101
|
Crane JL, Shamblott MJ, Axelman J, Hsu S, Levine MA, Germain-Lee EL. Imprinting status of Galpha(s), NESP55, and XLalphas in cell cultures derived from human embryonic germ cells: GNAS imprinting in human embryonic germ cells. Clin Transl Sci 2010; 2:355-60. [PMID: 20443919 DOI: 10.1111/j.1752-8062.2009.00148.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
GNAS is a complex gene that through use of alternative first exons encodes signaling proteins Galpha(s) and XLalphas plus neurosecretory protein NESP55. Tissue-specific expression of these proteins is regulated through reciprocal genomic imprinting in fully differentiated and developed tissue. Mutations in GNAS account for several human disorders, including McCune-Albright syndrome and Albright hereditary osteodystrophy, and further knowledge of GNAS imprinting may provide insights into variable phenotypes of these disorders. We therefore analyzed expression of Galpha(s), NESP55, and XLalphas prior to tissue differentiation in cell cultures derived from human primordia germ cells. We found that the expression of Galpha(s) was biallelic (maternal allele: 52.6%+/- 2.5%; paternal allele: 47.2%+/- 2.5%; p= 0.07), whereas NESP55 was expressed preferentially from the maternal allele (maternal allele: 81.9%+/- 10%; paternal allele: 18.1%+/- 10%; p= 0.002) and XLalphas was preferentially expressed from the paternal allele (maternal allele: 2.7%+/- 0.3%; paternal allele: 97.3%+/- 0.3%; p= 0.007). These results demonstrate that imprinting of NESP55 occurs very early in development, although complete imprinting appears to take place later than 5-11 weeks postfertilization, and that imprinting of XLalphas occurs very early postfertilization. By contrast, imprinting of Galpha(s) most likely occurs after 11 weeks postfertilization and after tissue differentiation.
Collapse
Affiliation(s)
- Janet L Crane
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
102
|
Kelsey G. Imprinting on chromosome 20: Tissue-specific imprinting and imprinting mutations in the GNAS locus. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 154C:377-86. [DOI: 10.1002/ajmg.c.30271] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
103
|
Chillambhi S, Turan S, Hwang DY, Chen HC, Jüppner H, Bastepe M. Deletion of the noncoding GNAS antisense transcript causes pseudohypoparathyroidism type Ib and biparental defects of GNAS methylation in cis. J Clin Endocrinol Metab 2010; 95:3993-4002. [PMID: 20444925 PMCID: PMC2913043 DOI: 10.1210/jc.2009-2205] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CONTEXT GNAS encodes the alpha-subunit of the stimulatory G protein as well as additional imprinted transcripts including the maternally expressed NESP55 and the paternally expressed XLalphas, antisense, and A/B transcripts. Most patients with pseudohypoparathyroidism type Ib (PHP-Ib) exhibit imprinting defects affecting the maternal GNAS allele, which are thought to reduce/abolish Gsalpha expression in renal proximal tubules and thereby cause resistance to PTH. OBJECTIVE Our objective was to define the genetic defect in a previously unreported family with autosomal dominant PHP-Ib. DESIGN AND SETTING Analyses of serum and urine chemistries and of genomic DNA and lymphoblastoid-derived RNA were conducted at a tertiary hospital and research laboratory. PATIENTS Affected individuals presented with muscle weakness and/or paresthesia and showed hypocalcemia, hyperphosphatemia, and elevated serum PTH. Obligate carriers were healthy and revealed no obvious abnormality in mineral ion homeostasis. RESULTS A novel 4.2-kb microdeletion was discovered in the affected individuals and the obligate carriers, ablating two noncoding GNAS antisense exons while preserving the NESP55 exon. On maternal transmission, the deletion causes loss of all maternal GNAS imprints, partial gain of NESP55 methylation, and PTH resistance. Paternal transmission of the mutation leads to epigenetic alterations in cis, including a partial loss of NESP55 methylation and a partial gain of A/B methylation. CONCLUSIONS The identified deletion points to a unique cis-acting element located telomeric of the NESP55 exon that is critical for imprinting both GNAS alleles. These findings provide novel insights into the molecular mechanisms underlying PHP and GNAS imprinting.
Collapse
Affiliation(s)
- Smitha Chillambhi
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 50 Blossom Street Thier 10, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
104
|
Cavaco BM, Tomaz RA, Fonseca F, Mascarenhas MR, Leite V, Sobrinho LG. Clinical and genetic characterization of Portuguese patients with pseudohypoparathyroidism type Ib. Endocrine 2010; 37:408-14. [PMID: 20960161 DOI: 10.1007/s12020-010-9321-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
Patients with pseudohypoparathyroidism type Ib (PHP-Ib) present hypocalcemia and hyperphosphatemia, as a consequence of a resistance to PTH action, through its G-protein-coupled receptor, in the renal tubules. This resistance results from tissue-specific silencing of the G-protein alpha-subunit (G(s)α), due to imprinting disruption of its encoding locus--GNAS. In familial PHP-Ib, maternally inherited deletions at the STX16 gene are associated to a regional GNAS methylation defect. In sporadic PHP-Ib, broad methylation changes at GNAS arise from unknown genetic causes. In this study, we describe the clinical presentation of PHP-Ib in four Portuguese patients (two of whom were siblings), and provide further insight for the management of patients with this disease. The diagnosis of PHP-Ib was made after detection of GNAS imprinting defects in each of the cases. In the siblings, a regional GNAS methylation change resulted from a known 3.0 kb STX16 deletion. In the other two patients, the broad methylation defects at GNAS, which were absent in their relatives, resulted from genetic alterations that remain to be identified. We report the first clinical and genetic study of Portuguese patients with PHP-Ib. The genetic identification of a hereditary form of this rare disease allowed an early diagnosis, and may prevent hypocalcemia-related complications.
Collapse
Affiliation(s)
- Branca Maria Cavaco
- Centro de Investigação de Patobiologia Molecular, CIPM, Instituto Português de Oncologia de Lisboa Francisco Gentil, 1099-023 Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
105
|
Targeted deletion of the Nesp55 DMR defines another Gnas imprinting control region and provides a mouse model of autosomal dominant PHP-Ib. Proc Natl Acad Sci U S A 2010; 107:9275-80. [PMID: 20427744 DOI: 10.1073/pnas.0910224107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Approximately 100 genes undergo genomic imprinting. Mutations in fewer than 10 imprinted genetic loci, including GNAS, are associated with complex human diseases that differ phenotypically based on the parent transmitting the mutation. Besides the ubiquitously expressed Gsalpha, which is of broad biological importance, GNAS gives rise to an antisense transcript and to several Gsalpha variants that are transcribed from the nonmethylated parental allele. We previously identified two almost identical GNAS microdeletions extending from exon NESP55 to antisense (AS) exon 3 (delNESP55/delAS3-4). When inherited maternally, both deletions are associated with erasure of all maternal GNAS methylation imprints and autosomal-dominant pseudohypoparathyroidism type Ib, a disorder characterized by parathyroid hormone-resistant hypocalcemia and hyperphosphatemia. As for other imprinting disorders, the mechanisms resulting in abnormal GNAS methylation are largely unknown, in part because of a paucity of suitable animal models. We now showed in mice that deletion of the region equivalent to delNESP55/delAS3-4 on the paternal allele (DeltaNesp55(p)) leads to healthy animals without Gnas methylation changes. In contrast, mice carrying the deletion on the maternal allele (DeltaNesp55(m)) showed loss of all maternal Gnas methylation imprints, leading in kidney to increased 1A transcription and decreased Gsalpha mRNA levels, and to associated hypocalcemia, hyperphosphatemia, and secondary hyperparathyroidism. Besides representing a murine autosomal-dominant pseudohypoparathyroidism type Ib model and one of only few animal models for imprinted human disorders, our findings suggest that the Nesp55 differentially methylated region is an additional principal imprinting control region, which directs Gnas methylation and thereby affects expression of all maternal Gnas-derived transcripts.
Collapse
|
106
|
Liu S. Increasing alternative promoter repertories is positively associated with differential expression and disease susceptibility. PLoS One 2010; 5:e9482. [PMID: 20208995 PMCID: PMC2830428 DOI: 10.1371/journal.pone.0009482] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 01/07/2010] [Indexed: 12/03/2022] Open
Abstract
Background Alternative Promoter (AP) usages have been shown to enable diversified transcriptional regulation of individual gene in a context-specific (e.g., pathway, cell lineage, tissue type, and development stage et. ac.) way. Aberrant uses of APs have been directly linked to mechanism of certain human diseases. However, whether or not there exists a general link between a gene's AP repertoire and its expression diversity is currently unknown. The general relation between a gene's AP repertoire and its disease susceptibility also remains largely unexplored. Methodology/Principal Findings Based on the differential expression ratio inferred from all human microarray data in NCBI GEO and the list of disease genes curated in public repositories, we systemically analyzed the general relation of AP repertoire with expression diversity and disease susceptibility. We found that genes with APs are more likely to be differentially expressed and/or disease associated than those with Single Promoter (SP), and genes with more APs are more likely differentially expressed and disease susceptible than those with less APs. Further analysis showed that genes with increased number of APs tend to have increased length in all aspects of gene structure including 3′ UTR, be associated with increased duplicability, and have increased connectivity in protein-protein interaction network. Conclusions Our genome-wide analysis provided evidences that increasing alternative promoter repertories is positively associated with differential expression and disease susceptibility.
Collapse
Affiliation(s)
- Song Liu
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, New York, United States of America.
| |
Collapse
|
107
|
Fernandez-Rebollo E, García-Cuartero B, Garin I, Largo C, Martínez F, Garcia-Lacalle C, Castaño L, Bastepe M, Pérez de Nanclares G. Intragenic GNAS deletion involving exon A/B in pseudohypoparathyroidism type 1A resulting in an apparent loss of exon A/B methylation: potential for misdiagnosis of pseudohypoparathyroidism type 1B. J Clin Endocrinol Metab 2010; 95:765-71. [PMID: 20008020 PMCID: PMC2840867 DOI: 10.1210/jc.2009-1581] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT Several endocrine diseases that share resistance to PTH are grouped under the term pseudohypoparathyroidism (PHP). Patients with PHP type Ia show additional hormone resistance, defective erythrocyte G(s)alpha activity, and dysmorphic features termed Albright's hereditary osteodystrophy (AHO). Patients with PHP-Ib show less diverse hormone resistance and normal G(s)alpha activity; AHO features are typically absent in PHP-Ib. Mutations affecting G(s)alpha coding exons of GNAS and epigenetic alterations in the same gene are associated with PHP-Ia and -Ib, respectively. The epigenetic GNAS changes in familial PHP-Ib are caused by microdeletions near or within GNAS but without involving G(s)alpha coding exons. OBJECTIVE We sought to identify the molecular defect in a patient who was diagnosed with PHP-Ia based on clinical presentation (hormone resistance and AHO) but displayed the molecular features typically associated with PHP-Ib (loss of methylation at exon A/B) without previously described genetic mutations. METHODS Microsatellite typing, comparative genome hybridization, and allelic dosage were performed for proband and her parents. RESULTS Comparative genome hybridization revealed a deletion of 30,431 bp extending from the intronic region between exons XL and A/B to intron 5. The same mutation was also demonstrated, by PCR, in the patient's mother, but polymorphism and allele dosage analyses indicated that she had this mutation in a mosaic manner. CONCLUSION We discovered a novel multiexonic GNAS deletion transmitted to our patient from her mother who is mosaic for this mutation. The deletion led to different phenotypic manifestations in the two generation and appeared, in the patient, as loss of GNAS imprinting.
Collapse
|
108
|
Abstract
Human imprinting disorders can provide critical insights into the role of imprinted genes in human development and health, and the molecular mechanisms that regulate genomic imprinting. To illustrate these concepts we review the clinical and molecular features of several human imprinting syndromes including Beckwith–Wiedemann syndrome, Silver–Russell syndrome, Angelman syndrome, Prader–Willi syndrome, pseudohypoparathyroidism, transient neonatal diabetes, familial complete hydatidiform moles and chromosome 14q32 imprinting domain disorders.
Collapse
Affiliation(s)
- Derek HK Lim
- Birmingham Women’s Hospital, Birmingham UK
- Department of Medical & Molecular Genetics, School of Clinical and Experimental Medicine, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham, B15 2TT, UK
| | - Eamonn R Maher
- Birmingham Women’s Hospital, Birmingham UK
- Department of Medical & Molecular Genetics, School of Clinical and Experimental Medicine, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
109
|
Castro SM, Pesqueira Fontán PM, Carmen Gayol Fernández M, Peromingo JAD. [Pseudohypoparathyroidism: an example of multihormonal resistance]. ENDOCRINOLOGIA Y NUTRICION : ORGANO DE LA SOCIEDAD ESPANOLA DE ENDOCRINOLOGIA Y NUTRICION 2009; 56:461-462. [PMID: 20114017 DOI: 10.1016/s1575-0922(09)73315-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
110
|
Richard N, Abéguilé G, Coudray N, Kottler ML. [Epigenetics and pseudohypoparathyroidism]. ACTA ACUST UNITED AC 2009; 58:367-71. [PMID: 19942373 DOI: 10.1016/j.patbio.2009.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
Parental imprinting and the type of the genetic alteration play a determinant role in the phenotype expression of GNAS locus associated to pseudohypoparathyroidism (PHP). This imprint is tissue-specific, mainly localized in the kidney and the thyroid. Only the maternal allele is expressed at this level. An alteration in the coding sequence of the gene leads to an haplo-insufficiency and a dysmorphic phenotype (Albright's syndrome). If the alteration is on the maternal allele, there is a hormonal resistance to the PTH at the kidney level and to the TSH at the thyroid level. The phenotype is known as a PHP1a. If the alteration is on the paternal allele, there are few clinical signs with no hormonal resistance and the phenotype is known as pseudo-pseudo-hypoparathyroidism (PPHP). Methylation anomalies of GNAS locus, in particular of exon 1A, are responsible for a lack of expression of Gαs at kidney and thyroid levels only. If these anomalies concern the maternal allele (the only one expressed) with a paternal pattern, there is no haplo-insufficiency and no dysmorphic syndrome. The hormonal resistance is yet again limited to PTH and TSH. The phenotype is known as PHP1b. In the familial forms, these methylation anomalies are associated with a deletion of the syntaxine 16 gene in the maternal allele. This gene contains probably the imprinting center of the locus.
Collapse
Affiliation(s)
- N Richard
- Laboratoire de Génétique Moléculaire, Département Génétique et Reproduction, CHU de Caen, avenue G.-Clemenceau, 14033 Caen, France
| | | | | | | |
Collapse
|
111
|
Lecumberri B, Fernández-Rebollo E, Sentchordi L, Saavedra P, Bernal-Chico A, Pallardo LF, Bustos JMJ, Castaño L, de Santiago M, Hiort O, Pérez de Nanclares G, Bastepe M. Coexistence of two different pseudohypoparathyroidism subtypes (Ia and Ib) in the same kindred with independent Gs{alpha} coding mutations and GNAS imprinting defects. J Med Genet 2009; 47:276-80. [PMID: 19858129 DOI: 10.1136/jmg.2009.071001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Pseudohypoparathyroidism (PHP) defines a rare group of disorders whose common feature is resistance to the parathyroid hormone. Patients with PHP-Ia display additional hormone resistance, Albright hereditary osteodystrophy (AHO) and reduced Gsalpha activity in easily accessible cells. This form of PHP is associated with heterozygous inactivating mutations in Gsalpha-coding exons of GNAS, an imprinted gene locus on chromosome 20q13.3. Patients with PHP-Ib typically have isolated parathyroid hormone resistance, lack AHO features and demonstrate normal erythrocyte Gsalpha activity. Instead of coding Gsalpha mutations, patients with PHP-Ib display imprinting defects of GNAS, caused, at least in some cases, by genetic mutations within or nearby this gene. PATIENTS Two unrelated PHP families, each of which includes at least one patient with a Gsalpha coding mutation and another with GNAS loss of imprinting, are reported here. RESULTS One of the patients with GNAS imprinting defects has paternal uniparental isodisomy of chromosome 20q, explaining the observed imprinting abnormalities. The identified Gsalpha coding mutations include a tetranucleotide deletion in exon 7, which is frequently found in PHP-Ia, and a novel single nucleotide change at the acceptor splice junction of intron 11. CONCLUSIONS These molecular data reveal an interesting mixture, in the same family, of both genetic and epigenetic mutations of the same gene.
Collapse
|
112
|
Weinstein LS, Xie T, Qasem A, Wang J, Chen M. The role of GNAS and other imprinted genes in the development of obesity. Int J Obes (Lond) 2009; 34:6-17. [PMID: 19844212 DOI: 10.1038/ijo.2009.222] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon affecting a small number of genes, which leads to differential expression from the two parental alleles. Imprinted genes are known to regulate fetal growth and a 'kinship' or 'parental conflict' model predicts that paternally and maternally expressed imprinted genes promote and inhibit fetal growth, respectively. In this review we examine the role of imprinted genes in postnatal growth and metabolism, with an emphasis on the GNAS/Gnas locus. GNAS is a complex imprinted locus with multiple oppositely imprinted gene products, including the G-protein alpha-subunit G(s)alpha that is expressed primarily from the maternal allele in some tissues and the G(s)alpha isoform XLalphas that is expressed only from the paternal allele. Maternal, but not paternal, G(s)alpha mutations lead to obesity in Albright hereditary osteodystrophy. Mouse studies show that this phenomenon is due to G(s)alpha imprinting in the central nervous system leading to a specific defect in the ability of central melanocortins to stimulate sympathetic nervous system activity and energy expenditure. In contrast mutation of paternally expressed XLalphas leads to opposite metabolic effects in mice. Although these findings conform to the 'kinship' model, the effects of other imprinted genes on body weight regulation do not conform to this model.
Collapse
Affiliation(s)
- L S Weinstein
- Signal Transduction Section, National Institute of Diabetes, Digestive, and Kidney Disease, National Institutes of Health, Building 10 Rm 8C101, Bethesda, MD 20892-1752, USA.
| | | | | | | | | |
Collapse
|
113
|
|
114
|
de Nanclares GP, Fernández-Rebollo E, Gaztambide S, Castaño L. Genetics of pseudohypoparathyroidism: bases for proper genetic counselling. ENDOCRINOLOGIA Y NUTRICION : ORGANO DE LA SOCIEDAD ESPANOLA DE ENDOCRINOLOGIA Y NUTRICION 2008; 55:476-483. [PMID: 22980463 DOI: 10.1016/s1575-0922(08)75844-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 09/10/2008] [Indexed: 06/01/2023]
Abstract
Pseudohypoparathyroidism (PHP) is characterized by hypocalcemia and hyperphosphatemia due to resistance to parathyroid hormone (PTH). Patients with PHP-Ia often show additional hormone resistance and characteristic physical features that are collectively termed Albright's hereditary osteodystrophy (AHO). These features are also present in pseudopseudohypoparathyroidism (PPHP), but patients with this disorder do not show hormone resistance. PHP-Ib patients, on the other hand, predominantly show renal PTH resistance and lack features of AHO. From the genetic point of view, PHP-I is caused by defects in the GNAS gene or in the 5' region of this gene locus. PHP-Ia is caused by heterozygous inactivating mutations in any of the 13 exons codifying the alpha subunit of the stimulatory guanine nucleotide-binding protein (Gsα), while PHP-Ib is due to alterations in the methylation pattern of the 5' regions of the locus, usually associated with upstream microdeletions that are maternally transmitted. The imprinting pattern that affects the GNAS locus has important implications for the inheritance pattern and consequently for appropriate genetic counselling.
Collapse
Affiliation(s)
- Guiomar Pérez de Nanclares
- Grupo de Investigación en Endocrinología y Diabetes. Hospital de Cruces. Baracaldo. Vizcaya. España; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII. Baracaldo. Vizcaya. España
| | | | | | | |
Collapse
|
115
|
Freson K, Izzi B, Labarque V, Van Helvoirt M, Thys C, Wittevrongel C, Bex M, Bouillon R, Godefroid N, Proesmans W, de Zegher F, Jaeken J, Van Geet C. GNAS defects identified by stimulatory G protein alpha-subunit signalling studies in platelets. J Clin Endocrinol Metab 2008; 93:4851-9. [PMID: 18812479 DOI: 10.1210/jc.2008-0883] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CONTEXT GNAS is an imprinted region that gives rise to several transcripts, antisense transcripts, and noncoding RNAs, including transcription of RNA encoding the alpha-subunit of the stimulatory G protein (Gsalpha). The complexity of the GNAS cluster results in ubiquitous genomic imprints, tissue-specific Gsalpha expression, and multiple genotype-phenotype relationships. Phenotypes resulting from genetic and epigenetic abnormalities of the GNAS region include Albright's hereditary osteodystrophy, pseudohypoparathyroidism types Ia (PHPIa) and Ib (PHPIb), and pseudopseudohypoparathyroidism (PPHP). OBJECTIVE The aim was to study the complex GNAS pathology by a functional test as an alternative to the generally used but labor-intensive erythrocyte complementation assay. DESIGN AND PATIENTS We report the first platelet-based diagnostic test for Gsalpha hypofunction, supported by clinical, biochemical, and molecular data for six patients with PHPIa or PPHP and nine patients with PHPIb. The platelet test is based on the inhibition of platelet aggregation by cAMP, produced after Gsalpha stimulation. RESULTS Platelets are easily accessible, and platelet aggregation responses were found to reflect Gsalpha signaling defects in patients, in concordance with the patient's phenotype and genotype. Gsalpha hypofunction in PHPIa and PPHP patients with GNAS mutations was clearly detected by this method. Mildly decreased or normal Gsalpha function was detected in patients with PHPIb with either an overall or exon 1A-only epigenetic defect, respectively. Platelet Gsalpha expression was reduced in both PHPIb patient groups, whereas XLalphas was up-regulated only in PHPIb patients with the broad epigenetic defect. CONCLUSION The platelet-based test is a novel tool for establishing the diagnosis of Gsalpha defects, which may otherwise be quite challenging.
Collapse
Affiliation(s)
- Kathleen Freson
- Center for Molecular and Vascular Biology, University of Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Xie T, Chen M, Gavrilova O, Lai EW, Liu J, Weinstein LS. Severe obesity and insulin resistance due to deletion of the maternal Gsalpha allele is reversed by paternal deletion of the Gsalpha imprint control region. Endocrinology 2008; 149:2443-50. [PMID: 18202131 PMCID: PMC2329281 DOI: 10.1210/en.2007-1458] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The G protein alpha-subunit G(s)alpha mediates receptor-stimulated cAMP production and is imprinted with reduced expression from the paternal allele in specific tissues. Disruption of the G(s)alpha maternal (but not paternal) allele leads to severe obesity, hypertriglyceridemia, and insulin resistance in mice and obesity in patients with Albright hereditary osteodystrophy. Paternal deletion of a G(s)alpha imprint control region (1A) leads to loss of tissue-specific G(s)alpha imprinting. To determine whether the metabolic abnormalities resulting from disruption of the G(s)alpha maternal allele could be reversed by loss of paternal G(s)alpha imprinting, females with a heterozygous G(s)alpha exon 1 deletion were mated to males with heterozygous deletion of the imprint control region (1A) to generate mice with maternal G(s)alpha deletion (E1(m-)), paternal 1A deletion (1A(p-)), double mutants (E1(m-):1A(p-)), and wild type. E1(m-) mice developed obesity, glucose intolerance, insulin resistance, and hypertriglyceridemia, which were all normalized by the paternal 1A deletion in E1(m-):1A(p-) mice. Obesity in E1(m-) was associated with reduced energy expenditure and sympathetic nerve activity, and these were also normalized in E1(m-):1A(p-) mice. 1A(p-) mice had reduced body weight associated with proportional decreases in fat and lean mass as well as increased activity levels. The metabolic phenotype resulting from maternal G(s)alpha deletion is rescued by a genetic lesion that leads to loss of tissue-specific G(s)alpha imprinting, consistent with this phenotype being a direct consequence of G(s)alpha imprinting in one or more specific tissues.
Collapse
Affiliation(s)
- Tao Xie
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, Building 10, Room 8C101, Bethesda, Maryland 20892-1752, USA
| | | | | | | | | | | |
Collapse
|
117
|
Bastepe M. The GNAS locus and pseudohypoparathyroidism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 626:27-40. [PMID: 18372789 DOI: 10.1007/978-0-387-77576-0_3] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pseudohypoparathyroidism (PHP) is a disorder of end-organ resistance primarily affecting the actions of parathyroid hormone (PTH). Genetic defects associated with different forms of PHP involve the alpha-subunit of the stimulatory G protein (Gsalpha), a signaling protein essential for the actions of PTH and many other hormones. Heterozygous inactivating mutations within Gsalpha-encoding GNAS exons are found in patients with PHP-Ia, who also show resistance to other hormones and a constellation ofphysical features called Albright's hereditary osteodystrophy (AHO). Patients who exhibit AHO features without evidence for hormone resistance, who are said to have pseudopseudohypoparathyroidism (PPHP), also carry heterozygous inactivating Gsalpha mutations. Maternal inheritance of such a mutation leads to PHP-Ia, i.e., AHO plus hormone resistance, while paternal inheritance of the same mutation leads to PPHP, i.e., AHO only. This imprinted mode of inheritance for hormone resistance can be explained by the predominantly maternal expression of Gsalpha in certain tissues, including renal proximal tubules. Patients with PHP-Ib lack coding Gsalpha mutations but display epigenetic defects of the GNAS locus, with the most consistent defect being a loss of imprinting at the exon A/B differentially methylated region (DMR). This epigenetic defect presumably silences, in cis, Gsalpha expression in tissues where this protein is derived from the maternal allele only, leading to a marked reduction of Gsa levels. The familial form of PHP-Ib (AD-PHP-Ib) is typically associated with an isolated loss of imprinting at the exon A/B DMR. A unique 3-kb microdeletion that disrupts the neighboring STX16 1ocus has been identified in this disorder and appears to be the cause of the loss of imprinting. In addition, deletions removing the entire NESP55 DMR, located within GNAS, have been identified in some AD-PHP-Ib kindreds in whom affected individuals show loss of all the maternal GNAS imprints. Mutations identified in different forms of PHP-Ib thus point to different cis-acting elements that are apparently required for the proper imprinting of the GNAS locus. Most sporadic PHP-Ib cases also have imprinting abnormalities of GNAS that involve multiple DMRs, but the genetic lesion(s) responsible for these imprinting abnormalities remain to be discovered.
Collapse
Affiliation(s)
- Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
118
|
Mariot V, Maupetit-Méhouas S, Sinding C, Kottler ML, Linglart A. A maternal epimutation of GNAS leads to Albright osteodystrophy and parathyroid hormone resistance. J Clin Endocrinol Metab 2008; 93:661-5. [PMID: 18182455 DOI: 10.1210/jc.2007-0927] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Pseudohypoparathyroidism (PHP) type Ia is a rare maternally transmitted disease due to maternal loss-of-function mutations of GNAS, the gene encoding Galphas, the alpha-stimulatory subunit of the G protein. Affected individuals display hormonal resistance (mainly PTH and TSH resistance) and Albright hereditary osteodystrophy. PHP type Ib (PHP-Ib), usually defined by isolated renal resistance to PTH and sometimes mild TSH resistance, is due to a maternal loss of GNAS exon A/B methylation, leading to decreased Galphas expression in specific tissues. OBJECTIVE AND RESULTS We report a girl with obvious Albright osteodystrophy features, PTH resistance, normal Galphas bioactivity in red blood cells, yet no loss-of-function mutation in the GNAS coding sequence (exons 1-13). The methylation analysis of the four GNAS differentially methylated regions, i.e. NESP, AS, XL, and A/B, revealed broad methylation changes at all differentially methylated regions, including GNAS exon A/B, leading to a paternal epigenotype on both alleles. CONCLUSIONS This observation suggests that: 1) the decreased expression of Galphas due to GNAS epimutations is not restricted to the renal tubule but may affect nonimprinted tissues like bone; 2) PHP-Ib is a heterogeneous disorder that should lead to studying GNAS epigenotype in patients with PHP and no mutation in GNAS exons 1-13, regardless of their physical features.
Collapse
Affiliation(s)
- Virginie Mariot
- Pediatric Endocrinology and Institut National de la Santé et de la Recherche Médicale U561, Hôpital St-Vincent de Paul, 82 avenue Denfert-Rochereau, 75014 Paris V University, France
| | | | | | | | | |
Collapse
|
119
|
Sweeney T, Hanrahan JP. The evidence of associations between prion protein genotype and production, reproduction, and health traits in sheep. Vet Res 2008; 39:28. [DOI: 10.1051/vetres:2008004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 01/15/2007] [Indexed: 11/14/2022] Open
|
120
|
Linglart A, Bastepe M, Jüppner H. Similar clinical and laboratory findings in patients with symptomatic autosomal dominant and sporadic pseudohypoparathyroidism type Ib despite different epigenetic changes at the GNAS locus. Clin Endocrinol (Oxf) 2007; 67:822-31. [PMID: 17651445 DOI: 10.1111/j.1365-2265.2007.02969.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Most patients with autosomal dominant pseudohypoparathyroidism type Ib (AD-PHP-Ib) carry an identical maternally inherited 3-kb microdeletion up-stream of GNAS (STX16del4-6(mat)), which is associated with a methylation loss restricted to exon A/B. STX16del4-6(mat) is not found in sporadic PHP-Ib (sporPHP-Ib) patients, who show broad GNAS methylation changes. Because of the epigenetic differences between both groups, we searched for clinical and/or laboratory differences. PATIENTS AND METHODS Age at diagnosis, calcium, phosphorus and PTH were analysed in 43 patients with AD-PHP-Ib due to STX16del4-6(mat) and in 22 patients with sporPHP-Ib. RESULTS All AD-PHP-Ib patients with STX16del4-6(mat) showed only loss of exon A/B methylation. Of the 43 individuals, 26 were symptomatic when diagnosis was established at age 12.1 +/- 1.34 years (mean +/- SEM); laboratory findings at presentation were calcium 1.69 +/- 0.06 mmol/l, phosphorus 2.25 +/- 0.12 mmol/l and PTH 442 +/- 54.1 pg/ml. The remaining 17 individuals with STX16del4-6(mat) were asymptomatic when diagnosed at age 23.5 +/- 3.93 years (calcium 2.18 +/- 0.05 mmol/l, phosphorus 1.63 +/- 0.10 mmol/l, PTH 222 +/- 40.3 pg/ml). Patients with sporPHP-Ib showed methylation changes at two or more GNAS exons, presented at age 10.0 +/- 1.01 years and had, as a group, similar laboratory findings as patients with symptomatic AD-PHP-Ib (calcium 1.51 +/- 0.06 mmol/l, phosphorus 2.65 +/- 0.10 mmol/l, PTH 634 +/- 162.1 pg/ml). However, sporPHP-Ib females appeared to be more severely affected. CONCLUSIONS Patients with symptomatic AD-PHP-Ib due to STX16del4-6(mat) and sporPHP-Ib have similar changes in calcium, phosphate and PTH. STX16del4-6(mat) often leads to asymptomatic disease and screening of all siblings of affected individuals is therefore advised. The cause of the apparent sexual dimorphism in patients with sporPHP-Ib remains uncertain.
Collapse
Affiliation(s)
- Agnès Linglart
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
121
|
Picard C, Silvy M, Gerard C, Buffat C, Lavaque E, Figarella-Branger D, Dufour H, Gabert J, Beckers A, Brue T, Enjalbert A, Barlier A. Gs alpha overexpression and loss of Gs alpha imprinting in human somatotroph adenomas: association with tumor size and response to pharmacologic treatment. Int J Cancer 2007; 121:1245-52. [PMID: 17514647 DOI: 10.1002/ijc.22816] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gs alpha, the alpha-subunit of the heterotrimeric GTP-binding protein, is coded from the GNAS gene, which is imprinted in a tissue-specific manner. Gs alpha is paternally silenced in normal pituitary, but Gs alpha imprinting relaxation is found in some tumoral tissue. In addition, Gs alpha mRNA levels are high in some somatotroph adenomas not bearing the active Gs alpha mutant, the gsp oncogene. In this study, the impact of loss of imprinting on Gs alpha expression level and on tumoral phenotype has been investigated. We compared the expression and imprinting of 4 transcripts of GNAS locus (NESP55, XL alpha s, exon 1A, Gs alpha) of 60 somatotroph adenomas with those of 23 lactotroph adenomas. The paternal and maternal transcripts were quantified using allele-specific real-time PCR and FokI polymorphism. Moreover, the methylation of exon 1A DMR was analyzed. As is the case for the gsp oncogene, high Gs alpha expression in gsp- tumors was associated with smaller tumor size and better octreotide sensitivity. A strong imprinting relaxation (percentage of paternal Gs alpha expression >or=7.5%) was found only in gsp- tumors. The loss of Gs alpha imprinting was associated with a decrease in exon 1A mRNA expression. Unexpectedly, the methylation status of exon 1A DMR was not modified in relaxed tumors. Maternal Gs alpha mRNA level decreased with exon 1A level, and consequently the loss of Gs alpha imprinting did not induce the expected Gs alpha overexpression. Finally, XL alpha s mRNA level correlated with that of paternal Gs alpha and of NESP55 showing the complexity of gene regulation in the GNAS locus.
Collapse
Affiliation(s)
- Christophe Picard
- Laboratory Interactions Cellulaires Neuroendocriniennes, UMR 6544 CNRS, Institut Fédératif Jean Roche, Faculté de Médecine Nord, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Weinstein LS, Xie T, Zhang QH, Chen M. Studies of the regulation and function of the Gs alpha gene Gnas using gene targeting technology. Pharmacol Ther 2007; 115:271-91. [PMID: 17588669 PMCID: PMC2031856 DOI: 10.1016/j.pharmthera.2007.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 03/27/2007] [Indexed: 01/14/2023]
Abstract
The heterotrimeric G protein alpha-subunit G(s)alpha is ubiquitously expressed and mediates receptor-stimulated intracellular cAMP generation. Its gene Gnas is a complex imprinted gene which uses alternative promoters and first exons to generate other gene products, including the G(s)alpha isoform XL alpha s and the chromogranin-like protein NESP55, which are specifically expressed from the paternal and maternal alleles, respectively. G(s)alpha itself is imprinted in a tissue-specific manner, being biallelically expressed in most tissues but paternally silenced in a few tissues. Gene targeting of specific Gnas transcripts demonstrates that heterozygous mutation of G(s)alpha on the maternal (but not the paternal) allele leads to early lethality, perinatal subcutaneous edema, severe obesity, and multihormone resistance, while the paternal mutation leads to only mild obesity and insulin resistance. These parent-of-origin differences are the consequence of tissue-specific G(s)alpha imprinting. XL alpha s deficiency leads to a perinatal suckling defect and a lean phenotype with increased insulin sensitivity. The opposite metabolic effects of G(s)alpha and XL alpha s deficiency are associated with decreased and increased sympathetic nervous system activity, respectively. NESP55 deficiency has no metabolic consequences. Other gene targeting experiments have shown Gnas to have 2 independent imprinting domains controlled by 2 different imprinting control regions. Tissue-specific G(s)alpha knockout models have identified important roles for G(s)alpha signaling pathways in skeletal development, renal function, and glucose and lipid metabolism. Our present knowledge gleaned from various Gnas gene targeting models are discussed in relation to the pathogenesis of human disorders with mutation or abnormal imprinting of the human orthologue GNAS.
Collapse
Affiliation(s)
- Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20854, USA.
| | | | | | | |
Collapse
|
123
|
de Nanclares GP, Fernández-Rebollo E, Santin I, García-Cuartero B, Gaztambide S, Menéndez E, Morales MJ, Pombo M, Bilbao JR, Barros F, Zazo N, Ahrens W, Jüppner H, Hiort O, Castaño L, Bastepe M. Epigenetic defects of GNAS in patients with pseudohypoparathyroidism and mild features of Albright's hereditary osteodystrophy. J Clin Endocrinol Metab 2007; 92:2370-3. [PMID: 17405843 DOI: 10.1210/jc.2006-2287] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Several endocrine disorders that share resistance to PTH are grouped under the term pseudohypoparathyroidism (PHP). PHP type I, associated with blunted PTH-induced nephrogenous cAMP formation and phosphate excretion, is subdivided according to the presence or absence of additional endocrine abnormalities, Albright's hereditary osteodystrophy (AHO), and reduced Gsalpha activity caused by GNAS mutations. OBJECTIVE We sought to identify the molecular defect in four unrelated patients who were thought to have PHP-Ia because of PTH and TSH resistance and mild AHO features. METHODS Gsalpha activity and mutation analysis, and assessment of GNAS haplotype, methylation, and gene expression were performed for probands and family members. RESULTS Two patients showed modest decreases in erythrocyte Gsalpha activity. Instead of Gsalpha point mutations, however, all four patients showed methylation defects of the GNAS locus, a feature previously described only for PHP-Ib. Furthermore, one patient with an isolated loss of GNAS exon A/B methylation had the 3-kb STX16 deletion frequently identified in PHP-Ib patients. In all but one of the remaining patients, haplotype analysis excluded large deletions or uniparental disomy as the cause of the observed methylation changes. CONCLUSIONS Our investigations indicate that an overlap may exist between molecular and clinical features of PHP-Ia and PHP-Ib. No current mechanisms can explain the AHO-like features of our patients, some of which may not be linked to GNAS. Therefore, patients with hormone resistance and AHO-like features in whom coding Gsalpha mutations have been excluded should be evaluated for epigenetic alterations within GNAS.
Collapse
Affiliation(s)
- Guiomar Pérez de Nanclares
- Endocrinology and Diabetes Research Group, Hospital de Cruces, Cruces-Barakaldo E48903 Bizkaia, Basque Country, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Fröhlich LF, Bastepe M, Ozturk D, Abu-Zahra H, Jüppner H. Lack of Gnas epigenetic changes and pseudohypoparathyroidism type Ib in mice with targeted disruption of syntaxin-16. Endocrinology 2007; 148:2925-35. [PMID: 17317779 DOI: 10.1210/en.2006-1298] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pseudohypoparathyroidism type Ib (PHP-Ib) is characterized by hypocalcemia and hyperphosphatemia due to proximal renal tubular resistance to PTH but without evidence for Albright's hereditary osteodystrophy. The disorder is paternally imprinted and affected individuals, but not unaffected carriers, show loss of GNAS exon A/B methylation, a differentially methylated region upstream of the exons encoding Gsalpha. Affected individuals of numerous unrelated kindreds with an autosomal dominant form of PHP-Ib (AD-PHP-Ib) have an identical 3-kb microdeletion removing exons 4-6 of syntaxin-16 (STX16) (STX16del4-6), which is thought to disrupt a cis-acting element required for exon A/B methylation. To explore the mechanisms underlying the regulation of exon A/B methylation, we generated mice genetically altered to carry the equivalent of STX16del4-6 (Stx16(Delta4-6)). Although the human GNAS locus shows a similar organization as the murine Gnas ortholog and although the human and mouse STX16/Stx16 regions show no major structural differences, no phenotypic or epigenotypic abnormalities were detected in mice with Stx16(Delta4-6) on one or both parental alleles. Furthermore, calcium and PTH levels in Stx16(Delta4-6) mice were indistinguishable from those in wild-type animals, indicating that ablation of the murine equivalent of human STX16del4-6 does not contribute to the development of PTH resistance. The identification of a novel intragenic transcript from within the STX16/Stx16 locus in total RNA from kidneys of Stx16(Delta4-6) mice and lymphoblastoid cell-derived RNA of a patient with AD-PHP-Ib raises the question whether this transcript contributes, if deleted or altered, to the development of AD-PHP-Ib in humans.
Collapse
Affiliation(s)
- Leopold F Fröhlich
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital for Children/MGH, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
125
|
|
126
|
Minagawa M. [Progress in diagnosis and therapy: Hypocalcemia due to pseudohypoparathyroidism]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2007; 96:713-8. [PMID: 17506309 DOI: 10.2169/naika.96.713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
|
127
|
Abstract
Imprinting is the process whereby genetic alleles responsible for a phenotype are derived from one parent only. It is an epigenetic phenomenon resulting from DNA methylation or modification of protruding histones. When imprinted genes are disrupted, syndromes with characteristic patterns of inheritance and multisystem phenotype occur. Those detailed in this article have some quite characteristic cutaneous features and patterns of inheritance. These diseases include Beckwith-Wiedmann, Silver-Russell, Prader-Willi, McCune-Albright and Angelman syndromes, Albright's hereditary osteodystrophy, and progressive osseous heteroplasia. In the case of Von Hippel-Lindau syndrome, hypomelanosis of Ito and dermatopathia pigmentosa reticularis, imprinting may play a part in the inheritance. With neurofibromatosis type 1, a nonimprinted condition, the expression of the phenotype could be affected by interaction with imprinted gene loci. Imprinted genes could also play a part in the polygenetic inheritance of more common diseases also, as atopic eczema and psoriasis may have predominantly maternal and paternal modes of transmission, respectively.
Collapse
Affiliation(s)
- G W M Millington
- Department of Dermatology, Norfolk and Norwich University Hospital, Norwich, UK.
| |
Collapse
|
128
|
Kinoshita K, Minagawa M, Anzai M, Sato Y, Kazukawa I, Shimohashi K, Ota S, Kohno Y. Characteristic Height Growth Pattern in Patients with Pseudohypoparathyroidism: Comparison between Type 1a and Type 1b. Clin Pediatr Endocrinol 2007; 16:31-6. [PMID: 24790342 PMCID: PMC4004897 DOI: 10.1297/cpe.16.31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 10/31/2006] [Indexed: 11/17/2022] Open
Abstract
Pseudohypoparathyroidism (PHP) is a metabolic disorder characterized by organ resistance
to the action of parathyroid hormone. PHP type 1 is subclassified into two apparent
disorders, type 1a (PHP1a) and type 1b (PHP1b). Patients with PHP1a show Albright
hereditary osteodystrophy including short stature. Patients with PHP1b have no such
skeletal defects, however, literature regarding the growth of PHP1b is not currently
available. We evaluated growth charts of PHP patients, including four PHP1a patients and
six PHP1b patients. Growth patterns were different between PHP type 1a and 1b. Adult
height was abnormally low in all PHP1a patients. The growth pattern of PHP1a was
characterized by mild growth impairment in the prepubertal period, a blunted growth spurt
and premature cessation of the growth spurt. The adult height of male PHP1b was slightly
lower than average. An early growth spurt was observed only in male patients with PHP1b
and it may reduce the adult height of male patients with PHP1b. This warrants further
investigation into the growth and pubertal development of PHP1b patients.
Collapse
Affiliation(s)
- Kaori Kinoshita
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masanori Minagawa
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan ; Environmental Health Science Project for Future Generations, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Michiko Anzai
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yumiko Sato
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Itsuro Kazukawa
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kyoko Shimohashi
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan ; Department of Pediatrics, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Setsuo Ota
- Department of Pediatrics, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Yoichi Kohno
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan ; Environmental Health Science Project for Future Generations, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
129
|
Abstract
G-protein-coupled receptors (GPCRs) and G proteins mediate the effects of a number of hormones of relevance to endocrinology. Genes encoding these molecules may be targets of loss- or gain-of-function mutations, resulting in endocrine disorders. The only mutational change of G proteins so far unequivocally associated with endocrine disorders occurs in the Gsalpha gene (GNAS1, guanine nucleotide binding protein alpha stimulating activity polypeptide 1), which activates cyclic AMP (cAMP)-dependent pathways. Heterozygous loss-of-function mutations of GNAS1 in the active maternal allele cause resistance to hormones acting through Gsalpha-coupled GPCRs, whereas somatic gain-of-function mutations cause proliferation of endocrine cells recognizing cAMP as mitogen. This review will focus on inactivating mutations leading to hormone resistance syndromes, i.e., pseudohypoparathyroidism types Ia and Ib.
Collapse
Affiliation(s)
- Giovanna Mantovani
- Endocrine Unit, Department of Medical Sciences, University of Milan, Fondazione Ospedale Maggiore, Policlinico, Mangiagalli e Regina Elena IRCCS, Via F. Sforza, 35, 20122 Milan, Italy.
| | | |
Collapse
|
130
|
Zhou H, Brockington M, Jungbluth H, Monk D, Stanier P, Sewry CA, Moore GE, Muntoni F. Epigenetic allele silencing unveils recessive RYR1 mutations in core myopathies. Am J Hum Genet 2006; 79:859-68. [PMID: 17033962 PMCID: PMC1698560 DOI: 10.1086/508500] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 08/10/2006] [Indexed: 11/03/2022] Open
Abstract
Epigenetic regulation of gene expression is a source of genetic variation, which can mimic recessive mutations by creating transcriptional haploinsufficiency. Germline epimutations and genomic imprinting are typical examples, although their existence can be difficult to reveal. Genomic imprinting can be tissue specific, with biallelic expression in some tissues and monoallelic expression in others or with polymorphic expression in the general population. Mutations in the skeletal-muscle ryanodine-receptor gene (RYR1) are associated with malignant hyperthermia susceptibility and the congenital myopathies central core disease and multiminicore disease. RYR1 has never been thought to be affected by epigenetic regulation. However, during the RYR1-mutation analysis of a cohort of patients with recessive core myopathies, we discovered that 6 (55%) of 11 patients had monoallelic RYR1 transcription in skeletal muscle, despite being heterozygous at the genomic level. In families for which parental DNA was available, segregation studies showed that the nonexpressed allele was maternally inherited. Transcription analysis in patients' fibroblasts and lymphoblastoid cell lines indicated biallelic expression, which suggests tissue-specific silencing. Transcription analysis of normal human fetal tissues showed that RYR1 was monoallelically expressed in skeletal and smooth muscles, brain, and eye in 10% of cases. In contrast, 25 normal adult human skeletal-muscle samples displayed only biallelic expression. Finally, the administration of the DNA methyltransferase inhibitor 5-aza-deoxycytidine to cultured patient skeletal-muscle myoblasts reactivated the transcription of the silenced allele, which suggests hypermethylation as a mechanism for RYR1 silencing. Our data indicate that RYR1 undergoes polymorphic, tissue-specific, and developmentally regulated allele silencing and that this unveils recessive mutations in patients with core myopathies. Furthermore, our data suggest that imprinting is a likely mechanism for this phenomenon and that similar mechanisms could play a role in human phenotypic heterogeneity.
Collapse
MESH Headings
- Alleles
- Animals
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Base Sequence
- Case-Control Studies
- Cells, Cultured
- CpG Islands
- DNA Methylation
- DNA Primers/genetics
- Decitabine
- Epigenesis, Genetic
- Female
- Fetus/metabolism
- Gene Silencing
- Genes, Recessive
- Genomic Imprinting
- Humans
- Hydroxamic Acids/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Muscle, Skeletal/metabolism
- Myoblasts, Skeletal/drug effects
- Myoblasts, Skeletal/metabolism
- Myopathy, Central Core/genetics
- Myopathy, Central Core/metabolism
- Pedigree
- Point Mutation
- Polymorphism, Single Nucleotide
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Haiyan Zhou
- Dubowitz Neuromuscular Centre, Department of Paediatrics, Imperial College, Hammersmith Hospital London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Engel E. A fascination with chromosome rescue in uniparental disomy: Mendelian recessive outlaws and imprinting copyrights infringements. Eur J Hum Genet 2006; 14:1158-69. [PMID: 16724013 DOI: 10.1038/sj.ejhg.5201619] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
With uniparental disomy (UPD), the presence in a diploid genome of a chromosome pair derived from one genitor carries two main types of developmental risk: the inheritance of a recessive trait or the occurrence of an imprinting disorder. When the uniparentally derived pair carries two homozygous sequences (isodisomy) with a duplicated mutant, this 'reduction to homozygosity' determines a recessive phenotype solely inherited from one heterozygote. Thus far, some 40 examples of such recessive trait transmission have been reported in the medical literature and, among the current 32 known types of UPDs, UPD of chromosomes 1, 2, and 7 have contributed to the larger contingent of these conditions. Being at variance with the traditional mode of transmission, they constitute a group of 'Mendelian outlaws'. Several imprinted chromosome domains and loci have been, for a large part, identified through different UPDs. Thus, disomies for paternal 6, maternal 7, paternal 11, paternal and maternal 14 and 15, maternal 20 (and paternal 20q) and possibly maternal 16 cause as many syndromes, as at the biological level the loss or duplication of monoparentally expressed allele sequences constitutes 'imprinting rights infringements'. The above pitfalls represent the price to pay when, instead of a Mendelian even segregation and independent assortment of the chromosomes, the fertilized product with a nondisjunctional meiotic error undergoes correction (for unknown or fortuitous reasons) through a mitotic adjustment as a means to restore euploidy, thereby resulting in UPD. Happily enough, UPDs leading to the healthy rescue from some chromosomal mishaps also exist.
Collapse
Affiliation(s)
- Eric Engel
- Department of Medical Genetics and Development, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
132
|
Xie T, Plagge A, Gavrilova O, Pack S, Jou W, Lai EW, Frontera M, Kelsey G, Weinstein LS. The alternative stimulatory G protein alpha-subunit XLalphas is a critical regulator of energy and glucose metabolism and sympathetic nerve activity in adult mice. J Biol Chem 2006; 281:18989-99. [PMID: 16672216 PMCID: PMC1490322 DOI: 10.1074/jbc.m511752200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complex imprinted Gnas locus encodes several gene products including G(s)alpha, the ubiquitously expressed G protein alpha-subunit required for receptor-stimulated cAMP generation, and the neuroendocrine-specific G(s)alpha isoform XLalphas. XLalphas is only expressed from the paternal allele, whereas G(s)alpha is biallelically expressed in most tissues. XLalphas knock-out mice (Gnasxl(m+/p-)) have poor suckling and perinatal lethality, implicating XLalphas as critical for postnatal feeding. We have now examined the metabolic phenotype of adult Gnasxl(m+/p-) mice. Gnasxl(m+/p-) mice had reduced fat mass and lipid accumulation in adipose tissue, with increased food intake and metabolic rates. Gene expression profiling was consistent with increased lipid metabolism in adipose tissue. These changes likely result from increased sympathetic nervous system activity rather than adipose cell-autonomous effects, as we found that XLalphas is not normally expressed in adult adipose tissue, and Gnasxl(m+/p-) mice had increased urinary norepinephrine levels but not increased metabolic responsiveness to a beta3-adrenergic agonist. Gnasxl(m+/p-) mice were hypolipidemic and had increased glucose tolerance and insulin sensitivity. The similar metabolic profile observed in some prior paternal Gnas knock-out models results from XLalphas deficiency (or deficiency of the related alternative truncated protein XLN1). XLalphas (or XLN1) is a negative regulator of sympathetic nervous system activity in mice.
Collapse
Affiliation(s)
- Tao Xie
- From the Metabolic Diseases Branch and
| | - Antonius Plagge
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, United Kingdom
| | - Oksana Gavrilova
- Mouse Metabolism Core Laboratory, National Institute of Diabetes, Digestive, and Kidney Diseases
| | - Stephanie Pack
- Mouse Metabolism Core Laboratory, National Institute of Diabetes, Digestive, and Kidney Diseases
| | - William Jou
- Mouse Metabolism Core Laboratory, National Institute of Diabetes, Digestive, and Kidney Diseases
| | - Edwin W. Lai
- Reproductive Biology and Medicine Branch, National Institute of Child Health and Human Development, and
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Marga Frontera
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, United Kingdom
| | - Gavin Kelsey
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, United Kingdom
| | - Lee S. Weinstein
- From the Metabolic Diseases Branch and
- Address correspondence to: Lee S. Weinstein, Metabolic Diseases Branch, NIDDK/NIH, Bldg 10 Rm 8C101, Bethesda, Maryland 20892-1752 USA; Phone 301-402-2923; FAX 301-402-0374; E-mail:
| |
Collapse
|
133
|
Jüppner H, Bastepe M. Different mutations within or upstream of the GNAS locus cause distinct forms of pseudohypoparathyroidism. J Pediatr Endocrinol Metab 2006; 19 Suppl 2:641-6. [PMID: 16789629 DOI: 10.1515/jpem.2006.19.s2.641] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The term pseudohypoparathyroidism (PHP) refers to different disorders that are caused by mutations within GNAS or upstream of this complex genetic locus. GNAS gives rise to several different transcripts, including Gs alpha (alpha-subunit of the heterotrimeric stimulatory G protein), XL alpha s (extra-large variant of Gs alpha), and several additional sense and antisense transcripts. The complexity of the GNAS locus is furthermore reflected by a parent-specific methylation pattern of most of its different promoters. PHP can be divided into two major groups, PHP type Ia (PHP-Ia) and PHP type Ib (PHP-Ib). PHP-Ia is caused by heterozygous mutations affecting one of the 13 GNAS exons encoding Gs alpha. In contrast, PHP-Ib is caused by heterozygous deletions within STX16, the gene encoding syntaxin 16, which is located more than 220 kb upstream of GNAS, or by deletions within GNAS involving exon NESP55 and two of the antisense exons. In either form of PHP, hormonal resistance develops only after maternal inheritance of the mutation, while paternal inheritance of the same molecular defect is not associated with endocrine abnormalities. In most familial cases of PHP-Ib, there is a loss of exon A/B methylation combined with active A/B transcription from both parental alleles, which leads to suppression of Gs alpha transcription in the proximal renal tubules and, therefore, PTH resistance.
Collapse
Affiliation(s)
- Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
134
|
|
135
|
Weinstein LS, Chen M, Xie T, Liu J. Genetic diseases associated with heterotrimeric G proteins. Trends Pharmacol Sci 2006; 27:260-6. [PMID: 16600389 DOI: 10.1016/j.tips.2006.03.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 01/04/2006] [Accepted: 03/20/2006] [Indexed: 01/17/2023]
Abstract
Heterotrimeric G proteins couple receptors for diverse extracellular signals to effector enzymes or ion channels. Each G protein comprises a specific alpha-subunit and a tightly bound betagamma dimer. Several human disorders that result from genetic G-protein abnormalities involve the imprinted GNAS gene, which encodes Gs alpha, the ubiquitously expressed alpha-subunit that couples receptors to adenylyl cyclase and cAMP generation. Loss-of-function and gain-of-function mutations, in addition to imprinting defects, of this gene lead to diverse clinical phenotypes. Mutations of GNAT1 and GNAT2, which encode the retinal G proteins (transducins), are rare causes of specific congenital visual defects. Common polymorphisms of the GNAS and GNB3 (which encodes Gbeta3) genes have been associated with multigenic disorders (e.g. hypertension and metabolic syndrome). To date, no other G proteins have been implicated directly in human disease.
Collapse
Affiliation(s)
- Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
136
|
Jüppner H, Linglart A, Fröhlich LF, Bastepe M. Autosomal-Dominant Pseudohypoparathyroidism Type Ib is Caused by Different Microdeletions Within or Upstream of the GNAS Locus. Ann N Y Acad Sci 2006; 1068:250-5. [PMID: 16831926 DOI: 10.1196/annals.1346.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The term pseudohypoparathyroidism (PHP) refers to the different disorders that are caused by mutations within GNAS or upstream of this complex genetic locus. GNAS gives rise to several different transcripts, including Gsalpha (alpha-subunit of heterotrimeric stimulatory G protein), XLalphas (extra-large variant of Gsalpha), and several additional sense and antisense transcripts. The complexity of the GNAS locus is furthermore reflected by a parent-specific methylation pattern of most of its different promotors. PHP can be divided into two major groups, PHP type Ia (PHP-Ia) and PHP type Ib (PHP-Ib). PHP-Ia is caused by heterozygous mutations affecting one of the 13 GNAS exons encoding Gsalpha or by large intragenic deletions. In contrast, PHP-Ib is caused by heterozygous deletions within STX16, the gene-encoding syntaxin 16, which is located more than 220 kb upstream of GNAS, or by deletions within GNAS involving exon NESP55 and two of the antisense exons. In either form of PHP, hormonal resistance develops only after maternal inheritance of the mutation, while paternal inheritance of the same molecular defect is not associated with endocrine abnormalities. In most familial cases of PHP-Ib, there is a loss of exon A/B methylation combined with active A/B transcription from both parental alleles, which leads to suppression of Gsalpha transcription in the proximal renal tubules and, therefore, PTH resistance.
Collapse
Affiliation(s)
- Harald Jüppner
- Endocrine Unit, Thier 5, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
137
|
Peters J, Holmes R, Monk D, Beechey CV, Moore GE, Williamson CM. Imprinting control within the compact Gnas locus. Cytogenet Genome Res 2006; 113:194-201. [PMID: 16575180 DOI: 10.1159/000090832] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 08/02/2005] [Indexed: 12/28/2022] Open
Abstract
Mouse distal chromosome 2 was one of the earliest described imprinting regions. Maternal and paternal inheritance of the region is associated with opposite phenotypes affecting growth, development and behaviour. Mis-expression of proteins determined by the imprinted Gnas locus can account for the phenotypes. The imprinting domain in mouse distal chromosome 2 is small, comprising the Gnas locus. This locus is unusually complex, containing biallelic, maternally and paternally expressed transcripts that share exons. It also contains two germline differentially methylated regions that have the characteristics of imprinting control regions. One of these specifically controls the tissue-specific imprinting of the Gnas exon 1 transcript but does not affect the imprinting of other transcripts. Imprinting of other transcripts may be controlled by the other germline differentially methylated region by a mechanism involving antisense RNA.
Collapse
Affiliation(s)
- J Peters
- MRC Mammalian Genetics Unit, Harwell, Oxon, UK.
| | | | | | | | | | | |
Collapse
|
138
|
Williamson CM, Turner MD, Ball ST, Nottingham WT, Glenister P, Fray M, Tymowska-Lalanne Z, Plagge A, Powles-Glover N, Kelsey G, Maconochie M, Peters J. Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. Nat Genet 2006; 38:350-5. [PMID: 16462745 DOI: 10.1038/ng1731] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 11/30/2005] [Indexed: 01/07/2023]
Abstract
Genomic imprinting results in allele-specific silencing according to parental origin. Silencing is brought about by imprinting control regions (ICRs) that are differentially marked in gametogenesis. The group of imprinted transcripts in the mouse Gnas cluster (Nesp, Nespas, Gnasxl, Exon 1A and Gnas) provides a model for analyzing the mechanisms of imprint regulation. We previously identified an ICR that specifically regulates the tissue-specific imprinted expression of the Gnas gene. Here we identify a second ICR at the Gnas cluster. We show that a paternally derived targeted deletion of the germline differentially methylated region (DMR) associated with the antisense Nespas transcript unexpectedly affects both the expression of all transcripts in the cluster and methylation of two DMRs. Our results establish that the Nespas DMR is the principal ICR at the Gnas cluster and functions bidirectionally as a switch for modulating expression of the antagonistically acting genes Gnasxl and Gnas. Uniquely, the Nespas DMR acts on the downstream ICR at exon 1A to regulate tissue-specific imprinting of the Gnas gene.
Collapse
|
139
|
Foppiani L, Del Monte P, Faravelli F, de Sanctis L, Marugo A, Bernasconi D. Clinical heterogeneity of familial pseudohypoparathyroidism. J Endocrinol Invest 2006; 29:94-6. [PMID: 16553041 DOI: 10.1007/bf03349184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
140
|
|
141
|
Germain-Lee EL, Schwindinger W, Crane JL, Zewdu R, Zweifel LS, Wand G, Huso DL, Saji M, Ringel MD, Levine MA. A mouse model of albright hereditary osteodystrophy generated by targeted disruption of exon 1 of the Gnas gene. Endocrinology 2005; 146:4697-709. [PMID: 16099856 DOI: 10.1210/en.2005-0681] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Albright hereditary osteodystrophy is caused by heterozygous inactivating mutations in GNAS, a gene that encodes not only the alpha-chain of Gs (Galphas), but also NESP55 and XLalphas through use of alternative first exons. Patients with GNAS mutations on maternally inherited alleles are resistant to multiple hormones such as PTH, TSH, LH/FSH, GHRH, and glucagon, whose receptors are coupled to Gs. This variant of Albright hereditary osteodystrophy is termed pseudohypoparathyroidism type 1a and is due to presumed tissue-specific paternal imprinting of Galphas. Previous studies have shown that mice heterozygous for a targeted disruption of exon 2 of Gnas, the murine homolog of GNAS, showed unique phenotypes dependent on the parent of origin of the mutated allele. However, hormone resistance occurred only when the disrupted gene was maternally inherited. Because disruption of exon 2 is predicted to inactivate Galphas as well as NESP55 and XLalphas, we created transgenic mice with disruption of exon 1 to investigate the effects of isolated loss of Galphas. Heterozygous mice that inherited the disruption maternally (-m/+) exhibited PTH and TSH resistance, whereas those with paternal inheritance (+/-p) had normal hormone responsiveness. Heterozygous mice were shorter and, when the disrupted allele was inherited maternally, weighed more than wild-type littermates. Galphas protein and mRNA expression was consistent with paternal imprinting in the renal cortex and thyroid, but there was no imprinting in renal medulla, heart, or adipose. These findings confirm the tissue-specific paternal imprinting of GNAS and demonstrate that Galphas deficiency alone is sufficient to account for the hormone resistance of pseudohypoparathyroidism type 1a.
Collapse
Affiliation(s)
- Emily L Germain-Lee
- Division of Pediatric Endocrinology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Park Building, Suite 211, 600 North Wolfe Street, Baltimore, Maryland 21287-2520, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
Heterotrimeric G proteins are key players in transmembrane signaling by coupling a huge variety of receptors to channel proteins, enzymes, and other effector molecules. Multiple subforms of G proteins together with receptors, effectors, and various regulatory proteins represent the components of a highly versatile signal transduction system. G protein-mediated signaling is employed by virtually all cells in the mammalian organism and is centrally involved in diverse physiological functions such as perception of sensory information, modulation of synaptic transmission, hormone release and actions, regulation of cell contraction and migration, or cell growth and differentiation. In this review, some of the functions of heterotrimeric G proteins in defined cells and tissues are described.
Collapse
Affiliation(s)
- Nina Wettschureck
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | | |
Collapse
|
143
|
Chen M, Gavrilova O, Liu J, Xie T, Deng C, Nguyen AT, Nackers LM, Lorenzo J, Shen L, Weinstein LS. Alternative Gnas gene products have opposite effects on glucose and lipid metabolism. Proc Natl Acad Sci U S A 2005; 102:7386-91. [PMID: 15883378 PMCID: PMC1129092 DOI: 10.1073/pnas.0408268102] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gnas is an imprinted gene with multiple gene products resulting from alternative splicing of different first exons onto a common exon 2. These products include stimulatory G protein alpha-subunit (G(s)alpha), the G protein required for receptor-stimulated cAMP production; extralarge G(s)alpha (XLalphas), a paternally expressed G(s)alpha isoform; and neuroendocrine-specific protein (NESP55), a maternally expressed chromogranin-like protein. G(s)alpha undergoes tissue-specific imprinting, being expressed primarily from the maternal allele in certain tissues. Heterozygous mutation of exon 2 on the maternal (E2m-/+) or paternal (E2+/p-) allele results in opposite effects on energy metabolism. E2m-/+ mice are obese and hypometabolic, whereas E2+/p- mice are lean and hypermetabolic. We now studied the effects of G(s)alpha deficiency without disrupting other Gnas gene products by deleting G(s)alpha exon 1 (E1). E1+/p- mice lacked the E2+/p- phenotype and developed obesity and insulin resistance. The lean, hypermetabolic, and insulin-sensitive E2+/p- phenotype appears to result from XLalphas deficiency, whereas loss of paternal-specific G(s)alpha expression in E1+/p- mice leads to an opposite metabolic phenotype. Thus, alternative Gnas gene products have opposing effects on glucose and lipid metabolism. Like E2m-/+ mice, E1m-/+ mice had s.c. edema at birth, presumably due to loss of maternal G(s)alpha expression. However, E1m-/+ mice differed from E2m-/+ mice in other respects, raising the possibility for the presence of other maternal-specific gene products. E1m-/+ mice had more severe obesity and insulin resistance and lower metabolic rate relative to E1+/p- mice. Differences between E1m-/+ and E1+/p- mice presumably result from differential effects on G(s)alpha expression in tissues where G(s)alpha is normally imprinted.
Collapse
Affiliation(s)
- Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Linglart A, Gensure RC, Olney RC, Jüppner H, Bastepe M. A novel STX16 deletion in autosomal dominant pseudohypoparathyroidism type Ib redefines the boundaries of a cis-acting imprinting control element of GNAS. Am J Hum Genet 2005; 76:804-14. [PMID: 15800843 PMCID: PMC1199370 DOI: 10.1086/429932] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Accepted: 02/23/2005] [Indexed: 01/06/2023] Open
Abstract
A unique heterozygous 3-kb microdeletion within STX16, a closely linked gene centromeric of GNAS, was previously identified in multiple unrelated kindreds as a cause of autosomal dominant pseudohypoparathyroidism type Ib (AD-PHP-Ib). We now report a novel heterozygous 4.4-kb microdeletion in a large kindred with AD-PHP-Ib. Affected individuals from this kindred share an epigenetic defect that is indistinguishable from that observed in patients with AD-PHP-Ib who carry the 3-kb microdeletion in the STX16 region (i.e., an isolated loss of methylation at GNAS exon A/B). The novel 4.4-kb microdeletion overlaps with the previously identified deletion by 1,286 bp and, similar to the latter deletion, removes several exons of STX16 (encoding syntaxin-16). Because these microdeletions lead to AD-PHP-Ib only after maternal transmission, we analyzed expression of this gene in lymphoblastoid cells of affected individuals with the 3-kb or the 4.4-kb microdeletion, an individual with a NESP55 deletion, and a healthy control. We found that STX16 mRNA was expressed in all cases from both parental alleles. Thus, STX16 is apparently not imprinted, and a loss-of-function mutation in one allele is therefore unlikely to be responsible for this disorder. Instead, the region of overlap between the two microdeletions likely harbors a cis-acting imprinting control element that is necessary for establishing and/or maintaining methylation at GNAS exon A/B, thus allowing normal G alpha(s) expression in the proximal renal tubules. In the presence of either of the two microdeletions, parathyroid hormone resistance appears to develop over time, as documented in an affected individual who was diagnosed at birth with the 4.4-kb deletion of STX16 and who had normal serum parathyroid hormone levels until the age of 21 mo.
Collapse
Affiliation(s)
- Agnès Linglart
- Endocrine Unit, Department of Medicine, and Pediatric Nephrology Unit, MassGeneral Hospital for Children, Massachusetts General Hospital and Harvard Medical School, Boston; Department of Pediatrics, Tulane University School of Medicine, New Orleans; and Nemours Children’s Clinic and Mayo Medical School, Jacksonville, FL
| | - Robert C. Gensure
- Endocrine Unit, Department of Medicine, and Pediatric Nephrology Unit, MassGeneral Hospital for Children, Massachusetts General Hospital and Harvard Medical School, Boston; Department of Pediatrics, Tulane University School of Medicine, New Orleans; and Nemours Children’s Clinic and Mayo Medical School, Jacksonville, FL
| | - Robert C. Olney
- Endocrine Unit, Department of Medicine, and Pediatric Nephrology Unit, MassGeneral Hospital for Children, Massachusetts General Hospital and Harvard Medical School, Boston; Department of Pediatrics, Tulane University School of Medicine, New Orleans; and Nemours Children’s Clinic and Mayo Medical School, Jacksonville, FL
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, and Pediatric Nephrology Unit, MassGeneral Hospital for Children, Massachusetts General Hospital and Harvard Medical School, Boston; Department of Pediatrics, Tulane University School of Medicine, New Orleans; and Nemours Children’s Clinic and Mayo Medical School, Jacksonville, FL
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, and Pediatric Nephrology Unit, MassGeneral Hospital for Children, Massachusetts General Hospital and Harvard Medical School, Boston; Department of Pediatrics, Tulane University School of Medicine, New Orleans; and Nemours Children’s Clinic and Mayo Medical School, Jacksonville, FL
| |
Collapse
|
145
|
Liu J, Chen M, Deng C, Bourc'his D, Nealon JG, Erlichman B, Bestor TH, Weinstein LS. Identification of the control region for tissue-specific imprinting of the stimulatory G protein alpha-subunit. Proc Natl Acad Sci U S A 2005; 102:5513-8. [PMID: 15811946 PMCID: PMC556240 DOI: 10.1073/pnas.0408262102] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Indexed: 12/14/2022] Open
Abstract
Gnas is a complex gene with multiple imprinted promoters. The upstream Nesp and Nespas/Gnasxl promoters are paternally and maternally methylated, respectively. The downstream promoter for the stimulatory G protein alpha-subunit (G(s)alpha) is unmethylated, although in some tissues (e.g., renal proximal tubules), G(s)alpha is poorly expressed from the paternal allele. Just upstream of the G(s)alpha promoter is a primary imprint mark (1A region) where maternal-specific methylation is established during oogenesis. Pseudohypoparathyroidism type 1B, a disorder of renal parathyroid hormone resistance, is associated with loss of 1A methylation. Analysis of embryos of Dnmt3L(-/-) mothers (which cannot methylate maternal imprint marks) showed that Nesp, Nespas/Gnasxl, and 1A imprinting depend on one or more maternal primary imprint marks. We generated mice with deletion of the 1A differentially methylated region. These mice had normal Nesp-Nespas/Gnasxl imprinting, indicating that the Gnas locus contains two independent imprinting domains (Nespas-Nespas/Gnasxl and 1A-G(s)alpha) controlled by distinct maternal primary imprint marks. Paternal, but not maternal, 1A deletion resulted in G(s)alpha overexpression in proximal tubules and evidence for increased parathyroid hormone sensitivity but had no effect on G(s)alpha expression in other tissues where G(s)alpha is normally not imprinted. The 1A region is a maternal imprint mark that contains one or more methylation-sensitive cis-acting elements that suppress G(s)alpha expression from the paternal allele in a tissue-specific manner.
Collapse
Affiliation(s)
- Jie Liu
- Metabolic Diseases Branch and Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Gensure RC, Gardella TJ, Jüppner H. Parathyroid hormone and parathyroid hormone-related peptide, and their receptors. Biochem Biophys Res Commun 2005; 328:666-78. [PMID: 15694400 DOI: 10.1016/j.bbrc.2004.11.069] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Indexed: 11/29/2022]
Abstract
Parathyroid hormone (PTH) has a central role in the regulation of serum calcium and phosphate, while parathyroid hormone-related peptide (PTHrP) has important developmental roles. Both peptides signal through the same receptor, the PTH/PTHrP receptor (a class B G-protein-coupled receptor). The different biological effects of these ligands result from their modes of regulation and secretion, endocrine vs. paracrine/autocrine. The importance of PTH and PTHrP is evident by the variety of clinical syndromes caused by deficiency or excess production of either peptide, and the demonstration that intermittent injection of PTH increases bone mass, and thus provides a means to treat osteoporosis. This, in turn, has triggered increased interest in understanding the mechanisms of PTH/PTHrP receptor action and the search for smaller peptide or non-peptide agonists that have efficacy at this receptor when administered non-parenterally.
Collapse
Affiliation(s)
- Robert C Gensure
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
147
|
Abstract
Pseudohypoparathyroidism (PHP) is characterized by hypocalcemia and hyperphosphatemia due to resistance to parathyroid hormone (PTH). Patients with PHP-Ia often present with additional hormonal resistance and show characteristic physical features that are collectively termed Albright's hereditary osteodystrophy (AHO). These features are also present in pseudopseudohypoparathyroidism (PPHP), but patients affected by this disorder do not show hormone resistance. PHP-Ib patients, on the other hand, present predominantly with renal PTH resistance and lack any features of AHO. Most of these PHP forms are caused by defects in GNAS (20q13.3), an imprinted gene locus with multiple transcriptional units. PHP-Ia and PPHP are caused by heterozygous inactivating mutations in those exons of GNAS encoding the alpha subunit of the stimulatory guanine nucleotide-binding protein (Gsalpha), and the autosomal dominant form of PHP-Ib (AD-PHP-Ib) is caused by heterozygous mutations disrupting a long-range imprinting control element of GNAS. Expressed nearly in all cells, Gsalpha plays essential roles in a multitude of physiological processes. Its expression in renal proximal tubules occurs predominantly from the maternal allele, and this tissue- and parent-specific imprinting of Gsalpha is an important determinant of hormone resistance in kindreds with PHP-Ia/PPHP and AD-PHP-Ib.
Collapse
Affiliation(s)
- Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
148
|
Minagawa M. Pseudohypoparathyroidism. Clin Pediatr Endocrinol 2005. [DOI: 10.1297/cpe.14.s23_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
149
|
Jüppner H. Different Forms of Pseudohypoparathyroidism: Imprinted Disorders Caused by Different Coding and Non-coding Mutations in GNAS. Clin Pediatr Endocrinol 2005. [DOI: 10.1297/cpe.14.s23_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
150
|
Deletion of the NESP55 differentially methylated region causes loss of maternal GNAS imprints and pseudohypoparathyroidism type Ib. Nat Genet 2004; 37:25-7. [DOI: 10.1038/ng1487] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 11/19/2004] [Indexed: 11/09/2022]
|