101
|
Wang M, Ma W, Zhao L, Fariss RN, Wong WT. Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina. J Neuroinflammation 2011; 8:173. [PMID: 22152278 PMCID: PMC3251543 DOI: 10.1186/1742-2094-8-173] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/07/2011] [Indexed: 12/12/2022] Open
Abstract
Purpose Microglia and Müller cells are prominent participants in retinal responses to injury and disease that shape eventual tissue adaptation or damage. This investigation examined how microglia and Müller cells interact with each other following initial microglial activation. Methods Mouse Müller cells were cultured alone, or co-cultured with activated or unactivated retinal microglia, and their morphological, molecular, and functional responses were evaluated. Müller cell-feedback signaling to microglia was studied using Müller cell-conditioned media. Corroborative in vivo analyses of retinal microglia-Müller cell interactions in the mouse retina were also performed. Results Our results demonstrate that Müller cells exposed to activated microglia, relative to those cultured alone or with unactivated microglia, exhibit marked alterations in cell morphology and gene expression that differed from those seen in chronic gliosis. These Müller cells demonstrated in vitro (1) an upregulation of growth factors such as GDNF and LIF, and provide neuroprotection to photoreceptor cells, (2) increased pro-inflammatory factor production, which in turn increased microglial activation in a positive feedback loop, and (3) upregulated chemokine and adhesion protein expression, which allowed Müller cells to attract and adhere to microglia. In vivo activation of microglia by intravitreal injection of lipopolysaccharide (LPS) also induced increased Müller cell-microglia adhesion, indicating that activated microglia may translocate intraretinally in a radial direction using Müller cell processes as an adhesive scaffold. Conclusion Our findings demonstrate that activated microglia are able to influence Müller cells directly, and initiate a program of bidirectional microglia-Müller cell signaling that can mediate adaptive responses within the retina following injury. In the acute aftermath following initial microglia activation, Müller cell responses may serve to augment initial inflammatory responses across retinal lamina and to guide the intraretinal mobilization of migratory microglia using chemotactic cues and adhesive cell contacts. Understanding adaptive microglia-Müller cell interactions in injury responses can help discover therapeutic cellular targets for intervention in retinal disease.
Collapse
Affiliation(s)
- Minhua Wang
- Unit on Neuron-Glia Interactions in Retinal Diseases, Office of the Scientific Director, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
102
|
Bargagna-Mohan P, Paranthan RR, Hamza A, Zhan CG, Lee DM, Kim KB, Lau DL, Srinivasan C, Nakayama K, Nakayama KI, Herrmann H, Mohan R. Corneal antifibrotic switch identified in genetic and pharmacological deficiency of vimentin. J Biol Chem 2011; 287:989-1006. [PMID: 22117063 DOI: 10.1074/jbc.m111.297150] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type III intermediate filaments (IFs) are essential cytoskeletal elements of mechanosignal transduction and serve critical roles in tissue repair. Mice genetically deficient for the IF protein vimentin (Vim(-/-)) have impaired wound healing from deficits in myofibroblast development. We report a surprising finding made in Vim(-/-) mice that corneas are protected from fibrosis and instead promote regenerative healing after traumatic alkali injury. This reparative phenotype in Vim(-/-) corneas is strikingly recapitulated by the pharmacological agent withaferin A (WFA), a small molecule that binds to vimentin and down-regulates its injury-induced expression. Attenuation of corneal fibrosis by WFA is mediated by down-regulation of ubiquitin-conjugating E3 ligase Skp2 and up-regulation of cyclin-dependent kinase inhibitors p27(Kip1) and p21(Cip1). In cell culture models, WFA exerts G(2)/M cell cycle arrest in a p27(Kip1)- and Skp2-dependent manner. Finally, by developing a highly sensitive imaging method to measure corneal opacity, we identify a novel role for desmin overexpression in corneal haze. We demonstrate that desmin down-regulation by WFA via targeting the conserved WFA-ligand binding site shared among type III IFs promotes further improvement of corneal transparency without affecting cyclin-dependent kinase inhibitor levels in Vim(-/-) mice. This dissociates a direct role for desmin in corneal cell proliferation. Taken together, our findings illuminate a previously unappreciated pathogenic role for type III IF overexpression in corneal fibrotic conditions and also validate WFA as a powerful drug lead toward anti-fibrosis therapeutic development.
Collapse
Affiliation(s)
- Paola Bargagna-Mohan
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Zhao T, Li Y, Weng C, Yin Z. The changes of potassium currents in RCS rat Müller cell during retinal degeneration. Brain Res 2011; 1427:78-87. [PMID: 22055109 DOI: 10.1016/j.brainres.2011.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 09/12/2011] [Accepted: 10/05/2011] [Indexed: 11/19/2022]
Abstract
Müller cells are the principal glial cells expressing membrane-bound potassium channel and predominantly mediating the homeostatic regulation of extracellular K+ produced by neuronal activity in retina. It's well known that Müller cells can be activated in many pathological conditions, but little is known about the change of potassium currents of Müller cells during the progression of retinitis pigmentosa. Herein, the Royal College of Surgeons rats (RCS rat) were employed to investigate some phenotypic and functional changes of Müller cells during retinal degeneration such as the expression of Kir4.1, membrane properties and K+ channel currents by using immunohistochemistry, RT-PCR, western blot and whole-cell patch clamping respectively. Compared with Müller cells in control retina, increased glutamine synthetase (GS) mRNA levels were seen at P30 and P60, and then decreased gradually in RCS rat retina. Morphologically, Müller cells showed significant hypertrophy and proliferation after p60. The increased expression of intermediate filament, glial fibrillary acidic protein (GFAP) and vimentin began at P30 and reached a peak at p60. Kir4.1 channels presented a peak expression at P30. Concomitantly, K(+) currents of Müller cells increased at P30 and decreased at P90 significantly. We concluded that retinal Müller cells of RCS rats underwent an activation initiated by the onset of retinal degeneration before p60 and then an obvious reactive gliosis, which led the basic membrane properties to suffer marked changes, and caused the Kir4.1 channels of Müller cells to occur a clear functional shift, even lose their normal electrophysiological properties. This process aggravates the impairment caused by the initial photoreceptor degeneration.
Collapse
Affiliation(s)
- TongTao Zhao
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | |
Collapse
|
104
|
Bringmann A, Wiedemann P. Müller glial cells in retinal disease. ACTA ACUST UNITED AC 2011; 227:1-19. [PMID: 21921569 DOI: 10.1159/000328979] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 11/19/2022]
Abstract
Virtually all pathogenic stimuli activate Müller cells. Reactive Müller cells exert protective and toxic effects on photoreceptors and neurons. They contribute to oxidative stress and glutamate toxicity due to malfunctions of glutamate uptake and glutathione synthesis. Downregulation of potassium conductance disrupts transcellular potassium and water transport, resulting in neuronal hyperexcitability and edema. Protective effects of reactive Müller cells include upregulation of adenosine 5'-triphosphate (ATP)-degrading ectoenzymes, which enhances the extracellular availability of the neuroprotectant adenosine, abrogation of the osmotic release of ATP, which might protect retinal ganglion cells from apoptosis, and the release of antioxidants and neurotrophic factors. The dedifferentiation of reactive Müller cells to progenitor-like cells might have an impact on future therapeutic approaches. A better understanding of the gliotic mechanisms will be helpful in developing efficient therapeutic strategies aiming at increased protective and regenerative properties and decreased toxicity of reactive Müller cells.
Collapse
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
105
|
Zhou Y, Sheets KG, Knott EJ, Regan CE, Tuo J, Chan CC, Gordon WC, Bazan NG. Cellular and 3D optical coherence tomography assessment during the initiation and progression of retinal degeneration in the Ccl2/Cx3cr1-deficient mouse. Exp Eye Res 2011; 93:636-48. [PMID: 21854772 DOI: 10.1016/j.exer.2011.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 07/11/2011] [Accepted: 07/28/2011] [Indexed: 12/13/2022]
Abstract
Retinal pathologies common to human eye diseases, including abnormal retinal pigment epithelial (RPE) cells, drusen-like accumulation, photoreceptor atrophy, and choroidal neovascularization, have been reported in the Ccl2/Cx3cr1-deficient mouse. The Ccl2 gene encodes the pro-inflammatory chemokine CCL2 (MCP-1), which is responsible for chemotactic recruitment of monocyte-derived macrophages to sites of inflammation. The Cx3cr1 gene encodes the fractalkine receptor, CX3CR1, and is required for accumulation of monocytes and microglia recruited via CCL2. Chemokine-mediated inflammation is implicated in retinal degenerative diseases such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, and uveoretinitis, and proper chemokine signaling from the RPE, Müller glia, and astrocytes is necessary to regulate leukocyte trafficking. Therefore, this mouse, possessing aberrant chemokine signaling coupled with retinal degenerative pathologies, presents an ideal opportunity to investigate the effect of altered signaling on retinal homeostasis and photoreceptor degeneration. Since this mouse is a recent development, more data covering the onset, location, and progression rate of pathologies is needed. In the present study we establish these parameters and show two photoreceptor cell death processes. Our observations of decreased glutamine synthetase and increased glial fibrillary acidic protein suggest that Müller cells respond very early within regions where lesions are forming. Finally, we suggest that retinal angiomatous proliferation contributes to pathological angiogenesis in this Ccl2/Cx3cr1-deficient mouse.
Collapse
Affiliation(s)
- Yongdong Zhou
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Chen YS, Lim SC, Chen MH, Quinlan RA, Perng MD. Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. Exp Cell Res 2011; 317:2252-66. [PMID: 21756903 DOI: 10.1016/j.yexcr.2011.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 06/23/2011] [Accepted: 06/27/2011] [Indexed: 12/12/2022]
Abstract
Alexander disease is a primary genetic disorder of astrocyte caused by dominant mutations in the astrocyte-specific intermediate filament glial fibrillary acidic protein (GFAP). While most of the disease-causing mutations described to date have been found in the conserved α-helical rod domain, some mutations are found in the C-terminal non-α-helical tail domain. Here, we compare five different mutations (N386I, S393I, S398F, S398Y and D417M14X) located in the C-terminal domain of GFAP on filament assembly properties in vitro and in transiently transfected cultured cells. All the mutations disrupted in vitro filament assembly. The mutations also affected the solubility and promoted filament aggregation of GFAP in transiently transfected MCF7, SW13 and U343MG cells. This correlated with the activation of the p38 stress-activated protein kinase and an increased association with the small heat shock protein (sHSP) chaperone, αB-crystallin. Of the mutants studied, D417M14X GFAP caused the most significant effects both upon filament assembly in vitro and in transiently transfected cells. This mutant also caused extensive filament aggregation coinciding with the sequestration of αB-crystallin and HSP27 as well as inhibition of the proteosome and activation of p38 kinase. Associated with these changes were an activation of caspase 3 and a significant decrease in astrocyte viability. We conclude that some mutations in the C-terminus of GFAP correlate with caspase 3 cleavage and the loss of cell viability, suggesting that these could be contributory factors in the development of Alexander disease.
Collapse
Affiliation(s)
- Yi-Song Chen
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | | | | | | |
Collapse
|
107
|
Joly S, Pernet V, Samardzija M, Grimm C. Pax6-positive müller glia cells express cell cycle markers but do not proliferate after photoreceptor injury in the mouse retina. Glia 2011; 59:1033-46. [DOI: 10.1002/glia.21174] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/16/2011] [Indexed: 12/13/2022]
|
108
|
Nakazawa T, Kayama M, Ryu M, Kunikata H, Watanabe R, Yasuda M, Kinugawa J, Vavvas D, Miller JW. Tumor necrosis factor-alpha mediates photoreceptor death in a rodent model of retinal detachment. Invest Ophthalmol Vis Sci 2011; 52:1384-91. [PMID: 21402953 DOI: 10.1167/iovs.10-6509] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Photoreceptor degeneration is a major cause of visual loss in various retinal diseases, including retinal detachment (RD) and neovascular AMD, but the underlying mechanisms remain elusive. In this study, the role of TNFα in RD-induced photoreceptor degeneration was investigated. METHODS RD was induced by subretinal injection of hyaluronic acid. Photoreceptor degeneration was assessed by counting the number of apoptotic cells with TdT-dUTP terminal nick-end labeling (TUNEL) 3 days after RD and measurement of the outer nuclear layer (ONL) thickness 7 days after RD. As the target of anti-inflammatory treatment, the expression of TNFα, with or without dexamethasone (DEX) was examined in rats by real-time PCR. To understand the role of TNFα in photoreceptor degeneration, RD was induced in mice deficient in TNFα or its receptors (TNFR1, TNFR2, and TNFR1 and -2), or in wild-type (WT) mice by using a functionally blocking antibody to TNFα. CD11b(+) cells in the outer plexiform layer (OPL) and subretinal space were counted by immunohistochemistry (IHC). RESULTS Treatment with DEX (P = 0.001) significantly suppressed RD-induced photoreceptor degeneration and the expression of TNFα. RD-induced photoreceptor degeneration was significantly suppressed with specific blockade of TNFα (P = 0.032), in mice deficient for TNFα (P < 0.001), TNFR2 (P = 0.001), or TNFR1 and -2 (P < 0.001). However, lack of TNFR1 did not protect against RD-induced photoreceptor degeneration (P = 0.060). Müller cell activation was unchanged in WT and TNFα(-/-) mice. Recruitment of CD11b(+) monocytes was significantly lower in the TNFα(-/-) mice compared to WT mice (P = 0.002). CONCLUSIONS TNFα plays a critical role in RD-induced photoreceptor degeneration. This pathway may become an important target in the prevention of RD-induced photoreceptor degeneration.
Collapse
Affiliation(s)
- Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Bramall AN, Wright AF, Jacobson SG, McInnes RR. The genomic, biochemical, and cellular responses of the retina in inherited photoreceptor degenerations and prospects for the treatment of these disorders. Annu Rev Neurosci 2011; 33:441-72. [PMID: 20572772 DOI: 10.1146/annurev-neuro-060909-153227] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The association of more than 140 genes with human photoreceptor degenerations, together with studies of animal models of these monogenic diseases, has provided great insight into their pathogenesis. Here we review the responses of the retina to photoreceptor mutations, including mechanisms of photoreceptor death. We discuss the roles of oxidative metabolism, mitochondrial reactive oxygen species, metabolic stress, protein misfolding, and defects in ciliary proteins, as well as the responses of Müller glia, microglia, and the retinal vasculature. Finally, we report on potential pharmacologic and biologic therapies, the critical role of histopathology as a prerequisite to treatment, and the exciting promise of gene therapy in animal models and in phase 1 trials in humans.
Collapse
Affiliation(s)
- Alexa N Bramall
- Programs in Genetics and Developmental Biology, The Research Institute, The Hospital for Sick Children, Toronto M5G1L7, Canada.
| | | | | | | |
Collapse
|
110
|
Luna G, Lewis GP, Banna CD, Skalli O, Fisher SK. Expression profiles of nestin and synemin in reactive astrocytes and Müller cells following retinal injury: a comparison with glial fibrillar acidic protein and vimentin. Mol Vis 2010; 16:2511-23. [PMID: 21139996 PMCID: PMC2997333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 11/23/2010] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To examine the expression patterns of the intermediate filament (IF) proteins nestin and synemin following retinal injury. METHODS Wide-scale retinal injuries were created by experimental retinal detachment of 1, 3, 7, or 30 days' duration. Injuries were induced in the right eyes of Long Evans rats, while the left eyes served as internal controls. Vibratome sections of control and injured retinas were labeled with fluorescent probes using a combination of anti-glial fibrillary acidic protein, -vimentin, -nestin, -synemin, -bromodeoxyuridine, and the lectin probe, isolectin B4. Additionally, antibody specificity, as well as protein and mRNA levels of nestin and synemin were determined and quantified using standard western blotting and real time polymerase chain reaction (RT-PCR) techniques. RESULTS Immunocytochemistry showed increased Müller cell labeling at 1, 3, and 7 days post injury for all four IFs, although the relative levels of nestin expression varied dramatically between individual Müller cells. Nestin was consistently observed in the foremost processes of those Müller cells that grew into the subretinal space, forming glial scars. Elevated levels of nestin expression were also observed in bromodeoxyuridine-labeled Müller cells following retinal insult. Quantitative polymerase chain reaction (qPCR) showed a twofold increase in nestin mRNA 1 day after injury, a level maintained at 3 and 7 days. Western blotting using anti-nestin showed a single band at 220 kDa and the intensity of this band increased following injury. Anti-synemin labeling of control retinas revealed faint labeling of astrocytes; this increased after injury, demonstrating an association with blood vessels. Additionally, there was an upregulation of synemin in Müller cells. qPCR and western blotting with anti-synemin showed a continuous increase in both gene and protein expression over time. CONCLUSIONS Retinal injury induces an upregulation of a complement of four intermediate filament proteins, including synemin and nestin, in Müller cells. The latter provides suggestive support for the concept that these cells may revert to a more developmentally immature state, since these two IF proteins are developmentally regulated and expressed, and thus may serve as cell cycle reentry markers. Nestin and its differential expression patterns with glial fibrillary acidic protein and vimentin networks, as well as its association with proliferating Müller cells and those extending into the subretinal space, suggest a significant role of this protein in glial scar formation and perhaps gliogenesis. Synemin immunopositive astrocytes demonstrate a close relationship to the retinal vasculature, and illustrate a remarkable ability to reorganize their morphology in response to injury. Further examination of the changes in the cytoskeletal signatures of both of these glial cell types may lead to a more comprehensive understanding of mechanisms underway following retinal and other central nervous system injuries.
Collapse
Affiliation(s)
- Gabriel Luna
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA
| | - Geoffrey P. Lewis
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA
| | - Christopher D. Banna
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA
| | - Omar Skalli
- Department of Biological Sciences, University of Memphis, Memphis TN
| | - Steven K. Fisher
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA,Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA
| |
Collapse
|
111
|
Trifunović D, Dengler K, Michalakis S, Zrenner E, Wissinger B, Paquet-Durand F. cGMP-dependent cone photoreceptor degeneration in the cpfl1 mouse retina. J Comp Neurol 2010; 518:3604-17. [PMID: 20593360 DOI: 10.1002/cne.22416] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inherited retinal degeneration affecting both rod and cone photoreceptors constitutes one of the leading causes of blindness in the developed world. Such degeneration is at present untreatable, and the underlying neurodegenerative mechanisms are unknown, even though certain genetic causes have been established. The rd1 mouse is one of the best characterized animal models for rod photoreceptor degeneration, whereas the cpfl1 mouse is a recently discovered model for cone cell death. Because both animal models are affected by functionally similar mutations in the rod and cone phosphodiesterase 6 genes, respectively, we asked whether the mechanisms of photoreceptor degeneration in these two mouse lines share common pathways. In the present study, we followed the temporal progression of photoreceptor degeneration in the cpfl1 retina, correlated it with specific metabolic markers, and compared it with the wild-type and the rd1 situation. Similar to corresponding rd1 observations, cpfl1 cone photoreceptor cell death was associated with an accumulation of cyclic guanosine monophosphate (cGMP), activity of calpains, and phosphorylation of vasodilator-stimulated protein (VASP). Cone degeneration progressed rapidly, with a peak in cell death around postnatal day 24. Furthermore, cpfl1 cone photoreceptor migration during early postnatal development was delayed significantly compared with the corresponding wild-type retina. The finding that rod and cone photoreceptor degeneration was associated with the same metabolic markers suggests that in both cell types similar degenerative mechanisms are active. This raises the possibility that equivalent neuroprotective strategies may be used to prevent both rod and cone photoreceptor degeneration.
Collapse
Affiliation(s)
- Dragana Trifunović
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076 Germany
| | | | | | | | | | | |
Collapse
|
112
|
Otsuka H, Arimura N, Sonoda S, Nakamura M, Hashiguchi T, Maruyama I, Nakao S, Hafezi-Moghadam A, Sakamoto T. Stromal cell-derived factor-1 is essential for photoreceptor cell protection in retinal detachment. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2268-77. [PMID: 20889568 DOI: 10.2353/ajpath.2010.100134] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stromal cell-derived factor-1 (SDF-1) causes chemotaxis of CXCR4-expressing bone marrow-derived cells. SDF-1 is involved in the pathogenesis of various vascular diseases, including those of the eye. However, the role of SDF-1 in neuronal diseases is not completely understood. Here, we show higher SDF-1 levels in the vitreous humor of patients with retinal detachment (RD) compared with normal patients. SDF-1 correlated positively with the duration as well as the extent of RD. Furthermore, SDF-1 correlated significantly with levels of interleukin-6 and interleukin-8, but not with vascular endothelial growth factor. Western blot analysis results showed significant SDF-1 up-regulation in detached rat retinas compared with normal animals. Immunohistochemistry data showed that SDF-1 was co-localized with the glial cells of the detached retina. SDF-1 blockade with a neutralizing antibody increased photoreceptor cell loss and macrophage accumulation in the subretinal space. The retinal precursor cell line R28 expressed CXCR4. SDF-1 rescued serum starvation-induced apoptosis in R28 cells and enhanced their ability to participate in wound closure in a scratch assay. Our results indicate a surprising, protective role for SDF-1 in RD. This effect may be mediated directly or indirectly through other cell types.
Collapse
Affiliation(s)
- Hiroki Otsuka
- Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Cebulla CM, Ruggeri M, Murray TG, Feuer WJ, Hernandez E. Spectral domain optical coherence tomography in a murine retinal detachment model. Exp Eye Res 2010; 90:521-7. [PMID: 20114045 DOI: 10.1016/j.exer.2010.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 01/16/2010] [Accepted: 01/20/2010] [Indexed: 11/15/2022]
Abstract
Spectral domain optical coherence tomography (SD-OCT) was used to image retinal detachments in vivo, in a murine model of retinal detachment (RD). Subretinal injections of hyaluronic acid (Healon) were delivered to the right eye of seventeen 10-20 week-old C57Bl6 mice. Evaluation of the fundus with an operating microscope and fundus photography were performed. In vivo, non-contact, ultra high resolution SD-OCT imaging was performed on day 0, day 1-2, day 5-6 and day 15-16. The retinal morphology at the edge and in the area of maximal RD was evaluated. Eyes were enucleated for histologic analysis. The retinal detachment was confirmed by microscopy in all mice. The extent of the retinal detachment was evaluated by measuring the height of the retinal detachment. The retinal layers, including the photoreceptor layer, were evaluated. Retinal layers appeared indistinct soon after RD (day 1, 5), particularly over areas of maximal detachment. By day 5 and 15 the external limiting membrane was no longer visible and there was increased reflectivity of the photoreceptor layer and undulation of the outer retina in areas of RD on both SD-OCT and histology. The thickness of the outer nuclear layer and photoreceptor outer segments decreased on day 5 and 15. SD-OCT is a promising technology to follow retinal detachment and outer retinal abnormalities in a murine model.
Collapse
Affiliation(s)
- Colleen M Cebulla
- Department of Ophthalmology, Ohio State University, Columbus, OH 43212, USA.
| | | | | | | | | |
Collapse
|
114
|
Bargagna-Mohan P, Paranthan RR, Hamza A, Dimova N, Trucchi B, Srinivasan C, Elliott GI, Zhan CG, Lau DL, Zhu H, Kasahara K, Inagaki M, Cambi F, Mohan R. Withaferin A targets intermediate filaments glial fibrillary acidic protein and vimentin in a model of retinal gliosis. J Biol Chem 2010; 285:7657-69. [PMID: 20048155 DOI: 10.1074/jbc.m109.093765] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gliosis is a biological process that occurs during injury repair in the central nervous system and is characterized by the overexpression of the intermediate filaments (IFs) glial fibrillary acidic protein (GFAP) and vimentin. A common thread in many retinal diseases is reactive Müller cell gliosis, an untreatable condition that leads to tissue scarring and even blindness. Here, we demonstrate that the vimentin-targeting small molecule withaferin A (WFA) is a novel chemical probe of GFAP. Using molecular modeling studies that build on the x-ray crystal structure of tetrameric vimentin rod 2B domain we reveal that the WFA binding site is conserved in the corresponding domain of tetrameric GFAP. Consequently, we demonstrate that WFA covalently binds soluble recombinant tetrameric human GFAP at cysteine 294. In cultured primary astrocytes, WFA binds to and down-regulates soluble vimentin and GFAP expression to cause cell cycle G(0)/G(1) arrest. Exploiting a chemical injury model that overexpresses vimentin and GFAP in retinal Müller glia, we demonstrate that systemic delivery of WFA down-regulates soluble vimentin and GFAP expression in mouse retinas. This pharmacological knockdown of soluble IFs results in the impairment of GFAP filament assembly and inhibition of cell proliferative response in Müller glia. We further show that a more severe GFAP filament assembly deficit manifests in vimentin-deficient mice, which is partly rescued by WFA. These findings illustrate WFA as a chemical probe of type III IFs and illuminate this class of withanolide as a potential treatment for diverse gliosis-dependent central nervous system traumatic injury conditions and diseases, and for orphan IF-dependent pathologies.
Collapse
Affiliation(s)
- Paola Bargagna-Mohan
- Departmentsof Ophthalmology & Visual Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Role of GFAP in morphological retention and distribution of reactive astrocytes induced by scrapie encephalopathy in mice. Brain Res 2009; 1312:156-67. [PMID: 19931516 DOI: 10.1016/j.brainres.2009.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 11/20/2022]
Abstract
We have previously demonstrated that mutant mice bearing astrocytes deficient in glial fibrillary acidic protein (GFAP) exhibited typical spongiform degeneration and prion plaque deposition. However, it remains to be determined whether there are astrocyte-specific alterations in the reactive response of astrocytes. Herein, we analyzed morphological features of Gfap(-)(/)(-) reactive astrocytes. Light microscopic morphometry of mutant reactive astrocytes revealed reduced outlined cell area and shorter distances among expanded cell space but with larger nuclei. Electron microscopy revealed mutant cells containing very few and sparse glial filaments as well as abnormal cytoarchitecture of reactive astrocytic processes. Furthermore, paired cell formation appeared frequently. The results suggest that GFAP is necessary for morphological retention and distribution of reactive astrocytes during prion disease, and that there is a GFAP-dependent function of glial filaments in reactive astrocytes.
Collapse
|
116
|
Johnson TV, Bull ND, Martin KR. Identification of barriers to retinal engraftment of transplanted stem cells. Invest Ophthalmol Vis Sci 2009; 51:960-70. [PMID: 19850833 DOI: 10.1167/iovs.09-3884] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Intraocular stem cell transplantation may be therapeutic for retinal neurodegenerative diseases such as glaucoma via neuronal replacement and/or neuroprotection. However, efficacy is hindered by extremely poor retinal graft integration. The purpose was to identify the major barrier to retinal integration of intravitreally transplanted stem cells, which was hypothesized to include the cellular and/or extracellular matrix (ECM) components of the inner limiting membrane (ILM). METHODS Mesenchymal stem cells (MSCs) were cocultured on the vitreal surface of retinal explants. Retinal MSC migration was compared between control explants and explants in which portions of the ILM were removed by mechanical peeling; the inner basal lamina was digested with collagenase; and glial cell reactivity was selectively modulated with alpha-aminoadipic acid (AAA). In vivo, the MSCs were transplanted after intravitreal AAA or saline injection into glaucomatous rat eyes. RESULTS Retinal MSC migration correlated positively with the amount of peeled ILM, whereas enzymatic digestion of the basal lamina was robust but did not enhance MSC entry. In contrast, AAA treatment suppressed glial cell reactivity and facilitated a >50-fold increase in MSC migration into retinal explants. In vivo analysis showed that AAA treatment led to a more than fourfold increase in retinal engraftment. CONCLUSIONS The results demonstrated that the ECM of the inner basal lamina is neither necessary nor sufficient to prevent migration of transplanted cells into the neural retina. In contrast, glial reactivity was associated with poor graft migration. Targeted disruption of glial reactivity dramatically improved the structural integration of intravitreally transplanted cells.
Collapse
Affiliation(s)
- Thomas V Johnson
- Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
117
|
Klimczak RR, Koerber JT, Dalkara D, Flannery JG, Schaffer DV. A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Müller cells. PLoS One 2009; 4:e7467. [PMID: 19826483 PMCID: PMC2758586 DOI: 10.1371/journal.pone.0007467] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/22/2009] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The pathologies of numerous retinal degenerative diseases can be attributed to a multitude of genetic factors, and individualized treatment options for afflicted patients are limited and cost-inefficient. In light of the shared neurodegenerative phenotype among these disorders, a safe and broad-based neuroprotective approach would be desirable to overcome these obstacles. As a result, gene delivery of secretable-neuroprotective factors to Müller cells, a type of retinal glia that contacts all classes of retinal neurons, represents an ideal approach to mediate protection of the entire retina through a simple and innocuous intraocular, or intravitreal, injection of an efficient vehicle such as an adeno-associated viral vector (AAV). Although several naturally occurring AAV variants have been isolated with a variety of tropisms, or cellular specificities, these vectors inefficiently infect Müller cells via intravitreal injection. METHODOLOGY/PRINCIPAL FINDINGS We have previously applied directed evolution to create several novel AAV variants capable of efficient infection of both rat and human astrocytes through iterative selection of a panel of highly diverse AAV libraries. Here, in vivo and in vitro characterization of these isolated variants identifies a previously unreported AAV variant ShH10, closely related to AAV serotype 6 (AAV6), capable of efficient, selective Müller cell infection through intravitreal injection. Importantly, this new variant shows significantly improved transduction relative to AAV2 (>60%) and AAV6. CONCLUSIONS/SIGNIFICANCE Our findings demonstrate that AAV is a highly versatile vector capable of powerful shifts in tropism from minor sequence changes. This isolated variant represents a new therapeutic vector to treat retinal degenerative diseases through secretion of neuroprotective factors from Müller cells as well as provides new opportunities to study their biological functions in the retina.
Collapse
Affiliation(s)
- Ryan R. Klimczak
- Department of Molecular and Cellular Biology, The University of California, Berkeley, California, United States of America
| | - James T. Koerber
- Department of Chemical Engineering and the Department of Bioengineering, The University of California, Berkeley, California, United States of America
| | - Deniz Dalkara
- Department of Chemical Engineering and the Department of Bioengineering, The University of California, Berkeley, California, United States of America
| | - John G. Flannery
- Department of Molecular and Cellular Biology, The University of California, Berkeley, California, United States of America
- The Helen Wills Neuroscience Institute, The University of California, Berkeley, California, United States of America
| | - David V. Schaffer
- Department of Chemical Engineering and the Department of Bioengineering, The University of California, Berkeley, California, United States of America
- The Helen Wills Neuroscience Institute, The University of California, Berkeley, California, United States of America
| |
Collapse
|
118
|
Sene A, Tadayoni R, Pannicke T, Wurm A, El Mathari B, Benard R, Roux MJ, Yaffe D, Mornet D, Reichenbach A, Sahel JA, Rendon A. Functional implication of Dp71 in osmoregulation and vascular permeability of the retina. PLoS One 2009; 4:e7329. [PMID: 19809515 PMCID: PMC2754330 DOI: 10.1371/journal.pone.0007329] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 09/11/2009] [Indexed: 11/18/2022] Open
Abstract
Functional alterations of Müller cells, the principal glia of the retina, are an early hallmark of most retina diseases and contribute to their further progression. The molecular mechanisms of these reactive Müller cell alterations, resulting in disturbed retinal homeostasis, remain largely unknown. Here we show that experimental detachment of mouse retina induces mislocation of the inwardly rectifying potassium channels (Kir4.1) and a downregulation of the water channel protein (AQP4) in Müller cells. These alterations are associated with a strong decrease of Dp71, a cytoskeleton protein responsible for the localization and the clustering of Kir4.1 and AQP4. Partial (in detached retinas) or total depletion of Dp71 in Müller cells (in Dp71-null mice) impairs the capability of volume regulation of Müller cells under osmotic stress. The abnormal swelling of Müller cells In Dp71-null mice involves the action of inflammatory mediators. Moreover, we investigated whether the alterations in Müller cells of Dp71-null mice may interfere with their regulatory effect on the blood-retina barrier. In the absence of Dp71, the retinal vascular permeability was increased as compared to the controls. Our results reveal that Dp71 is crucially implicated in the maintenance of potassium homeostasis, in transmembraneous water transport, and in the Müller cell-mediated regulation of retinal vascular permeability. Furthermore, our data provide novel insights into the mechanisms of retinal homeostasis provided by Müller cells under normal and pathological conditions.
Collapse
Affiliation(s)
- Abdoulaye Sene
- Institut National de la Sante et de la Recherche Médicale, UMR_S 968, Institut de la Vision, Paris, France
- Université Pierre et Marie Curie-Paris6, UMR_S 968, Paris, France
| | - Ramin Tadayoni
- Institut National de la Sante et de la Recherche Médicale, UMR_S 968, Institut de la Vision, Paris, France
- Université Pierre et Marie Curie-Paris6, UMR_S 968, Paris, France
| | - Thomas Pannicke
- Paul Flechsig Institute of Brain Research, Universität Leipzig, Leipzig, Germany
| | - Antje Wurm
- Paul Flechsig Institute of Brain Research, Universität Leipzig, Leipzig, Germany
| | - Brahim El Mathari
- Institut National de la Sante et de la Recherche Médicale, UMR_S 968, Institut de la Vision, Paris, France
- Université Pierre et Marie Curie-Paris6, UMR_S 968, Paris, France
| | - Romain Benard
- Institut National de la Sante et de la Recherche Médicale, UMR_S 968, Institut de la Vision, Paris, France
- Université Pierre et Marie Curie-Paris6, UMR_S 968, Paris, France
| | - Michel Joseph Roux
- Institut de Biologie Moléculaire et Cellulaire, Department of Neurobiology and Genetics, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - David Yaffe
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dominique Mornet
- Institut National de la Sante et de la Recherche Médicale, ERI 25 “Muscle et Pathologies”, Université Montpellier 1, EA 4202, CHU Arnaud de Villeneuve, Montpellier, France
| | - Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, Universität Leipzig, Leipzig, Germany
| | - Jose-Alain Sahel
- Institut National de la Sante et de la Recherche Médicale, UMR_S 968, Institut de la Vision, Paris, France
- Université Pierre et Marie Curie-Paris6, UMR_S 968, Paris, France
- Centre Hospitalier National d'Ophtalmologie des quinze-vingts, Paris, France
| | - Alvaro Rendon
- Institut National de la Sante et de la Recherche Médicale, UMR_S 968, Institut de la Vision, Paris, France
- Université Pierre et Marie Curie-Paris6, UMR_S 968, Paris, France
- * E-mail:
| |
Collapse
|
119
|
Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, Osborne NN, Reichenbach A. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 2009; 28:423-51. [PMID: 19660572 DOI: 10.1016/j.preteyeres.2009.07.001] [Citation(s) in RCA: 554] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Müller cells are active players in normal retinal function and in virtually all forms of retinal injury and disease. Reactive Müller cells protect the tissue from further damage and preserve tissue function by the release of antioxidants and neurotrophic factors, and may contribute to retinal regeneration by the generation of neural progenitor/stem cells. However, Müller cell gliosis can also contribute to neurodegeneration and impedes regenerative processes in the retinal tissue by the formation of glial scars. This article provides an overview of the neuroprotective and detrimental effects of Müller cell gliosis, with accounts on the cellular signal transduction mechanisms and factors which are implicated in Müller cell-mediated neuroprotection, immunomodulation, regulation of Müller cell proliferation, upregulation of intermediate filaments, glial scar formation, and the generation of neural progenitor/stem cells. A proper understanding of the signaling mechanisms implicated in gliotic alterations of Müller cells is essential for the development of efficient therapeutic strategies that increase the supportive/protective and decrease the destructive roles of gliosis.
Collapse
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Liebigstrasse 10-14, D-04103 Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Li X, Ma W, Zhuo Y, Yan RT, Wang SZ. Using neurogenin to reprogram chick RPE to produce photoreceptor-like neurons. Invest Ophthalmol Vis Sci 2009; 51:516-25. [PMID: 19628733 DOI: 10.1167/iovs.09-3822] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE One potential therapy for vision loss from photoreceptor degeneration is cell replacement, but this approach presents a need for photoreceptor cells. This study explores whether the retinal pigment epithelium (RPE) could be a convenient source of developing photoreceptors. METHODS The RPE of chick embryos was subjected to reprogramming by proneural genes neurogenin (ngn)1 and ngn3. The genes were introduced into the RPE through retrovirus RCAS-mediated transduction, with the virus microinjected into the eye or added to retinal pigment epithelial explant culture. The retinal pigment epithelia were then analyzed for photoreceptor traits. RESULTS In chick embryos infected with retrovirus RCAS-expressing ngn3 (RCAS-ngn3), the photoreceptor gene visinin (the equivalent of mammalian recoverin) was expressed in cells of the retinal pigment epithelial layer. When isolated and cultured as explants, retinal pigment epithelial tissues from embryos infected with RCAS-ngn3 or RCAS-ngn1 gave rise to layers of visinin-positive cells. These reprogrammed cells expressed genes of phototransduction and synapses, such as red opsin, the alpha-subunit of cone transducin, SNAP-25, and PSD-95. Reprogramming occurred with retinal pigment epithelial explants derived from virally infected embryos and with retinal pigment epithelial explants derived from normal embryos, with the recombinant viruses added at the onset of the explant culture. In addition, reprogramming took place in retinal pigment epithelial explants from both young and old embryos, from embryonic day (E)6 to E18, when the visual system becomes functional in the chick. CONCLUSIONS The results support the prospect of exploring the RPE as a convenient source of developing photoreceptors for in situ cell replacement.
Collapse
Affiliation(s)
- Xiumei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
121
|
Jadhav AP, Roesch K, Cepko CL. Development and neurogenic potential of Müller glial cells in the vertebrate retina. Prog Retin Eye Res 2009; 28:249-62. [PMID: 19465144 PMCID: PMC3233204 DOI: 10.1016/j.preteyeres.2009.05.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considerable research on normal and diseased states within the retina has focused on neurons. Recent research on glia throughout the central nervous system, including within the retina where Müller glia are the main type of glia, has provided a more in depth view of glial functions in health and disease. Glial cells have been recognized as being vital for the maintenance of a healthy tissue environment, where they actively participate in neuronal activity. More recently, Müller glia have been recognized as being very similar to retinal progenitor cells, particularly when compared at the molecular level using comprehensive expression profiling techniques. The molecular similarities, as well as the developmental events that occur at the end of the genesis period of retinal cells, have led us to propose that Müller glia are a form of late stage retinal progenitor cells. These late stage progenitor cells acquire some specialized glial functions, but do not irreversibly leave the progenitor state. Indeed, Müller glia appear to be able to behave as a progenitor in that they have been shown to proliferate and produce neurons in several instances when an acute injury has been applied to the retina. Enhancement of this response is thus an exciting strategy for retinal repair.
Collapse
Affiliation(s)
| | - Karin Roesch
- Department of Genetics and Department of Ophthamology, Harvard Medical School and Howard Hughes Medical Institute Boston, MA 02115 and, Boston, MA 02115
| | - Constance L. Cepko
- Department of Genetics and Department of Ophthamology, Harvard Medical School and Howard Hughes Medical Institute Boston, MA 02115 and, Boston, MA 02115
| |
Collapse
|
122
|
Bringmann A, Wiedemann P. Involvement of Müller glial cells in epiretinal membrane formation. Graefes Arch Clin Exp Ophthalmol 2009; 247:865-83. [PMID: 19415318 DOI: 10.1007/s00417-009-1082-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/10/2009] [Accepted: 04/06/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Proliferative retinopathies are considered to represent maladapted retinal wound repair processes driven by growth factor- and cytokine-induced overstimulation of proliferation, migration, extracellular matrix production and contraction of retinal cells. The formation of neovascular membranes represents an attempt to reoxygenize non-perfused retinal areas. Müller glial cells play a crucial role in the pathogenesis of proliferative retinopathies. This review summarizes the present knowledge regarding the role of Müller cells in periretinal membrane formation, especially in the early steps of epiretinal membrane formation, which involve an interaction of inflammatory and glial cells, and gives a survey of the factors which are suggested to be implicated in the induction of Müller cell gliosis and proliferation. CONCLUSIONS Alterations in the membrane conductance of Müller cells suggest that Müller cells may alter their phenotype into progenitor-like cells in the course of proliferative retinopathies; transdifferentiated Müller cells may have great impact for the development of new cell-based therapies.
Collapse
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology, Faculty of Medicine, University of Leipzig, Eye Hospital, Leipzig, Germany.
| | | |
Collapse
|
123
|
Luna G, Kjellstrom S, Verardo MR, Lewis GP, Byun J, Sieving PA, Fisher SK. The effects of transient retinal detachment on cavity size and glial and neural remodeling in a mouse model of X-linked retinoschisis. Invest Ophthalmol Vis Sci 2009; 50:3977-84. [PMID: 19387072 DOI: 10.1167/iovs.08-2910] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the cellular consequences of retinal detachment in retinoschisin knockout (Rs1-KO) mice, a model for retinoschisin in humans. METHODS Experimental retinal detachments (RDs) were induced in the right eyes of both Rs1-KO and wild-type (wt) control mice. Immunocytochemistry was performed on retinal tissue at 1, 7, or 28 days after RD with antibodies to anti-GFAP, -neurofilament, and -rod opsin to examine cellular changes after detachment. Images of the immunostained tissue were captured by laser scanning confocal microscopy. Quantitative analysis was performed to measure the number of Hoechst-stained photoreceptor nuclei and their density, number, and size of inner retinal cavities, as well as the number of subretinal glial scars. RESULTS Since detachments were created with balanced salt solution, by examination, all retinas had spontaneously reattached by 1 day. Cellular responses common to many photoreceptor degenerations occurred in the nondetached retinas of Rs1-KO mice, and, of importance, RD did not appear to significantly accentuate these responses. The number of schisis cavities was not changed after detachment, but their size was reduced. CONCLUSIONS These data indicate that large short-term RD in Rs1-KO mice, followed by a period of reattachment may cause a slight increase in photoreceptor cell death, but detachments do not accentuate the gliosis and neurite sprouting already present and may in fact reduce the size of existing retinal cavities. This finding suggests that performing subretinal injections to deliver therapeutic agents may be a viable option in the treatment of patients with retinoschisis without causing significant cellular damage to the retina.
Collapse
Affiliation(s)
- Gabriel Luna
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-5060, USA
| | | | | | | | | | | | | |
Collapse
|
124
|
Arimura N, Ki-i Y, Hashiguchi T, Kawahara KI, Biswas KK, Nakamura M, Sonoda Y, Yamakiri K, Okubo A, Sakamoto T, Maruyama I. Intraocular expression and release of high-mobility group box 1 protein in retinal detachment. J Transl Med 2009; 89:278-89. [PMID: 19139725 DOI: 10.1038/labinvest.2008.165] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
High-mobility group box 1 (HMGB1) protein is a multifunctional protein, which is mainly present in the nucleus and is released extracellularly by dying cells and/or activated immune cells. Although extracellular HMGB1 is thought to be a typical danger signal of tissue damage and is implicated in diverse diseases, its relevance to ocular diseases is mostly unknown. To determine whether HMGB1 contributes to the pathogenesis of retinal detachment (RD), which involves photoreceptor degeneration, we investigated the expression and release of HMGB1 both in a retinal cell death induced by excessive oxidative stress in vitro and in a rat model of RD-induced photoreceptor degeneration in vivo. In addition, we assessed the vitreous concentrations of HMGB1 and monocyte chemoattractant protein 1 (MCP-1) in human eyes with RD. We also explored the chemotactic activity of recombinant HMGB1 in a human retinal pigment epithelial (RPE) cell line. The results show that the nuclear HMGB1 in the retinal cell is augmented by death stress and upregulation appears to be required for cell survival, whereas extracellular release of HMGB1 is evident not only in retinal cell death in vitro but also in the rat model of RD in vivo. Furthermore, the vitreous level of HMGB1 is significantly increased and is correlated with that of MCP-1 in human eyes with RD. Recombinant HMGB1 induced RPE cell migration through an extracellular signal-regulated kinase-dependent mechanism in vitro. Our findings suggest that HMGB1 is a crucial nuclear protein and is released as a danger signal of retinal tissue damage. Extracellular HMGB1 might be an important mediator in RD, potentially acting as a chemotactic factor for RPE cell migration that would lead to an ocular pathological wound-healing response.
Collapse
Affiliation(s)
- Noboru Arimura
- Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Leukemia inhibitory factor extends the lifespan of injured photoreceptors in vivo. J Neurosci 2009; 28:13765-74. [PMID: 19091967 DOI: 10.1523/jneurosci.5114-08.2008] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Survival and death of photoreceptors in degenerative diseases of the retina is controlled by a multitude of genes and endogenous factors. Some genes may be involved in the degenerative process itself whereas others may be part of an endogenous defense system. We show in two models of retinal degeneration that photoreceptor death strongly induces expression of leukemia inhibitory factor (LIF) in a subset of Muller glia cells in the inner nuclear layer of the retina. LIF expression is essential to induce an extensive intraretinal signaling system which includes Muller cells and photoreceptors and is characterized by an upregulation of Edn2, STAT3, FGF2 and GFAP. In the absence of LIF, Muller cells remain quiescent, the signaling system is not activated and retinal degeneration is strongly accelerated. Intravitreal application of recombinant LIF induces the full molecular pathway including the activation of Muller cells in wild-type and Lif(-/-) mice. Interruption of the signaling cascade by an Edn2 receptor antagonist increases whereas activation of the receptor decreases photoreceptor cell death. Thus, LIF is essential and sufficient to activate an extensive molecular defense response to photoreceptor injury. Our data establish LIF as a Muller cell derived neuronal survival factor which controls an intrinsic protective mechanism that includes Edn2 signaling to support photoreceptor cell survival and to preserve vision in the injured retina.
Collapse
|
126
|
Escartin C, Bonvento G. Targeted activation of astrocytes: a potential neuroprotective strategy. Mol Neurobiol 2008; 38:231-41. [PMID: 18931960 DOI: 10.1007/s12035-008-8043-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 09/26/2008] [Indexed: 01/07/2023]
Abstract
Astrocytes are involved in many key physiological processes in the brain, including glutamatergic transmission, energy metabolism, and blood flow control. They become reactive in response to pathological situations, a response that involves well-described morphological alterations and less characterized functional changes. The functional consequences of astrocyte reactivity seem to depend on the molecular pathway involved and may result in the enhancement of several neuroprotective and neurotrophic functions. We propose that a selective and controlled activation of astrocytes may switch these highly pleiotropic cells into therapeutic agents to promote neuron survival and recovery. This may represent a potent therapeutic strategy for many brain diseases in which neurons would benefit from an increased support from activated astrocytes.
Collapse
Affiliation(s)
- Carole Escartin
- CEA, IB2M, MIRCen, CNRS URA2210, 4, place du General Leclerc, 91401, Orsay, France.
| | | |
Collapse
|
127
|
Upregulation of Semaphorin 3A and the associated biochemical and cellular events in a rat model of retinal detachment. Graefes Arch Clin Exp Ophthalmol 2008; 247:73-86. [DOI: 10.1007/s00417-008-0945-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 07/09/2008] [Accepted: 08/29/2008] [Indexed: 12/18/2022] Open
|
128
|
Takada Y, Vijayasarathy C, Zeng Y, Kjellstrom S, Bush RA, Sieving PA. Synaptic pathology in retinoschisis knockout (Rs1-/y) mouse retina and modification by rAAV-Rs1 gene delivery. Invest Ophthalmol Vis Sci 2008; 49:3677-86. [PMID: 18660429 DOI: 10.1167/iovs.07-1071] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE At an early age, the retinoschisin knockout (Rs1-KO) mouse retina has progressive photoreceptor degeneration with severe disruption of the outer plexiform layer (OPL) that decreases at older ages. The electroretinogram (ERG) undergoes parallel changes. The b-wave amplitude from bipolar cells is reduced disproportionately to the photoreceptor a-wave at young but not at older ages. The protein expression and morphology of the OPL in Rs1-KO mice was investigated at different ages, to explore the role of the synaptic layer in these ERG changes. METHODS Retinas of wild-type (Wt) and Rs1-KO mice from postnatal day (P)7 to 12 months were evaluated by light and electron microscopy (EM) and biochemistry. PSD95 (postsynaptic density protein), mGluR6 (metabotropic glutamate receptor subtype 6), retinoschisin (Rs1), the Müller cell proteins glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS), the bipolar cell marker protein kinase C alpha (PKCalpha), and the horizontal cell marker calbindin were localized by immunofluorescence and immuno-EM. Levels of PSD95 and mGluR6 were determined by quantitative Western blot. Rs1-KO mice treated by intravitreous injection of rAAV(2/2)-CMV-Rs1 in one eye at P14 were evaluated at 8 months by full-field scotopic ERG responses and retinal immunohistochemistry. RESULTS Rs1 was associated with the outer surface of synaptic membranes in wild-type (Wt) retinas. PSD95 and mGluR6 were juxtaposed in the OPL of the Rs1-KO retinas by P14, implying that synaptic structures are formed. Light microscopic retinal morphology was similar in Wt and Rs1-KO at P14, but by P21, the OPL was disrupted in Rs1-KO, and some PSD95 and mGluR6 was mislocalized in the outer nuclear layer (ONL). GFAP expression spanned all retinal layers. EM showed synaptic structures adjacent to photoreceptor nuclei. PSD95 and mGluR6 levels were normal at 1 month on Western blot but declined to 59% (P < 0.001) and 55% (P < 0.05) of Wt, respectively, by 4 months. Levels thereafter showed no further reduction out to 12 months. Eyes injected with AAV-Rs1 were studied at 8 months by immunohistochemistry and had higher expression of PSD95 and mGluR6 and less GFAP expression compared with fellow untreated eyes. CONCLUSIONS In the Rs1-KO mouse, retinal layer formation and synaptic protein expression in the OPL is normal up to P14, implying normal development of synaptic connections. Aberrant localization of synaptic proteins by P21 indicates that displacement of developing and/or mature synapses contributes to the b-wave reduction at young ages, when photoreceptor numbers and synaptic protein levels are normal. The subsequent decline in PSD95 and mGluR6 between 1 and 12 months in Rs1-KO retina mirrors the course of b-wave change and provides evidence of causal relationship between the ERG and OPL changes. These findings and the improved structural integrity of the OPL and b-wave amplitude after Rs1 gene transfer therapy provide a cellular and molecular basis for interpreting the changes in retinal signaling in this model.
Collapse
Affiliation(s)
- Yuichiro Takada
- Section for Translational Research in Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
129
|
Verardo MR, Lewis GP, Takeda M, Linberg KA, Byun J, Luna G, Wilhelmsson U, Pekny M, Chen DF, Fisher SK. Abnormal reactivity of muller cells after retinal detachment in mice deficient in GFAP and vimentin. Invest Ophthalmol Vis Sci 2008; 49:3659-65. [PMID: 18469190 DOI: 10.1167/iovs.07-1474] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the roles of glial fibrillary acidic protein (GFAP) and vimentin in Müller cell reactivity. METHODS Retinal detachments were created in mice deficient for GFAP and vimentin (GFAP(-/-)vim(-/-)) and age-matched wild-type (wt) mice. The reactivity of the retina was studied by immunofluorescence and electron microscopy. RESULTS Müller cell morphology was different and glutamine synthetase immunoreactivity was reduced in the undisturbed GFAP(-/-)vim(-/-) retinas. After retinal detachment, Müller cells formed subretinal glial scars in the wt mice. In contrast, such scars were not observed in GFAP(-/-)vim(-/-) mice. Müller cells, which normally elongate and thicken in response to detachment, appeared compressed, thin, and "spikey" in the GFAP(-/-)vim(-/-) mice. The end foot region of Müller cells in the GFAP(-/-)vim(-/-) mice often sheared away from the rest of the retina during detachment, corroborating earlier results showing decreased resistance of this region in GFAP(-/-)vim(-/-) retinas to mechanical stress. In regions with end foot shearing, ganglion cells showed intense neurite sprouting, as revealed by anti-neurofilament labeling, a response rarely observed in wt mice. CONCLUSIONS Müller cells are subtly different in the GFAP(-/-)vim(-/-) mouse retina before detachment. The end foot region of these cells may be structurally reinforced by the presence of the intermediate filament cytoskeleton, and our data suggest a critical role for these proteins in Müller cell reaction to retinal detachment and participation in subretinal gliosis.
Collapse
Affiliation(s)
- Mark R Verardo
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Iribarne M, Ogawa L, Torbidoni V, Dodds CM, Dodds RA, Suburo AM. Blockade of endothelinergic receptors prevents development of proliferative vitreoretinopathy in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1030-42. [PMID: 18310504 DOI: 10.2353/ajpath.2008.070605] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is characterized by severe glial remodeling. Glial activation and proliferation that occur in brain diseases are modulated by endothelin-1 (ET-1) and its receptor B (ETR-B). Because retinal astrocytes contain ET-1 and express ETR-B, we studied the changes of these molecules in an experimental mouse model of PVR and in human PVR. Both ET-1 and ETR-B immunoreactivities increased in mouse retina after induction of PVR with dispase. Epi- and subretinal outgrowths also displayed these immunoreactivities in both human and experimental PVR. Additionally, myofibroblasts and other membranous cell types showed both ET-1 and ETR-B immunoreactivities. In early stages of experimentally induced PVR, prepro-ET-1 and ETR-B mRNA levels increased in the retina. These mRNA levels also increased after retinal detachment (RD) produced by subretinal injection. Treatment of mice with tezosentan, an antagonist of endothelinergic receptors, reduced the histopathological hallmarks of dispase-induced PVR: retinal folding, epiretinal outgrowth, and gliosis. Our findings in human and in dispase-induced PVR support the involvement of endothelinergic pathways in retinal glial activation and the phenotypic transformations that underlie the growth of membranes in this pathology. Elucidating these pathways further will help to develop pharmacological treatments to prevent PVR. In addition, the presence of ET-1 and ETR-B in human fibrous membranes suggests that similar treatments could be helpful after PVR has been established.
Collapse
Affiliation(s)
- María Iribarne
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
131
|
Jiang G, Ke Y, Sun D, Han G, Kaplan HJ, Shao H. Reactivation of uveitogenic T cells by retinal astrocytes derived from experimental autoimmune uveitis-prone B10RIII mice. Invest Ophthalmol Vis Sci 2008; 49:282-9. [PMID: 18172104 DOI: 10.1167/iovs.07-0371] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To determine the involvement of retinal astrocytes (RACs) in T cell-mediated experimental autoimmune uveitis (EAU). METHODS Frozen sections of eyes from naive mice or mice with EAU were stained for glial fibrillary acidic protein (GFAP) or major histocompatibility complex (MHC) class II molecules and were examined by confocal microscopy. RACs were isolated and cocultured with interphotoreceptor retinoid-binding protein (IRBP) peptide-specific T cells. The proliferation and cytokine production of responder T cells were determined by [(3)H]-thymidine incorporation and ELISA, respectively. RESULTS The development of intraocular inflammation was associated with increased GFAP-positive cells in the retina. RACs from EAU-prone mice (B10RIII) activated uveitogenic T cells in vitro, enhanced T-cell proliferation and the production of proinflammatory cytokines, and increased the numbers of IL-17(+) IRBP T cells in the inflamed eye. The interaction between local RACs and IRBP-specific T cells was regulated by a distinct pattern of costimulatory molecules. In addition, the ability of IRBP-specific T cells to interact with RACs was dependent on whether the latter were derived from EAU-prone (B10RIII) or EAU-low susceptible (C57Bl/6) strains of mice. CONCLUSIONS This study suggests that the RACs in EAU-prone mice contribute to the reactivation of pathogenic T cells in the eye, leading to intraocular inflammation and tissue damage.
Collapse
Affiliation(s)
- Guomin Jiang
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, 301 E. Muhammad Ali Boulevard, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
132
|
Costa BLDSAD, Fawcett R, Li GY, Safa R, Osborne NN. Orally administered epigallocatechin gallate attenuates light-induced photoreceptor damage. Brain Res Bull 2008; 76:412-23. [PMID: 18502318 DOI: 10.1016/j.brainresbull.2008.01.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/23/2008] [Accepted: 01/31/2008] [Indexed: 11/26/2022]
Abstract
EGCG, a major component of green tea, has a number of properties which includes it being a powerful antioxidant. The purpose of this investigation was to deduce whether inclusion of EGCG in the drinking water of albino rats attenuates the effect of a light insult (2200lx, for 24h) to the retina. TUNEL-positive cells were detected in the outer nuclear layer of the retina, indicating the efficacy of the light insult in inducing photoreceptor degeneration. Moreover, Ret-P1 and the mRNA for rhodopsin located at photoreceptors were also significantly reduced as well as the amplitude of both the a- and b-waves of the electroretinogram was also reduced showing that photoreceptors in particular are affected by light. An increase in protein/mRNA of GFAP located primarily to Müller cells caused by light shows that other retinal components are also influenced by the light insult. However, antigens associated with bipolar (alpha-PKC), ganglion (Thy-1) and amacrine (GABA) cells, in contrast, appeared unaffected. The light insult also caused a change in the content of various proteins (caspase-3, caspase-8, PARP, Bad, and Bcl-2) involved in apoptosis. A number of the changes to the retina caused by a light insult were significantly attenuated when EGCG was in the drinking water. The reduction of the a- and b-waves and photoreceptor specific mRNAs/protein caused by light were significantly less. In addition, EGCG attenuated the changes caused by light to certain apoptotic proteins (especially at after 2 days) but did not appear to significantly influence the light-induced up-regulation of GFAP protein/mRNA. It is concluded that orally administered EGCG blunts the detrimental effect of light to the retina of albino rats where the photoreceptors are primarily affected.
Collapse
Affiliation(s)
- Belmira Lara da Silveira Andrade da Costa
- Departamento de Fisiologia e Farmacologia, CCB, Centro de Ciências Biológicas, CCB-UFPE, Avenue Prof. Moraes Rego, s/n, Cidade Universitária, 50670901 Recife, PE, Brazil
| | | | | | | | | |
Collapse
|
133
|
Jang S, Suh SH, Yoo HS, Lee YM, Oh S. Changes in iNOS, GFAP and NR1 expression in various brain regions and elevation of sphingosine-1-phosphate in serum after immobilized stress. Neurochem Res 2007; 33:842-51. [PMID: 17940874 DOI: 10.1007/s11064-007-9523-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 10/01/2007] [Indexed: 12/31/2022]
Abstract
Several studies have been suggested that long-term exposure to stress has detrimental effects on various brain functions and leads to neurodegenerative changes. However, the precise mechanism by which stress induces brain damage or neurodegenerative change is still a matter of debate. This study investigated the damage of neuronal cells involving in the expression of iNOS, NR1, and GFAP in various brain regions and characterized the change of sphingolipid metabolites as a biomarker of physiological change in serum after 3 weeks of repeated immobilization. In this report, the expression of iNOS, GFAP and NR1 in the brain of rats exposed to chronic immobilization stress was investigated. The expression of iNOS, GFAP and NR1 was elevated in the cortex and hippocampal area after 3 weeks of repeated immobilization. Immunoreactivity for GFAP and vimentin, as a marker of reactive gliosis, was also elevated in the cortex and hippocampus. The level of sphingolipids was measured in order to assess the changes in sphingolipid metabolites in the serum of rats exposed to stress. Interestingly, the level of So-1-P was increased in the plasma of rats subjected to 6-h immobilization stress than repeated immobilization. To further investigate the modulating effect of increased So-1-P in various brain regions, So-1-P was infused into the lateral cerebroventricle at a rate of 100 pmol/10 mul/h for 7 days. The expression of iNOS and NR1 was elevated in the cortex, hippocampus, striatum, and cerebellum after So-1-P infusion into the cerebroventricle, while the level of GFAP was elevated in the hippocampus and striatum. Interestingly, the expression levels of iNOS, GFAP, and NR1 were increased by the direct application of So-1-P to cultured cortical cells. These results suggest that NO production via iNOS expression, the NR1 expression, the activation of astrocytes, and the elevation of So-1-P may cause neurodegenerative changes in rats subjected to chronic immobilization and that the elevation of So-1-P by stress exposure would be one of the stress signal molecules.
Collapse
Affiliation(s)
- Soyong Jang
- Department of Neuroscience and Medical Research Institute, School of Medicine, Ewha Womans University, Mok-dong, Yangchon-ku, Seoul 158-710, Korea
| | | | | | | | | |
Collapse
|
134
|
Sihlbom C, Wilhelmsson U, Li L, Nilsson CL, Pekny M. 14-3-3 Expression in Denervated Hippocampus after Entorhinal Cortex Lesion Assessed by Culture-Derived Isotope Tags in Quantitative Proteomics. J Proteome Res 2007; 6:3491-500. [PMID: 17663576 DOI: 10.1021/pr070108e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activation of astrocytes accompanies many brain pathologies. Reactive astrocytes have a beneficial role in acute neurotrauma but later on might inhibit regeneration. 2D-gel electrophoresis and mass spectrometry were applied to study the proteome difference in denervated hippocampus in wildtype mice and mice lacking intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin (GFAP-/-Vim-/-) that show attenuated reactive gliosis and enhanced posttraumatic regeneration. Proteomic data and immunohistochemical analyses showed upregulation of the adapter protein 14-3-3 four days postlesion and suggested that 14-3-3 upregulation after injury is triggered by reactive gliosis. Culture-derived isotope tags (CDIT) and mass spectrometry demonstrated that 14-3-3 epsilon was the major isoform upregulated in denervated hippocampus and that its upregulation was attenuated in GFAP-/-Vim-/- mice and thus most likely connected to reactive gliosis.
Collapse
Affiliation(s)
- Carina Sihlbom
- Center for Brain Repair and Rehabilitation (CBR), Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Institute of Biomedicine, Sahlgrenska Academy, Göteborg University, Sweden.
| | | | | | | | | |
Collapse
|