101
|
Eshaq RS, Wright WS, Harris NR. Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy. Redox Biol 2014; 2:661-6. [PMID: 24936440 PMCID: PMC4052533 DOI: 10.1016/j.redox.2014.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 11/30/2022] Open
Abstract
Retinal tissue receives its supply of oxygen from two sources – the retinal and choroidal circulations. Decreases in retinal blood flow occur in the early stages of diabetes, with the eventual development of hypoxia thought to contribute to pathological neovascularization. Oxygen consumption in the retina has been found to decrease in diabetes, possibly due to either a reduction in neuronal metabolism or to cell death. Diabetes also enhances the rate of conversion of oxygen to superoxide in the retina, with experimental evidence suggesting that mitochondrial superoxide not only drives the overall production of reactive oxygen species, but also initiates several pathways leading to retinopathy, including the increased activity of the polyol and hexosamine pathways, increased production of advanced glycation end products and expression of their receptors, and activation of protein kinase C. Diabetes alters oxygen delivery and consumption in the retina. Conversion of oxygen to superoxide increases in the diabetic retina. An initial production of mitochondrial superoxide generates further ROS. ROS have been found to mediate deleterious pathways in the diabetic retina.
Collapse
Affiliation(s)
- Randa S Eshaq
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - William S Wright
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, USA
| | - Norman R Harris
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
102
|
Phagocyte-like NADPH oxidase [Nox2] in cellular dysfunction in models of glucolipotoxicity and diabetes. Biochem Pharmacol 2014; 88:275-83. [DOI: 10.1016/j.bcp.2014.01.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 02/01/2023]
|
103
|
Abcouwer SF, Gardner TW. Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment. Ann N Y Acad Sci 2014; 1311:174-90. [PMID: 24673341 DOI: 10.1111/nyas.12412] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy (DR) impairs vision of patients with type 1 and type 2 diabetes, associated with vascular dysfunction and occlusion, retinal edema, hemorrhage, and inappropriate growth of new blood vessels. The recent success of biologic treatments targeting vascular endothelial growth factor (VEGF) demonstrates that treating the vascular aspects in the later stages of the disease can preserve vision in many patients. It would also be highly desirable to prevent the onset of the disease or arrest its progression at a stage preceding the appearance of overt microvascular pathologies. The progression of DR is not necessarily linear but may follow a series of steps that evolve over the course of multiple years. Abundant data suggest that diabetes affects the entire neurovascular unit of the retina, with an early loss of neurovascular coupling, gradual neurodegeneration, gliosis, and neuroinflammation occurring before observable vascular pathologies. In this article, we consider the pathology of DR from the point of view that diabetes causes measurable dysfunctions in the complex integral network of cell types that produce and maintain human vision.
Collapse
Affiliation(s)
- Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan
| | | |
Collapse
|
104
|
Wang H, Yang Z, Jiang Y, Hartnett ME. Endothelial NADPH oxidase 4 mediates vascular endothelial growth factor receptor 2-induced intravitreal neovascularization in a rat model of retinopathy of prematurity. Mol Vis 2014; 20:231-41. [PMID: 24623966 PMCID: PMC3945806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/28/2014] [Indexed: 12/03/2022] Open
Abstract
PURPOSE NADPH oxidase-generated reactive oxygen species (ROS) are implicated in angiogenesis. Isoforms of NADPH oxidase NOX1, NOX2, and NOX4 are reported to be expressed in endothelial cells (ECs). Of these, NOX1 and NOX2 have been reported to contribute to intravitreal neovascularization (IVNV) in oxygen-induced retinopathy (OIR) models. In this study, we tested the hypothesis that the isoform NOX4 in ECs contributed to vascular endothelial growth factor (VEGF)-induced angiogenesis and IVNV. METHODS Isoforms of NADPH oxidase MRNA were measured in several types of cultured vascular ecs: human retinal microvascular ECs (hRMVECs), choroidal ECs (CECs), and human umbilical vascular ECs (HUVECs) using real-time PCR. Newborn rat pups and dams were placed into an OIR model that cycled oxygen concentration between 50% and 10% every 24 h for 14 days, and then were placed in room air (RA) for an additional 4 days (rat OIR model). NOX4 expression in retinal lysates from the RA-raised pups at postnatal day 0 (P0), P14, and P18 was determined with western blots. STAT3 activation was determined as the ratio of phosphorylated STAT3 to total STAT3 with western blot analysis of retinal lysates from pups raised in RA or from the rat OIR model at P18. Semiquantitative assessment of the density of NOX4 colabeling with lectin-stained retinal ECs was determined by immunolabeling of retinal cryosections from P18 pups in OIR or in RA. In hRMVECs transfected with NOX4 siRNA and treated with VEGF or control, 1) ROS generation was measured using the 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester fluorescence assay and 2) phosphorylated VEGF receptor 2 and STAT3, and total VEGFR2 and STAT3 were measured in western blot analyses. VEGF-stimulated hRMVEC proliferation was measured following transfection with NOX4 siRNA or STAT3 siRNA, or respective controls. RESULTS NOX4 was the most prevalent isoform of NADPH oxidase in vascular ECs. NOX4 expression in retinal lysates was significantly decreased during development in RA. Compared to RA, the expression of retinal NOX4 increased at P18. At p18 OIR, semiquantitative assessment of the density of lectin and NOX4 colabeling in retinal vascular ECs was greater in retinal cryosections and activated STAT3 was greater in retinal lysates when compared to the RA-raised pups. In cultured hRMVECs, knockdown of NOX4 by siRNA transfection inhibited VEGF-induced ROS generation. VEGF induced a physical interaction of phosphorylated-VEGFR2 and NOX4. Knockdown of NOX4: 1) reduced VEGFR2 activation but did not abolish it and 2) abolished STAT3 activation in response to VEGF. Knockdown of either NOX4 or STAT3 inhibited VEGF-induced EC proliferation. CONCLUSIONS Our data suggest that in a model representative of human retinopathy of prematurity, NOX4 was increased at a time point when IVNV developed. VEGF-activated NOX4 led to an interaction between VEGF-activated VEGFR2 and NOX4 that mediated EC proliferation via activation of STAT3. Altogether, our results suggest that NOX4 may regulate VEGFR2-mediated IVNV through activated STAT3.
Collapse
|
105
|
Gray SP, Jha JC, Di Marco E, Jandeleit-Dahm KA. NAD(P)H oxidase isoforms as therapeutic targets for diabetic complications. Expert Rev Endocrinol Metab 2014; 9:111-122. [PMID: 30743754 DOI: 10.1586/17446651.2014.887984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of macro- and microvascular complications is accelerated in diabetic patients. While some therapeutic regimes have helped in delaying progression of complications, none have yet been able to halt the progression and prevent vascular disease, highlighting the need to identify new therapeutic targets. Increased oxidative stress derived from the NADPH oxidase (Nox) family has recently been identified to play an important role in the pathophysiology of vascular disease. In recent years, specific Nox isoforms have been implicated in contributing to the development of atherosclerosis of major vessels, as well as damage of the small vessels within the kidney and the eye. With the use of novel Nox inhibitors, it has been demonstrated that these complications can be attenuated, indicating that targeting Nox derived oxidative stress holds potential as a new therapeutic strategy.
Collapse
Affiliation(s)
| | - Jay C Jha
- a Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Elyse Di Marco
- a Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Karin Am Jandeleit-Dahm
- a Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
106
|
Abu El-Asrar AM, Al-Mezaine HS, Ola MS. Pathophysiology and management of diabetic retinopathy. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.09.52] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
107
|
Al-Shabrawey M, Elsherbiny M, Nussbaum J, Othman A, Megyerdi S, Tawfik A. Targeting Neovascularization in Ischemic Retinopathy: Recent Advances. EXPERT REVIEW OF OPHTHALMOLOGY 2014; 8:267-286. [PMID: 25598837 DOI: 10.1586/eop.13.17] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathological retinal neovascularization (RNV) is a common micro-vascular complication in several retinal diseases including retinopathy of prematurity, diabetic retinopathy, age-related macular degeneration and central vein occlusion. The current therapeutic modalities of RNV are invasive and although they may slow or halt the progression of the disease they are unlikely to restore normal acuity. Therefore, there is an urgent need to develop treatment modalities, which are less invasive and therefore associated with fewer procedural complications and systemic side effects. This review article summarizes our understanding of the pathophysiology and current treatment of RNV in ischemic retinopathies; lists potential therapeutic targets; and provides a framework for the development of future treatment modalities.
Collapse
Affiliation(s)
- Mohamed Al-Shabrawey
- Oral Biology/Anatomy, College of Dental Medicine, GeorgiaRegentsUniversity (GRU), Augusta GA, USA ; Ophthalmology and Vision Discovery Institute, Medical College of Georgia, GRU ; Anatomy, Mansoura Faculty of Medicine, Mansoura University-Egypt ; Vascular Biology Center, Medical College of Georgia, GRU
| | - Mohamed Elsherbiny
- Oral Biology/Anatomy, College of Dental Medicine, GeorgiaRegentsUniversity (GRU), Augusta GA, USA ; Ophthalmology and Vision Discovery Institute, Medical College of Georgia, GRU ; Anatomy, Mansoura Faculty of Medicine, Mansoura University-Egypt
| | - Julian Nussbaum
- Ophthalmology and Vision Discovery Institute, Medical College of Georgia, GRU
| | - Amira Othman
- Anatomy, Mansoura Faculty of Medicine, Mansoura University-Egypt
| | - Sylvia Megyerdi
- Oral Biology/Anatomy, College of Dental Medicine, GeorgiaRegentsUniversity (GRU), Augusta GA, USA
| | - Amany Tawfik
- Ophthalmology and Vision Discovery Institute, Medical College of Georgia, GRU ; Cellular Biology and Anatomy, Medical College of Georgia, GRU
| |
Collapse
|
108
|
Xu Z, Wei Y, Gong J, Cho H, Park JK, Sung ER, Huang H, Wu L, Eberhart C, Handa JT, Du Y, Kern TS, Thimmulappa R, Barber AJ, Biswal S, Duh EJ. NRF2 plays a protective role in diabetic retinopathy in mice. Diabetologia 2014; 57:204-13. [PMID: 24186494 PMCID: PMC4039644 DOI: 10.1007/s00125-013-3093-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/07/2013] [Indexed: 12/29/2022]
Abstract
AIMS/HYPOTHESIS Although much is known about the pathophysiological processes contributing to diabetic retinopathy (DR), the role of protective pathways has received less attention. The transcription factor nuclear factor erythroid-2-related factor 2 (also known as NFE2L2 or NRF2) is an important regulator of oxidative stress and also has anti-inflammatory effects. The objective of this study was to explore the potential role of NRF2 as a protective mechanism in DR. METHODS Retinal expression of NRF2 was investigated in human donor and mouse eyes by immunohistochemistry. The effect of NRF2 modulation on oxidative stress was studied in the human Müller cell line MIO-M1. Non-diabetic and streptozotocin-induced diabetic wild-type and Nrf2 knockout mice were evaluated for multiple DR endpoints. RESULTS NRF2 was expressed prominently in Müller glial cells and astrocytes in both human and mouse retinas. In cultured MIO-M1 cells, NRF2 inhibition significantly decreased antioxidant gene expression and exacerbated tert-butyl hydroperoxide- and hydrogen peroxide-induced oxidative stress. NRF2 activation strongly increased NRF2 target gene expression and suppressed oxidant-induced reactive oxygen species. Diabetic mice exhibited retinal NRF2 activation, indicated by nuclear translocation. Superoxide levels were significantly increased by diabetes in Nrf2 knockout mice as compared with wild-type mice. Diabetic Nrf2 knockout mice exhibited a reduction in retinal glutathione and an increase in TNF-α protein compared with wild-type mice. Nrf2 knockout mice exhibited early onset of blood-retina barrier dysfunction and exacerbation of neuronal dysfunction in diabetes. CONCLUSIONS/INTERPRETATION These results indicate that NRF2 is an important protective factor regulating the progression of DR and suggest enhancement of the NRF2 pathway as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Zhenhua Xu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD, 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Rojas M, Zhang W, Xu Z, Lemtalsi T, Chandler P, Toque HA, Caldwell RW, Caldwell RB. Requirement of NOX2 expression in both retina and bone marrow for diabetes-induced retinal vascular injury. PLoS One 2013; 8:e84357. [PMID: 24358357 PMCID: PMC3866146 DOI: 10.1371/journal.pone.0084357] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/14/2013] [Indexed: 12/11/2022] Open
Abstract
Objective Diabetic retinopathy, a major cause of blindness, is characterized by increased expression of vascular endothelial growth factor (VEGF), leukocyte attachment to the vessel walls and increased vascular permeability. Previous work has shown that reactive oxygen species (ROS) produced by the superoxide generating enzyme NOX2/NADPH oxidase play a crucial role in the vascular pathology. The aim of this work was to identify the cellular sources of the damaging NOX2 activity by studies using bone marrow chimera mice. Methods Bone marrow cells were collected from the femurs and tibias of wild type and NOX2 deficient (NOX2-/-) donor mice and injected intravenously into lethally irradiated NOX2-/- and wild type recipients. Following recovery from radiation, mice were rendered diabetic by streptozotocin injections. The following groups of bone marrow chimeras were studied: non-diabetic WT→WT, diabetic WT→WT, diabetic WT→NOX2-/-, diabetic NOX2-/-→WT. After 4 weeks of diabetes, early signs of retinopathy were examined by measuring ROS, expression of VEGF and ICAM-1, leukocyte attachment to the vessel wall and vascular permeability. Results The retinas of the diabetic WT→WT chimeras showed significant increases in ROS as compared with the non-diabetic chimeras. These diabetes-induced alterations were correlated with increases in expression of VEGF and ICAM-1, leukocyte adhesion and vascular permeability. Each of these diabetes-induced alterations were significantly attenuated in the diabetic WT→NOX2-/- and NOX2-/-→WT chimera groups (p<0.05). Conclusion NOX2-generated ROS produced by both bone marrow-derived cells and resident retinal cells contribute importantly to retinal vascular injury in the diabetic retina. Targeting NOX2 in bone marrow and/or retinal cells may represent a novel therapeutic strategy for the treatment/prevention of vascular injury in the diabetic retina.
Collapse
Affiliation(s)
- Modesto Rojas
- VA Medical Center, Augusta, Georgia, United States of America
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Wenbo Zhang
- VA Medical Center, Augusta, Georgia, United States of America
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Zhimin Xu
- VA Medical Center, Augusta, Georgia, United States of America
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Tahira Lemtalsi
- VA Medical Center, Augusta, Georgia, United States of America
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Phillip Chandler
- Immunotherapy Center, Georgia Reagents University, Augusta, Georgia, United States of America
| | - Haroldo A. Toque
- Department of Pharmacology & Toxicology, Georgia Reagents University, Augusta, Georgia, United States of America
| | - Robert W. Caldwell
- Department of Pharmacology & Toxicology, Georgia Reagents University, Augusta, Georgia, United States of America
| | - Ruth B. Caldwell
- VA Medical Center, Augusta, Georgia, United States of America
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
110
|
Lim YC, Bhatt MP, Kwon MH, Park D, Lee S, Choe J, Hwang J, Kim YM, Ha KS. Prevention of VEGF-mediated microvascular permeability by C-peptide in diabetic mice. Cardiovasc Res 2013; 101:155-64. [PMID: 24142430 DOI: 10.1093/cvr/cvt238] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS Human C-peptide has a beneficial effect on the prevention of diabetic neuropathy, nephropathy, and vascular complications; however, its role in protection against increased vascular permeability in diabetes remains unclear. Our purpose was to explore the potential protective role of C-peptide against microvascular permeability mediated by vascular endothelial growth factor (VEGF)-induced reactive oxygen species (ROS) generation in diabetes. METHODS AND RESULTS Generation of intracellular ROS, real-time changes in intracellular Ca(2+), ROS-dependent stress fibre formation, and the disassembly of the adherens junctions were studied by a confocal microscopy in human umbilical vein endothelial cells (HUVECs). VEGF-induced vascular leakage was investigated in the skin of diabetic mice using a Miles vascular permeability assay. Microvascular leakage in the retina of streptozotocin diabetic mice was investigated using a confocal microscopy after left ventricle injection of fluorescein isothiocyanate (FITC)-dextran. C-peptide inhibited the VEGF-induced ROS generation, stress fibre formation, disassembly of vascular endothelial cadherin, and endothelial permeability in HUVECs. Intradermal injection of C-peptide prevented VEGF-induced vascular leakage. Consistent with this, intravitreal injection of C-peptide prevented the extravasation of FITC-dextran in the retinas of diabetic mice, which was also prevented by anti-VEGF antibody and ROS scavengers in diabetic mice. Conclusions/interpretation C-peptide prevents VEGF-induced microvascular permeability by inhibiting ROS-mediated intracellular events in diabetic mice, suggesting that C-peptide replacement is a promising therapeutic strategy to prevent diabetic retinopathy.
Collapse
Affiliation(s)
- Young-Cheol Lim
- Department of Molecular and Cellular Biochemistry, Institute of Medical Scicence, Kangwon National University School of Medicine, Kangwon-do 200-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Mysona BA, Al-Gayyar MMH, Matragoon S, Abdelsaid MA, El-Azab MF, Saragovi HU, El-Remessy AB. Modulation of p75(NTR) prevents diabetes- and proNGF-induced retinal inflammation and blood-retina barrier breakdown in mice and rats. Diabetologia 2013; 56:2329-39. [PMID: 23918145 PMCID: PMC3791887 DOI: 10.1007/s00125-013-2998-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/02/2013] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy is characterised by early blood-retina barrier (BRB) breakdown and neurodegeneration. Diabetes causes imbalance of nerve growth factor (NGF), leading to accumulation of the NGF precursor (proNGF), as well as the NGF receptor, p75 neurotrophin receptor (p75(NTR)), suggesting a possible pathological role of the proNGF-p75(NTR) axis in the diabetic retina. To date, the role of this axis in diabetes-induced retinal inflammation and BRB breakdown has not been explored. We hypothesised that modulating p75(NTR) would prevent diabetes- and proNGF-induced retinal inflammation and BRB breakdown. METHODS Diabetes was induced by streptozotocin in wild-type and p75(NTR) knockout (p75KO) mice. After 5 weeks, the expression of inflammatory mediators, ganglion cell loss and BRB breakdown were determined. Cleavage-resistant proNGF was overexpressed in rodent retinas with and without p75(NTR) short hairpin RNA or with pharmacological inhibitors. In vitro, the effects of proNGF were investigated in retinal Müller glial cell line (rMC-1) and primary Müller cells. RESULTS Deletion of p75(NTR) blunted the diabetes-induced decrease in retinal NGF expression and increases in proNGF, nuclear factor κB (NFκB), p-NFκB and TNF-α. Deletion of p75(NTR) also abrogated diabetes-induced glial fibrillary acidic protein expression, ganglion cell loss and vascular permeability. Inhibited expression or cleavage of p75(NTR) blunted proNGF-induced retinal inflammation and vascular permeability. In vitro, proNGF induced p75(NTR)-dependent production of inflammatory mediators in primary wild-type Müller and rMC-1 cultures, but not in p75KO Müller cells. CONCLUSIONS/INTERPRETATION The proNGF-p75(NTR) axis contributes to retinal inflammation and vascular dysfunction in the rodent diabetic retina. These findings underscore the importance of p75(NTR) as a novel regulator of inflammation and potential therapeutic target in diabetic retinopathy.
Collapse
Affiliation(s)
- Barbara A Mysona
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, 1120 15th Street HM-1200, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc Natl Acad Sci U S A 2013; 110:16586-91. [PMID: 24067647 DOI: 10.1073/pnas.1314575110] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Accumulating evidence suggests that photoreceptor cells play a previously unappreciated role in the development of early stages of diabetic retinopathy, but the mechanism by which this occurs is not clear. Inhibition of oxidative stress is known to inhibit the vascular lesions of early diabetic retinopathy, and we investigated whether the diabetes-induced oxidative stress in the retina emanates from photoreceptors. Superoxide generation was assessed in retinas of male C57BL/6J mice made diabetic for 2 mo (4 mo of age when killed) using histochemical (dichlorofluorescein and dihydroethidine) and bioluminescence (lucigenin) methods. Photoreceptors were eliminated in vivo by genetic (opsin(-/-)) and chemical (iodoacetic acid) techniques. Immunoblots were used to measure expression of intercellular adhesion molecule 1 and the inducible form of nitric oxide synthase. Diabetes increased the generation of superoxide by diabetic mouse retina more at night than during the day. Photoreceptors were the major source of reactive oxygen species in the retina, and their deletion (either genetically in opsin(-/-) mice or acutely with iodoacetic acid) inhibited the expected diabetes-induced increase in superoxide and inflammatory proteins in the remaining retina. Both mitochondria and NADPH oxidase contributed to the observed retinal superoxide generation, which could be inhibited in vivo with either methylene blue or apocynin. Photoreceptors are the major source of superoxide generated by retinas of diabetic mice. Pharmaceuticals targeting photoreceptor oxidative stress could offer a unique therapy for diabetic retinopathy.
Collapse
|
113
|
Ahmad S, Fatteh N, El-Sherbiny NM, Naime M, Ibrahim AS, El-Sherbini AM, El-Shafey SA, Khan S, Fulzele S, Gonzales J, Liou GI. Potential role of A2A adenosine receptor in traumatic optic neuropathy. J Neuroimmunol 2013; 264:54-64. [PMID: 24090652 DOI: 10.1016/j.jneuroim.2013.09.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
In traumatic optic neuropathy (TON), apoptosis of retinal ganglion cells is closely related to the local production of reactive oxygen species and inflammatory mediators from activated microglial cells. Adenosine receptor A2A (A2AAR) has been shown to possess anti-inflammatory properties that have not been studied in TON. In the present study, we examined the role of A2AAR in retinal complications associated with TON. Initial studies in wild-type mice revealed that treatment with the A2AAR agonist resulted in marked decreases in the TON-induced microglial activation, retinal cell death and releases of reactive oxygen species and pro-inflammatory cytokines TNF-α and IL-6. To further assess the role of A2AAR in TON, we studied the effects of A2AAR ablation on the TON-induced retinal abnormalities. A2AAR-/- mice with TON showed a significantly higher mRNA level of TNF-α, Iba1-1 in retinal tissue, and ICAM-1 expression in retinal sections compared with wild-type mice with TON. To explore a potential mechanism by which A2AAR-signaling regulates inflammation in TON, we performed additional studies using hypoxia- or LPS-treated microglial cells as an in vitro model for TON. Activation of A2AAR attenuates hypoxia or LPS-induced TNF-α release and significantly repressed the inflammatory signaling, ERK in the activated microglia. Collectively, this work provides pharmacological and genetic evidence for A2AAR signaling as a control point of cell death in TON and suggests that the retinal protective effect of A2AAR is mediated by attenuating the inflammatory response that occurs in microglia via interaction with MAPKinase pathway.
Collapse
Affiliation(s)
- Saif Ahmad
- Department of Ophthalmology, Georgia Regents University (GRU), Augusta, GA, USA; Departmet of Biological Sciences, College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Narayanan SP, Rojas M, Suwanpradid J, Toque HA, Caldwell RW, Caldwell RB. Arginase in retinopathy. Prog Retin Eye Res 2013; 36:260-80. [PMID: 23830845 PMCID: PMC3759622 DOI: 10.1016/j.preteyeres.2013.06.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/14/2013] [Accepted: 06/25/2013] [Indexed: 12/12/2022]
Abstract
Ischemic retinopathies, such as diabetic retinopathy (DR), retinopathy of prematurity and retinal vein occlusion are a major cause of blindness in developed nations worldwide. Each of these conditions is associated with early neurovascular dysfunction. However, conventional therapies target clinically significant macula edema or neovascularization, which occur much later. Intra-ocular injections of anti-VEGF show promise in reducing retinal edema, but the effects are usually transient and the need for repeated injections increases the risk of intraocular infection. Laser photocoagulation can control pathological neovascularization, but may impair vision and in some patients the retinopathy continues to progress. Moreover, neither treatment targets early stage disease or promotes repair. This review examines the potential role of the ureahydrolase enzyme arginase as a therapeutic target for the treatment of ischemic retinopathy. Arginase metabolizes l-arginine to form proline, polyamines and glutamate. Excessive arginase activity reduces the l-arginine supply for nitric oxide synthase (NOS), causing it to become uncoupled and produce superoxide and less NO. Superoxide and NO react and form the toxic oxidant peroxynitrite. The catabolic products of polyamine oxidation and glutamate can induce more oxidative stress and DNA damage, both of which can cause cellular injury. Studies indicate that neurovascular injury during retinopathy is associated with increased arginase expression/activity, decreased NO, polyamine oxidation, formation of superoxide and peroxynitrite and dysfunction and injury of both vascular and neural cells. Furthermore, data indicate that the cytosolic isoform arginase I (AI) is involved in hyperglycemia-induced dysfunction and injury of vascular endothelial cells whereas the mitochondrial isoform arginase II (AII) is involved in neurovascular dysfunction and death following hyperoxia exposure. Thus, we postulate that activation of the arginase pathway causes neurovascular injury by uncoupling NOS and inducing polyamine oxidation and glutamate formation, thereby reducing NO and increasing oxidative stress, all of which contribute to the retinopathic process.
Collapse
Affiliation(s)
- S. Priya Narayanan
- Vision Discovery Institute, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
- Vascular Biology Center, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
| | - Modesto Rojas
- Vision Discovery Institute, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
- Vascular Biology Center, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
| | - Jutamas Suwanpradid
- Vision Discovery Institute, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
- Vascular Biology Center, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
| | - Haroldo A. Toque
- Department of Pharmacology & Toxicology, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
| | - R. William Caldwell
- Vision Discovery Institute, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
- Department of Pharmacology & Toxicology, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
| | - Ruth B. Caldwell
- Vision Discovery Institute, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
- Vascular Biology Center, Georgia Regents University, 1459 Laney Walker Boulevard, Augusta, 30912, USA
- VA Medical Center, One Freedom Way, Augusta, GA, USA
| |
Collapse
|
115
|
El-Remessy AB, Franklin T, Ghaley N, Yang J, Brands MW, Caldwell RB, Behzadian MA. Diabetes-induced superoxide anion and breakdown of the blood-retinal barrier: role of the VEGF/uPAR pathway. PLoS One 2013; 8:e71868. [PMID: 23951261 PMCID: PMC3737203 DOI: 10.1371/journal.pone.0071868] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022] Open
Abstract
Diabetes-induced breakdown of the blood-retinal barrier (BRB) has been linked to hyperglycemia-induced expression of vascular endothelial growth factor (VEGF) and is likely mediated by an increase in oxidative stress. We have shown that VEGF increases permeability of retinal endothelial cells (REC) by inducing expression of urokinase plasminogen activator receptor (uPAR). The purpose of this study was to define the role of superoxide anion in VEGF/uPAR expression and BRB breakdown in diabetes. Studies were performed in streptozotocin diabetic rats and mice and high glucose (HG) treated REC. The superoxide dismutase (SOD) mimetic tempol blocked diabetes-induced permeability and uPAR expression in rats and the cell permeable SOD inhibited HG-induced expression of uPAR and VEGF in REC. Inhibiting VEGFR blocked HG-induced expression of VEGF and uPAR and GSK-3β phosphorylation in REC. HG caused β-catenin translocation from the plasma membrane into the cytosol and nucleus. Treatment with HG-conditioned media increased REC paracellular permeability that was blocked by anti-uPA or anti-uPAR antibodies. Moreover, deletion of uPAR blocked diabetes-induced BRB breakdown and activation of MMP-9 in mice. Together, these data indicate that diabetes-induced oxidative stress triggers BRB breakdown by a mechanism involving uPAR expression through VEGF-induced activation of the GSK3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Azza B. El-Remessy
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Culver Vision Discovery Institute, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
| | - Telina Franklin
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Nagla Ghaley
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Jinling Yang
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Culver Vision Discovery Institute, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Michael W. Brands
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Ruth B. Caldwell
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Culver Vision Discovery Institute, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
- * E-mail:
| | - Mohamed Ali Behzadian
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Culver Vision Discovery Institute, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
116
|
Patel C, Rojas M, Narayanan SP, Zhang W, Xu Z, Lemtalsi T, Jittiporn K, Caldwell RW, Caldwell RB. Arginase as a mediator of diabetic retinopathy. Front Immunol 2013; 4:173. [PMID: 23840196 PMCID: PMC3699717 DOI: 10.3389/fimmu.2013.00173] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/14/2013] [Indexed: 11/13/2022] Open
Abstract
We have shown previously that diabetes causes increases in retinal arginase activity that are associated with impairment of endothelial cell (EC)-dependent vasodilation and increased formation of the peroxynitrite biomarker nitrotyrosine. Arginase blockade normalizes vasodilation responses and reduces nitrotyrosine formation, suggesting that overactive arginase contributes to diabetic retinopathy by reducing NO and increasing oxidative stress. We tested this hypothesis by studies in streptozotocin-induced diabetic mice and high glucose (HG) treated retinal ECs. Our results show that arginase activity is increased in both diabetic retinas and HG-treated retinal ECs as compared with the controls. Western blot shows that both arginase isoforms are present in retinal vessels and ECs and arginase I is increased in the diabetic vessels and HG-treated retinal ECs. Nitrate/nitrite levels are significantly increased in diabetic retinas, indicating an increase in total NO products. However, levels of nitrite, an indicator of bioavailable NO, are reduced by diabetes. Imaging analysis of NO formation in retinal sections confirmed decreases in NO formation in diabetic retinas. The decrease in NO is accompanied by increased O2.− formation and increased leukocyte attachment in retinal vessels. Studies in knockout mice show that arginase gene deletion enhances NO formation, reduces O2.− and prevents leukostasis in the diabetic retinas. HG treatment of retinal ECs also reduces NO release, increases oxidative stress, increases ICAM-1, and induces EC death. Arginase inhibitor treatment reverses these effects. In conclusion, diabetes- and HG-induced signs of retinal vascular activation and injury are associated with increased arginase activity and expression, decreased bioavailable NO, and increased O2.− formation. Blockade of the arginase pathway prevents these alterations, suggesting a primary role of arginase in the pathophysiological process.
Collapse
Affiliation(s)
- Chintan Patel
- Vision Discovery Institute, Georgia Regents University , Augusta, GA , USA ; Vascular Biology Center, Georgia Regents University , Augusta, GA , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
Oxidative stress has been linked to the pathogenesis of the major complications of diabetes in the kidney, the heart, the eye or the vasculature. NADPH oxidases of the Nox family are a major source of ROS (reactive oxygen species) and are critical mediators of redox signalling in cells from different organs afflicted by the diabetic milieu. In the present review, we provide an overview of the current knowledge related to the understanding of the role of Nox in the processes that control cell injury induced by hyperglycaemia and other predominant factors enhanced in diabetes, including the renin–angiotensin system, TGF-β (transforming growth factor-β) and AGEs (advanced glycation end-products). These observations support a critical role for Nox homologues in diabetic complications and indicate that NADPH oxidases are an important therapeutic target. Therefore the design and development of small-molecule inhibitors that selectively block Nox oxidases appears to be a reasonable approach to prevent or retard the complications of diabetes in target organs. The bioefficacy of these agents in experimental animal models is also discussed in the present review.
Collapse
|
118
|
Reactive oxygen species, Nox and angiotensin II in angiogenesis: implications for retinopathy. Clin Sci (Lond) 2013; 124:597-615. [PMID: 23379642 DOI: 10.1042/cs20120212] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pathological angiogenesis is a key feature of many diseases including retinopathies such as ROP (retinopathy of prematurity) and DR (diabetic retinopathy). There is considerable evidence that increased production of ROS (reactive oxygen species) in the retina participates in retinal angiogenesis, although the mechanisms by which this occurs are not fully understood. ROS is produced by a number of pathways, including the mitochondrial electron transport chain, cytochrome P450, xanthine oxidase and uncoupled nitric oxide synthase. The family of NADPH oxidase (Nox) enzymes are likely to be important given that their primary function is to produce ROS. Seven isoforms of Nox have been identified named Nox1-5, Duox (dual oxidase) 1 and Duox2. Nox1, Nox2 and Nox4 have been most extensively studied and are implicated in the development of conditions such as hypertension, cardiovascular disease and diabetic nephropathy. In recent years, evidence has accumulated to suggest that Nox1, Nox2 and Nox4 participate in pathological angiogenesis; however, there is no clear consensus about which Nox isoform is primarily responsible. In terms of retinopathy, there is growing evidence that Nox contribute to vascular injury. The RAAS (renin-angiotensin-aldosterone system), and particularly AngII (angiotensin II), is a key stimulator of Nox. It is known that a local RAAS exists in the retina and that blockade of AngII and aldosterone attenuate pathological angiogenesis in the retina. Whether the RAAS influences the production of ROS derived from Nox in retinopathy is yet to be fully determined. These topics will be reviewed with a particular emphasis on ROP and DR.
Collapse
|
119
|
Stitt AW, Lois N, Medina RJ, Adamson P, Curtis TM. Advances in our understanding of diabetic retinopathy. Clin Sci (Lond) 2013; 125:1-17. [PMID: 23485060 DOI: 10.1042/cs20120588] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetic retinopathy remains the most common complication of diabetes mellitus and is a leading cause of visual loss in industrialized nations. The clinicopathology of the diabetic retina has been extensively studied, although the precise pathogenesis and cellular and molecular defects that lead to retinal vascular, neural and glial cell dysfunction remain somewhat elusive. This lack of understanding has seriously limited the therapeutic options available for the ophthalmologist and there is a need to identify the definitive pathways that initiate retinal cell damage and drive progression to overt retinopathy. The present review begins by outlining the natural history of diabetic retinopathy, the clinical features and risk factors. Reviewing the histopathological data from clinical specimens and animal models, the recent paradigm that neuroretinal dysfunction may play an important role in the early development of the disease is discussed. The review then focuses on the molecular pathogenesis of diabetic retinopathy with perspective provided on new advances that have furthered our understanding of the key mechanisms underlying early changes in the diabetic retina. Studies have also emerged in the past year suggesting that defective repair of injured retinal vessels by endothelial progenitor cells may contribute to the pathogenesis of diabetic retinopathy. We assess these findings and discuss how they could eventually lead to new therapeutic options for diabetic retinopathy.
Collapse
Affiliation(s)
- Alan W Stitt
- Centre for Vision and Vascular Science, Queen's University of Belfast, The Royal Victoria Hospital, Belfast BT12 6BA, UK.
| | | | | | | | | |
Collapse
|
120
|
Othman A, Ahmad S, Megyerdi S, Mussell R, Choksi K, Maddipati KR, Elmarakby A, Rizk N, Al-Shabrawey M. 12/15-Lipoxygenase-derived lipid metabolites induce retinal endothelial cell barrier dysfunction: contribution of NADPH oxidase. PLoS One 2013; 8:e57254. [PMID: 23437353 PMCID: PMC3577708 DOI: 10.1371/journal.pone.0057254] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/18/2013] [Indexed: 01/08/2023] Open
Abstract
The purpose of the current study was to evaluate the effect of 12/15- lipoxygenase (12/15-LOX) metabolites on retinal endothelial cell (REC) barrier function. FITC-dextran flux across the REC monolayers and electrical cell-substrate impedance sensing (ECIS) were used to evaluate the effect of 12- and 15-hydroxyeicosatetreanoic acids (HETE) on REC permeability and transcellular electrical resistance (TER). Effect of 12- or 15-HETE on the levels of zonula occludens protein 1 (ZO-1), reactive oxygen species (ROS), NOX2, pVEGF-R2 and pSHP1 was examined in the presence or absence of inhibitors of NADPH oxidase. In vivo studies were performed using Ins2Akita mice treated with or without the 12/15-LOX inhibitor baicalein. Levels of HETE and inflammatory mediators were examined by LC/MS and Multiplex Immunoassay respectively. ROS generation and NOX2 expression were also measured in mice retinas. 12- and 15- HETE significantly increased permeability and reduced TER and ZO-1expression in REC. VEGF-R2 inhibitor reduced the permeability effect of 12-HETE. Treatment of REC with HETE also increased ROS generation and expression of NOX2 and pVEGF-R2 and decreased pSHP1 expression. Treatment of diabetic mice with baicalein significantly decreased retinal HETE, ICAM-1, VCAM-1, IL-6, ROS generation, and NOX2 expression. Baicalein also reduced pVEGF-R2 while restored pSHP1 levels in diabetic retina. Our findings suggest that 12/15-LOX contributes to vascular hyperpermeability during DR via NADPH oxidase dependent mechanism which involves suppression of protein tyrosine phosphatase and activation of VEGF-R2 signal pathway.
Collapse
Affiliation(s)
- Amira Othman
- Department of Oral Biology/Anatomy, College of Dental Medicine, Georgia Regents University (GRU), Augusta, Georgia, United States of America
- Department of Anatomy, Mansoura University, Mansoura, Egypt
| | - Saif Ahmad
- Department of Ophthalmology and Vision Discovery Institute, Medical College of Georgia, Georgia Regents University (GRU), Augusta, Georgia, United States of America
| | - Sylvia Megyerdi
- Department of Oral Biology/Anatomy, College of Dental Medicine, Georgia Regents University (GRU), Augusta, Georgia, United States of America
| | - Rene Mussell
- Department of Oral Biology/Anatomy, College of Dental Medicine, Georgia Regents University (GRU), Augusta, Georgia, United States of America
| | - Karishma Choksi
- Department of Oral Biology/Anatomy, College of Dental Medicine, Georgia Regents University (GRU), Augusta, Georgia, United States of America
| | - Krishna Rao Maddipati
- Department of Pathology, Wayne States University, Detroit, Michigan, United States of America
| | - Ahmed Elmarakby
- Department of Oral Biology/Anatomy, College of Dental Medicine, Georgia Regents University (GRU), Augusta, Georgia, United States of America
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University (GRU), Augusta, Georgia, United States of America
| | - Nasser Rizk
- Department of Health Sciences, College of Science, Qatar University, Doha, Qatar
| | - Mohamed Al-Shabrawey
- Department of Oral Biology/Anatomy, College of Dental Medicine, Georgia Regents University (GRU), Augusta, Georgia, United States of America
- Department of Anatomy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology and Vision Discovery Institute, Medical College of Georgia, Georgia Regents University (GRU), Augusta, Georgia, United States of America
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University (GRU), Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
121
|
He C, Sun Y, Ren X, Lin Q, Hu X, Huang X, Su SB, Liu Y, Liu X. Angiogenesis Mediated by Toll-Like Receptor 4 in Ischemic Neural Tissue. Arterioscler Thromb Vasc Biol 2013; 33:330-8. [DOI: 10.1161/atvbaha.112.300679] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Chang He
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center (C.H., Y.S., X.R., Q.L., X. Hu., S. -B.S., Y.L., X.L.) and Department of Immunology, Zhongshan School of Medicine, Institute of Human Virology (X. Huang), Sun Yat-sen University, Guangzhou, China
| | - Yuying Sun
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center (C.H., Y.S., X.R., Q.L., X. Hu., S. -B.S., Y.L., X.L.) and Department of Immunology, Zhongshan School of Medicine, Institute of Human Virology (X. Huang), Sun Yat-sen University, Guangzhou, China
| | - Xiangrong Ren
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center (C.H., Y.S., X.R., Q.L., X. Hu., S. -B.S., Y.L., X.L.) and Department of Immunology, Zhongshan School of Medicine, Institute of Human Virology (X. Huang), Sun Yat-sen University, Guangzhou, China
| | - Qing Lin
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center (C.H., Y.S., X.R., Q.L., X. Hu., S. -B.S., Y.L., X.L.) and Department of Immunology, Zhongshan School of Medicine, Institute of Human Virology (X. Huang), Sun Yat-sen University, Guangzhou, China
| | - Xiao Hu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center (C.H., Y.S., X.R., Q.L., X. Hu., S. -B.S., Y.L., X.L.) and Department of Immunology, Zhongshan School of Medicine, Institute of Human Virology (X. Huang), Sun Yat-sen University, Guangzhou, China
| | - Xi Huang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center (C.H., Y.S., X.R., Q.L., X. Hu., S. -B.S., Y.L., X.L.) and Department of Immunology, Zhongshan School of Medicine, Institute of Human Virology (X. Huang), Sun Yat-sen University, Guangzhou, China
| | - Shao-Bo Su
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center (C.H., Y.S., X.R., Q.L., X. Hu., S. -B.S., Y.L., X.L.) and Department of Immunology, Zhongshan School of Medicine, Institute of Human Virology (X. Huang), Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center (C.H., Y.S., X.R., Q.L., X. Hu., S. -B.S., Y.L., X.L.) and Department of Immunology, Zhongshan School of Medicine, Institute of Human Virology (X. Huang), Sun Yat-sen University, Guangzhou, China
| | - Xialin Liu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center (C.H., Y.S., X.R., Q.L., X. Hu., S. -B.S., Y.L., X.L.) and Department of Immunology, Zhongshan School of Medicine, Institute of Human Virology (X. Huang), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
122
|
Mima A, Qi W, Hiraoka-Yamomoto J, Park K, Matsumoto M, Kitada M, Li Q, Mizutani K, Yu E, Shimada T, Lee J, Shoelson SE, Jobin C, Rask-Madsen C, King GL. Retinal not systemic oxidative and inflammatory stress correlated with VEGF expression in rodent models of insulin resistance and diabetes. Invest Ophthalmol Vis Sci 2012; 53:8424-32. [PMID: 23197686 PMCID: PMC3753893 DOI: 10.1167/iovs.12-10207] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 10/10/2012] [Accepted: 11/20/2012] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To correlate changes between VEGF expression with systemic and retinal oxidative stress and inflammation in rodent models of obesity induced insulin resistance and diabetes. METHODS Retinal VEGF mRNA and protein levels were assessed by RT-PCR and VEGF ELISA, respectively. Urinary 8-hydroxydeoxyguanosine (8-OHdG), blood levels of C-reactive protein (CRP), malondialdehyde (MDA), and CD11b/c positive cell ratio were used as systemic inflammatory markers. Retinal expression of Nox2, Nox4, and p47phox mRNA levels were measured as oxidative stress markers. TNF-α, inter-cellular adhesion molecule-1 (ICAM-1), IL1β, and activation of nuclear factor κB (NF-κB) were used as retinal inflammatory markers. RESULTS Retinal VEGF mRNA and protein expression increased in Zucker diabetic fatty (ZDF(fa/fa)) rats and streptozotosin (STZ) induced diabetic Sprague-Dawley rats, after two months of disease, but not in Zucker fatty (ZF) rats. Systemic markers of oxidative stress and inflammation were elevated in insulin resistant and diabetic rats. Some oxidative stress and inflammatory markers (TNF-α, IL-6, ICAM-1, and IL1-β) were upregulated in the retina of ZDF(fa/fa) and STZ diabetic rats after 4 months of disease. In contrast, activation of NF-κB in the retina was observed in high fat fed nondiabetic and diabetic cis-NF-κB(EGFP) mice, ZF, ZDF(fa/fa), and STZ-induced diabetic rats. CONCLUSIONS Only persistent hyperglycemia and diabetes increased retinal VEGF expression. Some markers of inflammation and oxidative stress were elevated in the retina and systemic circulation of obese and insulin resistant rodents with and without diabetes. Induction of VEGF and its associated retinal pathologies by diabetes requires chronic hyperglycemia and factors in addition to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Akira Mima
- From the Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; and the
| | - Weier Qi
- From the Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; and the
| | - Junko Hiraoka-Yamomoto
- From the Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; and the
| | - Kyoungmin Park
- From the Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; and the
| | - Motonobu Matsumoto
- From the Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; and the
| | - Munehiro Kitada
- From the Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; and the
| | - Qian Li
- From the Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; and the
| | - Koji Mizutani
- From the Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; and the
| | - Edward Yu
- From the Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; and the
| | - Takeshi Shimada
- From the Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; and the
| | - Jongsoon Lee
- From the Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; and the
| | - Steven E. Shoelson
- From the Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; and the
| | - Christian Jobin
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Christian Rask-Madsen
- From the Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; and the
| | - George L. King
- From the Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; and the
| |
Collapse
|
123
|
Busik JV, Esselman WJ, Reid GE. Examining the role of lipid mediators in diabetic retinopathy. ACTA ACUST UNITED AC 2012; 7:661-675. [PMID: 23646066 DOI: 10.2217/clp.12.68] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy is the most disabling complication of diabetes, affecting 65% of patients after 10 years of the disease. Current treatment options for diabetic retinopathy are highly invasive and fall short of complete amelioration of the disease. Understanding the pathogenesis of diabetic retinopathy is critical to the development of more effective treatment options. Diabetic hyperglycemia and dyslipidemia are the main metabolic insults that affect retinal degeneration in diabetes. Although the role of hyperglycemia in inducing diabetic retinopathy has been studied in detail, much less attention has been paid to dyslipidemia. Recent clinical studies have demonstrated a strong association between dyslipidemia and development of diabetic retinopathy, highlighting the importance of understanding the exact changes in retinal lipid metabolism in diabetes. This review describes what is known on the role of dyslipidemia in the development of diabetic retinopathy, with a focus on retinal-specific lipid metabolism and its dysregulation in diabetes.
Collapse
Affiliation(s)
- Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | | |
Collapse
|
124
|
Chen QZ, Han WQ, Chen J, Zhu DL, Chen-Yan, Gao PJ. Anti-stiffness effect of apocynin in deoxycorticosterone acetate-salt hypertensive rats via inhibition of oxidative stress. Hypertens Res 2012; 36:306-12. [PMID: 23160437 DOI: 10.1038/hr.2012.170] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study sought to determine if apocynin, a nicotinamide adenine dinucleotide phosphate oxidase inhibitor, would attenuate arterial stiffness in salt-sensitive hypertensive rats via structural and functional changes in conduit arteries. We showed that tail blood pressure was significantly higher in deoxycorticosterone acetate-salt-induced hypertensive (DSH) rats compared with the sham control group (P<0.01). Morphological analysis and biochemical assay showed that large arteries in DSH rats underwent significant remodeling including increased medial thickness in carotid arteries compared with the control rats (194.25±5.66 vs. 120.48±7.93 μm, P<0.05) and increased collagen deposition in thoracic aorta (1.03±0.09 vs. 0.85±0.04 mg cm(-1), P<0.05). These changes were associated with increases in reactive oxygen species (ROS) level and increased thoracic aortic stiffness compared with the control rats (6.21±0.79 m s(-1) vs. 4.64±0.59 m s(-1), P<0.01). Treatment with apocynin significantly prevented ROS increases and collagen deposition (0.84±0.04 vs. 1.03±0.09 mg cm(-1), P<0.05), and reduced arterial stiffness as shown by decreased pulse wave velocity in the thoracic aorta (5.31±0.88 vs. 6.21±0.79 m s(-1), P<0.01). Additionally, apocynin prevented carotid artery wall thickening (58.57±3.40 vs. 78.89±4.10 μm, P<0.05). In conclusion we have shown that increased ROS level is associated with increased aortic stiffness, and deposition of collagen in the aortic arterial wall in DSH rats. Apocynin prevented ROS increases and arterial stiffness in DSH rats. Antioxidant therapy may be a potential treatment of large arterial stiffness in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Qi-Zhi Chen
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
125
|
Retinol-binding protein 4 induces inflammation in human endothelial cells by an NADPH oxidase- and nuclear factor kappa B-dependent and retinol-independent mechanism. Mol Cell Biol 2012; 32:5103-15. [PMID: 23071093 DOI: 10.1128/mcb.00820-12] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Serum retinol-binding protein 4 (RBP4) is the sole specific vitamin A (retinol) transporter in blood. Elevation of serum RBP4 in patients has been linked to cardiovascular disease and diabetic retinopathy. However, the significance of RBP4 elevation in the pathogenesis of these vascular diseases is unknown. Here we show that RBP4 induces inflammation in primary human retinal capillary endothelial cells (HRCEC) and human umbilical vein endothelial cells (HUVEC) by stimulating expression of proinflammatory molecules involved in leukocyte recruitment and adherence to endothelium, including vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), E-selectin, monocyte chemoattractant protein 1 (MCP-1), and interleukin-6 (IL-6). We demonstrate that these novel effects of RBP4 are independent of retinol and the RBP4 membrane receptor STRA6 and occur in part via activation of NADPH oxidase and NF-κB. Importantly, retinol-free RBP4 (apo-RBP4) was as potent as retinol-bound RBP4 (holo-RBP4) in inducing proinflammatory molecules in both HRCEC and HUVEC. These studies reveal that RBP4 elevation can directly contribute to endothelial inflammation and therefore may play a causative role in the development or progression of vascular inflammation during cardiovascular disease and microvascular complications of diabetes.
Collapse
|
126
|
Massey KJ, Hong NJ, Garvin JL. Angiotensin II stimulates superoxide production in the thick ascending limb by activating NOX4. Am J Physiol Cell Physiol 2012; 303:C781-9. [PMID: 22875785 DOI: 10.1152/ajpcell.00457.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin II (ANG II) stimulates production of superoxide (O(2)(-)) by NADPH oxidase (NOX) in medullary thick ascending limbs (TALs). There are three isoforms of the catalytic subunit (NOX1, 2, and 4) known to be expressed in the kidney. We hypothesized that NOX2 mediates ANG II-induced O(2)(-) production by TALs. To test this, we measured NOX1, 2, and 4 mRNA and protein by RT-PCR and Western blot in TAL suspensions from rats and found three catalytic subunits expressed in the TAL. We measured O(2)(-) production using a lucigenin-based assay. To assess the contribution of NOX2, we measured ANG II-induced O(2)(-) production in wild-type and NOX2 knockout mice (KO). ANG II increased O(2)(-) production by 346 relative light units (RLU)/mg protein in the wild-type mice (n = 9; P < 0.0007 vs. control). In the knockout mice, ANG II increased O(2)(-) production by 290 RLU/mg protein (n = 9; P < 0.007 vs. control). This suggests that NOX2 does not contribute to ANG II-induced O(2)(-) production (P < 0.6 WT vs. KO). To test whether NOX4 mediates the effect of ANG II, we selectively decreased NOX4 expression in rats using an adenovirus that expresses NOX4 short hairpin (sh)RNA. Six to seven days after in vivo transduction of the kidney outer medulla, NOX4 mRNA was reduced by 77%, while NOX1 and NOX2 mRNA was unaffected. In control TALs, ANG II stimulated O(2)(-) production by 96%. In TALs transduced with NOX4 shRNA, ANG II-stimulated O(2)(-) production was not significantly different from the baseline. We concluded that NOX4 is the main catalytic isoform of NADPH oxidase that contributes to ANG II-stimulated O(2)(-) production by TALs.
Collapse
Affiliation(s)
- Katherine J Massey
- Hypertension and Vascular Research Division, Dept. of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA.
| | | | | |
Collapse
|
127
|
Wilkinson-Berka JL, Agrotis A, Deliyanti D. The retinal renin-angiotensin system: roles of angiotensin II and aldosterone. Peptides 2012; 36:142-50. [PMID: 22537944 DOI: 10.1016/j.peptides.2012.04.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 01/29/2023]
Abstract
In the present review we examine the experimental and clinical evidence for the presence of a local renin-angiotensin system within the retina. Interest in a pathogenic role for the renin-angiotensin system in retinal disease originally stemmed from observations that components of the pathway were elevated in retina during the development of certain retinal pathologies. Since then, our knowledge about the contribution of the RAS to retinal disease has greatly expanded. We discuss the known functions of the renin-angiotensin system in retinopathy of prematurity and diabetic retinopathy. This includes the promotion of retinal neovascularization, inflammation, oxidative stress and neuronal and glial dysfunction. The contribution of specific components of the renin-angiotensin system is evaluated with a particular focus on angiotensin II and aldosterone and their cognate receptors. The therapeutic utility of inhibiting key components of the renin-angiotensin system is complex, but may hold promise for the prevention and improvement of vision threatening diseases.
Collapse
|
128
|
Oxidative Stress, Nox Isoforms and Complications of Diabetes—Potential Targets for Novel Therapies. J Cardiovasc Transl Res 2012; 5:509-18. [DOI: 10.1007/s12265-012-9387-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/06/2012] [Indexed: 01/02/2023]
|
129
|
Kar S, Kavdia M. Local oxidative and nitrosative stress increases in the microcirculation during leukocytes-endothelial cell interactions. PLoS One 2012; 7:e38912. [PMID: 22719984 PMCID: PMC3375306 DOI: 10.1371/journal.pone.0038912] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/15/2012] [Indexed: 11/18/2022] Open
Abstract
Leukocyte-endothelial cell interactions and leukocyte activation are important factors for vascular diseases including nephropathy, retinopathy and angiopathy. In addition, endothelial cell dysfunction is reported in vascular disease condition. Endothelial dysfunction is characterized by increased superoxide (O2•−) production from endothelium and reduction in NO bioavailability. Experimental studies have suggested a possible role for leukocyte-endothelial cell interaction in the vessel NO and peroxynitrite levels and their role in vascular disorders in the arterial side of microcirculation. However, anti-adhesion therapies for preventing leukocyte-endothelial cell interaction related vascular disorders showed limited success. The endothelial dysfunction related changes in vessel NO and peroxynitrite levels, leukocyte-endothelial cell interaction and leukocyte activation are not completely understood in vascular disorders. The objective of this study was to investigate the role of endothelial dysfunction extent, leukocyte-endothelial interaction, leukocyte activation and superoxide dismutase therapy on the transport and interactions of NO, O2•− and peroxynitrite in the microcirculation. We developed a biotransport model of NO, O2•− and peroxynitrite in the arteriolar microcirculation and incorporated leukocytes-endothelial cell interactions. The concentration profiles of NO, O2•− and peroxynitrite within blood vessel and leukocytes are presented at multiple levels of endothelial oxidative stress with leukocyte activation and increased superoxide dismutase accounted for in certain cases. The results showed that the maximum concentrations of NO decreased ∼0.6 fold, O2•− increased ∼27 fold and peroxynitrite increased ∼30 fold in the endothelial and smooth muscle region in severe oxidative stress condition as compared to that of normal physiologic conditions. The results show that the onset of endothelial oxidative stress can cause an increase in O2•− and peroxynitrite concentration in the lumen. The increased O2•− and peroxynitrite can cause leukocytes priming through peroxynitrite and leukocytes activation through secondary stimuli of O2•− in bloodstream without endothelial interaction. This finding supports that leukocyte rolling/adhesion and activation are independent events.
Collapse
Affiliation(s)
- Saptarshi Kar
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America.
| | | |
Collapse
|
130
|
LUPACHYK SERGEY, STAVNIICHUK ROMAN, KOMISSARENKO JULIAI, DREL VIKTORR, OBROSOV ALEXANDERA, EL-REMESSY AZZAB, PACHER PAL, OBROSOVA IRINAG. Na+/H+-exchanger-1 inhibition counteracts diabetic cataract formation and retinal oxidative-nitrative stress and apoptosis. Int J Mol Med 2012; 29:989-998. [PMID: 22407349 PMCID: PMC3375174 DOI: 10.3892/ijmm.2012.933] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/13/2012] [Indexed: 12/20/2022] Open
Abstract
The Na⁺-H⁺-exchanger-1 (NHE-1) controls intracellular pH and glycolytic enzyme activities, and its expression and activity are increased by diabetes and high glucose. NHE-1-dependent upregulation of the upper part of glycolysis, under conditions of inhibition (lens) or insufficient activation (retina) of glyceraldehyde 3-phosphate dehydrogenase, underlies diversion of the excessive glycolytic flux towards several pathways contributing to oxidative stress, a causative factor in diabetic cataractogenesis and retinopathy. This study evaluated the role for NHE-1 in diabetic cataract formation and retinal oxidative stress and apoptosis. Control and streptozotocin-diabetic rats were maintained with or without treatment with the NHE-1 inhibitor cariporide (Sanofi-Aventis, 10 mgkg-1d-1) for 3.5 months. In in vitro studies, bovine retinal pericytes and endothelial cells were cultured in 5 or 30 mM glucose, with or without 10 µM cariporide, for 7 days. A several-fold increase of the by-product of glycolysis, α-glycerophosphate, indicative of activation of the upper part of glycolysis, was present in both rat lens and retina at an early (1-month) stage of streptozotocin-diabetes. Cariporide did not affect diabetic hyperglycemia and counteracted lens oxidative-nitrative stress and p38 MAPK activation, without affecting glucose or sorbitol pathway intermediate accumulation. Cataract formation (indirect ophthalmoscopy and slit-lamp examination) was delayed, but not prevented. The number of TUNEL-positive cells per flat-mounted retina was increased 4.4-fold in diabetic rats (101 ± 17 vs. 23 ± 8 in controls , P<0.01), and this increase was attenuated by cariporide (45 ± 12, P<0.01). Nitrotyrosine and poly(ADP-ribose) fluorescence and percentage of TUNEL-positive cells were increased in pericytes and endothelial cells cultured in 30 mM glucose, and these changes were at least partially prevented by cariporide. In conclusion, NHE-1 contributes to diabetic cataract formation, and retinal oxidative-nitrative stress and apoptosis. The findings identify a new therapeutic target for diabetic ocular complications.
Collapse
Affiliation(s)
- SERGEY LUPACHYK
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - ROMAN STAVNIICHUK
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | | | - VIKTOR R. DREL
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - ALEXANDER A. OBROSOV
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | | | - PAL PACHER
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, NIH/NIAAA, Bethesda, MD, USA
| | - IRINA G. OBROSOVA
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
131
|
Doonan F, Groeger G, Cotter TG. Preventing retinal apoptosis--is there a common therapeutic theme? Exp Cell Res 2012; 318:1278-84. [PMID: 22366479 DOI: 10.1016/j.yexcr.2012.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 11/16/2022]
Abstract
There is an urgent need for therapies for retinal diseases; retinitis pigmentosa sufferers have no treatment options available and those targeted at other retinopathies have shown limited effectiveness. The process of programmed cell death or apoptosis although complex, remains a possible target for the treatment of retinal diseases. Having identified apoptosis in the vertebrate retina in populations of immature neurons as an essential part of development it was proposed that re-activation of these developmental cell death pathways might provide insight into the death mechanisms operating in retinal diseases. However, the discovery that numerous factors initiate and mediate the apoptotic cascade in mature photoreceptors has resulted in a relatively untargeted approach to examining and arresting apoptosis in the retina. In the last 5 years, mouse models have been treated with a diverse range of drugs or factors including anti-oxidants, growth factors, steroid hormones, calcium/calpain inhibitors and tetracycline antibiotics. Therefore to draw a unifying theme from these broad research areas is challenging. However, this review focusses on two targets which are currently under investigation, reactive oxygen species and mammalian target of rapamycin, drawing together the common themes of these research areas.
Collapse
Affiliation(s)
- Francesca Doonan
- Biochemistry Department, Biosciences Research Institute, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
132
|
Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med 2012; 2012:918267. [PMID: 22611498 PMCID: PMC3348526 DOI: 10.1155/2012/918267] [Citation(s) in RCA: 340] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/18/2011] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that type 2 DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications, however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes.
Collapse
Affiliation(s)
| | | | - Christopher G. Kevil
- Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|
133
|
Ola MS, Nawaz MI, Siddiquei MM, Al-Amro S, Abu El-Asrar AM. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. J Diabetes Complications 2012; 26:56-64. [PMID: 22226482 DOI: 10.1016/j.jdiacomp.2011.11.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/17/2011] [Accepted: 11/17/2011] [Indexed: 02/07/2023]
Abstract
One of the major complications in patients with diabetes is diabetic retinopathy (DR), a leading cause of blindness worldwide. It takes several years before any clinical signs of retinopathy appear in diabetic patients, which gives an ample opportunity for scientists to uncover biochemical and molecular mechanism implicated early in the development and progression of the disease. During the past few decades, research progress has been made in investigating the pathophysiology of the disease; however, due to nonavailability of human retinal samples at different stages of the disease and also due to lack of a proper animal model of DR, the exact molecular mechanism has not been elucidated, making therapeutic a difficult task. In this review article, we have discussed a number of diabetes-induced metabolites such as glucose, lipids, amino acids, and other related factors and molecules that are implicated in the pathophysiology of the DR. Furthermore, we have highlighted neurodegeneration and regulation of neurotrophic factors, being recognized as early events that may be involved in the pathology of the disease in the course of DR. An understanding of the biochemical and molecular changes especially early in the diabetic retina may lead to new and effective therapies towards prevention and amelioration of DR, which is important for the millions of individuals who already have or are likely to develop the disease before a cure becomes available.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Ophthalmology, College of Medicine, King Saud University, KAUH, Riyadh, KSA.
| | | | | | | | | |
Collapse
|
134
|
Zhang W, Liu H, Al-Shabrawey M, Caldwell RW, Caldwell RB. Inflammation and diabetic retinal microvascular complications. J Cardiovasc Dis Res 2011; 2:96-103. [PMID: 21814413 PMCID: PMC3144626 DOI: 10.4103/0975-3583.83035] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes and is a leading cause of blindness in people of the working age in Western countries. A major pathology of DR is microvascular complications such as non-perfused vessels, microaneurysms, dot/blot hemorrhages, cotton-wool spots, venous beading, vascular loops, vascular leakage and neovascularization. Multiple mechanisms are involved in these alternations. This review will focus on the role of inflammation in diabetic retinal microvascular complications and discuss the potential therapies by targeting inflammation.
Collapse
Affiliation(s)
- Wenbo Zhang
- Vascular Biology Center, Georgia Health Sciences University, Augusta, Georgia, USA
| | | | | | | | | |
Collapse
|
135
|
Yokota H, Narayanan SP, Zhang W, Liu H, Rojas M, Xu Z, Lemtalsi T, Nagaoka T, Yoshida A, Brooks SE, Caldwell RW, Caldwell RB. Neuroprotection from retinal ischemia/reperfusion injury by NOX2 NADPH oxidase deletion. Invest Ophthalmol Vis Sci 2011; 52:8123-31. [PMID: 21917939 DOI: 10.1167/iovs.11-8318] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The aim of this study was to determine whether NOX2, one of the homologs of NADPH oxidase, plays a role in neuronal cell death during retinal ischemia. METHODS Ischemia reperfusion (I/R) injury was generated in C57/BL6 and NOX2(-/-) mice by increasing the intraocular pressure (IOP) to 110 mm Hg for 40 minutes followed by reperfusion. Quantitative PCR and Western blot analysis were performed to measure NOX2 expression. Reactive oxygen species (ROS) formation was assessed by dihydroethidium imaging of superoxide formation and Western blot analysis for tyrosine nitration. TUNEL assay was performed to determine cell death at 3 days after I/R. Survival of neurons within the ganglion cell layer (GCL) was assessed at 7 days after I/R by confocal morphometric imaging of retinal wholemounts immunostained with NeuN antibody. Activation of mitogen-activated protein kinases and nuclear factor κB (NF-κΒ) was measured by Western blot analysis. RESULTS NOX2 mRNA and protein and ROS were significantly increased in wild-type I/R retinas. This effect was associated with a 60% decrease in the number of GCL neurons and a 10-fold increase in TUNEL-positive cells compared with the fellow sham control eyes. Phosphorylation of ERK and NF-κB was significantly increased in wild-type I/R retinas. Each of these effects was markedly attenuated in the NOX2(-/-) retina (P < 0.01). CONCLUSIONS These data demonstrate that the deletion of NOX2 can reduce I/R-induced cell death and preserve retinal GCL neurons after I/R injury. The neuronal cell injury caused by I/R is associated with the activation of ERK and NF-κB signaling mechanisms.
Collapse
Affiliation(s)
- Harumasa Yokota
- Vascular Biology Center, Georgia Health Sciences University, Augusta, Georgia 30912-2500, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Zhang W, Liu H, Rojas M, Caldwell RW, Caldwell RB. Anti-inflammatory therapy for diabetic retinopathy. Immunotherapy 2011; 3:609-28. [PMID: 21554091 DOI: 10.2217/imt.11.24] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes. This devastating disease is a leading cause of blindness in people of working age in industrialized countries and affects the daily lives of millions of people. Despite tight glycemic control, blood pressure control and lipid-lowering therapy, the number of DR patients keeps growing and therapeutic approaches are limited. Moreover, there are significant limitations and side effects associated with the current therapies. Thus, there is a great need for development of new strategies for prevention and treatment of DR. Studies have shown that DR has prominent features of chronic, subclinical inflammation. This article focuses on the role of inflammation in DR and summarizes the progress of studies of anti-inflammatory strategies for DR.
Collapse
Affiliation(s)
- Wenbo Zhang
- Vascular Biology Center, Georgia Health Sciences University, Augusta, GA 30912-2500, USA.
| | | | | | | | | |
Collapse
|
137
|
Frey T, Antonetti DA. Alterations to the blood-retinal barrier in diabetes: cytokines and reactive oxygen species. Antioxid Redox Signal 2011; 15:1271-84. [PMID: 21294655 DOI: 10.1089/ars.2011.3906] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in Western society. Since the prevalence of diabetes continues to increase dramatically, the impact of DR will only worsen unless new therapeutic options are developed. Recent data demonstrate that oxidative stress contributes to the pathology of DR and inhibition of oxidative stress reduces retinal vascular permeability. However, direct mechanisms by which oxidative stress alters the blood-retinal barrier (BRB) and increases vascular permeability remain to be elucidated. A large body of evidence demonstrates a clear role for altered expression of cytokines and growth factors in DR, resulting in increased vascular permeability, and the molecular mechanisms for these processes are beginning to emerge. The pathology of DR is likely a result of metabolic dysregulation contributing to both oxidative stress and cytokine production. This review will examine the evidence for oxidative stress, growth factors, and other cytokines in tight junction regulation and vascular permeability in DR.
Collapse
Affiliation(s)
- Tiffany Frey
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | | |
Collapse
|
138
|
Jarajapu YPR, Caballero S, Verma A, Nakagawa T, Lo MC, Li Q, Grant MB. Blockade of NADPH oxidase restores vasoreparative function in diabetic CD34+ cells. Invest Ophthalmol Vis Sci 2011; 52:5093-104. [PMID: 21676908 DOI: 10.1167/iovs.10-70911] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The vasodegenerative phase of diabetic retinopathy is likely caused by endothelial dysfunction and reduced endothelial repair. Migration of endothelial progenitor cells (EPCs) into areas of vascular injury is critical to vascular repair. This key function, often defective in diabetes, is largely mediated by nitric oxide (NO), which is known to be inactivated by superoxide produced by NADPH oxidase. The authors tested the hypothesis that either increasing eNOS expression or inhibiting NADPH oxidase would restore the reparative function in diabetic EPCs. METHODS Peripheral blood was obtained from healthy (n = 27) and diabetic (n = 31) persons, and CD34(+) cells were isolated. Expression and activation of eNOS and NADPH oxidase and intracellular levels of NO, superoxide, and peroxynitrite were evaluated. cGMP production and migration to SDF-1α were also determined. Reparative function was evaluated in a mouse model of retinal ischemia-reperfusion injury. RESULTS Diabetic EPCs demonstrate reduced eNOS expression and decreased NO bioavailability and migration in response to SDF-1α. Increasing eNOS expression in diabetic cells by AVE3085 resulted in increased peroxynitrite levels and, therefore, did not enhance NO-mediated functions in vitro and in vivo. Expression of Nox2, NADPH oxidase activity, and superoxide levels were higher in diabetic than in nondiabetic EPCs. Pretreatment with apocynin or gp91ds-tat increased NO bioavailability without increasing eNOS activity in response to SDF-1α. Ex vivo NADPH oxidase inhibition in diabetic cells restored migratory function in vitro and enhanced their homing to ischemic retinal vasculature in vivo. CONCLUSIONS The NADPH oxidase system is a promising target for correcting vasoreparative dysfunction in diabetic EPCs.
Collapse
Affiliation(s)
- Yagna P R Jarajapu
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610-0267, USA
| | | | | | | | | | | | | |
Collapse
|
139
|
High-mobility group box-1 and biomarkers of inflammation in the vitreous from patients with proliferative diabetic retinopathy. Mol Vis 2011; 17:1829-38. [PMID: 21850157 PMCID: PMC3137555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/01/2011] [Indexed: 11/01/2022] Open
Abstract
PURPOSE To measure levels of high-mobility group box -1 (HMGB1) and soluble receptor for advanced glycation end products (sRAGE) in the vitreous fluid from patients with proliferative diabetic retinopathy (PDR) and to correlate their levels with clinical disease activity and the levels of the inflammatory biomarkers monocyte chemoattractant protein-1 (MCP-1), soluble intercellular adhesion molecule-1 (sICAM-1), interleukin-1β (IL-1β), and granulocyte macrophage colony-stimulating factor (GM-CSF). In addition, we examined the expression of HMGB1 in the retinas of diabetic mice. METHODS Vitreous samples from 29 PDR and 17 nondiabetic patients were studied by enzyme-linked immunosorbent assay. Retinas of mice were examined by immunofluorescence analysis and western blotting. RESULTS HMGB1 was detected in all vitreous samples and sRAGE was detected in 5 PDR samples. IL-1β was detected in 3PDR samples and GM-CSF was not detected. Mean HMGB1 levels in PDR with active neovascularization were twofold and threefold higher than that in inactive PDR and nondiabetic patients, respectively. Mean HMGB1 levels in PDR patients with hemorrhage were significantly higher than those in PDR patients without hemorrhage and nondiabetic patients (p=0.0111). There were significant correlations between levels of HMGB1 and levels of MCP-1 (r=0.333, p=0.025) and sICAM-1 (r=0.548, p<0.001). HMGB1 expression was also upregulated in the retinas of diabetic mice. CONCLUSIONS Subclinical chronic inflammation might contribute to the progression of PDR.
Collapse
|
140
|
Ibrahim AS, El-shishtawy MM, Zhang W, Caldwell RB, Liou GI. A(₂A) adenosine receptor (A(₂A)AR) as a therapeutic target in diabetic retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2136-2145. [PMID: 21514428 PMCID: PMC3081155 DOI: 10.1016/j.ajpath.2011.01.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 01/03/2011] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
Abstract
In diabetic retinopathy (DR), abnormalities in vascular and neuronal function are closely related to the local production of inflammatory mediators whose potential source is microglia. A(₂A) adenosine receptor (A(₂A)AR) has been shown to possess anti-inflammatory properties that have not been studied in DR. Here, we evaluate the role of A(₂A)AR and its underlying signaling in retinal complications associated with diabetes. Initial studies in wild-type mice revealed that the treatment with the A(₂A)AR agonist resulted in marked decreases in hyperglycemia-induced retinal cell death and tumor necrosis factor (TNF)-α release. To further assess the role of A(₂A)AR in DR, we studied the effects of A(₂A)AR ablation on diabetes-induced retinal abnormalities. Diabetic A(₂A)AR(-/-) mice had significantly more terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells, TNF-α release, and intercellular adhesion molecule-1 expression compared with diabetic wild-type mice. To explore a potential mechanism by which A(₂A)AR signaling regulates inflammation in DR, we performed additional studies using microglial cells treated with Amadori-glycated albumin, a risk factor in diabetic disorders. The results showed that activation of A(₂A)AR attenuated Amadori-glycated albumin-induced TNF-α release in a cAMP/exchange protein directly activated by cAMP-dependent mechanism and significantly repressed the inflammatory cascade, C-Raf/extracellular signal-regulated kinase (ERK), in activated microglia. Collectively, this work provides pharmacological and genetic evidence for A(₂A)AR signaling as a control point of cell death in DR and suggests that the retinal protective effect of A(2A)AR is mediated by abrogating the inflammatory response that occurs in microglia via interaction with C-Raf/ERK pathway.
Collapse
Affiliation(s)
- Ahmed S. Ibrahim
- Department of Ophthalmology, Medical College of Georgia, Augusta, Georgia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | - Wenbo Zhang
- VA Medical Center, Augusta, Georgia and Vascular Biology Center, Medical College of Georgia, Augusta, Georgia
| | - Ruth B. Caldwell
- VA Medical Center, Augusta, Georgia and Vascular Biology Center, Medical College of Georgia, Augusta, Georgia
| | - Gregory I. Liou
- Department of Ophthalmology, Medical College of Georgia, Augusta, Georgia
| |
Collapse
|
141
|
Santos JM, Mohammad G, Zhong Q, Kowluru RA. Diabetic retinopathy, superoxide damage and antioxidants. Curr Pharm Biotechnol 2011; 12:352-61. [PMID: 20939803 PMCID: PMC3214730 DOI: 10.2174/138920111794480507] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 05/31/2010] [Indexed: 01/01/2023]
Abstract
Retinopathy, the leading cause of acquired blindness in young adults, is one of the most feared complications of diabetes, and hyperglycemia is considered as the major trigger for its development. The microvasculature of the retina is constantly bombarded by high glucose, and this insult results in many metabolic, structural and functional changes. Retinal mitochondria become dysfunctional, its DNA is damaged and proteins encoded by its DNA are decreased. The electron transport chain system becomes compromised, further producing superoxide and providing no relief to the retina from a continuous cycle of damage. Although the retina attempts to initiate repair mechanisms by inducing gene expressions of the repair enzymes, their mitochondrial accumulation remains deficient. Understanding the molecular mechanism of mitochondrial damage should help identify therapies to treat/retard this sight threatening complication of diabetes. Our hope is that if the retinal mitochondria are maintained healthy with adjunct therapies, the development and progression of diabetic retinopathy can be inhibited.
Collapse
Affiliation(s)
- Julia M Santos
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | | | | | | |
Collapse
|
142
|
Zhou X, Wong LL, Karakoti AS, Seal S, McGinnis JF. Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the Vldlr knockout mouse. PLoS One 2011; 6:e16733. [PMID: 21364932 PMCID: PMC3043063 DOI: 10.1371/journal.pone.0016733] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 12/28/2010] [Indexed: 02/07/2023] Open
Abstract
Many neurodegenerative diseases are known to occur and progress because of oxidative stress, the presence of reactive oxygen species (ROS) in excess of the cellular defensive capabilities. Age related macular degeneration (AMD), diabetic retinopathy (DR) and inherited retinal degeneration share oxidative stress as a common node upstream of the blinding effects of these diseases. Knockout of the Vldlr gene results in a mouse that develops intraretinal and subretinal neovascular lesions within the first month of age and is an excellent model for a form of AMD called retinal angiomatous proliferation (RAP). Cerium oxide nanoparticles (nanoceria) catalytically scavenge ROS by mimicking the activities of superoxide dismutase and catalase. A single intravitreal injection of nanoceria into the Vldlr-/- eye was shown to inhibit: the rise in ROS in the Vldlr-/- retina, increases in vascular endothelial growth factor (VEGF) in the photoreceptor layer, and the formation of intraretinal and subretinal neovascular lesions. Of more therapeutic interest, injection of nanoceria into older mice (postnatal day 28) resulted in the regression of existing vascular lesions indicating that the pathologic neovessels require the continual production of excessive ROS. Our data demonstrate the unique ability of nanoceria to prevent downstream effects of oxidative stress in vivo and support their therapeutic potential for treatment of neurodegenerative diseases such as AMD and DR.
Collapse
Affiliation(s)
- Xiaohong Zhou
- Department of Ophthalmology, University of Oklahoma, College of Medicine, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
| | - Lily L. Wong
- Department of Ophthalmology, University of Oklahoma, College of Medicine, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
- * E-mail: (JFM); (LLW)
| | - Ajay S. Karakoti
- Department of Ophthalmology, University of Oklahoma, College of Medicine, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
- Advanced Materials Processing Analysis Center, Mechanical Materials Aerospace Engineering, Nanoscience, and Technology Center, University of Central Florida, Orlando, Florida, United States of America
| | - Sudipta Seal
- Department of Ophthalmology, University of Oklahoma, College of Medicine, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
- Advanced Materials Processing Analysis Center, Mechanical Materials Aerospace Engineering, Nanoscience, and Technology Center, University of Central Florida, Orlando, Florida, United States of America
| | - James F. McGinnis
- Department of Ophthalmology, University of Oklahoma, College of Medicine, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States of America
- Department of Ophthalmology and Cell Biology, Oklahoma Center for Neuroscience, Oklahoma City, Oklahoma, United States of America
- * E-mail: (JFM); (LLW)
| |
Collapse
|
143
|
Al-Shabrawey M, Mussell R, Kahook K, Tawfik A, Eladl M, Sarthy V, Nussbaum J, El-Marakby A, Park SY, Gurel Z, Sheibani N, Maddipati KR. Increased expression and activity of 12-lipoxygenase in oxygen-induced ischemic retinopathy and proliferative diabetic retinopathy: implications in retinal neovascularization. Diabetes 2011; 60:614-24. [PMID: 21228311 PMCID: PMC3028363 DOI: 10.2337/db10-0008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 11/21/2010] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Arachidonic acid is metabolized by 12-lipoxygenase (12-LOX) to 12-hydroxyeicosatetraenoic acid (12-HETE) and has an important role in the regulation of angiogenesis and endothelial cell proliferation and migration. The goal of this study was to investigate whether 12-LOX plays a role in retinal neovascularization (NV). RESEARCH DESIGN AND METHODS Experiments were performed using retinas from a murine model of oxygen-induced ischemic retinopathy (OIR) that was treated with and without the LOX pathway inhibitor, baicalein, or lacking 12-LOX. We also analyzed vitreous samples from patients with and without proliferative diabetic retinopathy (PDR). Western blotting and RT-PCR were used to assess the expression of 12-LOX, vascular endothelial growth factor (VEGF), and pigment epithelium-derived factor (PEDF). Liquid chromatography-mass spectrometry was used to assess the amounts of HETEs in the murine retina and human vitreous samples. The effects of 12-HETE on VEGF and PEDF expression were evaluated in Müller cells (rMCs), primary mouse retinal pigment epithelial cells, and astrocytes. RESULTS Retinal NV during OIR was associated with increased 12-LOX expression and 12-, 15-, and 5-HETE production. The amounts of HETEs also were significantly higher in the vitreous of diabetic patients with PDR. Retinal NV was markedly abrogated in mice treated with baicalein or mice lacking 12-LOX. This was associated with decreased VEGF expression and restoration of PEDF levels. PEDF expression was reduced in 12-HETE-treated rMCs, astrocytes, and the retinal pigment epithelium. Only rMCs and astrocytes showed increased VEGF expression by 12-HETE. CONCLUSIONS 12-LOX and its product HETE are important regulators of retinal NV through modulation of VEGF and PEDF expression and could provide a new therapeutic target to prevent and treat ischemic retinopathy.
Collapse
Affiliation(s)
- Mohamed Al-Shabrawey
- Department of Oral Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Shen GX. Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase. Can J Physiol Pharmacol 2011; 88:241-8. [PMID: 20393589 DOI: 10.1139/y10-018] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases are the predominant cause of death in patients with diabetes mellitus. Underlying mechanism for the susceptibility of diabetic patients to cardiovascular diseases remains unclear. Elevated oxidative stress was detected in diabetic patients and in animal models of diabetes. Hyperglycemia, oxidatively modified atherogenic lipoproteins, and advanced glycation end products are linked to oxidative stress in diabetes. Mitochondria are one of major sources of reactive oxygen species (ROS) in cells. Mitochondrial dysfunction increases electron leak and the generation of ROS from the mitochondrial respiratory chain (MRC). High levels of glucose and lipids impair the activities of MRC complex enzymes. NADPH oxidase (NOX) generates superoxide from NADPH in cells. Increased NOX activity was detected in diabetic patients. Hyperglycemia and hyperlipidemia increased the expression of NOX in vascular endothelial cells. Accumulated lines of evidence indicate that oxidative stress induced by excessive ROS production is linked to many processes associated with diabetic cardiovascular complications. Overproduction of ROS resulting from mitochondrial dysfunction or NOX activation is associated with uncoupling of endothelial nitric oxide synthase, which leads to reduced production of nitric oxide and endothelial-dependent vasodilation. Gene silence or inhibitor of NOX reduced oxidized or glycated LDL-induced expression of plasminogen activator inhibitor-1 in endothelial cells. Statins, hypoglycemic agents, and exercise may reduce oxidative stress in diabetic patients through the reduction of NOX activity or the improvement of mitochondrial function, which may prevent or postpone the development of cardiovascular complications.
Collapse
Affiliation(s)
- Garry X Shen
- Department of Internal Medicine, University of Manitoba, 835-715 McDermot Avenue, Winnipeg MB R3E 3P4, Canada.
| |
Collapse
|
145
|
Olukman M, Orhan CE, Celenk FG, Ulker S. Apocynin restores endothelial dysfunction in streptozotocin diabetic rats through regulation of nitric oxide synthase and NADPH oxidase expressions. J Diabetes Complications 2010; 24:415-23. [PMID: 20226688 DOI: 10.1016/j.jdiacomp.2010.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/23/2009] [Accepted: 02/04/2010] [Indexed: 12/14/2022]
Abstract
AIM Increased production of reactive oxygen species (ROS) in the diabetic vasculature results in the impairment of nitric oxide (NO)-mediated relaxations leading to impaired endothelium-dependent vasodilation. An important source of ROS is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and the inhibition of this enzyme is an active area of interest. This study aimed to investigate the effects of apocynin, an NADPH oxidase inhibitor, on endothelial dysfunction and on the expression of NO synthase (NOS) and NADPH oxidase in thoracic aorta of diabetic rats. METHOD Streptozotocin (STZ)-diabetic rats received apocynin (16 mg/kg per day) for 4 weeks. Endothelium-dependent and -independent relaxations were determined in thoracic aortic rings. Western blotting and RT-PCR analysis were performed for NOSs and NADPH oxidase in the aortic tissue. RESULTS Acetylcholine-induced relaxations and l-NAME-induced contractions were decreased in diabetic aorta. The decrease in acetylcholine and l-NAME responses were prevented by apocynin treatment without a significant change in plasma glucose levels. Endothelial NOS (eNOS) protein and mRNA expression exhibited significant decrease in diabetes, while protein and/or mRNA expressions of inducible NOS (iNOS) as well as p22(phox) and gp91(phox) subunits of NADPH oxidase were increased, and these alterations were markedly prevented by apocynin treatment. CONCLUSION NADPH oxidase expression is increased in diabetic rat aorta. NADPH oxidase-mediated oxidative stress is accompanied by the decreased eNOS and increased iNOS expressions, contributing to endothelial dysfunction. Apocynin effectively prevents the increased NADPH oxidase expression in diabetic aorta and restores the alterations in NOS expression, blocking the vicious cycle leading to diabetes-associated endothelial dysfunction.
Collapse
MESH Headings
- Acetophenones/administration & dosage
- Acetylcholine/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/physiopathology
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/physiopathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/administration & dosage
- Gene Expression Regulation, Enzymologic/drug effects
- Male
- NADPH Oxidases/antagonists & inhibitors
- NADPH Oxidases/genetics
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide Synthase/genetics
- RNA, Messenger/analysis
- Rats
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Murat Olukman
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Ege University, Bornova, İzmir, Turkey
| | | | | | | |
Collapse
|
146
|
Validation of structural and functional lesions of diabetic retinopathy in mice. Mol Vis 2010; 16:2121-31. [PMID: 21139688 PMCID: PMC2994360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 10/14/2010] [Indexed: 11/11/2022] Open
Abstract
Diabetic retinopathy is a serious long-term complication of diabetes mellitus. There is considerable interest in using mouse models, which can be genetically modified, to understand how retinopathy develops and can be inhibited. Not all retinal lesions that develop in diabetic patients have been reproduced in diabetic mice; conversely, not all abnormalities found in diabetic mice have been studied or identified in diabetic patients. Thus, it is important to recognize which structural and functional abnormalities that develop in diabetic mice have been validated against the lesions that characteristically develop in diabetic patients. Those lesions that have been observed to develop in the mouse models to date are predominantly characteristic of the early stages of retinopathy. Identification of new therapeutic ways to inhibit these early lesions is expected to help inhibit progression to more advanced and clinically important stages of retinopathy.
Collapse
|
147
|
Mustapha NM, Tarr JM, Kohner EM, Chibber R. NADPH Oxidase versus Mitochondria-Derived ROS in Glucose-Induced Apoptosis of Pericytes in Early Diabetic Retinopathy. J Ophthalmol 2010; 2010:746978. [PMID: 20652059 PMCID: PMC2905948 DOI: 10.1155/2010/746978] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 03/29/2010] [Accepted: 04/23/2010] [Indexed: 01/15/2023] Open
Abstract
Objectives. Using apocynin (inhibitor of NADPH oxidase), and Mitoquinol 10 nitrate (MitoQ; mitochondrial-targeted antioxidant), we addressed the importance of mitochondria versus NADPH oxidase-derived ROS in glucose-induced apoptosis of pericytes. Methods. NADPH oxidase was localised using Western blot analysis and cytochrome C reduction assay. Apoptosis was detected by measuring caspase-3 activity. Intracellular glucose concentration, ROS formation and Nepsilon-(carboxymethyl) lysine (CML) content were measured using Amplex Red assay kit, dihydroethidium (DHE), and competitive immunoabsorbant enzyme-linked assay (ELISA), respectively. Results. NADPH oxidase was localised in the cytoplasm of pericytes suggesting ROS production within intracellular compartments. High glucose (25 mM) significantly increased apoptosis, intracellular glucose concentration, and CML content. Apoptosis was associated with increased gp91phox expression, activity of NADPH oxidase, and intracellular ROS production. Apocynin and not MitoQ significantly blunted the generation of ROS, formation of intracellular CML and apoptosis. Conclusions. NADPH oxidase and not mitochondria-derived ROS is responsible for the accelerated apoptosis of pericytes in diabetic retinopathy.
Collapse
Affiliation(s)
- Nik M. Mustapha
- Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Darul Ehsan, Malaysia
- Cardiovascular Division, GKT School of Biomedical & Health Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Joanna M. Tarr
- Institute of Biomedical and Clinical Science, Peninsula College of Medicine and Dentistry, Peninsula Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| | - Eva M. Kohner
- Institute of Biomedical and Clinical Science, Peninsula College of Medicine and Dentistry, Peninsula Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| | - Rakesh Chibber
- Cardiovascular Division, GKT School of Biomedical & Health Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
- Institute of Biomedical and Clinical Science, Peninsula College of Medicine and Dentistry, Peninsula Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| |
Collapse
|
148
|
Li J, Wang JJ, Yu Q, Chen K, Mahadev K, Zhang SX. Inhibition of reactive oxygen species by Lovastatin downregulates vascular endothelial growth factor expression and ameliorates blood-retinal barrier breakdown in db/db mice: role of NADPH oxidase 4. Diabetes 2010; 59:1528-38. [PMID: 20332345 PMCID: PMC2874715 DOI: 10.2337/db09-1057] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Oxidative stress is a key pathogenic factor in diabetic retinopathy. We previously showed that lovastatin mitigates blood-retinal barrier (BRB) breakdown in db/db mice. The purpose of this study is to determine the mechanisms underlying the salutary effects of lovastatin in diabetic retinopathy. RESEARCH DESIGN AND METHODS Expression of NADPH oxidase (Nox) 4, vascular endothelial growth factor (VEGF), and hypoxia-inducible factor (HIF)-1alpha; production of reactive oxygen species (ROS); and retinal vascular permeability were measured in cultured retinal capillary endothelial cells (RCECs) and in db/db mice treated with lovastatin. RESULTS Expressions of Nox4 and VEGF were significantly increased in retinas of db/db mice and reduced by lovastatin treatment. In cultured RCECs, hypoxia and high glucose upregulated mRNA and protein expression of Nox4, ROS generation, and VEGF level. These changes were abrogated by pretreatment with lovastatin or NADPH oxidase inhibitor diphenyleneiodonium chloride. Overexpression of Nox4 increased basal level of ROS generation, HIF-1alpha, and VEGF expression in RCECs. In contrast, blockade of Nox4 activity using adenovirus-expressing dominant-negative Nox4 abolished hypoxia- and high-glucose-induced ROS production and VEGF expression. Moreover, inhibition of Nox4 attenuated hypoxia-induced upregulation of HIF-1alpha and high-glucose-elicited phosphorylation of STAT3. Finally, depletion of Nox4 by adenovirus-delivered Nox4 small interfering RNA significantly decreased retinal NADPH oxidase activity and VEGF expression and reduced retinal vascular premeability in db/db mice. CONCLUSIONS Activation of Nox4 plays an important role in high-glucose- and hypoxia-mediated VEGF expression and diabetes-induced BRB breakdown. Inhibition of Nox4, at least in part, contributes to the protective effects of lovastatin in diabetic retinopathy.
Collapse
Affiliation(s)
- Jingming Li
- Harold Hamm Oklahoma Diabetes Center and Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Joshua J. Wang
- Harold Hamm Oklahoma Diabetes Center and Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Qiang Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kai Chen
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Kalyankar Mahadev
- Division of Endocrinology, Diabetes, and Metabolic Diseases, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sarah X. Zhang
- Harold Hamm Oklahoma Diabetes Center and Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Corresponding author: Sarah X. Zhang,
| |
Collapse
|
149
|
Al-Shabrawey M, Smith S. Prediction of diabetic retinopathy: role of oxidative stress and relevance of apoptotic biomarkers. EPMA J 2010; 1:56-72. [PMID: 23199041 PMCID: PMC3405307 DOI: 10.1007/s13167-010-0002-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 01/25/2010] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy (DR) is the foremost cause of blindness in working-aged worldwide; it is characterized by vascular and neuronal degeneration. Features of DR include leukocyte adhesion, increased vascular permeability, neovascularization and neuronal cell death. Early diagnosis and intervention are important to prevent or at least ameliorate the development of DR. Recent reports indicate that pathophysiological mechanisms leading to diabetic retinopathy include oxidative stress and retinal cell death cascades. Circulating biomarkers of oxidative stress such as malondialdehyde (MDA), thiobarbituric acid reacting substances (TBARS), conjugated diene (CD), advanced oxidation protein products (AOPP), protein carbonyl, 8-hydroxydeoxyguanosin (8-OHdG), nitrotyrosine, and F(2) isoprostanes and pro-apoptosis molecules (caspase-3, Fas, and Bax) are associated with increased susceptibility to develop DR in diabetic subjects. Thus, identification of oxidative stress and cell death biomarkers in diabetic patients could be in favor of predicting, diagnosis, and prevention of DR, and to target for novel therapeutic interventions.
Collapse
Affiliation(s)
- Mohamed Al-Shabrawey
- Oral Biology and Anatomy, School of Dentistry, Medical College of Georgia, Augusta, GA 30912 USA
- Ophthalmology and Vision Discovery Institute, Medical College of Georgia, Augusta, GA 30912 USA
- Opthalmology, King Saud University, Riyadh, Saudi Arabia
| | - Sylvia Smith
- Ophthalmology and Vision Discovery Institute, Medical College of Georgia, Augusta, GA 30912 USA
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912 USA
| |
Collapse
|
150
|
Taye A, Saad AH, Kumar AHS, Morawietz H. Effect of apocynin on NADPH oxidase-mediated oxidative stress-LOX-1-eNOS pathway in human endothelial cells exposed to high glucose. Eur J Pharmacol 2010; 627:42-8. [DOI: 10.1016/j.ejphar.2009.10.045] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 09/21/2009] [Accepted: 10/14/2009] [Indexed: 11/29/2022]
|