101
|
Jia CM, Zhang FW, Wang SJ, Wang W, Li Y. Tea Polyphenols Prevent Sepsis-Induced Lung Injury via Promoting Translocation of DJ-1 to Mitochondria. Front Cell Dev Biol 2021; 9:622507. [PMID: 33981700 PMCID: PMC8107366 DOI: 10.3389/fcell.2021.622507] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background Sepsis is the systemic inflammatory response syndrome caused by infection, which commonly targets on the lung. Tea polyphenols (TP) have many pharmacological activities, but their role in sepsis induced lung injury remains unclear. Results Injection of TP after cecal ligation and puncture (CLP) operation elevated the survival rate in a concentration dependent manner. TP treatment improved alveoli structure injury under CLP operation. CLP surgery increased the expression of inflammatory factors IL1β, IL6, and TNFα expression, which was reversed by TP injection. In addition, CLP operation promoted apoptosis and senescence in tissues and cells during lung injury, while TP administration removed the damaged role of CLP on lung tissues and cells. Furthermore, CLP operation or LPS (lipopolysaccharide) treatment induced dysfunction of mitochondria in lung tissues and cells, but TP contributed to recover mitochondria function, which exhibited as inhibition of ROS production inhibition and increase of ATP content and Mitochondrial membrane potential (MMP). Interestingly, DJ-1 was inhibited by CLP operation but promoted by TP treatment. Overexpression of DJ-1 reversed the injury of LPS on L2 cells and recovered mitochondria normal function. And silencing of DJ-1 in rats or alveolar epithelial cells blocked the protection effect of TP. Conclusion Our research revealed that TP protected against lung injury via upregulating of DJ-1 to improve mitochondria function, which contributed to the prevention and treatment of sepsis induced lung injury.
Collapse
Affiliation(s)
- Chun-Mei Jia
- Emergency Department, Cangzhou Central Hospital, Cangzhou, China
| | - Feng-Wei Zhang
- Emergency Department, Cangzhou Central Hospital, Cangzhou, China
| | - Shu-Juan Wang
- Emergency Department, Cangzhou Central Hospital, Cangzhou, China
| | - Wei Wang
- Emergency Department, Cangzhou Central Hospital, Cangzhou, China
| | - Yong Li
- Emergency Department, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
102
|
Schneider JL, Rowe JH, Garcia-de-Alba C, Kim CF, Sharpe AH, Haigis MC. The aging lung: Physiology, disease, and immunity. Cell 2021; 184:1990-2019. [PMID: 33811810 PMCID: PMC8052295 DOI: 10.1016/j.cell.2021.03.005] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
The population is aging at a rate never seen before in human history. As the number of elderly adults grows, it is imperative we expand our understanding of the underpinnings of aging biology. Human lungs are composed of a unique panoply of cell types that face ongoing chemical, mechanical, biological, immunological, and xenobiotic stress over a lifetime. Yet, we do not fully appreciate the mechanistic drivers of lung aging and why age increases the risk of parenchymal lung disease, fatal respiratory infection, and primary lung cancer. Here, we review the molecular and cellular aspects of lung aging, local stress response pathways, and how the aging process predisposes to the pathogenesis of pulmonary disease. We place these insights into context of the COVID-19 pandemic and discuss how innate and adaptive immunity within the lung is altered with age.
Collapse
Affiliation(s)
- Jaime L Schneider
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Dana Farber Cancer Institute, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Jared H Rowe
- Division of Hematology Boston Children's Hospital and Division of Pediatric Oncology Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Carolina Garcia-de-Alba
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Disease, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
103
|
Yao C, Guan X, Carraro G, Parimon T, Liu X, Huang G, Mulay A, Soukiasian HJ, David G, Weigt SS, Belperio JA, Chen P, Jiang D, Noble PW, Stripp BR. Senescence of Alveolar Type 2 Cells Drives Progressive Pulmonary Fibrosis. Am J Respir Crit Care Med 2021; 203:707-717. [PMID: 32991815 PMCID: PMC7958503 DOI: 10.1164/rccm.202004-1274oc] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is an insidious and fatal interstitial lung disease associated with declining pulmonary function. Accelerated aging, loss of epithelial progenitor cell function and/or numbers, and cellular senescence are implicated in the pathogenies of IPF.Objectives: We sought to investigate the role of alveolar type 2 (AT2) cellular senescence in initiation and/or progression of pulmonary fibrosis and therapeutic potential of targeting senescence-related pathways and senescent cells.Methods: Epithelial cells of 9 control donor proximal and distal lung tissues and 11 IPF fibrotic lung tissues were profiled by single-cell RNA sequencing to assesses the contribution of epithelial cells to the senescent cell fraction for IPF. A novel mouse model of conditional AT2 cell senescence was generated to study the role of cellular senescence in pulmonary fibrosis.Measurements and Main Results: We show that AT2 cells isolated from IPF lung tissue exhibit characteristic transcriptomic features of cellular senescence. We used conditional loss of Sin3a in adult mouse AT2 cells to initiate a program of p53-dependent cellular senescence, AT2 cell depletion, and spontaneous, progressive pulmonary fibrosis. We establish that senescence rather than loss of AT2 cells promotes progressive fibrosis and show that either genetic or pharmacologic interventions targeting p53 activation or senescence block fibrogenesis.Conclusions: Senescence of AT2 cells is sufficient to drive progressive pulmonary fibrosis. Early attenuation of senescence-related pathways and elimination of senescent cells are promising therapeutic approaches to prevent pulmonary fibrosis.
Collapse
Affiliation(s)
- Changfu Yao
- Women’s Guild Lung Institute, Department of Medicine
- The Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, and
| | | | | | | | - Xue Liu
- Women’s Guild Lung Institute, Department of Medicine
| | | | - Apoorva Mulay
- Women’s Guild Lung Institute, Department of Medicine
| | - Harmik J. Soukiasian
- Division of Thoracic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York University, New York, New York; and
| | - Stephen S. Weigt
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - John A. Belperio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Peter Chen
- Women’s Guild Lung Institute, Department of Medicine
| | - Dianhua Jiang
- Women’s Guild Lung Institute, Department of Medicine
| | - Paul W. Noble
- Women’s Guild Lung Institute, Department of Medicine
| | - Barry R. Stripp
- Women’s Guild Lung Institute, Department of Medicine
- The Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, and
| |
Collapse
|
104
|
Katzen J, Beers MF. Contributions of alveolar epithelial cell quality control to pulmonary fibrosis. J Clin Invest 2021; 130:5088-5099. [PMID: 32870817 DOI: 10.1172/jci139519] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epithelial cell dysfunction has emerged as a central component of the pathophysiology of diffuse parenchymal diseases including idiopathic pulmonary fibrosis (IPF). Alveolar type 2 (AT2) cells represent a metabolically active lung cell population important for surfactant biosynthesis and alveolar homeostasis. AT2 cells and other distal lung epithelia, like all eukaryotic cells, contain an elegant quality control network to respond to intrinsic metabolic and biosynthetic challenges imparted by mutant protein conformers, dysfunctional subcellular organelles, and dysregulated telomeres. Failed AT2 quality control components (the ubiquitin-proteasome system, unfolded protein response, macroautophagy, mitophagy, and telomere maintenance) result in diverse cellular endophenotypes and molecular signatures including ER stress, defective autophagy, mitochondrial dysfunction, apoptosis, inflammatory cell recruitment, profibrotic signaling, and altered progenitor function that ultimately converge to drive downstream fibrotic remodeling in the IPF lung. As this complex network becomes increasingly better understood, opportunities will emerge to identify targets and therapeutic strategies for IPF.
Collapse
Affiliation(s)
- Jeremy Katzen
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, and
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, and.,Penn-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
105
|
Li X, Montesi SB, Zhang Y. FKBP13: A New Player on the Block in Endoplasmic Reticulum Stress and Lung Fibrosis. Am J Respir Cell Mol Biol 2021; 64:161-162. [PMID: 33271055 PMCID: PMC7874392 DOI: 10.1165/rcmb.2020-0532ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Xiaoyun Li
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sydney B Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
106
|
The aftermath of the interplay between the endoplasmic reticulum stress response and redox signaling. Exp Mol Med 2021; 53:151-167. [PMID: 33558590 PMCID: PMC8080639 DOI: 10.1038/s12276-021-00560-8] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is an essential organelle of eukaryotic cells. Its main functions include protein synthesis, proper protein folding, protein modification, and the transportation of synthesized proteins. Any perturbations in ER function, such as increased demand for protein folding or the accumulation of unfolded or misfolded proteins in the ER lumen, lead to a stress response called the unfolded protein response (UPR). The primary aim of the UPR is to restore cellular homeostasis; however, it triggers apoptotic signaling during prolonged stress. The core mechanisms of the ER stress response, the failure to respond to cellular stress, and the final fate of the cell are not yet clear. Here, we discuss cellular fate during ER stress, cross talk between the ER and mitochondria and its significance, and conditions that can trigger ER stress response failure. We also describe how the redox environment affects the ER stress response, and vice versa, and the aftermath of the ER stress response, integrating a discussion on redox imbalance-induced ER stress response failure progressing to cell death and dynamic pathophysiological changes. The endoplasmic reticulum (ER), a cellular organelle responsible for protein folding, is sensitive to chemical imbalances that can induce stress, leading to cell death and disease. Researchers in South Korea, led by Han-Jung Chae from Jeonbuk National University in Jeonju and Hyung-Ryong Kim from Dankook University in Cheonan, review how the ER counters changes in its environment that spur protein folding defects by activating a series of signaling pathways, known collectively as the unfolded protein response. Redox imbalance, may fail adaptive ER stress response that can damage the ER and surrounding mitochondria by modifying cysteine residues. The interaction between the two stress systems, ER stress and oxidative stress, has profound negative impacts on normal physiology. Targeting one or both of these stress mechanisms may therefore be an effective means of treating disease.
Collapse
|
107
|
Bradley KL, Stokes CA, Marciniak SJ, Parker LC, Condliffe AM. Role of unfolded proteins in lung disease. Thorax 2021; 76:92-99. [PMID: 33077618 PMCID: PMC7803888 DOI: 10.1136/thoraxjnl-2019-213738] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/01/2023]
Abstract
The lungs are exposed to a range of environmental toxins (including cigarette smoke, air pollution, asbestos) and pathogens (bacterial, viral and fungal), and most respiratory diseases are associated with local or systemic hypoxia. All of these adverse factors can trigger endoplasmic reticulum (ER) stress. The ER is a key intracellular site for synthesis of secretory and membrane proteins, regulating their folding, assembly into complexes, transport and degradation. Accumulation of misfolded proteins within the lumen results in ER stress, which activates the unfolded protein response (UPR). Effectors of the UPR temporarily reduce protein synthesis, while enhancing degradation of misfolded proteins and increasing the folding capacity of the ER. If successful, homeostasis is restored and protein synthesis resumes, but if ER stress persists, cell death pathways are activated. ER stress and the resulting UPR occur in a range of pulmonary insults and the outcome plays an important role in many respiratory diseases. The UPR is triggered in the airway of patients with several respiratory diseases and in corresponding experimental models. ER stress has been implicated in the initiation and progression of pulmonary fibrosis, and evidence is accumulating suggesting that ER stress occurs in obstructive lung diseases (particularly in asthma), in pulmonary infections (some viral infections and in the setting of the cystic fibrosis airway) and in lung cancer. While a number of small molecule inhibitors have been used to interrogate the role of the UPR in disease models, many of these tools have complex and off-target effects, hence additional evidence (eg, from genetic manipulation) may be required to support conclusions based on the impact of such pharmacological agents. Aberrant activation of the UPR may be linked to disease pathogenesis and progression, but at present, our understanding of the context-specific and disease-specific mechanisms linking these processes is incomplete. Despite this, the ability of the UPR to defend against ER stress and influence a range of respiratory diseases is becoming increasingly evident, and the UPR is therefore attracting attention as a prospective target for therapeutic intervention strategies.
Collapse
Affiliation(s)
- Kirsty L Bradley
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | - Clare A Stokes
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | | | - Lisa C Parker
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| |
Collapse
|
108
|
Pang L, Liu Y, Shen M, Ye J, Chen R, Lan Z, Wu Z, Guo Y, Zhang P. Influence of aging on deterioration of patients with COVID-19. Aging (Albany NY) 2020; 12:26248-26262. [PMID: 33232272 PMCID: PMC7803552 DOI: 10.18632/aging.202136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Aging is an important factor affecting the deterioration of patients with coronavirus disease 2019 (COVID-19). The aging and degeneration of various tissues and organs in the elderly lead to impaired organ function. Underlying conditions such as chronic lung disease, cardiovascular disease, and diabetes in aged patients are associated with higher mortality. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily interacts with the cell surface receptor angiotensin-converting enzyme (ACE) 2 and other accessory proteins such as 78 kDa glucose-regulated protein 78 (GRP78) and CD147. Thus, altered receptor signals in aging and chronic disease play a role in SARS-CoV-2 infection, and are associated with a higher risk of deterioration in different organs. In this review, after a brief introduction to the link between aging and receptors for SARS-CoV-2, we focus on the risk of deterioration in different organs of COVID-19 patients considering aging as the main factor. We further discuss the structural and/or physiological changes in the immune system and organs (lung, heart, kidney, vessels, nerve system), as well as those associated with diabetes, in aging patients, and speculate on the most likely mechanisms underlying the deterioration of COVID-19 patients.
Collapse
Affiliation(s)
- Limin Pang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yi Liu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Maoze Shen
- Department of Internal Medicine, Raoping County People's Hospital, Chaozhou, Guangdong, People’s Republic of China
| | - Jujian Ye
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Ruirong Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhien Lan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhijian Wu
- Department of Cardiology, Boai Hospital of Zhongshan, Southern Medical University, Zhongshan, People’s Republic of China
| | - Yang Guo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Peidong Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
109
|
Jiang D, Cui H, Xie N, Banerjee S, Liu RM, Dai H, Thannickal VJ, Liu G. ATF4 Mediates Mitochondrial Unfolded Protein Response in Alveolar Epithelial Cells. Am J Respir Cell Mol Biol 2020; 63:478-489. [PMID: 32551949 DOI: 10.1165/rcmb.2020-0107oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although endoplasmic reticulum (ER) unfolded protein response (UPRER) is well known, mitochondrial unfolded protein response (UPRmt) has not been recognized in alveolar epithelial cells. Furthermore, ER stress and mitochondrial dysfunction are frequently encountered in alveolar epithelial cells from an array of lung disorders. However, these two scenarios have been often regarded as separate mechanisms contributing to the pathogeneses. It is unclear whether there is interplay between these two phenomena or an integrator that couples these two signaling cascades in the stressed alveolar epithelial cells from those pathologies. In this study, we defined UPRmt in alveolar epithelial cells and identified ATF4 (activating transcription factor 4), but not ATF5, as the key regulator of UPRmt. We found that UPRER led to UPRmt and mitochondrial dysfunction in an ATF4-dependent manner. In contrast, mitochondrial stresses did not activate UPRER. We found that alveolar epithelial ATF4 and UPRmt were induced in aged mice with experimental pulmonary fibrosis as well as in patients with idiopathic pulmonary fibrosis. Finally, we found that the inducible expression of ATF4 in mouse alveolar epithelial cells aggravated pulmonary UPRmt, lung inflammation, body weight loss, and death upon bleomycin-induced lung injury. In conclusion, ER stress induces ATF4-dependent UPRmt and mitochondrial dysfunction, indicating a novel mechanism by which ER stress contributes to the pathogeneses of a variety of pulmonary disorders.
Collapse
Affiliation(s)
- Dingyuan Jiang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Huachun Cui
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Na Xie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Sami Banerjee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
110
|
Endoplasmic reticulum chaperone BiP/GRP78 knockdown leads to autophagy and cell death of arginine vasopressin neurons in mice. Sci Rep 2020; 10:19730. [PMID: 33184425 PMCID: PMC7661499 DOI: 10.1038/s41598-020-76839-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
The immunoglobulin heavy chain binding protein (BiP), also referred to as 78-kDa glucose-regulated protein (GRP78), is a pivotal endoplasmic reticulum (ER) chaperone which modulates the unfolded protein response under ER stress. Our previous studies showed that BiP is expressed in arginine vasopressin (AVP) neurons under non-stress conditions and that BiP expression is upregulated in proportion to the increased AVP expression under dehydration. To clarify the role of BiP in AVP neurons, we used a viral approach in combination with shRNA interference for BiP knockdown in mouse AVP neurons. Injection of a recombinant adeno-associated virus equipped with a mouse AVP promoter and BiP shRNA cassette provided specific BiP knockdown in AVP neurons of the supraoptic (SON) and paraventricular nuclei (PVN) in mice. AVP neuron-specific BiP knockdown led to ER stress and AVP neuronal loss in the SON and PVN, resulting in increased urine volume due to lack of AVP secretion. Immunoelectron microscopy of AVP neurons revealed that autophagy was activated through the process of AVP neuronal loss, whereas no obvious features characteristic of apoptosis were observed. Pharmacological inhibition of autophagy by chloroquine exacerbated the AVP neuronal loss due to BiP knockdown, indicating a protective role of autophagy in AVP neurons under ER stress. In summary, our results demonstrate that BiP is essential for the AVP neuron system.
Collapse
|
111
|
Melo-Narváez MC, Stegmayr J, Wagner DE, Lehmann M. Lung regeneration: implications of the diseased niche and ageing. Eur Respir Rev 2020; 29:29/157/200222. [DOI: 10.1183/16000617.0222-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Most chronic and acute lung diseases have no cure, leaving lung transplantation as the only option. Recent work has improved our understanding of the endogenous regenerative capacity of the lung and has helped identification of different progenitor cell populations, as well as exploration into inducing endogenous regeneration through pharmaceutical or biological therapies. Additionally, alternative approaches that aim at replacing lung progenitor cells and their progeny through cell therapy, or whole lung tissue through bioengineering approaches, have gained increasing attention. Although impressive progress has been made, efforts at regenerating functional lung tissue are still ineffective. Chronic and acute lung diseases are most prevalent in the elderly and alterations in progenitor cells with ageing, along with an increased inflammatory milieu, present major roadblocks for regeneration. Multiple cellular mechanisms, such as cellular senescence and mitochondrial dysfunction, are aberrantly regulated in the aged and diseased lung, which impairs regeneration. Existing as well as new human in vitro models are being developed, improved and adapted in order to study potential mechanisms of lung regeneration in different contexts. This review summarises recent advances in understanding endogenous as well as exogenous regeneration and the development of in vitro models for studying regenerative mechanisms.
Collapse
|
112
|
Korfei M, MacKenzie B, Meiners S. The ageing lung under stress. Eur Respir Rev 2020; 29:29/156/200126. [DOI: 10.1183/16000617.0126-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023] Open
Abstract
Healthy ageing of the lung involves structural changes but also numerous cell-intrinsic and cell-extrinsic alterations. Among them are the age-related decline in central cellular quality control mechanisms such as redox and protein homeostasis. In this review, we would like to provide a conceptual framework of how impaired stress responses in the ageing lung, as exemplified by dysfunctional redox and protein homeostasis, may contribute to onset and progression of COPD and idiopathic pulmonary fibrosis (IPF). We propose that age-related imbalanced redox and protein homeostasis acts, amongst others (e.g.cellular senescence), as a “first hit” that challenges the adaptive stress-response pathways of the cell, increases the level of oxidative stress and renders the lung susceptible to subsequent injury and disease. In both COPD and IPF, additional environmental insults such as smoking, air pollution and/or infections then serve as “second hits” which contribute to persistently elevated oxidative stress that overwhelms the already weakened adaptive defence and repair pathways in the elderly towards non-adaptive, irremediable stress thereby promoting development and progression of respiratory diseases. COPD and IPF are thus distinct horns of the same devil, “lung ageing”.
Collapse
|
113
|
Lei Q, Yi T, Li H, Yan Z, Lv Z, Li G, Wang Y. Ubiquitin C-terminal hydrolase L1 (UCHL1) regulates post-myocardial infarction cardiac fibrosis through glucose-regulated protein of 78 kDa (GRP78). Sci Rep 2020; 10:10604. [PMID: 32606430 PMCID: PMC7326919 DOI: 10.1038/s41598-020-67746-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Abnormal cardiac fibrosis indicates cardiac dysfunction and poor prognosis in myocardial infarction (MI) patients. Many studies have demonstrated that the ubiquitin proteasome system (UPS) plays a significant role in the pathogenesis of fibrosis. Ubiquitin C-terminal hydrolase L1 (UCHL1), a member of the UPS, is related to fibrosis in several heart diseases. However, whether UCHL1 regulates cardiac fibrosis following MI has yet to be determined. In the present study, we found that UCHL1 was dramatically increased in infarct hearts and TGF-β1-stimulated cardiac fibroblasts (CFs). Inhibition of UCHL1 with LDN57444 (LDN) reversed the myocardial fibrosis in post-MI heart and improved cardiac function. Treatment of LDN or UCHL1 siRNA abolished the TGF-β1-induced fibrotic response of CFs. We further identified GRP78 as an interactor of UCHL1 through screening using immunoprecipitation-mass spectrometer. We determined that UCHL1 interacted with glucose-regulated protein of 78 kDa (GRP78) and prompted GRP78 degradation via ubiquitination. Furthermore, we found that GRP78 was upregulated after UCHL1 knockdown and that the GRP78 inhibitor HA15 diminished the antifibrotic function exerted by UCHL1 knockdown in CFs stimulated with TGF-β1. This suggests that UCHL1 regulates cardiac fibrosis post MI through interactions with GRP78. This work identifies that the UCHL1-GRP78 axis is involved in cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Qian Lei
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tao Yi
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Hang Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhijie Yan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhan Lv
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Gerui Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yanggan Wang
- Department of Internal Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Medical Research Institute of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
114
|
Climent M, Viggiani G, Chen YW, Coulis G, Castaldi A. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21124370. [PMID: 32575472 PMCID: PMC7352701 DOI: 10.3390/ijms21124370] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) affect many cellular functions and the proper redox balance between ROS and antioxidants contributes substantially to the physiological welfare of the cell. During pathological conditions, an altered redox equilibrium leads to increased production of ROS that in turn may cause oxidative damage. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level contributing to all major cellular processes, including oxidative stress and cell death. Several miRNAs are expressed in response to ROS to mediate oxidative stress. Conversely, oxidative stress may lead to the upregulation of miRNAs that control mechanisms to buffer the damage induced by ROS. This review focuses on the complex crosstalk between miRNAs and ROS in diseases of the cardiac (i.e., cardiac hypertrophy, heart failure, myocardial infarction, ischemia/reperfusion injury, diabetic cardiomyopathy) and pulmonary (i.e., idiopathic pulmonary fibrosis, acute lung injury/acute respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, lung cancer) compartments. Of note, miR-34a, miR-144, miR-421, miR-129, miR-181c, miR-16, miR-31, miR-155, miR-21, and miR-1/206 were found to play a role during oxidative stress in both heart and lung pathologies. This review comprehensively summarizes current knowledge in the field.
Collapse
Affiliation(s)
- Montserrat Climent
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano, MI, Italy;
| | - Giacomo Viggiani
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, MI, Italy;
| | - Ya-Wen Chen
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gerald Coulis
- Department of Physiology and Biophysics, and Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA;
| | - Alessandra Castaldi
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Correspondence:
| |
Collapse
|
115
|
Shi Z, Xu L, Xie H, Ouyang R, Ke Y, Zhou R, Yung WH. Attenuation of intermittent hypoxia-induced apoptosis and fibrosis in pulmonary tissues via suppression of ER stress activation. BMC Pulm Med 2020; 20:92. [PMID: 32299413 PMCID: PMC7161195 DOI: 10.1186/s12890-020-1123-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
Background Obstructive sleep apnea (OSA) is associated with pulmonary fibrosis and endothelial apoptosis in pulmonary tissues. Chronic intermittent hypoxia (IH) is considered to be the primary player in OSA, but the mechanisms underlying its effect on pulmonary tissues are unknown. Endoplasmic reticulum (ER) stress induced by IH treatment plays an important role in accelerating the process of fibrosis and induction of apoptosis. Methods Mice were placed in IH chambers for 4 weeks with an oscillating oxygen (O2) concentration between 5 and 21%, cycling every 90s for 8 h daily. Mice were randomly divided into four groups: control group (normal oxygen), tauroursodeoxycholic acid (TUDCA) group (normal oxygen intraperitoneally injected with TUDCA), IH group and IH + TUDCA group. After 4 weeks, the proteins in three branch signaling pathways of ER stress, including protein kinase RNA (PKR)-like/Pancreatic ER kinase (PERK), activating transcription factor 6 (ATF-6) and inositol-requiring enzyme 1 (IRE-1), were evaluated. The cleaved caspase-3, caspase-12 and TUNNEL staining was assessed. Furthermore, the expression of transforming growth factor-β1 (TGF-β1) and thrombospondin-1(TSP-1), two extracellular matrix proteins that play critical role in fibrosis, were examined. Finally, Masson’s trichrome staining was performed to detect the expression of collagen. Results After 4 weeks of IH treatment, the expressions of two ER stress markers, glucose regulated protein-78 (Grp78) and transcription factor C/EBP homologous protein (CHOP) were increased which was prevented by administration of the ER stress attenuator, TUDCA. The expressions of PERK, but not those of ATF-6 and IRE-1, were increased. The effects of IH were accompanied by an increased number of apoptotic cells and increased expressions of cleaved caspase-3 and caspase-12 in pulmonary tissues. In addition, histological examination suggested the presence of fibrosis after chronic IH treatment, indicated by increased expression of collagen, which was associated with the up-regulation of TGF-β1 and TSP-1 that are known to promote fibrosis. Similarly, TUDCA could reduce the extent of fibrotic area and the expression levels of these proteins. Conclusions It reveals the roles of ER stress, especially the PERK pathway, in IH induced apoptosis and fibrosis in pulmonary tissues that might underlie the pulmonary complications observed in OSA.
Collapse
Affiliation(s)
- Zhihui Shi
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central-South University, Changsha, China.,Research Unit of Respiratory Disease, Central-South University, Changsha, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Linhao Xu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China.,Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Xie
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central-South University, Changsha, China.,Research Unit of Respiratory Disease, Central-South University, Changsha, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Rui Zhou
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central-South University, Changsha, China. .,Research Unit of Respiratory Disease, Central-South University, Changsha, China.
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China.
| |
Collapse
|
116
|
Parimon T, Yao C, Stripp BR, Noble PW, Chen P. Alveolar Epithelial Type II Cells as Drivers of Lung Fibrosis in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:E2269. [PMID: 32218238 PMCID: PMC7177323 DOI: 10.3390/ijms21072269] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
: Alveolar epithelial type II cells (AT2) are a heterogeneous population that have critical secretory and regenerative roles in the alveolus to maintain lung homeostasis. However, impairment to their normal functional capacity and development of a pro-fibrotic phenotype has been demonstrated to contribute to the development of idiopathic pulmonary fibrosis (IPF). A number of factors contribute to AT2 death and dysfunction. As a mucosal surface, AT2 cells are exposed to environmental stresses that can have lasting effects that contribute to fibrogenesis. Genetical risks have also been identified that can cause AT2 impairment and the development of lung fibrosis. Furthermore, aging is a final factor that adds to the pathogenic changes in AT2 cells. Here, we will discuss the homeostatic role of AT2 cells and the studies that have recently defined the heterogeneity of this population of cells. Furthermore, we will review the mechanisms of AT2 death and dysfunction in the context of lung fibrosis.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Changfu Yao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry R Stripp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Peter Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
117
|
Affiliation(s)
- Nichelle I Winters
- Department of MedicineVanderbilt University Medical CenterNashville, Tennessee
| | - Jonathan A Kropski
- Department of MedicineVanderbilt University Medical CenterNashville, Tennessee
- Department of Cell and Developmental BiologyVanderbilt UniversityNashville, Tennesseeand
- Department of MedicineVeterans Affairs Medical CenterNashville, Tennessee
| |
Collapse
|
118
|
Xu L, Zhang Y, Chen J, Xu Y. Thrombospondin-1: A Key Protein That Induces Fibrosis in Diabetic Complications. J Diabetes Res 2020; 2020:8043135. [PMID: 32626782 PMCID: PMC7306092 DOI: 10.1155/2020/8043135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
Fibrosis accompanies most common pathophysiological features of diabetes complications in different organs. It is characterized by an excessive accumulation of extracellular matrix (ECM) components, the response to which contributes to inevitable organ injury. The extracellular protein thrombospondin-1 (TSP-1), a kind of extracellular glycoprotein, is upregulated by the increased activity of some transcription factors and results in fibrosis by activating multiple pathways in diabetes. The results of studies from our team and other colleagues indicate that TSP-1 is associated with the pathological process leading to diabetic complications and is considered to be the most important factor in fibrosis. This review summarizes the molecular mechanism of increased TSP-1 induced by hyperglycemia and the role of TSP-1 in fibrosis during the development of diabetes complications.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006 Zhejiang, China
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053 Zhejiang, China
- Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
| | - Yong Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang, China
| | - Jian Chen
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053 Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006 Zhejiang, China
| |
Collapse
|