101
|
Sgalla G, Iovene B, Calvello M, Ori M, Varone F, Richeldi L. Idiopathic pulmonary fibrosis: pathogenesis and management. Respir Res 2018; 19:32. [PMID: 29471816 PMCID: PMC5824456 DOI: 10.1186/s12931-018-0730-2] [Citation(s) in RCA: 375] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/28/2018] [Indexed: 12/21/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease characterized by the aberrant accumulation of fibrotic tissue in the lungs parenchyma, associated with significant morbidity and poor prognosis. This review will present the substantial advances achieved in the understanding of IPF pathogenesis and in the therapeutic options that can be offered to patients, and will address the issues regarding diagnosis and management that are still open. Main body Over the last two decades much has been clarified about the pathogenic pathways underlying the development and progression of the lung scarring in IPF. Sustained alveolar epithelial micro-injury and activation has been recognised as the trigger of several biological events of disordered repair occurring in genetically susceptible ageing individuals. Despite multidisciplinary team discussion has demonstrated to increase diagnostic accuracy, patients can still remain unclassified when the current diagnostic criteria are strictly applied, requiring the identification of a Usual Interstitial Pattern either on high-resolution computed tomography scan or lung biopsy. Outstanding achievements have been made in the management of these patients, as nintedanib and pirfenidone consistently proved to reduce the rate of progression of the fibrotic process. However, many uncertainties still lie in the correct use of these drugs, ranging from the initial choice of the drug, the appropriate timing for treatment and the benefit-risk ratio of a combined treatment regimen. Several novel compounds are being developed in the perspective of a more targeted therapeutic approach; in the meantime, the supportive care of these patients and their carers should be appropriately prioritized, and greater efforts should be made toward the prompt identification and management of relevant comorbidities. Conclusions Building on the advances in the understanding of IPF pathobiology, the further investigation of the role of gene variants, epigenetic alterations and other molecular biomarkers reflecting disease activity and behaviour will hopefully enable earlier and more confident diagnosis, improve disease phenotyping and support the development of novel agents for personalized treatment of IPF.
Collapse
Affiliation(s)
- Giacomo Sgalla
- Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Largo A. Gemelli, 8 -00168, Rome, Italy.
| | - Bruno Iovene
- Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Largo A. Gemelli, 8 -00168, Rome, Italy
| | - Mariarosaria Calvello
- Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Largo A. Gemelli, 8 -00168, Rome, Italy
| | - Margherita Ori
- Dipartimento di Scienze Mediche e Chirurgiche, Azienda Ospedaliero-Universitaria di Modena, Università di Modena e Reggio Emilia, Struttura Complessa di Malattie dell'Apparato respiratorio , Via Del Pozzo, 71-41124, Modena, Italy
| | - Francesco Varone
- Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Largo A. Gemelli, 8 -00168, Rome, Italy
| | - Luca Richeldi
- Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Unità Operativa Complessa di Pneumologia, Largo A. Gemelli, 8 -00168, Rome, Italy
| |
Collapse
|
102
|
Wolters PJ, Blackwell TS, Eickelberg O, Loyd JE, Kaminski N, Jenkins G, Maher TM, Molina-Molina M, Noble PW, Raghu G, Richeldi L, Schwarz MI, Selman M, Wuyts WA, Schwartz DA. Time for a change: is idiopathic pulmonary fibrosis still idiopathic and only fibrotic? THE LANCET. RESPIRATORY MEDICINE 2018; 6:154-160. [PMID: 29413083 PMCID: PMC5903445 DOI: 10.1016/s2213-2600(18)30007-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, and typically fatal lung disease characterised by subpleural fibrosis, subepithelial fibroblast foci, and microscopic honeycombing. Although understanding of the pathogenic mechanisms continues to evolve, evidence indicates that distal airway and alveolar epithelial cells are central drivers of the disease. In this Viewpoint, we review the history of naming and classifications used to define the disease now referred to as IPF, in the context of understanding the clinical presentation, causes, and pathogenesis of the disease. We aim to generate discussion on whether, given the substantial progress made in understanding the clinical, genetic, cellular, and molecular mechanisms involved in the development of IPF, a change of name should be considered. To initiate this discussion, we offer new suggestions to update the name of this disease and new approaches to classify all forms of pulmonary fibrosis.
Collapse
Affiliation(s)
- Paul J Wolters
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, CA, USA.
| | | | - Oliver Eickelberg
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - James E Loyd
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gisli Jenkins
- Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, UK
| | - Toby M Maher
- Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maria Molina-Molina
- Department of Pneumology, Unit of Interstitial Lung Diseases, University Hospital of Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Paul W Noble
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ganesh Raghu
- Center for Interstitial Lung Disease, University of Washington, Seattle, WA, USA
| | - Luca Richeldi
- Division of Pulmonary Medicine, A Gemelli University Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Marvin I Schwarz
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Wim A Wuyts
- Department of Pulmonary Medicine, Unit for Interstitial Lung diseases. University Hospitals Leuven, Leuven, Belgium
| | - David A Schwartz
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
103
|
Mora AL, Rojas M, Pardo A, Selman M. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov 2017; 16:810. [PMID: 29081515 DOI: 10.1038/nrd.2017.225] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
104
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease characterized by progressive lung scarring and the histological picture of usual interstitial pneumonia (UIP). It is associated with increasing cough and dyspnoea and impaired quality of life. IPF affects ∼3 million people worldwide, with incidence increasing dramatically with age. The diagnostic approach includes the exclusion of other interstitial lung diseases or overlapping conditions and depends on the identification of the UIP pattern, usually with high-resolution CT; lung biopsy might be required in some patients. The UIP pattern is predominantly bilateral, peripheral and with a basal distribution of reticular changes associated with traction bronchiectasis and clusters of subpleural cystic airspaces. The biological processes underlying IPF are thought to reflect an aberrant reparative response to repetitive alveolar epithelial injury in a genetically susceptible ageing individual, although many questions remain on how to define susceptibility. Substantial progress has been made in the understanding of the clinical management of IPF, with the availability of two pharmacotherapeutic agents, pirfenidone and nintedanib, that decrease physiological progression and likely improve progression-free survival. Current efforts are directed at identifying IPF early, potentially relying on combinations of biomarkers that include circulating factors, demographics and imaging data.
Collapse
|
105
|
Mora AL, Rojas M, Pardo A, Selman M. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov 2017; 16:755-772. [DOI: 10.1038/nrd.2017.170] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
106
|
Kaur A, Mathai SK, Schwartz DA. Genetics in Idiopathic Pulmonary Fibrosis Pathogenesis, Prognosis, and Treatment. Front Med (Lausanne) 2017; 4:154. [PMID: 28993806 PMCID: PMC5622313 DOI: 10.3389/fmed.2017.00154] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), the most common form of idiopathic interstitial pneumonia (IIP), is characterized by irreversible scarring of the lung parenchyma and progressive decline in lung function leading to eventual respiratory failure. The prognosis of IPF is poor with a median survival of 3–5 years after diagnosis and no curative medical therapies. Although the pathogenesis of IPF is not well understood, there is a growing body of evidence that genetic factors contribute to disease risk. Recent studies have identified common and rare genetic variants associated with both sporadic and familial forms of pulmonary fibrosis, with at least one-third of the risk for developing fibrotic IIP explained by common genetic variants. The IPF-associated genetic loci discovered to date are implicated in diverse biological processes, including alveolar stability, host defense, cell–cell barrier function, and cell senescence. In addition, some common variants have also been associated with distinct clinical phenotypes. Better understanding of how genetic variation plays a role in disease risk and phenotype could identify potential therapeutic targets and inform clinical decision-making. In addition, clinical studies should be designed controlling for the genetic backgrounds of subjects, since clinical outcomes and therapeutic responses may differ by genotype. Further understanding of these differences will allow the development of personalized approaches to the IPF management.
Collapse
Affiliation(s)
- Amarpreet Kaur
- Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO, United States
| | - Susan K Mathai
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver School of Medicine, Aurora, CO, United States
| | - David A Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver School of Medicine, Aurora, CO, United States
| |
Collapse
|
107
|
Fabiani E, Falconi G, Noguera NI, Saulle E, Cicconi L, Divona M, Banella C, Picardi A, Cerio AM, Boe L, Sanchez M, Pelosi E, Testa U, Lo-Coco F, Voso MT. The forkhead box C1 (FOXC1) transcription factor is downregulated in acute promyelocytic leukemia. Oncotarget 2017; 8:84074-84085. [PMID: 29137406 PMCID: PMC5663578 DOI: 10.18632/oncotarget.21101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/31/2017] [Indexed: 01/01/2023] Open
Abstract
Forkhead box (FOX) genes encode transcription factors, which regulate embryogenesis and play an important role in hematopoietic differentiation and in mesenchymal niche maintenance. Overexpression of the family member FOXC1 has been reported in solid tumors and acute myeloid leukemia (AML). We studied FOXC1 expression and function in acute promyelocytic leukemia (APL) and normal hematopoietic progenitors. FOXC1 mRNA and protein levels were significantly lower in primary marrow samples from 27 APL patients, as compared to samples obtained from 27 patients with other AML subtypes, and 5 normal CD34+ hematopoietic cells. FOXC1 expression significantly increased in APL samples at the time of remission following consolidation treatment. In cell lines overexpressing PML-RARA, and in the NB4 t(15;17)-positive cell line, FOXC1 expression was lower than in other non-APL cell lines, and increased following treatment with all-trans retinoic acid (ATRA), due to functional binding of ATRA to the FOXC1 promoter region. Reduced FOXC1 expression was also associated to DNA hypermethylation of the +354 to +568 FOXC1 region, both in primary APL, and in NB4 cells. Treatment of NB4 cells with decitabine demethylated FOXC1 and upregulated its expression. Our findings indicate that FOXC1 is consistently repressed in APL due to hypermethylation and the presence of the PML-RARA rearrangement. A potential role of hypomethylating treatment in advanced APL remains to be established.
Collapse
Affiliation(s)
- Emiliano Fabiani
- Università di Roma Tor Vergata, Dipartimento di Biomedicina e Prevenzione, Rome, Italy
| | - Giulia Falconi
- Università di Roma Tor Vergata, Dipartimento di Biomedicina e Prevenzione, Rome, Italy
| | - Nélida Inés Noguera
- Università di Roma Tor Vergata, Dipartimento di Biomedicina e Prevenzione, Rome, Italy.,Fondazione Santa Lucia, Laboratorio di Neuro-Oncoematologia, Rome, Italy
| | - Ernestina Saulle
- Istituto Superiore di Sanità, Centro Nazionale per la Ricerca e la Valutazione Preclinica e Clinica dei Farmaci, Rome, Italy
| | - Laura Cicconi
- Università di Roma Tor Vergata, Dipartimento di Biomedicina e Prevenzione, Rome, Italy
| | - Mariadomenica Divona
- Università di Roma Tor Vergata, Dipartimento di Biomedicina e Prevenzione, Rome, Italy
| | - Cristina Banella
- Fondazione Santa Lucia, Laboratorio di Neuro-Oncoematologia, Rome, Italy
| | - Alessandra Picardi
- Università di Roma Tor Vergata, Dipartimento di Biomedicina e Prevenzione, Rome, Italy
| | - Anna Maria Cerio
- Istituto Superiore di Sanità, Dipartimento di Ematologia ed Oncologia, Rome, Italy
| | - Letizia Boe
- Istituto Superiore di Sanità, Grandi Strumentazioni e Core Facilities, Rome, Italy
| | - Massimo Sanchez
- Istituto Superiore di Sanità, Grandi Strumentazioni e Core Facilities, Rome, Italy
| | - Elvira Pelosi
- Istituto Superiore di Sanità, Dipartimento di Ematologia ed Oncologia, Rome, Italy
| | - Ugo Testa
- Istituto Superiore di Sanità, Dipartimento di Ematologia ed Oncologia, Rome, Italy
| | - Francesco Lo-Coco
- Università di Roma Tor Vergata, Dipartimento di Biomedicina e Prevenzione, Rome, Italy.,Fondazione Santa Lucia, Laboratorio di Neuro-Oncoematologia, Rome, Italy
| | - Maria Teresa Voso
- Università di Roma Tor Vergata, Dipartimento di Biomedicina e Prevenzione, Rome, Italy
| |
Collapse
|
108
|
Zhang X, Hu M, Lyu X, Li C, Thannickal VJ, Sanders YY. DNA methylation regulated gene expression in organ fibrosis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2389-2397. [PMID: 28501566 PMCID: PMC5567836 DOI: 10.1016/j.bbadis.2017.05.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 01/05/2023]
Abstract
DNA methylation is a major epigenetic mechanism to regulate gene expression. Epigenetic regulation, including DNA methylation, histone modifications and RNA interference, results in heritable changes in gene expression independent of alterations in DNA sequence. Epigenetic regulation often occurs in response to aging and environment stimuli, including exposures and diet. Studies have shown that DNA methylation is critical in the pathogenesis of fibrosis involving multiple organ systems, contributing to significant morbidity and mortality. Aberrant DNA methylation can silence or activate gene expression patterns that drive the fibrosis process. Fibrosis is a pathological wound healing process in response to chronic injury. It is characterized by excessive extracellular matrix production and accumulation, which eventually affects organ architecture and results in organ failure. Fibrosis can affect a wide range of organs, including the heart and lungs, and have limited therapeutic options. DNA methylation, like other epigenetic process, is reversible, therefore regarded as attractive therapeutic interventions. Although epigenetic mechanisms are highly interactive and often reinforcing, this review discusses DNA methylation-dependent mechanisms in the pathogenesis of organ fibrosis, with focus on cardiac and pulmonary fibrosis. We discuss specific pro- and anti-fibrotic genes and pathways regulated by DNA methylation in organ fibrosis; we further highlight the potential benefits and side-effects of epigenetic therapies in fibrotic disorders.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Min Hu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xing Lyu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chun Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
109
|
Kan M, Shumyatcher M, Himes BE. Using omics approaches to understand pulmonary diseases. Respir Res 2017; 18:149. [PMID: 28774304 PMCID: PMC5543452 DOI: 10.1186/s12931-017-0631-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Omics approaches are high-throughput unbiased technologies that provide snapshots of various aspects of biological systems and include: 1) genomics, the measure of DNA variation; 2) transcriptomics, the measure of RNA expression; 3) epigenomics, the measure of DNA alterations not involving sequence variation that influence RNA expression; 4) proteomics, the measure of protein expression or its chemical modifications; and 5) metabolomics, the measure of metabolite levels. Our understanding of pulmonary diseases has increased as a result of applying these omics approaches to characterize patients, uncover mechanisms underlying drug responsiveness, and identify effects of environmental exposures and interventions. As more tissue- and cell-specific omics data is analyzed and integrated for diverse patients under various conditions, there will be increased identification of key mechanisms that underlie pulmonary biological processes, disease endotypes, and novel therapeutics that are efficacious in select individuals. We provide a synopsis of how omics approaches have advanced our understanding of asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), and pulmonary arterial hypertension (PAH), and we highlight ongoing work that will facilitate pulmonary disease precision medicine.
Collapse
Affiliation(s)
- Mengyuan Kan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Blanca E. Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| |
Collapse
|
110
|
Helling BA, Gerber AN, Kadiyala V, Sasse SK, Pedersen BS, Sparks L, Nakano Y, Okamoto T, Evans CM, Yang IV, Schwartz DA. Regulation of MUC5B Expression in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2017; 57:91-99. [PMID: 28272906 DOI: 10.1165/rcmb.2017-0046oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The gain-of-function mucin 5B (MUC5B) promoter variant, rs35705950, confers the largest risk, genetic or otherwise, for the development of idiopathic pulmonary fibrosis; however, the mechanisms underlying the regulation of MUC5B expression have yet to be elucidated. Here, we identify a critical regulatory domain that contains the MUC5B promoter variant and has a highly conserved forkhead box protein A2 (FOXA2) binding motif. This region is differentially methylated in association with idiopathic pulmonary fibrosis, MUC5B expression, and rs35705950. In addition, we show that this locus binds FOXA2 dynamically, and that binding of FOXA2 is necessary for enhanced expression of MUC5B. In aggregate, our findings identify novel targets to regulate the expression of MUC5B.
Collapse
Affiliation(s)
- Britney A Helling
- 1 Department of Medicine, School of Medicine, University of Colorado-Denver, Denver, Colorado
| | - Anthony N Gerber
- 1 Department of Medicine, School of Medicine, University of Colorado-Denver, Denver, Colorado.,2 Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Vineela Kadiyala
- 2 Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Sarah K Sasse
- 2 Department of Medicine, National Jewish Health, Denver, Colorado; and
| | - Brent S Pedersen
- 1 Department of Medicine, School of Medicine, University of Colorado-Denver, Denver, Colorado
| | - Lenore Sparks
- 1 Department of Medicine, School of Medicine, University of Colorado-Denver, Denver, Colorado
| | - Yasushi Nakano
- 1 Department of Medicine, School of Medicine, University of Colorado-Denver, Denver, Colorado
| | - Tsukasa Okamoto
- 1 Department of Medicine, School of Medicine, University of Colorado-Denver, Denver, Colorado
| | - Christopher M Evans
- 1 Department of Medicine, School of Medicine, University of Colorado-Denver, Denver, Colorado
| | - Ivana V Yang
- 1 Department of Medicine, School of Medicine, University of Colorado-Denver, Denver, Colorado.,3 University of Colorado-Denver, School of Public Health, Denver, Colorado
| | - David A Schwartz
- 1 Department of Medicine, School of Medicine, University of Colorado-Denver, Denver, Colorado.,2 Department of Medicine, National Jewish Health, Denver, Colorado; and
| |
Collapse
|
111
|
Brownell R, Kaminski N, Woodruff PG, Bradford WZ, Richeldi L, Martinez FJ, Collard HR. Precision Medicine: The New Frontier in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2017; 193:1213-8. [PMID: 26991475 DOI: 10.1164/rccm.201601-0169ci] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Precision medicine is defined by the National Institute of Health's Precision Medicine Initiative Working Group as an approach to disease treatment that takes into account individual variability in genes, environment, and lifestyle. There has been increased interest in applying the concept of precision medicine to idiopathic pulmonary fibrosis, in particular to search for genetic and molecular biomarker-based profiles (so called endotypes) that identify mechanistically distinct disease subgroups. The relevance of precision medicine to idiopathic pulmonary fibrosis is yet to be established, but we believe that it holds great promise to provide targeted and highly effective therapies to patients. In this manuscript, we describe the field's nascent efforts in genetic/molecular endotype identification and how environmental and behavioral subgroups may also be relevant to disease management.
Collapse
Affiliation(s)
- Robert Brownell
- 1 Department of Medicine, University of California San Francisco, San Francisco, California
| | - Naftali Kaminski
- 2 Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Prescott G Woodruff
- 1 Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Luca Richeldi
- 4 National Institute for Health Research Southampton Respiratory Biomedical Research Unit and Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom; and
| | - Fernando J Martinez
- 5 Department of Medicine, Weill Cornell University School of Medicine, New York, New York
| | - Harold R Collard
- 1 Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
112
|
Karampitsakos T, Tzilas V, Tringidou R, Steiropoulos P, Aidinis V, Papiris SA, Bouros D, Tzouvelekis A. Lung cancer in patients with idiopathic pulmonary fibrosis. Pulm Pharmacol Ther 2017; 45:1-10. [PMID: 28377145 DOI: 10.1016/j.pupt.2017.03.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/28/2017] [Accepted: 03/31/2017] [Indexed: 12/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease of unknown etiology. With a gradually increasing worldwide prevalence and a mortality rate exceeding that of many cancers, IPF diagnosis and management are critically important and require a comprehensive multidisciplinary approach. This approach also involves assessment of comorbid conditions, such as lung cancer, that exerts a dramatic impact on disease survival. Emerging evidence suggests that progressive lung scarring in the context of IPF represents a risk factor for lung carcinogenesis. Both disease entities present with major similarities in terms of pathogenetic pathways, as well as potential causative factors, such as smoking and viral infections. Besides disease pathogenesis, anti-cancer agents, including nintedanib, have been successfully applied in the treatment of patients with IPF while an oncologic approach with a cocktail of several pleiotropic anti-fibrotic agents is currently in the therapeutic pipeline of IPF. Nevertheless, epidemiologic association between IPF and lung cancer does not prove causality. Currently there is significant lack of knowledge supporting a direct association between lung fibrosis and cancer reflecting to disappointing therapeutic algorithms. An optimal therapeutic strategy for patients with both IPF and lung cancer represents an amenable need. This review article synthesizes the current state of knowledge regarding pathogenetic commonalities between IPF and lung cancer and focuses on clinical and therapeutic data that involve both disease entities.
Collapse
Affiliation(s)
- Theodoros Karampitsakos
- First Academic Department of Pneumonology, Hospital for Diseases of the Chest, "Sotiria", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilios Tzilas
- First Academic Department of Pneumonology, Hospital for Diseases of the Chest, "Sotiria", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Rodoula Tringidou
- Pathology Department, Hospital for Diseases of the Chest,"Sotiria", Messogion Avenue 152, Athens 11527, Greece
| | | | - Vasilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Spyros A Papiris
- 2nd Pulmonary Medicine Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Demosthenes Bouros
- First Academic Department of Pneumonology, Hospital for Diseases of the Chest, "Sotiria", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Argyris Tzouvelekis
- First Academic Department of Pneumonology, Hospital for Diseases of the Chest, "Sotiria", Medical School, National and Kapodistrian University of Athens, Athens, Greece; Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece.
| |
Collapse
|
113
|
Walters MS, Salit J, Ju JH, Staudt MR, Kaner RJ, Rogalski AM, Sodeinde TB, Rahim R, Strulovici-Barel Y, Mezey JG, Almulla AM, Sattar H, Mahmoud M, Crystal RG. Waterpipe smoking induces epigenetic changes in the small airway epithelium. PLoS One 2017; 12:e0171112. [PMID: 28273093 PMCID: PMC5342191 DOI: 10.1371/journal.pone.0171112] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/16/2017] [Indexed: 01/01/2023] Open
Abstract
Waterpipe (also called hookah, shisha, or narghile) smoking is a common form of tobacco use in the Middle East. Its use is becoming more prevalent in Western societies, especially among young adults as an alternative form of tobacco use to traditional cigarettes. While the risk to cigarette smoking is well documented, the risk to waterpipe smoking is not well defined with limited information on its health impact at the epidemiologic, clinical and biologic levels with respect to lung disease. Based on the knowledge that airway epithelial cell DNA methylation is modified in response to cigarette smoke and in cigarette smoking-related lung diseases, we assessed the impact of light-use waterpipe smoking on DNA methylation of the small airway epithelium (SAE) and whether changes in methylation were linked to the transcriptional output of the cells. Small airway epithelium was obtained from 7 nonsmokers and 7 light-use (2.6 ± 1.7 sessions/wk) waterpipe-only smokers. Genome-wide comparison of SAE DNA methylation of waterpipe smokers to nonsmokers identified 727 probesets differentially methylated (fold-change >1.5, p<0.05) representing 673 unique genes. Dominant pathways associated with these epigenetic changes include those linked to G-protein coupled receptor signaling, aryl hydrocarbon receptor signaling and xenobiotic metabolism signaling, all of which have been associated with cigarette smoking and lung disease. Of the genes differentially methylated, 11.3% exhibited a corresponding significant (p<0.05) change in gene expression with enrichment in pathways related to regulation of mRNA translation and protein synthesis (eIF2 signaling and regulation of eIF4 and p70S6K signaling). Overall, these data demonstrate that light-use waterpipe smoking is associated with epigenetic changes and related transcriptional modifications in the SAE, the cell population demonstrating the earliest pathologic abnormalities associated with chronic cigarette smoking.
Collapse
Affiliation(s)
- Matthew S. Walters
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Jacqueline Salit
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Jin Hyun Ju
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Michelle R. Staudt
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Robert J. Kaner
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Allison M. Rogalski
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Teniola B. Sodeinde
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Riyaad Rahim
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Yael Strulovici-Barel
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Jason G. Mezey
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | | | - Hisham Sattar
- Pulmonary Section, Hamad Medical Corporation, Doha, Qatar
| | - Mai Mahmoud
- Weill Cornell Medical College-Qatar, Doha, Qatar
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
114
|
Identification of Methylation-Driven, Differentially Expressed STXBP6 as a Novel Biomarker in Lung Adenocarcinoma. Sci Rep 2017; 7:42573. [PMID: 28198450 PMCID: PMC5309775 DOI: 10.1038/srep42573] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/12/2017] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is an essential epigenetic marker associated with the silencing of gene expression. Although various genome-wide studies revealed aberrantly methylated gene targets as molecular biomarkers for early detection, the survival rate of lung cancer patients is still poor. In order to identify methylation-driven biomarkers, genome-wide changes in DNA methylation and differential expression in 32 pairs of lung adenocarcinoma and adjacent normal lung tissue in non-smoking women were examined. This concurrent analysis identified 21 negatively correlated probes (r ≤ −0.5), corresponding to 17 genes. Examining the endogenous expression in lung cancer cell lines, five of the genes were found to be significantly down-regulated. Furthermore, in tumor cells alone, 5-aza-2′-deoxycytidine treatment increased the expression levels of STXBP6 in a dose dependent manner and pyrosequencing showed higher percentage of methylation in STXBP6 promoter. Functional analysis revealed that overexpressed STXBP6 in A549 and H1299 cells significantly decreased cell proliferation, colony formation, and migration, and increased apoptosis. Finally, significantly lower survival rates (P < 0.05) were observed when expression levels of STXBP6 were low. Our results provide a basis for the genetic etiology of lung adenocarcinoma by demonstrating the possible role of hypermethylation of STXBP6 in poor clinical outcomes in lung cancer patients.
Collapse
|
115
|
Mora AL, Bueno M, Rojas M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J Clin Invest 2017; 127:405-414. [PMID: 28145905 DOI: 10.1172/jci87440] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic age-related lung disease with high mortality that is characterized by abnormal scarring of the lung parenchyma. There has been a recent attempt to define the age-associated changes predisposing individuals to develop IPF. Age-related perturbations that are increasingly found in epithelial cells and fibroblasts from IPF lungs compared with age-matched cells from normal lungs include defective autophagy, telomere attrition, altered proteostasis, and cell senescence. These divergent processes seem to converge in mitochondrial dysfunction and metabolic distress, which potentiate maladaptation to stress and susceptibility to age-related diseases such as IPF. Therapeutic approaches that target aging processes may be beneficial for halting the progression of disease and improving quality of life in IPF patients.
Collapse
|
116
|
Spagnolo P, Cottin V. Genetics of idiopathic pulmonary fibrosis: from mechanistic pathways to personalised medicine. J Med Genet 2016; 54:93-99. [DOI: 10.1136/jmedgenet-2016-103973] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/28/2016] [Indexed: 01/07/2023]
|
117
|
Kusko RL, Brothers JF, Tedrow J, Pandit K, Huleihel L, Perdomo C, Liu G, Juan-Guardela B, Kass D, Zhang S, Lenburg M, Martinez F, Quackenbush J, Sciurba F, Limper A, Geraci M, Yang I, Schwartz DA, Beane J, Spira A, Kaminski N. Integrated Genomics Reveals Convergent Transcriptomic Networks Underlying Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2016; 194:948-960. [PMID: 27104832 PMCID: PMC5067817 DOI: 10.1164/rccm.201510-2026oc] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 03/27/2016] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Despite shared environmental exposures, idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease are usually studied in isolation, and the presence of shared molecular mechanisms is unknown. OBJECTIVES We applied an integrative genomic approach to identify convergent transcriptomic pathways in emphysema and IPF. METHODS We defined the transcriptional repertoire of chronic obstructive pulmonary disease, IPF, or normal histology lungs using RNA-seq (n = 87). MEASUREMENTS AND MAIN RESULTS Genes increased in both emphysema and IPF relative to control were enriched for the p53/hypoxia pathway, a finding confirmed in an independent cohort using both gene expression arrays and the nCounter Analysis System (n = 193). Immunohistochemistry confirmed overexpression of HIF1A, MDM2, and NFKBIB members of this pathway in tissues from patients with emphysema or IPF. Using reads aligned across splice junctions, we determined that alternative splicing of p53/hypoxia pathway-associated molecules NUMB and PDGFA occurred more frequently in IPF or emphysema compared with control and validated these findings by quantitative polymerase chain reaction and the nCounter Analysis System on an independent sample set (n = 193). Finally, by integrating parallel microRNA and mRNA-Seq data on the same samples, we identified MIR96 as a key novel regulatory hub in the p53/hypoxia gene-expression network and confirmed that modulation of MIR96 in vitro recapitulates the disease-associated gene-expression network. CONCLUSIONS Our results suggest convergent transcriptional regulatory hubs in diseases as varied phenotypically as chronic obstructive pulmonary disease and IPF and suggest that these hubs may represent shared key responses of the lung to environmental stresses.
Collapse
Affiliation(s)
- Rebecca L. Kusko
- Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - John F. Brothers
- Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - John Tedrow
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kusum Pandit
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Luai Huleihel
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Catalina Perdomo
- Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Gang Liu
- Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Brenda Juan-Guardela
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Daniel Kass
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sherry Zhang
- Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Marc Lenburg
- Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Fernando Martinez
- Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - John Quackenbush
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Frank Sciurba
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Mark Geraci
- Pulmonary Sciences and Critical Care Medicine, UC Denver, Denver, Colorado
| | - Ivana Yang
- Pulmonary Sciences and Critical Care Medicine, UC Denver, Denver, Colorado
| | - David A. Schwartz
- Pulmonary Sciences and Critical Care Medicine, UC Denver, Denver, Colorado
| | - Jennifer Beane
- Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Avrum Spira
- Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Naftali Kaminski
- Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
118
|
Yang IV, Pedersen BS, Liu AH, O'Connor GT, Pillai D, Kattan M, Misiak RT, Gruchalla R, Szefler SJ, Khurana Hershey GK, Kercsmar C, Richards A, Stevens AD, Kolakowski CA, Makhija M, Sorkness CA, Krouse RZ, Visness C, Davidson EJ, Hennessy CE, Martin RJ, Togias A, Busse WW, Schwartz DA. The nasal methylome and childhood atopic asthma. J Allergy Clin Immunol 2016; 139:1478-1488. [PMID: 27745942 DOI: 10.1016/j.jaci.2016.07.036] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 06/24/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Given the strong environmental influence on both epigenetic marks and allergic asthma in children, the epigenetic alterations in respiratory epithelia might provide insight into allergic asthma. OBJECTIVE We sought to identify DNA methylation and gene expression changes associated with childhood allergic persistent asthma. METHODS We compared genomic DNA methylation patterns and gene expression in African American children with persistent atopic asthma (n = 36) versus healthy control subjects (n = 36). Results were validated in an independent population of asthmatic children (n = 30) by using a shared healthy control population (n = 36) and in an independent population of white adult atopic asthmatic patients (n = 12) and control subjects (n = 12). RESULTS We identified 186 genes with significant methylation changes, differentially methylated regions or differentially methylated probes, after adjustment for age, sex, race/ethnicity, batch effects, inflation, and multiple comparisons. Genes differentially methylated included those with established roles in asthma and atopy and genes related to extracellular matrix, immunity, cell adhesion, epigenetic regulation, and airflow obstruction. The methylation changes were substantial (median, 9.5%; range, 2.6% to 29.5%). Hypomethylated and hypermethylated genes were associated with increased and decreased gene expression, respectively (P < 2.8 × 10-6 for differentially methylated regions and P < 7.8 × 10-10 for differentially methylated probes). Quantitative analysis in 53 differentially expressed genes demonstrated that 32 (60%) have significant methylation-expression relationships within 5 kb of the gene. Ten loci selected based on the relevance to asthma, magnitude of methylation change, and methylation-expression relationships were validated in an independent cohort of children with atopic asthma. Sixty-seven of 186 genes also have significant asthma-associated methylation changes in nasal epithelia of adult white asthmatic patients. CONCLUSIONS Epigenetic marks in respiratory epithelia are associated with allergic asthma and gene expression changes in inner-city children.
Collapse
Affiliation(s)
- Ivana V Yang
- Department of Medicine and University of Colorado, School of Medicine, Aurora, Colo; National Jewish Health, Denver, Colo; Department of Epidemiology, Colorado School of Public Health, Aurora, Colo.
| | - Brent S Pedersen
- Department of Medicine and University of Colorado, School of Medicine, Aurora, Colo
| | | | - George T O'Connor
- Department of Medicine, Boston University School of Medicine, Boston, Mass
| | | | - Meyer Kattan
- Columbia University Medical Center, New York, NY
| | | | | | - Stanley J Szefler
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado, School of Medicine, Aurora, Colo
| | | | | | - Adam Richards
- Department of Medicine and University of Colorado, School of Medicine, Aurora, Colo
| | | | | | | | - Christine A Sorkness
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | | | | | - Elizabeth J Davidson
- Department of Medicine and University of Colorado, School of Medicine, Aurora, Colo
| | - Corinne E Hennessy
- Department of Medicine and University of Colorado, School of Medicine, Aurora, Colo
| | | | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, Md; and University of Colorado, Aurora, CO
| | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - David A Schwartz
- Department of Medicine and University of Colorado, School of Medicine, Aurora, Colo; National Jewish Health, Denver, Colo; Department of Immunology, University of Colorado, Aurora, Colo.
| |
Collapse
|
119
|
Li C, Kuemmerle JF. Genetic and epigenetic regulation of intestinal fibrosis. United European Gastroenterol J 2016; 4:496-505. [PMID: 27536359 DOI: 10.1177/2050640616659023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
Crohn's disease affects those individuals with polygenic risk factors. The identified risk loci indicate that the genetic architecture of Crohn's disease involves both innate and adaptive immunity and the response to the intestinal environment including the microbiome. Genetic risk alone, however, predicts only 25% of disease, indicating that other factors, including the intestinal environment, can shape the epigenome and also confer heritable risk to patients. Patients with Crohn's disease can have purely inflammatory disease, penetrating disease or fibrostenosis. Analysis of the genetic risk combined with epigenetic marks of Crohn's disease and other disease associated with organ fibrosis reveals common events are affecting the genes and pathways key to development of fibrosis. This review will focus on what is known about the mechanisms by which genetic and epigenetic risk factors determine development of fibrosis in Crohn's disease and contrast that with other fibrotic conditions.
Collapse
Affiliation(s)
- Chao Li
- Department of Medicine, VCU Program in Enteric Neuromuscular Sciences, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, USA
| | - John F Kuemmerle
- Department of Medicine, VCU Program in Enteric Neuromuscular Sciences, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, USA; Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, USA
| |
Collapse
|
120
|
Selman M, López-Otín C, Pardo A. Age-driven developmental drift in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir J 2016; 48:538-52. [DOI: 10.1183/13993003.00398-2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and usually lethal disease of unknown aetiology. A growing body of evidence supports that IPF represents an epithelial-driven process characterised by aberrant epithelial cell behaviour, fibroblast/myofibroblast activation and excessive accumulation of extracellular matrix with the subsequent destruction of the lung architecture. The mechanisms involved in the abnormal hyper-activation of the epithelium are unclear, but we propose that recapitulation of pathways and processes critical to embryological development associated with a tissue specific age-related stochastic epigenetic drift may be implicated. These pathways may also contribute to the distinctive behaviour of IPF fibroblasts. Genomic and epigenomic studies have revealed that wingless/Int, sonic hedgehog and other developmental signalling pathways are reactivated and deregulated in IPF. Moreover, some of these pathways cross-talk with transforming growth factor-β activating a profibrotic feedback loop. The expression pattern of microRNAs is also dysregulated in IPF and exhibits a similar expression profile to embryonic lungs. In addition, senescence, a process usually associated with ageing, which occurs early in alveolar epithelial cells of IPF lungs, likely represents a conserved programmed developmental mechanism. Here, we review the major developmental pathways that get twisted in IPF, and discuss the connection with ageing and potential therapeutic approaches.
Collapse
|
121
|
Stueve TR, Marconett CN, Zhou B, Borok Z, Laird-Offringa IA. The importance of detailed epigenomic profiling of different cell types within organs. Epigenomics 2016; 8:817-29. [PMID: 27305639 PMCID: PMC5066118 DOI: 10.2217/epi-2016-0005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The human body consists of hundreds of kinds of cells specified from a single genome overlaid with cell type-specific epigenetic information. Comprehensively profiling the body's distinct epigenetic landscapes will allow researchers to verify cell types used in regenerative medicine and to determine the epigenetic effects of disease, environmental exposures and genetic variation. Key marks/factors that should be investigated include regions of nucleosome-free DNA accessible to regulatory factors, histone marks defining active enhancers and promoters, DNA methylation levels, regulatory RNAs, and factors controlling the three-dimensional conformation of the genome. Here we use the lung to illustrate the importance of investigating an organ's purified cell epigenomes, and outline the challenges and promise of realizing a comprehensive catalog of primary cell epigenomes.
Collapse
Affiliation(s)
- Theresa Ryan Stueve
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Department of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Crystal N Marconett
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Beiyun Zhou
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Division of Pulmonary & Critical Care Medicine, Department of Medicine, Will Rogers Institute Pulmonary Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Zea Borok
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Department of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Division of Pulmonary & Critical Care Medicine, Department of Medicine, Will Rogers Institute Pulmonary Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Ite A Laird-Offringa
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.,Department of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
122
|
Abstract
Despite major research efforts leading to the recent approval of pirfenidone and nintedanib, the dismal prognosis of idiopathic pulmonary fibrosis (IPF) remains unchanged. The elaboration of international diagnostic criteria and disease stratification models based on clinical, physiological, radiological, and histopathological features has improved the accuracy of IPF diagnosis and prediction of mortality risk. Nevertheless, given the marked heterogeneity in clinical phenotype and the considerable overlap of IPF with other fibrotic interstitial lung diseases (ILDs), about 10% of cases of pulmonary fibrosis remain unclassifiable. Moreover, currently available tools fail to detect early IPF, predict the highly variable course of the disease, and assess response to antifibrotic drugs. Recent advances in understanding the multiple interrelated pathogenic pathways underlying IPF have identified various molecular phenotypes resulting from complex interactions among genetic, epigenetic, transcriptional, post-transcriptional, metabolic, and environmental factors. These different disease endotypes appear to confer variable susceptibility to the condition, differing risks of rapid progression, and, possibly, altered responses to therapy. The development and validation of diagnostic and prognostic biomarkers are necessary to enable a more precise and earlier diagnosis of IPF and to improve prediction of future disease behaviour. The availability of approved antifibrotic therapies together with potential new drugs currently under evaluation also highlights the need for biomarkers able to predict and assess treatment responsiveness, thereby allowing individualised treatment based on risk of progression and drug response. This approach of disease stratification and personalised medicine is already used in the routine management of many cancers and provides a potential road map for guiding clinical care in IPF.
Collapse
Affiliation(s)
- Cécile Daccord
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK; Respiratory Medicine Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Toby M Maher
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK; NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK; Fibrosis Research Group, Imperial College, London, UK
| |
Collapse
|
123
|
Mathai SK, Pedersen BS, Smith K, Russell P, Schwarz MI, Brown KK, Steele MP, Loyd JE, Crapo JD, Silverman EK, Nickerson D, Fingerlin TE, Yang IV, Schwartz DA. Desmoplakin Variants Are Associated with Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2016; 193:1151-60. [PMID: 26669357 PMCID: PMC4872666 DOI: 10.1164/rccm.201509-1863oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/07/2015] [Indexed: 01/25/2023] Open
Abstract
RATIONALE Sequence variation, methylation differences, and transcriptional changes in desmoplakin (DSP) have been observed in patients with idiopathic pulmonary fibrosis (IPF). OBJECTIVES To identify novel variants in DSP associated with IPF and to characterize the relationship of these IPF sequence variants with DSP gene expression in human lung. METHODS A chromosome 6 locus (7,370,061-7,606,946) was sequenced in 230 subjects with IPF and 228 control subjects. Validation genotyping of disease-associated variants was conducted in 936 subjects with IPF and 936 control subjects. DSP gene expression was measured in lung tissue from 334 subjects with IPF and 201 control subjects. MEASUREMENTS AND MAIN RESULTS We identified 23 sequence variants in the chromosome 6 locus associated with IPF. Genotyping of selected variants in our validation cohort revealed that noncoding intron 1 variant rs2744371 (odds ratio = 0.77, 95% confidence interval [CI] = 0.66-0.91, P = 0.002) is protective for IPF, and a previously described IPF-associated intron 5 variant (rs2076295) is associated with increased risk of IPF (odds ratio = 1.36, 95% CI = 1.19-1.56, P < 0.001) after controlling for sex and age. DSP expression is 2.3-fold increased (95% CI = 1.91-2.71) in IPF lung tissue (P < 0.0001). Only the minor allele at rs2076295 is associated with decreased DSP expression (P = 0.001). Staining of fibrotic and normal human lung tissue localized DSP to airway epithelia. CONCLUSIONS Sequence variants in DSP are associated with IPF, and rs2076295 genotype is associated with differential expression of DSP in the lung. DSP expression is increased in IPF lung and concentrated in the airway epithelia, suggesting a potential role for DSP in the pathogenesis of IPF.
Collapse
Affiliation(s)
- Susan K. Mathai
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
| | | | - Keith Smith
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
| | - Pamela Russell
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | - Marvin I. Schwarz
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
| | - Kevin K. Brown
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Mark P. Steele
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James E. Loyd
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James D. Crapo
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Edwin K. Silverman
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Deborah Nickerson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington; and
| | - Tasha E. Fingerlin
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado
| | - Ivana V. Yang
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado
| | - David A. Schwartz
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
| |
Collapse
|
124
|
Krishna CV, Singh J, Thangavel C, Rattan S. Role of microRNAs in gastrointestinal smooth muscle fibrosis and dysfunction: novel molecular perspectives on the pathophysiology and therapeutic targeting. Am J Physiol Gastrointest Liver Physiol 2016; 310:G449-59. [PMID: 26822916 PMCID: PMC4824177 DOI: 10.1152/ajpgi.00445.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/20/2016] [Indexed: 01/31/2023]
Abstract
MicroRNAs (miRNAs) belong to a group of short noncoding RNA molecules with important roles in cellular biology. miRNAs regulate gene expression by repressing translation or degrading the target mRNA. Recently, a growing body of evidence suggests that miRNAs are implicated in many diseases and could be potential biomarkers. Fibrosis and/smooth muscle (SM) dysfunction contributes to the morbidity and mortality associated with several diseases of the gastrointestinal tract (GIT). Currently available therapeutic modalities are unsuccessful in efficiently blocking or reversing fibrosis and/or SM dysfunction. Recent understanding of the role of miRNAs in signaling pathway of fibrogenesis and SM phenotype switch has provided a new insight into translational research. However, much is still unknown about the molecular targets and therapeutic potential of miRNAs in the GIT. This review discusses miRNA biology, pathophysiology of fibrosis, and aging- associated SM dysfunction in relation to the deregulation of miRNAs in the GIT. We also highlight the role of selected miRNAs associated with fibrosis and SM dysfunction-related diseases of the GIT.
Collapse
Affiliation(s)
| | - Jagmohan Singh
- 2Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Chellappagounder Thangavel
- 3Department of Radiation Oncology, Sidney Kimmel Cancer Center (TC), Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Satish Rattan
- 2Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania; and
| |
Collapse
|
125
|
Pardo A, Cabrera S, Maldonado M, Selman M. Role of matrix metalloproteinases in the pathogenesis of idiopathic pulmonary fibrosis. Respir Res 2016; 17:23. [PMID: 26944412 PMCID: PMC4779202 DOI: 10.1186/s12931-016-0343-6] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/02/2016] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and devastating lung disorder of unknown origin, with very poor prognosis and no effective treatment. The disease is characterized by abnormal activation of alveolar epithelial cells, which secrete numerous mediators involved in the expansion of the fibroblast population, its differentiation to myofibroblasts, and in the exaggerated accumulation of extracellular matrix provoking the loss of lung architecture. Among the excessively produced mediators are several matrix metalloproteases (MMPs) which may contribute to modify the lung microenvironment by various mechanisms. Thus, these enzymes can not only degrade all the components of the extracellular matrix, but they are also able to release, cleave and activate a wide range of growth factors, cytokines, chemokines and cell surface receptors affecting numerous cell functions including adhesion, proliferation, differentiation, recruiting and transmigration, and apoptosis. Therefore, dysregulated expression of MMPs may have profound impact on the biopathological mechanisms implicated in the development of IPF. This review focuses on the current and emerging evidence regarding the role of MMPs on the fibrotic processes in IPF as well as in mouse models of lung fibrosis.
Collapse
Affiliation(s)
- Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF, Mexico.
| | - Sandra Cabrera
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF, Mexico
| | - Mariel Maldonado
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF, Mexico
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México, DF, Mexico
| |
Collapse
|
126
|
Nicodemus-Johnson J, Naughton KA, Sudi J, Hogarth K, Naurekas ET, Nicolae DL, Sperling AI, Solway J, White SR, Ober C. Genome-Wide Methylation Study Identifies an IL-13-induced Epigenetic Signature in Asthmatic Airways. Am J Respir Crit Care Med 2016; 193:376-85. [PMID: 26474238 PMCID: PMC4803084 DOI: 10.1164/rccm.201506-1243oc] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/15/2015] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Epigenetic changes to airway cells have been proposed as important modulators of the effects of environmental exposures on airway diseases, yet no study to date has shown epigenetic responses to exposures in the airway that correlate with disease state. The type 2 cytokine IL-13 is a key mediator of allergic airway diseases, such as asthma, and is up-regulated in response to many asthma-promoting exposures. OBJECTIVES To directly study the epigenetic response of airway epithelial cells (AECs) to IL-13 and test whether IL-13-induced epigenetic changes differ between individuals with and without asthma. METHODS Genome-wide DNA methylation and gene expression patterns were studied in 58 IL-13-treated and untreated primary AEC cultures and validated in freshly isolated cells of subjects with and without asthma using the Illumina Human Methylation 450K and HumanHT-12 BeadChips. IL-13-mediated comethylation modules were identified and correlated with clinical phenotypes using weighted gene coexpression network analysis. MEASUREMENTS AND MAIN RESULTS IL-13 altered global DNA methylation patterns in cultured AECs and were significantly enriched near genes associated with asthma. Importantly, a significant proportion of this IL-13 epigenetic signature was validated in freshly isolated AECs from subjects with asthma and clustered into two distinct modules, with module 1 correlated with asthma severity and lung function and module 2 with eosinophilia. CONCLUSIONS These results suggest that a single exposure of IL-13 may selectively induce long-lasting DNA methylation changes in asthmatic airways that alter specific AEC pathways and contribute to asthma phenotypes.
Collapse
Affiliation(s)
| | | | | | | | | | - Dan L. Nicolae
- Department of Human Genetics
- Section of Genetic Medicine, Department of Medicine, and
- Department of Statistics, University of Chicago, Chicago, Illinois
| | | | | | | | | |
Collapse
|
127
|
SCHWARTZ DAVIDA. IDIOPATHIC PULMONARY FIBROSIS IS A COMPLEX GENETIC DISORDER. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2016; 127:34-45. [PMID: 28066036 PMCID: PMC5216513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a complex, heterogeneous genetic disorder that is associated with rare and common sequence variants in many genes (MUC5B, SFTPC, SFTPA2, RTEL1, TERT, and hTR), 11 novel loci, and multiple emerging epigenetic and transcriptional profiles. In the past 5 years, we have found that: 1) genetic risk variants play major and similar roles in the development of both familial and sporadic fibrotic idiopathic interstitial pneumonia, accounting for up to 35% of the risk of idiopathic interstitial pneumonia (a disease that was previously thought to be idiopathic); 2) a promoter variant in MUC5B rs35705950 is the strongest risk factor for the development of IIP and IPF; however, rs35705950 has a low penetrance; and 3) IPF is a complex genetic disease with 11 independent loci contributing to the development of this disease, pronounced changes in DNA methylation, and transcriptional subtypes. In aggregate, these findings suggest that IPF is a heterogeneous disease and that genetic and molecular subtypes of IPF will provide essential clues to disease pathogenesis, prognosis, treatment, and survival, all of which remain major problems in understanding and treating patients with IPF. Although the basic biological mechanisms involved in IPF are emerging, the disease is heterogeneous pathologically and the final common pathways of fibrogenesis are not well understood. These observations lead us to postulate that the etiology and severity/extent of this complex condition will best be understood through an integrated approach that accounts for inherited factors, epigenetic marks, and dynamic changes in the transcriptome.
Collapse
|
128
|
Abstract
PURPOSE OF REVIEW In this article, we summarize and discuss the most recent literature on personalized medicine in idiopathic pulmonary fibrosis (IPF), a chronic progressive and almost invariably lethal disease of unknown cause. This review is timely as major advances in our understanding of disease pathobiology and improvements in molecular techniques have recently led to the identification of potential surrogates of diagnosis, prognosis and response to treatment. RECENT FINDINGS The most promising and advanced candidate biomarkers are presented based on their proposed mechanistic pathways (e.g. alveolar epithelial cell dysfunction, immune dysregulation, microbiome, extracellular matrix remodeling and fibroproliferation, epigenetic markers and metabolomics). Recent data suggest that components of the immune system may contribute to the development of IPF. A potential role for infections as a cofactor in disease development and progression or as a trigger in disease exacerbation has also recently been proposed. SUMMARY Clinical management of IPF is unsatisfactory because of limited availability of truly effective therapies, lack of accurate predictors of disease behavior and absence of simple short-term measures of therapeutic response. A number of putative biomarkers have been identified in patients with IPF, although none has been validated to the standard necessary for their use in either therapeutic trials or clinical practice. Currently, ongoing prospective longitudinal studies will hopefully permit such validation.
Collapse
|
129
|
Belloli EA, Martinez FJ, Flaherty KR. Update in Interstitial Lung Disease 2014. Am J Respir Crit Care Med 2015; 192:538-43. [PMID: 26561676 DOI: 10.1164/rccm.201504-0768up] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
130
|
|
131
|
Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2015; 53:585-600. [PMID: 26121236 PMCID: PMC4742954 DOI: 10.1165/rcmb.2015-0020tr] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/29/2015] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.
Collapse
Affiliation(s)
- Vanessa J. Craig
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California–San Diego, La Jolla, California
| | - Li Zhang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
| | - James S. Hagood
- Division of Pediatric Respiratory Medicine, University of California–San Diego, La Jolla, California, and
- Rady Children’s Hospital of San Diego, San Diego, California; and
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
132
|
Staab-Weijnitz CA, Fernandez IE, Knüppel L, Maul J, Heinzelmann K, Juan-Guardela BM, Hennen E, Preissler G, Winter H, Neurohr C, Hatz R, Lindner M, Behr J, Kaminski N, Eickelberg O. FK506-Binding Protein 10, a Potential Novel Drug Target for Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2015; 192:455-67. [PMID: 26039104 DOI: 10.1164/rccm.201412-2233oc] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Increased abundance and stiffness of the extracellular matrix, in particular collagens, is a hallmark of idiopathic pulmonary fibrosis (IPF). FK506-binding protein 10 (FKBP10) is a collagen chaperone, mutations of which have been indicated in the reduction of extracellular matrix stiffness (e.g., in osteogenesis imperfecta). OBJECTIVES To assess the expression and function of FKBP10 in IPF. METHODS We assessed FKBP10 expression in bleomycin-induced lung fibrosis (using quantitative reverse transcriptase-polymerase chain reaction, Western blot, and immunofluorescence), analyzed microarray data from 99 patients with IPF and 43 control subjects from a U.S. cohort, and performed Western blot analysis from 6 patients with IPF and 5 control subjects from a German cohort. Subcellular localization of FKBP10 was assessed by immunofluorescent stainings. The expression and function of FKBP10, as well as its regulation by endoplasmic reticulum stress or transforming growth factor-β1, was analyzed by small interfering RNA-mediated loss-of-function experiments, quantitative reverse transcriptase-polymerase chain reaction, Western blot, and quantification of secreted collagens in the lung and in primary human lung fibroblasts (phLF). Effects on collagen secretion were compared with those of the drugs nintedanib and pirfenidone, recently approved for IPF. MEASUREMENTS AND MAIN RESULTS FKBP10 expression was up-regulated in bleomycin-induced lung fibrosis and IPF. Immunofluorescent stainings demonstrated localization to interstitial (myo)fibroblasts and CD68(+) macrophages. Transforming growth factor-β1, but not endoplasmic reticulum stress, induced FKBP10 expression in phLF. The small interfering RNA-mediated knockdown of FKBP10 attenuated expression of profibrotic mediators and effectors, including collagens I and V and α-smooth muscle actin, on the transcript and protein level. Importantly, loss of FKBP10 expression significantly suppressed collagen secretion by phLF. CONCLUSIONS FKBP10 might be a novel drug target for IPF.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Isis E Fernandez
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Larissa Knüppel
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Julia Maul
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Katharina Heinzelmann
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Brenda M Juan-Guardela
- 2 Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Elisabeth Hennen
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Gerhard Preissler
- 3 Thoraxchirurgisches Zentrum, Klinik für Allgemeine, Viszeral, Transplantations, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Hauke Winter
- 3 Thoraxchirurgisches Zentrum, Klinik für Allgemeine, Viszeral, Transplantations, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Claus Neurohr
- 4 Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Member of the German Center of Lung Research (DZL), Munich, Germany; and
| | - Rudolf Hatz
- 3 Thoraxchirurgisches Zentrum, Klinik für Allgemeine, Viszeral, Transplantations, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany.,5 Asklepios Fachkliniken München-Gauting, Munich, Germany
| | | | - Jürgen Behr
- 4 Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Member of the German Center of Lung Research (DZL), Munich, Germany; and.,5 Asklepios Fachkliniken München-Gauting, Munich, Germany
| | - Naftali Kaminski
- 2 Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Oliver Eickelberg
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
133
|
Huan C, Yang T, Liang J, Xie T, Cheng L, Liu N, Kurkciyan A, Monterrosa Mena J, Wang C, Dai H, Noble PW, Jiang D. Methylation-mediated BMPER expression in fibroblast activation in vitro and lung fibrosis in mice in vivo. Sci Rep 2015; 5:14910. [PMID: 26442443 PMCID: PMC4595647 DOI: 10.1038/srep14910] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease. Although the pathogenesis is poorly understood, evidence suggests that genetic and epigenetic alterations, such as DNA methylation, may play a key role. Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β (TGF-β) superfamily and are important regulators in IPF. Here we identified BMP endothelial cell precursor-derived regulator (BMPER) as a key regulator of fibroblast activation. BMPER is a secreted glycoprotein that binds directly to BMPs and may regulate TGF-β/BMP signaling, but its role in lung fibrosis is not clear. BMPER is highly expressed in human IPF lung fibroblasts compared to normal lung fibroblasts. Demethylation agent 5′-azacytidine decreased BMPER expression in fibroblasts, and attenuated the invasion and migration of IPF lung fibroblasts. Furthermore, siRNA-mediated reduction of BMPER in the human lung fibroblasts impaired cell migration and invasion. 5′-azacytidine treatment additionally regulated BMPER expression and reduced lung fibrosis in mice in vivo. These findings demonstrate that methylation of specific genes in fibroblasts may offer a new therapeutic strategy for IPF by modulating fibroblast activation.
Collapse
Affiliation(s)
- Caijuan Huan
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, China.,Cedars-Sinai Medical Center, Department of Medicine, Los Angeles, CA 90048, USA
| | - Ting Yang
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, China
| | - Jiurong Liang
- Cedars-Sinai Medical Center, Department of Medicine, Los Angeles, CA 90048, USA
| | - Ting Xie
- Cedars-Sinai Medical Center, Department of Medicine, Los Angeles, CA 90048, USA
| | - Luis Cheng
- Cedars-Sinai Medical Center, Department of Medicine, Los Angeles, CA 90048, USA
| | - Ningshan Liu
- Cedars-Sinai Medical Center, Department of Medicine, Los Angeles, CA 90048, USA
| | - Adrianne Kurkciyan
- Cedars-Sinai Medical Center, Department of Medicine, Los Angeles, CA 90048, USA
| | | | - Chen Wang
- China-Japan Friendship Hospital, Beijing, China
| | - Huaping Dai
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing 100020, China
| | - Paul W Noble
- Cedars-Sinai Medical Center, Department of Medicine, Los Angeles, CA 90048, USA
| | - Dianhua Jiang
- Cedars-Sinai Medical Center, Department of Medicine, Los Angeles, CA 90048, USA
| |
Collapse
|
134
|
Abstract
PURPOSE OF REVIEW Idiopathic pulmonary fibrosis (IPF) is a fatal disease with limited treatment options and extensive gene expression changes identified in the lung parenchyma. Multiple lines of evidence suggest that epigenetic factors contribute to dysregulation of gene expression in IPF lung. Most importantly, risk factors that predispose to IPF - age, sex, cigarette smoke, and genetic variants - all influence epigenetic marks. This review summarizes recent findings of association of DNA methylation and histone modifications with the presence of disease and fibroproliferation. RECENT FINDINGS In addition to targeted studies focused on specific gene loci, genome-wide profiles of DNA methylation demonstrate widespread DNA methylation changes in IPF lung tissue and a substantial effect of these methylation changes on gene expression. Genetic loci that have been recently associated with IPF also contain differentially methylated regions, suggesting that genetic and epigenetic factors act in concert to dysregulate gene expression in IPF lung. SUMMARY Although we are in very early stages of understanding the role of epigenetics in IPF, the potential for the use of epigenetic marks as biomarkers and therapeutic targets is high and discoveries made in this field will likely bring us closer to better prognosticating and treating this fatal disease.
Collapse
Affiliation(s)
- Britney A. Helling
- Department of Medicine, University of Colorado School of Medicine, Aurora CO
| | - Ivana V. Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora CO
- Department of Epidemiology, Colorado School of Public Health, Aurora CO
- Center for Genes, Environment and Health, National Jewish Health, Denver CO
| |
Collapse
|
135
|
Yang IV, Pedersen BS, Liu A, O'Connor GT, Teach SJ, Kattan M, Misiak RT, Gruchalla R, Steinbach SF, Szefler SJ, Gill MA, Calatroni A, David G, Hennessy CE, Davidson EJ, Zhang W, Gergen P, Togias A, Busse WW, Schwartz DA. DNA methylation and childhood asthma in the inner city. J Allergy Clin Immunol 2015; 136:69-80. [PMID: 25769910 PMCID: PMC4494877 DOI: 10.1016/j.jaci.2015.01.025] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Epigenetic marks are heritable, influenced by the environment, direct the maturation of T lymphocytes, and in mice enhance the development of allergic airway disease. Thus it is important to define epigenetic alterations in asthmatic populations. OBJECTIVE We hypothesize that epigenetic alterations in circulating PBMCs are associated with allergic asthma. METHODS We compared DNA methylation patterns and gene expression in inner-city children with persistent atopic asthma versus healthy control subjects by using DNA and RNA from PBMCs. Results were validated in an independent population of asthmatic patients. RESULTS Comparing asthmatic patients (n = 97) with control subjects (n = 97), we identified 81 regions that were differentially methylated. Several immune genes were hypomethylated in asthma, including IL13, RUNX3, and specific genes relevant to T lymphocytes (TIGIT). Among asthmatic patients, 11 differentially methylated regions were associated with higher serum IgE concentrations, and 16 were associated with percent predicted FEV1. Hypomethylated and hypermethylated regions were associated with increased and decreased gene expression, respectively (P < 6 × 10(-12) for asthma and P < .01 for IgE). We further explored the relationship between DNA methylation and gene expression using an integrative analysis and identified additional candidates relevant to asthma (IL4 and ST2). Methylation marks involved in T-cell maturation (RUNX3), TH2 immunity (IL4), and oxidative stress (catalase) were validated in an independent asthmatic cohort of children living in the inner city. CONCLUSIONS Our results demonstrate that DNA methylation marks in specific gene loci are associated with asthma and suggest that epigenetic changes might play a role in establishing the immune phenotype associated with asthma.
Collapse
Affiliation(s)
- Ivana V Yang
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo; Departments of Pediatrics and Medicine, National Jewish Health, Denver, Colo
| | - Brent S Pedersen
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo
| | - Andrew Liu
- Departments of Pediatrics and Medicine, National Jewish Health, Denver, Colo
| | - George T O'Connor
- Department of Medicine, Boston University School of Medicine, Boston, Mass
| | | | - Meyer Kattan
- Columbia University Medical Center, New York, NY
| | | | | | | | - Stanley J Szefler
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado, School of Medicine, Aurora, Colo
| | - Michelle A Gill
- University of Texas, Southwestern Medical Center, Dallas, Tex
| | | | | | - Corinne E Hennessy
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo
| | - Elizabeth J Davidson
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo
| | - Weiming Zhang
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Aurora, Colo
| | - Peter Gergen
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - David A Schwartz
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo; Departments of Pediatrics and Medicine, National Jewish Health, Denver, Colo; Department of Immunology, University of Colorado, Aurora, Colo.
| |
Collapse
|
136
|
Kaarteenaho R, Lappi-Blanco E. Tissue is an issue in the search for biomarkers in idiopathic pulmonary fibrosis. FIBROGENESIS & TISSUE REPAIR 2015; 8:3. [PMID: 25733981 PMCID: PMC4346107 DOI: 10.1186/s13069-015-0020-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/15/2015] [Indexed: 02/06/2023]
Abstract
Biological markers, i.e., biomarkers, in lung tissue may make it possible to connect cell biological phenomena to the pathogenetic mechanisms in idiopathic pulmonary fibrosis (IPF). This review focuses on the lung tissue biomarkers, which have been compared with relevant clinical endpoints or with the most common differential diagnostic lung diseases. In addition, studies conducted on lung tissue samples and investigated by transcriptomic or proteomic methodologies have been included. Several studies have observed changes in alveolar epithelium and extracellular matrix supporting the current hypotheses of the pathogenesis of IPF. In many studies, however, alterations in inflammatory cells have been revealed, a phenomenon not currently incorporated into pathogenetic theories. Combining lung tissue material with other non-solid organs with clinically meaningful endpoints may prove to be the most beneficial approach in the search for non-invasive biomarkers.
Collapse
Affiliation(s)
- Riitta Kaarteenaho
- Respiratory Research Unit, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland ; Respiratory Research Unit, Department of Internal Medicine, University of Oulu, Oulu, Finland ; Unit of Medicine and Clinical Research, Pulmonary Division, University of Eastern Finland, Kuopio, Finland ; Center for Medicine and Clinical Research, Division of Respiratory Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Lappi-Blanco
- Department of Pathology, Oulu University Hospital, Oulu, Finland ; Department of Pathology, University of Oulu, Oulu, Finland
| |
Collapse
|
137
|
Selman M, Pardo A. Stochastic age-related epigenetic drift in the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2015; 190:1328-30. [PMID: 25496096 DOI: 10.1164/rccm.201411-1953ed] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Moisés Selman
- 1 Instituto Nacional de Enfermedades Respiratorias México DF, México
| | | |
Collapse
|
138
|
Agustí A, Antó JM, Auffray C, Barbé F, Barreiro E, Dorca J, Escarrabill J, Faner R, Furlong LI, Garcia-Aymerich J, Gea J, Lindmark B, Monsó E, Plaza V, Puhan MA, Roca J, Ruiz-Manzano J, Sampietro-Colom L, Sanz F, Serrano L, Sharpe J, Sibila O, Silverman EK, Sterk PJ, Sznajder JI. Personalized respiratory medicine: exploring the horizon, addressing the issues. Summary of a BRN-AJRCCM workshop held in Barcelona on June 12, 2014. Am J Respir Crit Care Med 2015; 191:391-401. [PMID: 25531178 PMCID: PMC4351599 DOI: 10.1164/rccm.201410-1935pp] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/21/2014] [Indexed: 12/29/2022] Open
Abstract
This Pulmonary Perspective summarizes the content and main conclusions of an international workshop on personalized respiratory medicine coorganized by the Barcelona Respiratory Network ( www.brn.cat ) and the AJRCCM in June 2014. It discusses (1) its definition and historical, social, legal, and ethical aspects; (2) the view from different disciplines, including basic science, epidemiology, bioinformatics, and network/systems medicine; (3) the bottlenecks and opportunities identified by some currently ongoing projects; and (4) the implications for the individual, the healthcare system and the pharmaceutical industry. The authors hope that, although it is not a systematic review on the subject, this document can be a useful reference for researchers, clinicians, healthcare managers, policy-makers, and industry parties interested in personalized respiratory medicine.
Collapse
Affiliation(s)
- Alvar Agustí
- Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Josep Maria Antó
- Centre for Research in Environmental Epidemiology, Hospital del Mar Medical Research Institute, Universitat Pompeu Fabra, Centros de Investigación Biomédica en Red Epidemiología y Salud Pública, Barcelona, Spain
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, Lyon, France
| | - Ferran Barbé
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Esther Barreiro
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Pulmonology Department, Hospital del Mar-Hospital del Mar Medical Research Institute, CEXS, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Jordi Dorca
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Hospital University Bellvitge, University Barcelona, El Institut d’Investigació Biomèdica de Bellvitge, Hospitalet Ll., Spain
| | - Joan Escarrabill
- Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University Barcelona, Spain
| | - Rosa Faner
- Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Laura I. Furlong
- Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute, University Pompeu Fabra, Barcelona, Spain
| | - Judith Garcia-Aymerich
- Centre for Research in Environmental Epidemiology, Hospital del Mar Medical Research Institute, Universitat Pompeu Fabra, Centros de Investigación Biomédica en Red Epidemiología y Salud Pública, Barcelona, Spain
| | - Joaquim Gea
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Pulmonology Department, Hospital del Mar-Hospital del Mar Medical Research Institute, CEXS, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
| | | | - Eduard Monsó
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Hospital University Parc Taulí, Sabadell, Spain
| | - Vicente Plaza
- Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, University Autonoma de Barcelona, Barcelona, Spain
| | - Milo A. Puhan
- Epidemiology, Biostatistics & Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Josep Roca
- Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Juan Ruiz-Manzano
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Hospital University Germans Trias i Pujol, University Autónoma Barcelona, Badalona, Spain
| | - Laura Sampietro-Colom
- Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University Barcelona, Spain
| | - Ferran Sanz
- Research Programme on Biomedical Informatics, Hospital del Mar Medical Research Institute, University Pompeu Fabra, Barcelona, Spain
| | - Luis Serrano
- European Molecular Biology Laboratory/Centre for Genomic Regulation Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - James Sharpe
- European Molecular Biology Laboratory/Centre for Genomic Regulation Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Oriol Sibila
- Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, University Autonoma de Barcelona, Barcelona, Spain
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Peter J. Sterk
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; and
| | | |
Collapse
|
139
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disorder with no effective treatment and a prognosis worse than that of lung cancer. Despite extensive research efforts, its etiology and pathogenesis still remain largely unknown. Current experimental evidence has shifted the disease paradigm from chronic inflammation towards the premise of abnormal epithelial wound repair in response to repeated epigenetic injurious stimuli in genetically predisposed individuals. Epigenetics is defined as the study of heritable changes in gene function by factors other than an individual's DNA sequence, providing valuable information regarding adaption of genes to environmental changes. Although cancer is the most studied disease with relevance to epigenetic modifications, recent data support the idea that epigenomic alterations may lead to variable disease phenotypes, including fibroproliferative lung disorders such as IPF. This review article summarizes the latest experimental and translational epigenetic studies in the research field of chronic lung disorders, mainly focusing on IPF, highlights current methodology limitations, and underlines future directions and perspectives.
Collapse
Affiliation(s)
- Argyrios Tzouvelekis
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, 300 Cedar St., TAC-441 South, P.O. Box 208057, New Haven, CT 06520, USA
| | | |
Collapse
|