfatE) and a mutant lacking the distinct ATPases FpuC and FpuD generated in the ΔfatCD background (ΔfatCDΔfpuCΔfpuD) displayed phenotypic characteristics of a mutant deficient in petrobactin import. A mutant lacking all three of the identified ATPases (ΔfatEΔfpuCΔfpuD) exhibited the same growth defect in iron-depleted conditions. Taken together, these results provide the first description of the permease and ATPase proteins required for the import of petrobactin in B. anthracis.
Collapse
Affiliation(s)
- Shandee D Dixon
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48104, USA
| | | | | | | | | |
Collapse
|