101
|
Tavakoli TT, Gholami F, Huang H, Gonçalves PF, Villasante-Tezanos A, Aukhil I, de Oliveira RCG, Hovencamp N, Wallet S, Ioannidou E, Shaddox LM. Gender differences in immunological response of African-American juveniles with Grade C molar incisor pattern periodontitis. J Periodontol 2022; 93:392-402. [PMID: 34173226 PMCID: PMC8709874 DOI: 10.1002/jper.21-0143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Prevalence of Grade C molar incisor periodontitis (C/MIP) in females (F) and males (M) is controversial, although some studies suggest higher prevalence in females. The objective of this study was to evaluate differences in clinical parameters, and levels of cyto/chemokines in gingival crevicular fluid (GCF) and peripheral blood response. METHODS GCF and blood were collected from 79 C/MIP African-American participants (53F and 26 M) and healthy controls (58F and 38 M), aged 5 to 23. Blood was stimulated with ultrapure LPS from Escherichia coli (Ec) and Porphyromonas gingivalis (Pg) and we quantified levels of 14 cyto/chemokines. Clinical parameters were collected before and 12 months following treatment RESULTS: No clinical parameters or age differences were found between males and females, although age was negatively correlated with response to treatment. GCF levels of TNFα, IFNγ, MIP1α, and MCP1 from diseased and sites and healthy sites IFNγ levels were higher in M (P < 0.05). C/MIP females presented higher Pg and Ec LPS induced levels of Eotaxin, IFNγ, and GMCSF (P < 0.05), whereas healthy males presented higher Ec LPS induced levels of Eotaxin and IFNγ (P < 0.05). Inflammatory profiles were also different among genders in disease (P = 0.004). CONCLUSIONS Although males seemed to present few elevated inflammatory markers in the GCF in disease and in health, females presented an elevated systemic inflammatory response to LPS in disease, which indicates a possible differential susceptibility to inflammation. Future studies need to determine if sex hormones have a role in the peripheral host response and in the pathogenesis of C/MIP.
Collapse
Affiliation(s)
| | | | - Hong Huang
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Patricia Furtado Gonçalves
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA.,Department of Dentistry, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Alejandro Villasante-Tezanos
- Department of Preventive Medicine and Population Health, Office of Biostatistics, University of Texas Medical Branch, Galveston, TX, USA
| | - Ikramuddin Aukhil
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Rubelisa C. G. de Oliveira
- Division of Periodontology and Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.
| | - Niki Hovencamp
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Shannon Wallet
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA.,Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, USA
| | - Effthmia Ioannidou
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, USA.,Department of Periodontology, University of Connecticut Health Center, Farmington, CT, USA
| | - Luciana M. Shaddox
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA.,Division of Periodontology and Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
102
|
Goswamy A, Hans M, Hans VM, Sheokand V, Grover HS. Effect of nonsurgical periodontal therapy on gingival crevicular fluid levels of Interleukin-35 in patients with periodontitis. J Oral Biol Craniofac Res 2022; 12:268-272. [DOI: 10.1016/j.jobcr.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/22/2021] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
|
103
|
Ha DY, Jung JS, Choi GH, Ji S. Polarization of human gingival fibroblasts by Th1-, Th2-, Th17-, and Treg-derived cytokines. J Periodontal Res 2022; 57:487-501. [PMID: 35212397 DOI: 10.1111/jre.12978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/13/2021] [Accepted: 01/23/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE The purpose of this study was to evaluate whether gingival fibroblasts (GFs) can be differently activated and polarized into distinct functional subtypes by T-helper (Th) cytokines. METHODS Gingival fibroblasts were stimulated with interferon (IFN)-γ, interleukin (IL)-4, IL-17, and transforming growth factor (TGF)-β, representative cytokines of Th1, Th2, Th17, and regulatory T cells, respectively, and the gene expression profiles were analyzed by microarray. Differentially expressed genes (DEGs) in GFs stimulated by 4 cytokines were screened, and a gene ontology (GO) analysis of the DEGs was conducted. To confirm the reliability of the microarray results, the DEGs that showed the largest differences compared with non-stimulated GFs were further analyzed by RT-PCR. To evaluate the effect of polarization on GFs responses to lipopolysaccharide (LPS), GFs stimulated by 4 cytokines were further stimulated with Escherichia coli LPS and mRNA levels of several genes were analyzed using RT-PCR. RESULTS Differentially expressed genes by 4 Th cytokines were enriched in different GO terms, and the patterns of gene expression on GFs were shown functionally different. GFs stimulated with IFN-γ (GF(IFN-γ)) up-regulated the expression of chemokines (chemokine (C-X-C motif) ligand (CXCL)9, -10, -11, chemokine (C-C motif) ligand (CCL)8), molecules involved in antigen presentation, complement component 3 (C3), and other immune response-related molecules, whereas they down-regulated the expression of several types of collagen, extracellular matrix (ECM) components, and DNA replication and nuclear protein-related molecules. By contrast, GF(IL-4) up-regulated the expression of ECM components, cell adhesion molecules, and tissue development-related molecules and down-regulated the expression of chemokines (CXCL10 and CXCL8) and adaptive immune response-related molecules. GF(IL-17) up-regulated the expression of chemokines and other molecules for neutrophil infiltration and activation, the pro-inflammatory cytokine IL-6, and C3. GF(TGF-β) up-regulated the expression of cell growth-related molecules, ECM components, several types of collagen, and cell adhesion molecules and down-regulated the expression of molecules related to complement activation and bacterial recognition. GFs stimulated by 4 cytokines responded differently to LPS. CONCLUSION These results show that Th cytokines can polarize GFs into cells with functionally distinct features: immune-activating but tissue-destructive GF(IFN-γ), tissue-reparative, and immune-inhibiting GF(IL-4), highly pro-inflammatory GF(IL-17), and potent tissue-reparative GF(TGF-β).
Collapse
Affiliation(s)
- Da Young Ha
- Department of Periodontology, Institute of Oral Health Science, Ajou University School of Medicine, Suwon, Korea
| | - Jae-Suk Jung
- Department of Periodontology, Institute of Oral Health Science, Ajou University School of Medicine, Suwon, Korea
| | - Geum Hee Choi
- Department of Periodontology, Institute of Oral Health Science, Ajou University School of Medicine, Suwon, Korea
| | - Suk Ji
- Department of Periodontology, Institute of Oral Health Science, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
104
|
Huang Y, Liu Q, Liu L, Huo F, Guo S, Tian W. Lipopolysaccharide-Preconditioned Dental Follicle Stem Cells Derived Small Extracellular Vesicles Treating Periodontitis via Reactive Oxygen Species/Mitogen-Activated Protein Kinase Signaling-Mediated Antioxidant Effect. Int J Nanomedicine 2022; 17:799-819. [PMID: 35228798 PMCID: PMC8882029 DOI: 10.2147/ijn.s350869] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/29/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose Lipopolysaccharide (LPS) pretreatment can enhance the therapeutic effect of dental follicle stem cells-derived small extracellular vesicles (DFC-sEV) for periodontitis, and this study aimed to investigate the underlying mechanisms and clinical application Of LPS-preconditioned DFC-sEV in periodontitis. Methods The protein spectrum of DFC-sEV before and after LPS pretreatment was determined by liquid chromatography-tandem mass spectrometry and bioinformatic analysis. Their effects on inflammatory periodontal ligament stem cells (PDLSCs) and macrophages were investigated for cell proliferation, migration, type 2 macrophage (M2) polarization, and intracellular reactive oxygen species (ROS) levels separately. In addition, the regulation of ROS/Jun amino-terminal kinases (JNK) and ROS/extracellular signal-related kinases (ERK) signaling by LPS-preconditioned DFC-sEV was also studied to reveal the antioxidant mechanism. In vivo, two kinds of DFC-sEV loaded with 0.2% hyaluronic acid (HA) gel were applied for canine periodontitis to evaluate the therapeutic potential. Results The proteomic analysis showed that thirty-eight proteins were differentially expressed in LPS-preconditioned DFC-sEV, and interestingly, the highly expressed proteins were mainly involved in antioxidant and enzyme-regulating activities. In addition to promoting PDLSCs and macrophage proliferation, LPS-preconditioned DFC-sEV inhibited intracellular ROS as an antioxidant. It reduced the RANKL/OPG ratio of PDLSCs by inhibiting ROS/JNK signaling under inflammatory conditions and promoted macrophages to polarize toward the M2 phenotype via ROS/ERK signaling. Furthermore, LPS-preconditioned DFC-sEV loaded with the HA injectable system could sustainably release sEV and enhance the therapeutic efficacy for periodontitis in canines. Conclusion LPS-preconditioned DFC-sEV could be effectively used as an auxiliary method for periodontitis treatment via antioxidant effects in a subgingival environment, and loading it with HA is feasible and effective for clinical applications.
Collapse
Affiliation(s)
- Yanli Huang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Qian Liu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Periodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Li Liu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Periodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Fangjun Huo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Shujuan Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Periodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Correspondence: Shujuan Guo; Weidong Tian, Tel/Fax +86 028 8550 3499, Email ;
| | - Weidong Tian
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
105
|
Petrick JL, Wilkinson JE, Michaud DS, Cai Q, Gerlovin H, Signorello LB, Wolpin BM, Ruiz-Narváez EA, Long J, Yang Y, Johnson WE, Shu XO, Huttenhower C, Palmer JR. The oral microbiome in relation to pancreatic cancer risk in African Americans. Br J Cancer 2022; 126:287-296. [PMID: 34718358 PMCID: PMC8770575 DOI: 10.1038/s41416-021-01578-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 09/14/2021] [Accepted: 10/01/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND African Americans have the highest pancreatic cancer incidence of any racial/ethnic group in the United States. The oral microbiome was associated with pancreatic cancer risk in a recent study, but no such studies have been conducted in African Americans. Poor oral health, which can be a cause or effect of microbial populations, was associated with an increased risk of pancreatic cancer in a single study of African Americans. METHODS We prospectively investigated the oral microbiome in relation to pancreatic cancer risk among 122 African-American pancreatic cancer cases and 354 controls. DNA was extracted from oral wash samples for metagenomic shotgun sequencing. Alpha and beta diversity of the microbial profiles were calculated. Multivariable conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between microbes and pancreatic cancer risk. RESULTS No associations were observed with alpha or beta diversity, and no individual microbial taxa were differentially abundant between cases and control, after accounting for multiple comparisons. Among never smokers, there were elevated ORs for known oral pathogens: Porphyromonas gingivalis (OR = 1.69, 95% CI: 0.80-3.56), Prevotella intermedia (OR = 1.40, 95% CI: 0.69-2.85), and Tannerella forsythia (OR = 1.36, 95% CI: 0.66-2.77). CONCLUSIONS Previously reported associations between oral taxa and pancreatic cancer were not present in this African-American population overall.
Collapse
Affiliation(s)
| | - Jeremy E Wilkinson
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Dominique S Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Hanna Gerlovin
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Lisa B Signorello
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Edward A Ruiz-Narváez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - W Evan Johnson
- Department of Medicine, Division of Computational Biomedicine, Boston University, Boston, MA, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julie R Palmer
- Slone Epidemiology Center, Boston University, Boston, MA, USA.
| |
Collapse
|
106
|
Fixed Prosthetic Restorations and Periodontal Health: A Narrative Review. J Funct Biomater 2022; 13:jfb13010015. [PMID: 35225978 PMCID: PMC8883934 DOI: 10.3390/jfb13010015] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022] Open
Abstract
Periodontal health plays an important role in the longevity of prosthodontic restorations. The issues of comparative assessment of prosthetic constructions are complicated and not fully understood. The aim of this article is to review and present the current knowledge regarding the various technical, clinical, and molecular aspects of different prosthetic biomaterials and highlight the interactions between periodontal health and prosthetic restorations. Articles on periodontal health and fixed dental prostheses were searched using the keywords “zirconium”, “CAD/CAM”, “dental ceramics”, “metal–ceramics”, “margin fit”, “crown”, “fixed dental prostheses”, “periodontium”, and “margin gap” in PubMed/Medline, Scopus, Google Scholar, and Science Direct. Further search criteria included being published in English, and between January 1981 and September 2021. Then, relevant articles were selected, included, and critically analyzed in this review. The margin of discrepancy results in the enhanced accumulation of dental biofilm, microleakage, hypersensitivity, margin discoloration, increased gingival crevicular fluid flow (GCF), recurrent caries, pulp infection and, lastly, periodontal lesion and bone loss, which can lead to the failure of prosthetic treatment. Before starting prosthetic treatment, the condition of the periodontal tissues should be assessed for their oral hygiene status, and gingival and periodontal conditions. Zirconium-based restorations made from computer-aided design and computer-aided manufacturing (CAD/CAM) technology provide better results, in terms of marginal fit, inflammation reduction, maintenance, and the restoration of periodontal health and oral hygiene, compared to constructions made by conventional methods, and from other alloys. Compared to subgingival margins, supragingival margins offer better oral hygiene, which can be maintained and does not lead to secondary caries or periodontal disease.
Collapse
|
107
|
de Carvalho MM, Hidalgo MAR, Scarel-Caminaga RM, Ribeiro Junior NV, Sperandio FF, Pigossi SC, de Carli ML. Photobiomodulation of gingival lesions resulting from autoimmune diseases: systematic review and meta-analysis. Clin Oral Investig 2022; 26:3949-3964. [PMID: 35024960 PMCID: PMC8755514 DOI: 10.1007/s00784-021-04362-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 12/23/2022]
Abstract
Objectives To evaluate the effects of photobiomodulation (PBM) in gingival lesions resulting from autoimmune diseases; to compare PBM and topical corticosteroid (CS) treatment; and to assess PBM outcome over time of follow-up. Materials and methods A comprehensive electronic search was performed in four electronic databases. Treatment effects were measured through visual analog scale of pain (VAS) and clinical evolution of lesion (Thongprasom scale for oral lichen planus (OLP)). Meta-analysis was performed to compare PBM with topical corticosteroid treatment and to evaluate PBM effect over time of follow-up. Results Seventeen studies were included in this review, of which six were used for the meta-analysis. Meta-analysis results showed no significant differences between PBM and topical CS in pain reduction at baseline (MD = 0.20, 95% CI = − 0.92, 1.32, p = 0.72) and 60-day follow-up (MD = 0.63, 95% CI = − 3.93, 5.19, p = 0.79); however, VAS showed significant pain reduction when compared before and after PBM at 30-day (MD = − 3.52, 95% CI = − 5.40, − 1.64, p = 0.0002) and 60-day (MD = − 5.04, 95% CI = − 5.86, − 4.22, p < 0.00001) follow-up. Thongprasom clinical scale for OLP also showed significant improvement at 30-day follow-up (MD = − 2.50, 95% CI = − 2.92, − 2.08, p < 0.00001) after PBM. Conclusion PBM led to significant reduction of pain and clinical scores of the lesions, not having shown significant differences when compared to topical CS. Clinical relevance PBM has been used in the treatment of autoimmune gingival lesions, but so far there is little strong evidence to support its use.
Collapse
Affiliation(s)
- Milena Moraes de Carvalho
- School of Dentistry, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700 - Centro, Alfenas, MG, 37130-001, Brazil
| | - Marco Antonio Rimachi Hidalgo
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, FOAr/UNESP), UNESP - São Paulo State University, Araraquara, SP, Brazil
| | - Raquel Mantuaneli Scarel-Caminaga
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, FOAr/UNESP), UNESP - São Paulo State University, Araraquara, SP, Brazil
| | - Noé Vital Ribeiro Junior
- School of Dentistry, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700 - Centro, Alfenas, MG, 37130-001, Brazil
| | - Felipe Fornias Sperandio
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG, Brazil.,Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Suzane Cristina Pigossi
- School of Dentistry, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700 - Centro, Alfenas, MG, 37130-001, Brazil
| | - Marina Lara de Carli
- School of Dentistry, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700 - Centro, Alfenas, MG, 37130-001, Brazil.
| |
Collapse
|
108
|
TNF-α, IL-1β, MMP-8 Crevicular Profile in Patients with Chronic Kidney Disease and Periodontitis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Increasing evidence sustains the potential of periodontitis as a risk factor for chronic kidney disease (CKD). Our study aimed to analyze several periodontal specific inflammatory biomarkers within the gingival crevicular fluid (GCF) of patients with CKD, compared to patients with normal kidney function, providing an inflammatory profile of the dialysis patient. The study comprised 79 patients divided into: group 1 (59 subjects with periodontitis and CKD) and group 2 (20 patients with periodontitis, without other systemic conditions). Clinical diagnosis was performed via dental and periodontal examination. GCF samples were collected from each patient, and the levels of TNF-α, IL-1β and MMP-8 were determined by using ELISA assay. In group 1, the average values were: 22.85 ± 5.87 pg/mL for TNF-α, 33.00 ± 39.68 pg/mL for IL-1β and 18.80 ± 27.75 ng/mL for MMP-8. In group 2, the mean values were: 2.10 ± 1.34 pg/mL for TNF-α, 0.71 ± 2.42 pg/mL for IL-1β and 5.35 ± 0.37 ng/mL for MMP-8. Statistical analysis revealed significant differences between groups as referring to all three biomarkers and, TNF-α and MMP-8, in certain stages of periodontitis. The level of TNF-α, IL-1β and MMP-8 points out the increased inflammatory status of the dialysis patient with PD, supporting the mutual connection of the two pathologies.
Collapse
|
109
|
Gao X, Jiang C, Yao S, Ma L, Wang X, Cao Z. Identification of hub genes related to immune cell infiltration in periodontitis using integrated bioinformatic analysis. J Periodontal Res 2022; 57:392-401. [PMID: 34993975 DOI: 10.1111/jre.12970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is an inflammatory disease of the periodontium. However, the hub genes in periodontitis and their correlation with immune cells are not clear. This study aimed to identify hub genes and immune infiltration properties in periodontitis and to explore the correlation between hub genes and immune cells. MATERIAL AND METHODS Differentially expressed genes (DEGs) analysis and weighted gene co-expression network analysis (WGCNA) were performed both on GSE10334 and GSE173078 datasets. Hub genes were identified via WGCNA and DEGs. The proportions of infiltrating immune cells were calculated by CIBERSORT algorithm, and single-cell RNA-sequencing dataset GSE164241 was used to explore cell-type-specific expression profiles of hub genes. RESULTS Eight hub genes (DERL3, FKBP11, LAX1, CD27, SPAG4, ST6GAL1, MZB1, and SEL1L3) were selected via WGCNA and DEGs by combining GSE10334 and GSE173078 datasets. CIBERSORT analysis showed a significant difference in the proportion of B cells, dendritic cells resting, and neutrophils in the gingival tissues between healthy and periodontitis patients, and expressions of these genes were highly correlated with the infiltration of B cells in periodontitis. Furthermore, real-time quantitative PCR results further confirmed the overexpression of hub genes. Analysis of GSE164241dataset further identified that most of hub genes were mainly expressed in B cells. CONCLUSIONS By integrating WGCNA, DEGs, and CIBERSORT analysis, eight genes were identified to be the hub genes of periodontitis and most of them were mainly expressed in B cells encouraging further researches on B cells in periodontitis pathogenesis.
Collapse
Affiliation(s)
- Xudong Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chenxi Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Siqi Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
110
|
Blanco-Pintos T, Regueira-Iglesias A, Balsa-Castro C, Tomás I. Update on the Role of Cytokines as Oral Biomarkers in the Diagnosis of Periodontitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:283-302. [DOI: 10.1007/978-3-030-96881-6_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
111
|
Miyashita Y, Kuraji R, Ito H, Numabe Y. Wound healing in periodontal disease induces macrophage polarization characterized by different arginine-metabolizing enzymes. J Periodontal Res 2021; 57:357-370. [PMID: 34918843 DOI: 10.1111/jre.12965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Macrophages play important roles from the initiation of inflammation to wound healing. Two phenotypes of macrophages, namely pro-inflammatory type macrophages (M1-MΦ) and anti-inflammatory type macrophages (M2-MΦ), have been reported. Two contrasting metabolic enzymes that use arginine as a substrate, inducible nitric oxide synthase (iNOS), and arginase-1 (Arg-1), have been identified as M1-MΦ and M2-MΦ markers, respectively. The purpose of this study was to elucidate the temporal dynamics of the macrophage phenotype during the progression and healing phases of experimental periodontitis in mice. MATERIAL AND METHODS A total of 63 C57BL/6J mice were divided into the following 3 groups: control (C), periodontitis (P), and healing (H). To induce periodontitis, a silk ligature was placed around the maxillary bilateral second molars of mice in the periodontitis and healing groups. In the healing group, the ligature was removed 3 days after ligation to induce tissue healing. Maxillary tissue was collected on day 0 for the control group, days 1, 3, 5, and 7 for the periodontitis group (P1, P3, P5, and P7), and days 5 and 7 for the healing group (H5 and H7: 3 days with the ligation + 2 days or 4 days following ligature removal). The left side of the maxilla was subjected to bone structure analysis using micro-computed tomography and gene expression analysis using polymerase chain reaction. On the right side, immunohistochemistry was performed to histopathologically evaluate the localization of macrophages by phenotype in the periodontal tissue. RESULTS In the alveolar bone structure analysis, the linear distance of bone height increased significantly in the P5 and P7 groups, whereas bone volume fraction and bone mineral density decreased over time after ligature placement; in the healing group (H5 and H7), these parameters improved significantly compared with the periodontitis group (P5 and P7). Expression of genes encoding pro-inflammatory cytokines and iNOS increased in the periodontitis group, and expression of anti-inflammatory cytokine genes and Arg-1 increased in the healing group. Furthermore, the iNOS/Arg-1 expression ratio increased with ligation, whereas the ratio in the healing groups (H5 and H7) significantly decreased compared with the periodontitis groups (P5 and P7). Immunofluorescence staining revealed a significant increase in the number of iNOS-positive macrophages in the periodontitis group and decrease in the healing group. In contrast, the number of Arg-1-positive macrophages decreased in the periodontitis group and increased in the healing group. CONCLUSION The results of the present study suggest that wound healing in periodontal disease induces macrophage polarization from M1-MΦ to M2-MΦ characterized by iNOS and Arg-1.
Collapse
Affiliation(s)
- Yukihiro Miyashita
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Ryutaro Kuraji
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.,Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan
| | - Hiroshi Ito
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| |
Collapse
|
112
|
Sansores-España LD, Melgar-Rodríguez S, Olivares-Sagredo K, Cafferata EA, Martínez-Aguilar VM, Vernal R, Paula-Lima AC, Díaz-Zúñiga J. Oral-Gut-Brain Axis in Experimental Models of Periodontitis: Associating Gut Dysbiosis With Neurodegenerative Diseases. FRONTIERS IN AGING 2021; 2:781582. [PMID: 35822001 PMCID: PMC9261337 DOI: 10.3389/fragi.2021.781582] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Periodontitis is considered a non-communicable chronic disease caused by a dysbiotic microbiota, which generates a low-grade systemic inflammation that chronically damages the organism. Several studies have associated periodontitis with other chronic non-communicable diseases, such as cardiovascular or neurodegenerative diseases. Besides, the oral bacteria considered a keystone pathogen, Porphyromonas gingivalis, has been detected in the hippocampus and brain cortex. Likewise, gut microbiota dysbiosis triggers a low-grade systemic inflammation, which also favors the risk for both cardiovascular and neurodegenerative diseases. Recently, the existence of an axis of Oral-Gut communication has been proposed, whose possible involvement in the development of neurodegenerative diseases has not been uncovered yet. The present review aims to compile evidence that the dysbiosis of the oral microbiota triggers changes in the gut microbiota, which creates a higher predisposition for the development of neuroinflammatory or neurodegenerative diseases.The Oral-Gut-Brain axis could be defined based on anatomical communications, where the mouth and the intestine are in constant communication. The oral-brain axis is mainly established from the trigeminal nerve and the gut-brain axis from the vagus nerve. The oral-gut communication is defined from an anatomical relation and the constant swallowing of oral bacteria. The gut-brain communication is more complex and due to bacteria-cells, immune and nervous system interactions. Thus, the gut-brain and oral-brain axis are in a bi-directional relationship. Through the qualitative analysis of the selected papers, we conclude that experimental periodontitis could produce both neurodegenerative pathologies and intestinal dysbiosis, and that periodontitis is likely to induce both conditions simultaneously. The severity of the neurodegenerative disease could depend, at least in part, on the effects of periodontitis in the gut microbiota, which could strengthen the immune response and create an injurious inflammatory and dysbiotic cycle. Thus, dementias would have their onset in dysbiotic phenomena that affect the oral cavity or the intestine. The selected studies allow us to speculate that oral-gut-brain communication exists, and bacteria probably get to the brain via trigeminal and vagus nerves.
Collapse
Affiliation(s)
- Luis Daniel Sansores-España
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
- Faculty of Dentistry, Autonomous University of Yucatán, Mérida, México
| | | | | | - Emilio A. Cafferata
- Department of Periodontology, School of Dentistry, Universidad Científica Del Sur, Lima, Perú
| | | | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Andrea Cristina Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
- Department of Medicine, Faculty of Medicine, University of Atacama, Copiapó, Chile
- *Correspondence: Jaime Díaz-Zúñiga, ,
| |
Collapse
|
113
|
Costa SA, Ribeiro CCC, Moreira ARO, Carvalho Souza SDF. High serum iron markers are associated with periodontitis in post-menopausal women: A population-based study (NHANES III). J Clin Periodontol 2021; 49:221-229. [PMID: 34879443 DOI: 10.1111/jcpe.13580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022]
Abstract
AIM To investigate the association between increased serum markers of iron (ferritin and transferrin saturation) and the severity and extent of periodontitis in post-menopausal (PM) women. MATERIALS AND METHODS Data from 982 PM women participating in NHANES III were analysed. Exposures were high ferritin (≥300 μg/ml) and transferrin saturation (≥45%). The primary outcome was moderate/severe periodontitis defined according to Centers for Disease Control and Prevention and the American Academy of Periodontology. The extent of periodontitis was also assessed as outcome: proportion of sites affected by clinical attachment loss ≥4 mm and probing depth ≥4 mm. Crude and adjusted prevalence ratio (PR) and mean ratio (MR) were estimated using Poisson regression. RESULTS The prevalence of moderate/severe periodontitis was 27.56%. High ferritin was associated with moderate/severe periodontitis in the crude (PR 1.55, p = .018) and in the final adjusted model (PR 1.53, p = .008). High ferritin and transferrin saturation levels were associated with a higher proportion of sites with clinical attachment loss ≥4 mm (p < .05). CONCLUSIONS The increasing serum iron markers seem to contribute to periodontitis severity and extent in PM women.
Collapse
|
114
|
Sun X, Gao J, Meng X, Lu X, Zhang L, Chen R. Polarized Macrophages in Periodontitis: Characteristics, Function, and Molecular Signaling. Front Immunol 2021; 12:763334. [PMID: 34950140 PMCID: PMC8688840 DOI: 10.3389/fimmu.2021.763334] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022] Open
Abstract
Periodontitis (PD) is a common chronic infectious disease. The local inflammatory response in the host may cause the destruction of supporting periodontal tissue. Macrophages play a variety of roles in PD, including regulatory and phagocytosis. Moreover, under the induction of different factors, macrophages polarize and form different functional phenotypes. Among them, M1-type macrophages with proinflammatory functions and M2-type macrophages with anti-inflammatory functions are the most representative, and both of them can regulate the tendency of the immune system to exert proinflammatory or anti-inflammatory functions. M1 and M2 macrophages are involved in the destructive and reparative stages of PD. Due to the complex microenvironment of PD, the dynamic development of PD, and various local mediators, increasing attention has been given to the study of macrophage polarization in PD. This review summarizes the role of macrophage polarization in the development of PD and its research progress.
Collapse
Affiliation(s)
- Xiaoyu Sun
- *Correspondence: Lei Zhang, ; Xiaoyu Sun,
| | | | | | | | - Lei Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, Department of Periodontology, Stomatologic Hospital & College, Anhui Medical University, Hefei, China
| | | |
Collapse
|
115
|
Calheira MC, Trindade SC, Falcão MML, Barbosa LSC, Carvalho GRB, Machado PRL, Gomes-Filho IS, de Jesus Campos E, de Carvalho-Filho PC, Xavier MT, de Farias APF, Filho JTRR, de Santana Passos-Soares J. Immunoassay standardization for the detection of immunoglobulin A (IgA) against Porphyromonas gingivalis antigens in saliva of individuals with and without leprosy. AMB Express 2021; 11:152. [PMID: 34792664 PMCID: PMC8602710 DOI: 10.1186/s13568-021-01312-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/04/2021] [Indexed: 01/14/2023] Open
Abstract
Leprosy reactions are immune processes that cause neural damage in individuals with leprosy. As periodontitis is an infectious disease related to its development, specific antibodies to periodontal pathogens must be evaluated to better understand the humoral mechanisms underlying this relationship. Therefore, the objective of this study was to standardize an immunoassay to measure IgA specific to P. gingivalis antigens in the saliva of individuals with leprosy. An ELISA checkerboard titration was performed. A validation test involving 53 individuals with leprosy, 24 with and 19 without periodontitis, was conducted and a ROC curve constructed to calculate sensitivity and specificity. The coefficient of the optical densities was 2.21 and 2.66 for P. gingivalis crude extract and the recombinant protein HmuY, respectively. Sensitivity and specificity for the P. gingivalis crude extract were 66.7% and 73.7%, respectively, and for HmuY, were 62.5% and 52.6%, respectively. Specific recognition of P. gingivalis occurred predominantly in individuals with periodontitis, which validates the use of this test for studying periodontitis in individuals with leprosy. Trial registration CAEE 64476117.3.0000.0049, 21/07/2017, retrospectively registered
Collapse
|
116
|
Koidou VP, Hagi-Pavli E, Cross S, Nibali L, Donos N. Molecular profiling of intrabony defects' gingival crevicular fluid. J Periodontal Res 2021; 57:152-161. [PMID: 34788472 DOI: 10.1111/jre.12948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/29/2022]
Abstract
AIM To profile, for the first time, the gingival crevicular fluid (GCF) of intrabony defects against a wide array of inflammatory and regenerative markers. MATERIALS AND METHODS Twenty-one patients contributed one intrabony defect and one periodontally healthy site. Clinical and radiographic measures were obtained. GCF samples were analyzed with multiplex bead immunoassays over 27 markers previously identified by our group. Comparisons were performed using Wilcoxon matched-pairs signed-ranks tests, using a Bonferroni corrected α = 0.05/27 = 0.0019. RESULTS Intrabony defect sites presented significantly increased GCF volume and disease-associated clinical and radiographic characteristics (p < .05). Intrabony defect sites presented significantly increased IL-1α, IL-1β, IL-6, IFN-γ, and MMP-8 levels compared with periodontally healthy sites (p < .0019). For regeneration markers, significantly higher FGF basic and VEGF levels were observed (p < .0019). Notably, traits of cell senescence were identified for the first time in the GCF. CONCLUSIONS The differentiation of intrabony defects from periodontally healthy control sites can be based on clinical and radiographic measures and on a differentiated GCF profile that is site-specific. Alongside catabolic processes, through significant up-regulation of inflammation and connective tissue remodeling, unique molecular characteristics of intrabony defects may render them a microenvironment amenable to regeneration. Traits of the senescence-associated secretory phenotype may suggest the existence of senescent cells during periodontal inflammation in intrabony defects.
Collapse
Affiliation(s)
- Vasiliki P Koidou
- Centre for Oral Clinical Research, Queen Mary University of London Barts and The London School of Medicine and Dentistry, London, UK.,Centre for Immunobiology & Regenerative Medicine, Queen Mary University of London Barts and The London School of Medicine and Dentistry, London, UK
| | - Eleni Hagi-Pavli
- Centre for Immunobiology & Regenerative Medicine, Queen Mary University of London Barts and The London School of Medicine and Dentistry, London, UK
| | - Samantha Cross
- Centre for Clinical Trials and Methodology, Queen Mary University of London Barts and The London School of Medicine and Dentistry, London, UK
| | - Luigi Nibali
- Centre for Oral Clinical Research, Queen Mary University of London Barts and The London School of Medicine and Dentistry, London, UK.,Centre for Host Microbiome Interactions, King's College London, London, UK
| | - Nikolaos Donos
- Centre for Oral Clinical Research, Queen Mary University of London Barts and The London School of Medicine and Dentistry, London, UK.,Centre for Immunobiology & Regenerative Medicine, Queen Mary University of London Barts and The London School of Medicine and Dentistry, London, UK
| |
Collapse
|
117
|
Martínez-García M, Hernández-Lemus E. Periodontal Inflammation and Systemic Diseases: An Overview. Front Physiol 2021; 12:709438. [PMID: 34776994 PMCID: PMC8578868 DOI: 10.3389/fphys.2021.709438] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Periodontitis is a common inflammatory disease of infectious origins that often evolves into a chronic condition. Aside from its importance as a stomatologic ailment, chronic periodontitis has gained relevance since it has been shown that it can develop into a systemic condition characterized by unresolved hyper-inflammation, disruption of the innate and adaptive immune system, dysbiosis of the oral, gut and other location's microbiota and other system-wide alterations that may cause, coexist or aggravate other health issues associated to elevated morbi-mortality. The relationships between the infectious, immune, inflammatory, and systemic features of periodontitis and its many related diseases are far from being fully understood and are indeed still debated. However, to date, a large body of evidence on the different biological, clinical, and policy-enabling sources of information, is available. The aim of the present work is to summarize many of these sources of information and contextualize them under a systemic inflammation framework that may set the basis to an integral vision, useful for basic, clinical, and therapeutic goals.
Collapse
Affiliation(s)
- Mireya Martínez-García
- Sociomedical Research Unit, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mèxico, Mexico City, Mexico
| |
Collapse
|
118
|
Song E, Park MJ, Kim JA, Roh E, Yu JH, Kim NH, Yoo HJ, Seo JA, Kim SG, Kim NH, Baik SH, Choi KM. Implication of thyroid function in periodontitis: a nationwide population-based study. Sci Rep 2021; 11:22127. [PMID: 34764408 PMCID: PMC8586139 DOI: 10.1038/s41598-021-01682-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Possible links between periodontitis and various cardiometabolic and autoimmune diseases have been advocated on the basis of chronic inflammation or oxidative stress. However, the association between periodontitis and thyroid dysfunction is under-researched. Participants without previous thyroid disease or ongoing thyroid-related medication were included from a nationwide population-level survey. Participants were categorized into tertiles of thyroid stimulating hormone (TSH) levels (first tertile < 1.76 mIU/L; second tertile 1.76-2.83 mIU/L; third tertile > 2.83 mIU/L), and periodontal condition was assessed using the Community Periodontal Index. Of the total of 5468 participants, 1423 had periodontitis (26%). A significant difference in the weighted prevalence of periodontitis according to TSH tertiles was observed, with the highest prevalence in the first tertile (26.5%) and the lowest prevalence in the third tertile (20.9%, p = 0.003). Subjects in the first TSH tertile had higher odds for periodontitis than those in the third tertile (OR 1.36, 95% CI 1.10-1.68; p for trend = 0.005) after adjusting for covariates. This association was consistent across subgroups and within sensitivity analyses among subjects without specific factors affecting thyroid function or diseases reported to be related to periodontitis. The present study demonstrated that low TSH levels were associated with significantly higher odds for periodontitis.
Collapse
Affiliation(s)
- Eyun Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine and School of Medicine, Seoul, Korea
| | - Min Jeong Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine and School of Medicine, Seoul, Korea
| | - Jung A Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine and School of Medicine, Seoul, Korea
| | - Eun Roh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine and School of Medicine, Seoul, Korea
| | - Ji Hee Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine and School of Medicine, Seoul, Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine and School of Medicine, Seoul, Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine and School of Medicine, Seoul, Korea
| | - Ji A Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine and School of Medicine, Seoul, Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine and School of Medicine, Seoul, Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine and School of Medicine, Seoul, Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine and School of Medicine, Seoul, Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine and School of Medicine, Seoul, Korea.
| |
Collapse
|
119
|
Clark D, Halpern B, Miclau T, Nakamura M, Kapila Y, Marcucio R. The Contribution of Macrophages in Old Mice to Periodontal Disease. J Dent Res 2021; 100:1397-1404. [PMID: 33906501 PMCID: PMC8532239 DOI: 10.1177/00220345211009463] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The prevalence of periodontal disease increases with age. Systemic inflammatory dysregulation also increases with age and has been reported to contribute to the myriad of diseases and conditions that become more prevalent with advanced age. As periodontal disease involves a dysregulated host inflammatory response, the age-related inflammatory dysregulation may contribute to the pathogenesis of periodontal disease in aging populations. However, our understanding of what drives the age-related inflammatory dysregulation is limited. Here, we investigate the macrophage and its contribution to periodontal disease in old and young mice using a ligature-induced periodontal disease model. We demonstrate that control old mice present with an aged periodontal phenotype, characterized by increased alveolar bone loss and increased local inflammatory cytokine expression compared to young mice. Macrophages were demonstrated to be present in the periodontium of old and young mice in equal numbers in controls, during disease induction, and during disease recovery. However, it appears age may have a detrimental effect on macrophage activity during disease recovery. Depletion of macrophages during disease recovery in old mice resulted in decreased inflammatory cytokines within the gingiva and decreased bone loss as measured by micro-computed tomography. In young mice, macrophage depletion during disease recovery had no beneficial or detrimental effect. Macrophage depletion during disease induction resulted in decreased disease severity similarly in young and old mice. Findings from this work support the diverse roles of macrophages in disease induction as well as the active roles of disease recovery, including the resolution of inflammation. Here, we conclude that age-related changes to the macrophage appear to be detrimental to the recovery from disease and may explain, in part, the age-related increase in prevalence of periodontal disease. Future studies examining the specific intrinsic age-related changes to the macrophage will help identify therapeutic targets.
Collapse
Affiliation(s)
- D. Clark
- Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - B. Halpern
- Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - T. Miclau
- Orthopaedic Trauma Institute, University of California San Francisco, San Francisco, CA, USA
| | - M. Nakamura
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Arthritis/Immunology Section, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Y. Kapila
- Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - R. Marcucio
- Orthopaedic Trauma Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
120
|
Shimabukuro N, Cataruci ACDS, Ishikawa KH, de Oliveira BE, Kawamoto D, Ando-Suguimoto ES, Albuquerque-Souza E, Nicoli JR, Ferreira CM, de Lima J, Bueno MR, da Silva LBR, Silva PHF, Messora MR, Camara NOS, Simionato MRL, Mayer MPA. Bifidobacterium Strains Present Distinct Effects on the Control of Alveolar Bone Loss in a Periodontitis Experimental Model. Front Pharmacol 2021; 12:713595. [PMID: 34630089 PMCID: PMC8497694 DOI: 10.3389/fphar.2021.713595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022] Open
Abstract
Periodontitis is an inflammatory disease induced by a dysbiotic oral microbiome. Probiotics of the genus Bifidobacterium may restore the symbiotic microbiome and modulate the immune response, leading to periodontitis control. We evaluated the effect of two strains of Bifidobacterium able to inhibit Porphyromonas gingivalis interaction with host cells and biofilm formation, but with distinct immunomodulatory properties, in a mice periodontitis model. Experimental periodontitis (P+) was induced in C57Bl/6 mice by a microbial consortium of human oral organisms. B. bifidum 1622A [B+ (1622)] and B. breve 1101A [B+ (1101)] were orally inoculated for 45 days. Alveolar bone loss and inflammatory response in gingival tissues were determined. The microbial consortium induced alveolar bone loss in positive control (P + B-), as demonstrated by microtomography analysis, although P. gingivalis was undetected in oral biofilms at the end of the experimental period. TNF-α and IL-10 serum levels, and Treg and Th17 populations in gingiva of SHAM and P + B- groups did not differ. B. bifidum 1622A, but not B. breve 1101A, controlled bone destruction in P+ mice. B. breve 1101A upregulated transcription of Il-1β, Tnf-α, Tlr2, Tlr4, and Nlrp3 in P-B+(1101), which was attenuated by the microbial consortium [P + B+(1101)]. All treatments downregulated transcription of Il-17, although treatment with B. breve 1101A did not yield such low levels of transcripts as seen for the other groups. B. breve 1101A increased Th17 population in gingival tissues [P-B+ (1101) and P + B+ (1101)] compared to SHAM and P + B-. Administration of both bifidobacteria resulted in serum IL-10 decreased levels. Our data indicated that the beneficial effect of Bifidobacterium is not a common trait of this genus, since B. breve 1101A induced an inflammatory profile in gingival tissues and did not prevent alveolar bone loss. However, the properties of B. bifidum 1622A suggest its potential to control periodontitis.
Collapse
Affiliation(s)
- Natali Shimabukuro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Amália C de S Cataruci
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Karin H Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna E de Oliveira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ellen S Ando-Suguimoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Emmanuel Albuquerque-Souza
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Jacques R Nicoli
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Caroline M Ferreira
- Department of Pharmaceutics Science, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Jean de Lima
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Manuela R Bueno
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Leandro B R da Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pedro H F Silva
- Department of Oral and Maxillofacial Surgery and Traumatology and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Michel R Messora
- Department of Oral and Maxillofacial Surgery and Traumatology and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Niels O S Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Regina L Simionato
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
121
|
Novaes VCN, Ervolino E, Fernandes GL, Cunha CP, Theodoro LH, Garcia VG, de Almeida JM. Influence of the treatment with the antineoplastic agents 5-fluorouracil and cisplatin on the severity of experimental periodontitis in rats. Support Care Cancer 2021; 30:1967-1980. [PMID: 34633539 DOI: 10.1007/s00520-021-06586-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE The determination on how antineoplastic agents interfere on the progression of periodontitis is critical for improvement and even development of novel therapeutic approaches for periodontal management. This study evaluated the influence of chemotherapy with 5-fluorouracil (5-FU) or cisplatin (CIS) on healthy periodontal tissues and on the progression of experimental periodontitis (EP). METHODS One hundred forty-four male rats were divided into six groups (n = 24). Each group was treated with physiological saline solution (PSS) 0.9%, 5-FU, or CIS. Experimental periodontitis (EP) was induced by ligature placement. Animals were euthanized at 7, 15, and 30 days after treatment. Data were statistically analyzed (p ≤ 0.05). RESULTS The groups with EP and treated with 5-FU or CIS showed lower percentage of bone volume in the furcation region and higher percentage of alveolar bone loss, higher number of TRAP-positive cells, and lower number of PCNA-positive cells when compared group with EP and treated with PSS (p ≤ 0.05). Groups with EP and treated with 5-FU or CIS showed high immunolabelling pattern of RANKL, TNF-α, and IL-1β, moderate of BAX, and low of HIF-1α. Histological analysis showed severe tissue breakdown in the groups with EP and treated with 5-FU or CIS. CONCLUSIONS Chemotherapy with antineoplastic agents 5-FU and CIS increased the intensity and duration of the inflammation and compromised tissue repair by reduction in cellular and vascular turnover. The more severe periodontal breakdown was caused by 5-FU.
Collapse
Affiliation(s)
- Vivian Cristina Noronha Novaes
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Edilson Ervolino
- Department of Basic Science, Histology Division, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Giovani Lopes Fernandes
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Clara Possarle Cunha
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Leticia Helena Theodoro
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Valdir Gouveia Garcia
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil.
| |
Collapse
|
122
|
Hasturk H, Hajishengallis G, Lambris JD, Mastellos DC, Yancopoulou D. Phase 2a clinical trial of complement C3 inhibitor AMY-101 in adults with periodontal inflammation. J Clin Invest 2021; 131:152973. [PMID: 34618684 DOI: 10.1172/jci152973] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Gingivitis and periodontitis are prevalent inflammatory diseases of the periodontal tissues. Current treatments are often ineffective or do not prevent disease recurrence. Uncontrolled complement activation and resulting chronic gingival inflammation is a hallmark of periodontal diseases. We determined efficacy and safety of a complement 3-targeted therapeutic, AMY-101, locally administered in adults with periodontal inflammation. METHODS Thirty-two patients with gingival inflammation were enrolled into a randomized, placebo-controlled, double-blind, split-mouth design phase 2a trial, after dose-escalation study to select safe and effective dose with additional 8 patients. Half of the mouth was randomly assigned to AMY-101 (0.1mg/site) or placebo injections at sites of inflammation, administered on days 0, 7 and 14 and evaluated for safety and efficacy outcomes at days 28, 60 and 90. The primary efficacy outcome was change in gingival inflammation, measured by modified gingival index (MGI), and secondary outcomes included changes in bleeding-on-probing (BOP), amount of plaque, pocket depth, clinical attachment level, and gingival crevicular fluid levels of matrix metalloproteinases (MMPs) over 90 days. RESULTS A once-per-week intragingival injection of AMY-101 for 3 weeks was safe and well-tolerated in all participants resulting in significant (P<0.001) reductions in clinical indices measuring gingival inflammation (MGI and BOP). AMY-101 significantly (P<0.05) reduced MMP-8 and MMP-9 levels, indicators of inflammatory tissue destruction. These therapeutic effects persisted for at least 3 months post-treatment. CONCLUSION AMY-101 causes significant and sustainable reduction in gingival inflammation without adverse events and merits further investigation for the treatment of periodontitis and other oral or peri-implant inflammatory conditions. TRIAL REGISTRATION ClinicalTrials.gov: NCT03694444. FUNDING Amyndas Pharmaceuticals. Amyndas contributed to the design and conducts of the clinical trial and in the writing of the manuscript.
Collapse
Affiliation(s)
- Hatice Hasturk
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, United States of America
| | - George Hajishengallis
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, United States of America
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Dimitrios C Mastellos
- Division of Biodiagnostic Sciences and Technologies, National Center for Scientific Research 'Demokritos', Athens, Greece
| | | |
Collapse
|
123
|
Stolf CS, Sacramento CM, Paz HES, Machado RA, Ramos LP, de Oliveira LD, Cogo-Müller K, Santamaria MP, Ruiz KGS, Casarin RCV. IL10 promoter rs6667202 polymorphism is functional in health but not in grade c periodontitis patients: A pilot study. J Periodontal Res 2021; 57:85-93. [PMID: 34611908 DOI: 10.1111/jre.12940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Previous studies have demonstrated an association between the IL10 promoter rs6667202 (C > A) single-nucleotide polymorphism (SNP) and grade C, stage 3 or 4 periodontitis (Perio4C) in the Brazilian population, where the altered A allele was detected more frequently in these patients. However, no functional analysis of this variation has yet been performed. Thus, the objective of this preliminary study was to evaluate the functionality of rs6667202 in gingival fibroblasts (GFs) of individuals with Perio4C and with periodontal health (PH) stimulated with Aggregatibacter actinomycetencomitans protein extract (AaPE). METHODS Patients with PH and Perio4C were segregated according to their genotype (AA, AC, or CC), and a biopsy was performed to establish the culture of the GFs. After GFs exposure to AaPE at 5 µg/ml for 1.5 h, RNA was extracted to analyze IL10 expression by qPCR. Aliquots of the cell's supernatant were subjected to immunoenzymatic analysis (MAGpix) to detect interleukin-10 (IL-10). RESULTS In PH, the genotypes AA and AC are related to less expression of IL10 (p = 0.027 and p < 0.0001) and less production of IL-10 (p = 0.002 and p = 0.001), when compared to CC. In Perio4C, there was no statistical difference between the genotypes (p > 0.05), although a lower IL-10 expression and release compared with PH CC was seen (p = 0.033 and p < 0.001). CONCLUSION The rs6667202 SNP is functional in PH, as it decreases the expression and production of IL-10. In Perio4C, other factors may be masking its action by altering the IL-10's response.
Collapse
Affiliation(s)
- Camila S Stolf
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Catharina M Sacramento
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Hélvis E S Paz
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Renato A Machado
- Oral Pathology Division, Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Lucas P Ramos
- Microbiology and Immunology Division, Department of Biosciences and Oral Biopathology, São José dos Campos School of Dentistry, São Paulo State University, São José dos Campos, Brazil
| | - Luciane D de Oliveira
- Microbiology and Immunology Division, Department of Biosciences and Oral Biopathology, São José dos Campos School of Dentistry, São Paulo State University, São José dos Campos, Brazil
| | - Karina Cogo-Müller
- Pharmacology, Anesthesiology and Therapeutics Division, Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Mauro P Santamaria
- Periodontics Division, Department of Diagnosis and Surgery, São José dos Campos School of Dentistry, São Paulo State University, São José dos Campos, Brazil
| | - Karina G S Ruiz
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Renato C V Casarin
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| |
Collapse
|
124
|
Zivanovic S, Papic M, Vucicevic T, Miletic Kovacevic M, Jovicic N, Nikolic N, Milasin J, Paunovic V, Trajkovic V, Mitrovic S, Lukic ML, Lukic A, Ljujic B. Periapical lesions in two inbred strains of rats differing in immunological reactivity. Int Endod J 2021; 55:64-78. [PMID: 34614243 DOI: 10.1111/iej.13638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
AIM To investigate the influence of strain differences in immune responses on the pathogenesis of experimental periapical lesions in Dark Agouti (DA) and Albino Oxford (AO) inbred strains of rats. METHODOLOGY Periapical lesions were induced in male DA and AO rats by pulp exposure of the first mandibular right molars to the oral environment. Animals were killed 21 days after pulp exposure. The mandibular jaws were retrieved and prepared for radiographic, pathohistological, immunohistochemical analysis, real-time PCR and flow cytometry. Blood samples and the supernatant of periapical lesions were collected for measurement of cytokines and oxidative stress marker levels. Statistical analysis was performed using the Kruskal-Wallis H and Mann-Whitney U non-parametric tests or parametric One-Way anova and Independent Samples T-test to determine the differences between groups depending on the normality of the data. A significant difference was considered when p values were <.05. RESULTS DA rats developed significantly larger (p < .05) periapical lesions compared to AO rats as confirmed by radiographic and pathohistological analysis. The immunohistochemical staining intensity for CD3 was significantly greater in periapical lesions of DA rats compared to AO rats (p < .05). In DA rats, periapical lesions had a significantly higher (p < .05) percentage of CD3+ cells compared to AO rats. Also, the percentage of INF-γ, IL-17 and IL-10 CD3+CD4+ cells was significantly higher in DA rats (p < .05). DA rats had a significantly higher Th17/Th10 ratio. RT-PCR expression of IL-1β, INF-γ and IL-17 genes was significantly higher in periapical lesions of DA compared to AO rats (p < .05). The receptor activator of nuclear factor kappa-Β ligand/osteoprotegerin ratio was higher in DA compared to AO rats with periapical lesions (p < .05). Systemic levels of TNF-α and IL-6 were significantly higher in DA compared to AO rats (p < .05). Levels of lipid peroxidation measured as thiobarbituric acid reactive substances and reduced glutathione were significantly higher (p < .05) in the supernatant in the periapical lesions of DA rats. CONCLUSION After pulp exposure, DA rats developed much larger periapical lesions compared to AO rats. Genetically determined differences in immunopathology have been demonstrated to be a significant element defining the severity of periapical lesions.
Collapse
Affiliation(s)
- Suzana Zivanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milos Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tamara Vucicevic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Miletic Kovacevic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nadja Nikolic
- Department of Biology and Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milasin
- Department of Biology and Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Verica Paunovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandra Lukic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
125
|
Natural Killer T (NKT) Cells and Periodontitis: Potential Regulatory Role of NKT10 Cells. Mediators Inflamm 2021; 2021:5573937. [PMID: 34594157 PMCID: PMC8478603 DOI: 10.1155/2021/5573937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
Natural killer T (NKT) cells constitute a unique subset of T lymphocytes characterized by specifically interacting with antigenic glycolipids conjugated to the CD1d receptor on antigen-presenting cells. Functionally, NKT cells are capable of performing either effector or suppressor immune responses, depending on their production of proinflammatory or anti-inflammatory cytokines, respectively. Effector NKT cells are subdivided into three subsets, termed NKT1, NKT2, and NKT17, based on the cytokines they produce and their similarity to the cytokine profile produced by Th1, Th2, and Th17 lymphocytes, respectively. Recently, a new subgroup of NKT cells termed NKT10 has been described, which cooperates and interacts with other immune cells to promote immunoregulatory responses. Although the tissue-specific functions of NKT cells have not been fully elucidated, their activity has been associated with the pathogenesis of different inflammatory diseases with immunopathogenic similarities to periodontitis, including osteolytic pathologies such as rheumatoid arthritis and osteoporosis. In the present review, we revise and discuss the pathogenic characteristics of NKT cells in these diseases and their role in the pathogenesis of periodontitis; particularly, we analyze the potential regulatory role of the IL-10-producing NKT10 cells.
Collapse
|
126
|
Clark D, Kotronia E, Ramsay SE. Frailty, aging, and periodontal disease: Basic biologic considerations. Periodontol 2000 2021; 87:143-156. [PMID: 34463998 PMCID: PMC8771712 DOI: 10.1111/prd.12380] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging is associated with the development of disease. Periodontal disease is one of the many diseases and conditions that increase in prevalence with age. In addition to the traditional focus on individual age-related conditions, there is now a greater recognition that multisystem conditions such as frailty play an important role in the health of older populations. Frailty is a clinical condition in older adults that increases the risk of adverse health outcomes. Both frailty and periodontal disease are common chronic conditions in older populations and share several risk factors. There is likely a bidirectional relationship between periodontal disease and frailty. Comorbid systemic diseases, poor physical functioning, and limited ability to self-care in frail older people have been implicated as underlying the association between frailty and periodontal disease. In addition, both frailty and periodontal disease also have strong associations with inflammatory dysregulation and other age-related pathophysiologic changes that may similarly underlie their development and progression. Investigating age-related changes in immune cells that regulate inflammation may lead to a better understanding of age-related disease and could lead to therapeutic targets for the improved management of frailty and periodontal disease.
Collapse
Affiliation(s)
- Daniel Clark
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Eftychia Kotronia
- Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Sheena E Ramsay
- Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
127
|
Kuraji R, Sekino S, Kapila Y, Numabe Y. Periodontal disease-related nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: An emerging concept of oral-liver axis. Periodontol 2000 2021; 87:204-240. [PMID: 34463983 PMCID: PMC8456799 DOI: 10.1111/prd.12387] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Periodontal disease, a chronic inflammatory disease of the periodontal tissues, is not only a major cause of tooth loss, but it is also known to exacerbate/be associated with various metabolic disorders, such as obesity, diabetes, dyslipidemia, and cardiovascular disease. Recently, growing evidence has suggested that periodontal disease has adverse effects on the pathophysiology of liver disease. In particular, nonalcoholic fatty liver disease, a hepatic manifestation of metabolic syndrome, has been associated with periodontal disease. Nonalcoholic fatty liver disease is characterized by hepatic fat deposition in the absence of a habitual drinking history, viral infections, or autoimmune diseases. A subset of nonalcoholic fatty liver diseases can develop into more severe and progressive forms, namely nonalcoholic steatohepatitis. The latter can lead to cirrhosis and hepatocellular carcinoma, which are end‐stage liver diseases. Extensive research has provided plausible mechanisms to explain how periodontal disease can negatively affect nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, namely via hematogenous or enteral routes. During periodontitis, the liver is under constant exposure to various pathogenic factors that diffuse systemically from the oral cavity, such as bacteria and their by‐products, inflammatory cytokines, and reactive oxygen species, and these can be involved in disease promotion of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Also, gut microbiome dysbiosis induced by enteral translocation of periodontopathic bacteria may impair gut wall barrier function and promote the transfer of hepatotoxins and enterobacteria to the liver through the enterohepatic circulation. Moreover, in a population with metabolic syndrome, the interaction between periodontitis and systemic conditions related to insulin resistance further strengthens the association with nonalcoholic fatty liver disease. However, most of the pathologic links between periodontitis and nonalcoholic fatty liver disease in humans are provided by epidemiologic observational studies, with the causal relationship not yet being established. Several systematic and meta‐analysis studies also show conflicting results. In addition, the effect of periodontal treatment on nonalcoholic fatty liver disease has hardly been studied. Despite these limitations, the global burden of periodontal disease combined with the recent nonalcoholic fatty liver disease epidemic has important clinical and public health implications. Emerging evidence suggests an association between periodontal disease and liver diseases, and thus we propose the term periodontal disease–related nonalcoholic fatty liver disease or periodontal disease–related nonalcoholic steatohepatitis. Continued efforts in this area will pave the way for new diagnostic and therapeutic approaches based on a periodontologic viewpoint to address this life‐threatening liver disease.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.,Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.,Department of Orofacial Sciences, University of California San Francisco School of Dentistry, San Francisco, California, USA
| | - Satoshi Sekino
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yvonne Kapila
- Department of Orofacial Sciences, University of California San Francisco School of Dentistry, San Francisco, California, USA
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| |
Collapse
|
128
|
Abstract
Periodontitis is a multi-etiologic infection characterized clinically by pathologic loss of the periodontal ligament and alveolar bone. Herpesviruses and specific bacterial species are major periodontal pathogens that cooperate synergistically in producing severe periodontitis. Cellular immunity against herpesviruses and humoral immunity against bacteria are key periodontal host defenses. Genetic, epigenetic, and environmental factors are modifiers of periodontal disease severity. MicroRNAs are a class of noncoding, gene expression-based, posttranscriptional regulatory RNAs of great importance for maintaining tissue homeostasis. Aberrant expression of microRNAs has been associated with several medical diseases. Periodontal tissue cells and herpesviruses elaborate several microRNAs that are of current research interest. This review attempts to conceptualize the role of periodontal microRNAs in the pathogenesis of periodontitis. The diagnostic potential of salivary microRNAs is also addressed. Employment of microRNA technology in periodontics represents an interesting new preventive and therapeutic possibility.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Mucosal Immunology Laboratory, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jørgen Slots
- Department of Periodontology, University of Southern California School of Dentistry, Los Angeles, California, USA
| |
Collapse
|
129
|
Oral Microbiota Features in Subjects with Down Syndrome and Periodontal Diseases: A Systematic Review. Int J Mol Sci 2021; 22:ijms22179251. [PMID: 34502159 PMCID: PMC8431440 DOI: 10.3390/ijms22179251] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder associated with early-onset periodontitis and other periodontal diseases (PDs). The present work aimed to systematically review the scientific literature reporting studies in vivo on oral microbiota features in subjects with DS and related periodontal health and to highlight any correlation and difference with subjects not affected by DS, with and without PDs. PubMed, Web of Science, Scopus and Cochrane were searched for relevant studies in May 2021. The participants were subjects affected by Down syndrome (DS) with and without periodontal diseases; the study compared subjects with periodontal diseases but not affected by DS, and DS without periodontal diseases; the outcomes were the differences in oral microbiota/periodontopathogen bacterial composition among subjects considered; the study design was a systematic review. Study quality was assessed with risk of bias in non-randomized studies of interventions (ROBINS-I). Of the 954 references retrieved, 26 studies were considered. The conclusions from the qualitative assessment of the papers revealed an increasing knowledge over the last years of the microbiota associated with DS and their periodontal diseases, in comparison with healthy subjects and subjects with other kinds of mental disabilities. Few data have emerged on the mycobiome and virobiome of DS, hence, further investigations are still necessary.
Collapse
|
130
|
Yu M, Sun L, Ba P, Li L, Chen J, Sun Q. Progranulin promotes osteogenic differentiation of periodontal membrane stem cells in both inflammatory and non-inflammatory conditions. J Int Med Res 2021; 49:3000605211032508. [PMID: 34344217 PMCID: PMC8358516 DOI: 10.1177/03000605211032508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective The growth factor progranulin (PGRN) is widely expressed and plays important
roles in anti-inflammatory signaling and bone regeneration. However, the
anti-inflammatory and pro-osteogenic roles of PGRN in periodontitis are
seldom studied. We used an in vitro model to investigate
whether PGRN can promote osteogenic differentiation of periodontal ligament
stem cells (PDLSCs). Methods PDLSCs were treated with PGRN (0 to 100 ng/mL) and the optimal concentrations
required to induce proliferation and osteogenesis were identified. PDLSCs
were cultured with 10 ng/mL tumor necrosis factor (TNF)-α, 25 ng/mL PGRN, or
10 ng/mL TNF-α + 25 ng/ml PGRN; untreated PDLSCs were used as controls. The
effects of PGRN on PDLSC proliferation and osteogenic differentiation were
assessed. Results PGRN (5, 25, and 50 ng/mL) promoted PDLSC proliferation and osteogenic
differentiation, with the 25-ng/mL dose showing the largest effect.
Furthermore, 25 ng/mL PGRN reversed inhibition of osteogenic differentiation
by TNF-α. Conclusion PGRN promotes PDLSC proliferation, osteogenic differentiation, and
mineralization in both inflammatory and non-inflammatory conditions. The
25-ng/mL PRGN dose was the most suitable for inducing proliferation and
osteogenesis. Further studies using animal models will be required to obtain
pre-clinical evidence to support using PGRN as a treatment for
periodontitis.
Collapse
Affiliation(s)
- Miao Yu
- Weifang People's Hospital, Department of Stomatology, Weifang, Shandong, China
| | - Long Sun
- Department of Stomatology, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Pengfei Ba
- Department of Periodontology, Weihai Stomatological Hospital, Weihai, Shandong, China
| | - Linxia Li
- Department of Stomatology, 562122Affiliated Hospital of Jining Medical University, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Jing Chen
- Department of Stomatology, Zoucheng People's Hospital, Zoucheng, Shandong, China
| | - Qinfeng Sun
- Department of Periodontology, 12589Shandong University, School of Stomatology, Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China
| |
Collapse
|
131
|
Aziz J, Rahman MT, Vaithilingam RD. Dysregulation of metallothionein and zinc aggravates periodontal diseases. J Trace Elem Med Biol 2021; 66:126754. [PMID: 33831799 DOI: 10.1016/j.jtemb.2021.126754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Periodontitis (PD) is a multifaceted inflammatory disease connected to bacterial infection that results in the destruction of tooth supporting structures and eventually tooth loss. Given their involvement in infection and inflammation, both metallothionein (MT) and zinc (Zn) might play vital roles in the development and progression of PD. More specifically, both MT and Zn are heavily involved in regulating immune functions, controlling bacterial infection, balancing inflammatory responses, and reducing oxidative stress, all of which are associated with the pathogenesis of PD. OBJECTIVE This review paper will explore the physiological functions of MT and Zn and hypothesise how dysregulation could negatively affect periodontal health, leading to PD. FINDINGS Bacterial lipopolysaccharide (LPS) derived from periodontal pathogens, namely P. gingivalis initiates the acute phase response, thus upregulating the expression of MT which leads to the subsequent deficiency of Zn, a hallmark of periodontal disease. This deficiency leads to ineffective NETosis, increases the permeability of the gingival epithelium, and disrupts the humoral immune response, collectively contributing to PD. In addition, the presence of LPS in Zn deficient conditions favours M1 macrophage polarisation and maturation of dendritic cells, and also inhibits the anti-inflammatory activity of regulatory T cells. Collectively, these observations could theoretically give rise to the chronic inflammation seen in PD. CONCLUSION A disrupted MT and Zn homeostasis is expected to exert an adverse impact on periodontal health and contribute to the development and progression of PD.
Collapse
Affiliation(s)
- Jazli Aziz
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Dept. of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | | | - Rathna Devi Vaithilingam
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
132
|
Ilango P, Kumar D, Mahalingam A, Thanigaimalai A, Reddy VK. Evidence revealing the role of T cell regulators (Tregs) in periodontal diseases: A review. J Indian Soc Periodontol 2021; 25:278-282. [PMID: 34393396 PMCID: PMC8336777 DOI: 10.4103/jisp.jisp_308_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/19/2020] [Accepted: 01/26/2021] [Indexed: 01/27/2023] Open
Abstract
Periodontitis is an inflammatory disease of the periodontium, which is a reflection of the overgrowth of oral commensals. This alteration in the oral microbiota initiates inflammation of the gingiva, which when left untreated, terminates with the resorption of the alveolar bone that may lead to a poor and hopeless prognosis. With upcoming trends in modulating the host's immunity, the role of regulatory T-cells has gained importance. These T-cells defend against inflammation and autoimmunity as they suppress both. However, in both the conditions, the regulatory cells are invariably reduced in number. Novel methods to enhance the function of Tregs have made their way in dentistry, as a promising approach to cure periodontitis. This article discusses various significant tests and trials of Tregs in the recent years.
Collapse
Affiliation(s)
- Paavai Ilango
- Department of Periodontics, Priyadarshini Dental College and Hospital, Thiruvallur, India
| | - Dhanapriya Kumar
- Department of Periodontics, Priyadarshini Dental College and Hospital, Thiruvallur, India
| | - Arulpari Mahalingam
- Department of Pedodontics, Thai Moogambigai Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Abirami Thanigaimalai
- Department of Periodontics, Priyadarshini Dental College and Hospital, Thiruvallur, India
| | - Vineela Katam Reddy
- Department of Periodontics, Indira Gandhi Dental College and Hospital, Puducherry, India
| |
Collapse
|
133
|
Li Y, Jiao J, Qi Y, Yu W, Yang S, Zhang J, Zhao J. Curcumin: A review of experimental studies and mechanisms related to periodontitis treatment. J Periodontal Res 2021; 56:837-847. [PMID: 34173676 DOI: 10.1111/jre.12914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Curcumin is the main active ingredient of turmeric, which has a wide range of pharmacological effects, including antitumor, antibacterial, anti-inflammatory, anti-oxidation, immune regulation, and so on. Periodontitis is a prevalent oral inflammatory disease caused by a variety of factors. In recent years, many studies have shown that curcumin has a potential role on the treatment of periodontitis. Curcumin has been used in research related to the treatment of periodontitis in the form of solution, chip, gel, and capsule. Combined with other periodontitis treatment methods, such as scaling and root planing (SRP) and photodynamic therapy (PDT), can enhance curcumin's efficacy in treating periodontitis. In addition to natural curcumin, chemically modified curcumin, such as 4-phenylaminocarbonyl bis-demethoxy curcumin (CMC 2.24) and 4-methoxycarbonyl curcumin (CMC 2.5), have also been used in animal models of periodontitis. Here, this paper reviews the research progress of curcumin on the treatment of periodontitis and its related mechanisms.
Collapse
Affiliation(s)
- Yongli Li
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Junjie Jiao
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuanzheng Qi
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Wanqi Yu
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Shihui Yang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingjie Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Jinghui Zhao
- Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
134
|
Plemmenos G, Evangeliou E, Polizogopoulos N, Chalazias A, Deligianni M, Piperi C. Central Regulatory Role of Cytokines in Periodontitis and Targeting Options. Curr Med Chem 2021; 28:3032-3058. [PMID: 32838709 DOI: 10.2174/0929867327666200824112732] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Periodontitis is an immune-inflammatory disease that leads to the progressive destruction of bone and connective tissue in the periodontal area. The cytokine network plays a primary role in tissue homeostasis, the recruitment of immune cells to control the pathogenic impact and the regulation of osteoclastic function, thus modulating the intensity and duration of the immune response. This review provides an update on the main cytokines implicated in the pathogenesis and progression of periodontitis and their targeting potential in order to enrich current treatment options. METHODS A structured search of bibliographic databases (PubMed, MEDLINE, Scopus) was performed for peer-reviewed cytokine studies focused on periodontitis the last ten years. A qualitative content analysis was performed in screened papers and a critical discussion of main findings is provided. RESULTS An altered cytokine profile has been detected in periodontitis patients and the interplay of pro-inflammatory and/or anti-inflammatory cytokines has been associated with disease pathogenesis. Among the most prominent pro-inflammatory cytokines, TNF-α, IL-1β, IL-17, IL-6 and the chemokines CXCL-6, CXCL-8 are overexpressed in periodontitis patients and correlate with disease progression. On the other hand, the anti-inflammatory IL-4 and IL- 11 levels are reduced while IL-12 and IFN-γ expression play a dual role in periodontal disease. Current periodontitis treatment strategies include selective antibiotics, antimicrobial photodynamic therapy and probiotics, which can modulate the cytokine network and when applied in combination with specific anti-cytokine agents can exert additional beneficial effects. CONCLUSION It is evident that cytokines play a central regulatory role in the inflammatory process and immune cell response that underlies bone destruction in periodontitis. Specific cytokine targeting should be considered as a complementary therapeutic scheme to current periodontal management.
Collapse
Affiliation(s)
- Grigorios Plemmenos
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens, Greece
| | - Evangelos Evangeliou
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens, Greece
| | - Nikolaos Polizogopoulos
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens, Greece
| | - Andreas Chalazias
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens, Greece
| | - Marianthi Deligianni
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens, Greece
| | - Christina Piperi
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens, Greece
| |
Collapse
|
135
|
Vieceli PS, Juiz PJL, Lauria PSS, Couto RD, Tomassini TCB, Ribeiro IM, Soares MBP, Villarreal CF. Physalis angulata reduces the progression of chronic experimental periodontitis by immunomodulatory mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113986. [PMID: 33675915 DOI: 10.1016/j.jep.2021.113986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/01/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Physalis angulata is an herb found in tropical and subtropical regions of the world; it is widely applied in popular medicine due to the therapeutic properties of the whole plant and its parts. Extracts and infusions of this plant have been extensively applied in folk medicine worldwide to treat inflammatory and immune-mediated diseases, including oral inflammatory conditions such as sore throat and gingivitis. AIM OF THE STUDY The present study was designed to investigate the protective effects of the ethanolic extract of P. angulata (EEPA) in a murine model of chronic periodontitis, aiming to corroborate its traditional use as an anti-inflammatory and immunomodulatory agent, and to point out possible mechanisms involved in these effects. MATERIALS AND METHODS EEPA was obtained from the stems of P. angulata collected in Belém (PA, Brazil). Chronic periodontitis was induced in male C57BL/6 mice by 12 administrations of lipopolysaccharide (LPS; 20 μg/1μL) into the gingival papilla in the course of 28 days. Starting from the 15th day after the first LPS injection, mice were daily treated with EEPA (50 or 100 mg/kg), nimesulide (25 mg/kg, reference drug), or vehicle by oral route for 14 days. At the end of the experimental period, alveolar bone loss was evaluated along with the gingival expression of biomarkers of periodontitis and cytokines by RT-q-PCR and ELISA. Hematological and biochemical parameters suggestive of systemic toxicity were also evaluated. The transcriptional activity of NF-κB was investigated using the luciferase assay in macrophages. RESULTS Mice with chronic experimental periodontitis suffered alveolar bone loss that was prevented by the treatment with EEPA (50 or 100 mg/kg) or nimesulide (25 mg/kg). EEPA (50 and 100 mg/kg) and nimesulide (25 mg/kg) reduced mRNA levels of MMP-9 mRNA, but not of TIMP-1 in gingival tissue of periodontitis-induced mice. Both treatments also reduced the production of the pro-inflammatory cytokines IL-1β and IL-6. The treatment with EEPA (100 mg/kg) increased the production of the anti-inflammatory cytokine TGF-β. No hematological or biochemical alterations were caused by the daily treatment with EEPA. In vitro luciferase assay suggested that a putative mechanism of EEPA is reducing the transcriptional activity of NF-κB. CONCLUSIONS EEPA exhibited a disease-modifying effect in the chronic experimental periodontitis, along with unidentifiable systemic toxicity. This work corroborates the traditional use of P. angulata in oral inflammatory conditions and provides mechanistic hypotheses to explain its therapeutic effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cristiane Flora Villarreal
- College of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Bahia, Brazil.
| |
Collapse
|
136
|
Villafuerte KRV, Dantas FT, Taba M, Messora M, Candido Dos Reis FJ, Carrara HHA, Martinez CDJH, Gozzo T, Palioto DB. Effects of non-surgical periodontal therapy on the cytokine profile in gingival crevicular fluid of breast cancer patients with periodontitis undergoing chemotherapy. Support Care Cancer 2021; 29:7505-7513. [PMID: 34101016 DOI: 10.1007/s00520-021-06194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study evaluated the effect of non-surgical periodontal therapy (NSPT) on the cytokine profile in gingival crevicular fluid (GCF) in patients with breast cancer and periodontitis. METHODS Forty patients were allocated into the periodontitis group (P) (n = 20) and breast cancer with periodontitis group (BC/P) (n = 20). Two days before the removal of infectious foci from the oral cavity and NSPT, as well as periodontal reevaluations, C-reactive protein, neutrophils (103μL), and platelets (103μL), were evaluated. The following cytokines in GCF, interleukin (IL)-4, IL-10, IL-2, IL-6, IL-1β, tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and transforming growth factor-β (TGF-β) were evaluated by the Luminex assay at baseline, and 45 and 180 days after therapy. Cytokine levels were analyzed for correlations with the clinical parameters: clinical attachment level (CAL), probing depth (PD), bleeding on probing (BOP), and plaque index (PI). RESULTS After NSPT, IL-2, TNF-α, and TGF-β were downregulated (p<0.05) in the BC/P. In the P group, INF-γ, IL-2, and TNF-α were downregulated (p<0.05), and TGF-β was increased (p<0.05). At 180 days, IL-6 in GCF was significantly positively correlated with PD and CAL (r=0.45, r=0.56) in the BC/P (p<0.05). In the P group, IL-1β in GCF was positively correlated with PD and CAL (r=0.56, r=0.59) at 45 days (p<0.05). CONCLUSION NSPT, before the start of chemotherapy, helps to reduce the inflammatory markers associated with the activity of periodontal disease, favoring a less inflammatory pattern, to avoid the exacerbation of periodontitis.
Collapse
Affiliation(s)
- Kelly R V Villafuerte
- Department of Oral & Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, USP, Ribeirão Preto, São Paulo, Brazil
| | - Felipe T Dantas
- Department of Oral & Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, USP, Ribeirão Preto, São Paulo, Brazil
| | - Mario Taba
- Department of Oral & Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, USP, Ribeirão Preto, São Paulo, Brazil
| | - Michel Messora
- Department of Oral & Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, USP, Ribeirão Preto, São Paulo, Brazil
| | - Francisco J Candido Dos Reis
- Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hélio H A Carrara
- Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cristhiam de Jesus H Martinez
- Department of Oral & Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, USP, Ribeirão Preto, São Paulo, Brazil
| | - Thais Gozzo
- Department of Maternal and Child Nursing and Public Health, University of São Paulo at Ribeirão Preto College of Nursing, Ribeirão Preto, São Paulo, Brazil
| | - Daniela Bazan Palioto
- Department of Oral & Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, USP, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
137
|
Cardoso EOC, Fine N, Glogauer M, Johnson F, Goldberg M, Golub LM, Tenenbaum HC. The Advent of COVID-19; Periodontal Research Has Identified Therapeutic Targets for Severe Respiratory Disease; an Example of Parallel Biomedical Research Agendas. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.674056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pathophysiology of SARS-CoV-2 infection is characterized by rapid virus replication and aggressive inflammatory responses that can lead to acute respiratory distress syndrome (ARDS) only a few days after the onset of symptoms. It is suspected that a dysfunctional immune response is the main cause of SARS-CoV-2 infection-induced lung destruction and mortality due to massive infiltration of hyperfunctional neutrophils in these organs. Similarly, neutrophils are recruited constantly to the oral cavity to combat microorganisms in the dental biofilm and hyperfunctional neutrophil phenotypes cause destruction of periodontal tissues when periodontitis develops. Both disease models arise because of elevated host defenses against invading organisms, while concurrently causing host damage/disease when the immune cells become hyperfunctional. This represents a clear nexus between periodontal and medical research. As researchers begin to understand the link between oral and systemic diseases and their potential synergistic impact on general health, we argue that translational research from studies in periodontology must be recognized as an important source of information that might lead to different therapeutic options which can be effective for the management of both oral and non-oral diseases. In this article we connect concepts from periodontal research on oral inflammation while exploring host modulation therapy used for periodontitis as a potential strategy for the prevention of ARDS a deadly outcome of COVID-19. We suggest that host modulation therapy, although developed initially for management of periodontitis, and which inhibits proteases, cytokines, and the oxidative stress that underlie ARDS, will provide an effective and safe treatment for COVID-19.
Collapse
|
138
|
Systematic review of ratios between disease /health periodontitis modulators and meta-analysis of their levels in gingival tissue and biological fluids. Arch Oral Biol 2021; 127:105147. [PMID: 34044319 DOI: 10.1016/j.archoralbio.2021.105147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The ratio between molecules which acts towards the diseased or healthy phenotype determine whether the periodontitis lesions will progress or stabilize. Considering gingival tissue and biofluids, we aimed to present a systematic review (qualitative analysis) on the ratios between disease/health periodontitis modulators, and a meta-analysis (quantitative analysis) of their levels in individuals with periodontitis compared to controls. DESIGN Electronic searches of the PubMed, Scopus, EMBASE and Web of Science databases were conducted for publications up to May 2020. RESULTS A total of 53 publications were included in the systematic review, being 22 of them focusing on the ratios between Interleukin [IL]-1/IL-10, IL-6/IL-10, IL-1/IL-1RA and RANKL/OPG. Twenty-one publications were eligible for meta-analyses. The ratios of IL-1, IL-6 and RANKL mRNA levels were significantly higher in diseased gingival tissue, as well as their protein levels in gingival crevicular fluid (GCF) of periodontitis individuals. Considering the saliva levels, the RANKL/OPG ratio was higher in periodontitis subjects in comparison to controls. Meta-analyses showed higher IL-1β, IL-1α, IL-6 and IL-10 gene expressions in gingival tissue and protein levels in GCF, while RANKL was higher in GCF of periodontitis individuals in comparison to controls. CONCLUSIONS Both the ratios and meta-analyses showed higher levels of modulators in gingival tissue and GCF of diseased individuals.
Collapse
|
139
|
Contaldo M, Fusco A, Stiuso P, Lama S, Gravina AG, Itro A, Federico A, Itro A, Dipalma G, Inchingolo F, Serpico R, Donnarumma G. Oral Microbiota and Salivary Levels of Oral Pathogens in Gastro-Intestinal Diseases: Current Knowledge and Exploratory Study. Microorganisms 2021; 9:1064. [PMID: 34069179 PMCID: PMC8156550 DOI: 10.3390/microorganisms9051064] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022] Open
Abstract
Various bi-directional associations exist between oral health and gastro-intestinal diseases. The oral microbiome plays a role in the gastro-intestinal carcinogenesis and fusobacteria are the most investigated bacteria involved. This paper aims to review the current knowledge and report the preliminary data on salivary levels of Fusobacterium nucleatum, Porphyromonas gingivalis and Candida albicans in subjects with different gastro-intestinal conditions or pathologies, in order to determine any differences. The null hypothesis was "subjects with different gastro-intestinal diseases do not show significant differences in the composition of the oral microbiota". Twenty-one subjects undergoing esophagastroduodenoscopy or colonscopy were recruited. For each subject, a salivary sample was collected before the endoscopy procedure, immediately stored at -20 °C and subsequently used for genomic bacterial DNA extraction by real-time PCR. Low levels of F. nucleatum and P. gingivalis were peculiar in the oral microbiota in subjects affected by Helicobater pylori-negative chronic gastritis without cancerization and future studies will elucidate this association. The level of C. albicans did not statistically differ among groups. This preliminary study could be used in the future, following further investigation, as a non-invasive method for the search of gastrointestinal diseases and associated markers.
Collapse
Affiliation(s)
- Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy;
| | - Alessandra Fusco
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 8, 80138 Naples, Italy; (A.F.); (G.D.)
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 8, 80138 Naples, Italy; (P.S.); (S.L.); (A.G.G.); (A.F.)
| | - Stefania Lama
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 8, 80138 Naples, Italy; (P.S.); (S.L.); (A.G.G.); (A.F.)
| | - Antonietta Gerarda Gravina
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 8, 80138 Naples, Italy; (P.S.); (S.L.); (A.G.G.); (A.F.)
| | - Annalisa Itro
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 8, 80138 Naples, Italy;
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 8, 80138 Naples, Italy; (P.S.); (S.L.); (A.G.G.); (A.F.)
| | - Angelo Itro
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy;
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (G.D.); (F.I.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (G.D.); (F.I.)
| | - Rosario Serpico
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy;
| | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 8, 80138 Naples, Italy; (A.F.); (G.D.)
| |
Collapse
|
140
|
Periodontitis, Blood Pressure, and the Risk and Control of Arterial Hypertension: Epidemiological, Clinical, and Pathophysiological Aspects-Review of the Literature and Clinical Trials. Curr Hypertens Rep 2021; 23:27. [PMID: 33961166 PMCID: PMC8105217 DOI: 10.1007/s11906-021-01140-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 12/11/2022]
Abstract
Purpose of Review Arterial hypertension is an important risk factor for cardiovascular disease. In the world, about 45% of people suffer from arterial hypertension, while good blood pressure control is achieved by only approximately 50% of all hypertensive patients treated. The reason for the high prevalence of arterial hypertension and its poor control is low knowledge of hypertensinogenic factors. One such factor is periodontitis, which is a disease of social importance. Recent Findings It has been shown that the occurrence of periodontitis leads to an increase in blood pressure, increasing the risk of arterial hypertension. Periodontitis can also lead to ineffectiveness of antihypertensive treatment. Some interventional studies have shown that treatment of periodontitis reduced blood pressure in patients with arterial hypertension. The pathogenesis of arterial hypertension in periodontitis is complex and concerns mainly the impairment of the vasodilatation properties of the endothelium. Summary Hygiene and periodontitis treatment should be a method of preventing arterial hypertension and a method of increasing the effectiveness of antihypertensive treatment.
Collapse
|
141
|
Mi W, Qiao S, Zhang X, Wu D, Zhou L, Lai H. PRMT5 inhibition modulates murine dendritic cells activation by inhibiting the metabolism switch: a new therapeutic target in periodontitis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:755. [PMID: 34268368 PMCID: PMC8246170 DOI: 10.21037/atm-20-7362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/05/2021] [Indexed: 01/02/2023]
Abstract
Background Protein arginine methyltransferase 5 (PRMT5) catalyzes the methylation of arginine residues in multiple proteins. Recent reports have highlighted the anti-inflammatory role of PRMT5. Dendritic cells (DCs) are well-known professional antigen-presenting cells that are crucial for immune response initiation. However, whether PRMT5 participates in DC immunity processes is unknown. Methods In an in vitro experiment, a PRMT5 inhibitor (EPZ015666) was used to inhibit PRMT5 expression, and lipopolysaccharide (LPS) stimulation was applied to mimic the inflammation context. Proinflammatory cytokine production, interferon-stimulated genes (ISGs), costimulatory molecules, major histocompatibility complex (MHC) expression and DC metabolism were measured following PRMT5 inhibition and LPS stimulation. In an in vivo study, we first tested PRMT5 mRNA and protein expression in a BALB/c mouse ligature-induced periodontitis model. Then, we evaluated changes in periodontal tissue and DC migration to cervical lymph nodes after local treatment with the PRMT5 inhibitor. Results The in vitro results revealed that PRMT5 inhibition attenuated DC activation and maturation by inhibiting the expression of proinflammatory cytokines, ISGs, costimulatory molecules, and MHC induced by LPS stimulation. We also found that inhibition of PRMT5 blocked the DC metabolic switch to glycolysis. In the in vivo study, we found that PRMT5 inhibition reversed the severity of the lesions and slowed the migration of DCs to cervical lymph nodes. Conclusions The results show a critical role of PRMT5 in the control of DC activation through inhibition of the metabolic switch and indicate that PRMT5 is a promising therapeutic target in periodontitis.
Collapse
Affiliation(s)
- Wenxiang Mi
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shichong Qiao
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiaomeng Zhang
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Dongle Wu
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Linyi Zhou
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongchang Lai
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
142
|
Choi Y, Park E, Kim S, Ha J, Oh H, Kim Y, Lee Y, Seo Y, Kang J, Lee S, Lee H, Yoon Y, Choi KH. Fermented milk with Lactobacillus curvatus SMFM2016-NK alleviates periodontal and gut inflammation, and alters oral and gut microbiota. J Dairy Sci 2021; 104:5197-5207. [PMID: 33685682 DOI: 10.3168/jds.2020-19625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/09/2021] [Indexed: 11/19/2022]
Abstract
This study aimed to analyze the effect of milk fermented with Lactobacillus curvatus SMFM2016-NK on periodontal diseases and gut health in a rat model. To improve the effect of Lb. curvatus SMFM2016-NK-fermented milk administration for relieving periodontitis, the periodontitis rat models were treated with the following for 4 wk: 10% skim milk (normal), periodontitis + 10% skim milk (negative control), periodontitis + Lactobacillus rhamnosus GG-fermented milk (positive control), and periodontitis + Lb. curvatus SMFM2016-NK-fermented milk (PD+LCFM). Transcriptional analysis of inflammatory cytokines [tumor necrosis factor α (TNF-α), IL-1β, IL-6, and IL-10] was performed via quantitative reverse-transcription PCR. The changes in the oral and gut microbiomes after administering Lb. curvatus SMFM2016-NK-fermented milk were analyzed with metagenomics sequencing using DNA extracted from the oral gingival tissues and feces from the cecum of the rat models. After treatment with Lb. curvatus SMFM2016-NK-fermented milk, the relative gene expression levels of TNFA and IL1B in the gingiva decreased in the PD+LCFM group compared with those in the negative control group. In the oral microbiome, the proportion of the phylum Proteobacteria in the PD+LCFM group was lower than that in the negative control after treatment with Lb. curvatus SMFM2016-NK-fermented milk. For the effect in the gut, the relative gene expression levels of inflammatory cytokines in the colon between the normal and negative control groups were not different; however, the expression levels of TNFA and IL1B in the PD+LCFM and positive control groups, respectively, were lower than those in the negative control group. The composition and diversity of the gut microbiome differed among normal, periodontitis, and Lb. curvatus SMFM2016-NK-fermented milk treatment groups. These results indicate that Lb. curvatus SMFM2016-NK-fermented milk could alleviate periodontal and gut inflammation and change oral and gut microbiota.
Collapse
Affiliation(s)
- Y Choi
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - E Park
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - S Kim
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - J Ha
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - H Oh
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Y Kim
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Y Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Y Seo
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - J Kang
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - S Lee
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - H Lee
- Food Standard Research Center, Korea Food Research Institute, Jeollabuk-do 55365, Korea
| | - Y Yoon
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea; Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea.
| | - K-H Choi
- Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan 54538, Korea.
| |
Collapse
|
143
|
Zhang J, Lin X, Sun Y, Wei J, Wu J. Trim14 promotes osteoclastogenesis and noncanonical NF-κB activation by targeting p100/p52 in chronic periodontitis. Oral Dis 2021; 28:1958-1967. [PMID: 33901321 DOI: 10.1111/odi.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Periodontitis disease infection initiates host immune response, and alveolar bone damage is a hallmark of periodontitis. Bone damage occurs due to changes in osteoclast activity in response to local inflammation. Nuclear factor κB (NF-κB) signaling is essential for inflammatory responses and plays a pivotal role in osteoclast formation and activation. Tripartite motif 14 (Trim14) is a crucial regulator of the noncanonical NF-κB signaling. Here, we investigated the role of Trim14 in chronic periodontitis. METHODS The development of immune cells and osteoclast formation was evaluated with flow cytometry, qRT-PCR, and histochemical staining. Proinflammatory cytokines were checked by ELISA and qRT-PCR. Protein expression was determined by immunoblotting. Also, the cemento-enamel junction-alveolar bone crest distance was evaluated in the mouse model. RESULTS Development of innate and adaptive cells was not impaired from the deletion of Trim14. However, the genetic loss of Trim14 remarkably suppressed RANKL-induced osteoclastogenesis, without affecting TLR-induced proinflammatory cytokines except for Il-23a expression. The Trim14 deletion also suppressed the activation of noncanonical NF-κB signaling by targeting p100/p52. Importantly, the deletion of NIK diminished the effects of Trim14 on the inflammatory responses in vivo on chronic periodontitis responses. CONCLUSION TRIM14 may be a positive regulator to promote osteoclastogenesis and proinflammatory cytokine secretion.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Dental Clinic, Cangzhou Central Hospital, Cangzhou, China
| | - Xiuya Lin
- Department of Dental Clinic, Cangzhou Central Hospital, Cangzhou, China
| | - Yang Sun
- Department of Dental Clinic, Cangzhou Central Hospital, Cangzhou, China
| | - Jianming Wei
- Department of Dental Clinic, Cangzhou Central Hospital, Cangzhou, China
| | - Jiankun Wu
- Department of Dental Clinic, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
144
|
Obesity Drives an Oral Microbiota Signature of Female Patients with Periodontitis: A Pilot Study. Diagnostics (Basel) 2021; 11:diagnostics11050745. [PMID: 33919425 PMCID: PMC8143370 DOI: 10.3390/diagnostics11050745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to analyze the link between oral microbiota and obesity in humans. We conducted a pilot study including 19 subjects with periodontitis divided into two groups: normo-weighted subjects (NWS) with a body mass index (BMI) between 20 and 25 (n = 9) and obese subjects (OS) with a BMI > 30 (n = 10). Obesity was associated with a poor oral health status characterized by an increased number of missing teeth and a higher score of periodontal-support loss associated with dysbiotic oral microbiota (39.45 ± 3.74 vs. 26.41 ± 11.21, p = 0.03 for the Chao 1 index). Oral microbiota taxonomic analysis showed that the abundance of the Capnocytophaga genus was higher (2.47% ± 3.02 vs. 0.27% ± 0.29, p = 0.04) in OS compared to NWS. Obese females (OF) were characterized by an increase in the Streptococcus genus (34.12% ± 14.29 vs. 10.55% ± 10.42, p = 0.05) compared to obese males (OM), where the Neisseria genus was increased (5.75% ± 5.03 vs. 58.05% ± 30.64, p = 0.008). These first data suggest that sex/gender is determinant in the link between oral dysbiotic microbiota and obesity in patients with periodontitis. Our results could lead to recommendations concerning therapeutic strategies for obese patients with periodontitis following the sex/gender.
Collapse
|
145
|
Ben Lagha A, Yang Y, Trivedi HM, Masters JG, Grenier D. A Dual Zinc plus Arginine formulation protects against tumor necrosis factor-alpha-induced barrier dysfunction and enhances cell proliferation and migration in an in vitro gingival keratinocyte model. Arch Oral Biol 2021; 126:105126. [PMID: 33872861 DOI: 10.1016/j.archoralbio.2021.105126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate the effects of Dual Zinc plus Arginine formulations (aqueous solution and dentifrice) on tumor necrosis factor-alpha (TNF-α)-induced barrier dysfunction as well as on cell proliferation and migration in an in vitro gingival keratinocyte model. DESIGN Gingival keratinocytes were seeded onto the membrane of a double-chamber system in the absence and presence of recombinant TNF-α and the formulations under investigation. The barrier function was assessed by determination of transepithelial electrical resistance (TER) and paracellular transport of fluorescein isothiocyanate (FITC)-dextran. The distribution of zonula occludens-1 (ZO-1) and occludin was visualized by immunofluorescence microscopy. The effects of the formulations on keratinocyte cell proliferation were determined using a fluorescent cell tracker dye, while a migration assay kit was used to investigate their effects on cell migration. RESULTS Under conditions where TNF-α induces loss of keratinocyte barrier integrity, the Dual Zinc plus Arginine formulations (aqueous solution and dentifrice) protected the keratinocyte tight junction against the damages since they prevented the TNF-α-induced drop in TER and increase in FITC-dextran paracellular flux in the in vitro model. The treatment of keratinocytes with the formulations markedly mitigated the altered distribution of ZO-1 and occludin. Both formulations increased the proliferation of keratinocytes and alleviated the negative impact caused by TNF-α. Lastly, the formulations increased the migration capacity of keratinocytes. CONCLUSIONS The ability of the Dual Zinc plus Arginine formulations to protect the barrier integrity of gingival keratinocytes from TNF-α-induced damage and to promote their proliferation and migration suggests that they may offer benefits for oral health.
Collapse
Affiliation(s)
- Amel Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Ying Yang
- Colgate-Palmolive Technology Center, Piscataway, NJ, USA
| | | | | | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
146
|
Galarraga-Vinueza ME, Obreja K, Ramanauskaite A, Magini R, Begic A, Sader R, Schwarz F. Macrophage polarization in peri-implantitis lesions. Clin Oral Investig 2021; 25:2335-2344. [PMID: 32886246 PMCID: PMC7966129 DOI: 10.1007/s00784-020-03556-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To immunohistochemically characterize and correlate macrophage M1/M2 polarization status with disease severity at peri-implantitis sites. MATERIALS AND METHODS A total of twenty patients (n = 20 implants) diagnosed with peri-implantitis (i.e., bleeding on probing with or without suppuration, probing depths ≥ 6 mm, and radiographic marginal bone loss ≥ 3 mm) were included. The severity of peri-implantitis was classified according to established criteria (i.e., slight, moderate, and advanced). Granulation tissue biopsies were obtained during surgical therapy and prepared for immunohistological assessment and macrophage polarization characterization. Macrophages, M1, and M2 phenotypes were identified through immunohistochemical markers (i.e., CD68, CD80, and CD206) and quantified through histomorphometrical analyses. RESULTS Macrophages exhibiting a positive CD68 expression occupied a mean proportion of 14.36% (95% CI 11.4-17.2) of the inflammatory connective tissue (ICT) area. Positive M1 (CD80) and M2 (CD206) macrophages occupied a mean value of 7.07% (95% CI 5.9-9.4) and 5.22% (95% CI 3.8-6.6) of the ICT, respectively. The mean M1/M2 ratio was 1.56 (95% CI 1-12-1.9). Advanced peri-implantitis cases expressed a significantly higher M1 (%) when compared with M2 (%) expression. There was a significant correlation between CD68 (%) and M1 (%) expression and probing depth (PD) values. CONCLUSION The present immunohistochemical analysis suggests that macrophages constitute a considerable proportion of the inflammatory cellular composition at peri-implantitis sites, revealing a significant higher expression for M1 inflammatory phenotype at advanced peri-implantitis sites, which could possibly play a critical role in disease progression. CLINICAL RELEVANCE Macrophages have critical functions to establish homeostasis and disease. Bacteria might induce oral dysbiosis unbalancing the host's immunological response and triggering inflammation around dental implants. M1/M2 status could possibly reveal peri-implantitis' underlying pathogenesis.
Collapse
Affiliation(s)
- Maria Elisa Galarraga-Vinueza
- Department of Oral Surgery and Implantology, Johann Wolfgang Goethe-University, Carolinum, Frankfurt, Germany
- Post-Graduate Program in Implant Dentistry (PPGO), Federal University of Santa Catarina (UFSC), Florianopolis, SC, Brazil
- School of Dentistry, Universidad de Las Américas, Quito, Ecuador
| | - Karina Obreja
- Department of Oral Surgery and Implantology, Johann Wolfgang Goethe-University, Carolinum, Frankfurt, Germany
| | - Ausra Ramanauskaite
- Department of Oral Surgery and Implantology, Johann Wolfgang Goethe-University, Carolinum, Frankfurt, Germany
| | - Ricardo Magini
- Post-Graduate Program in Implant Dentistry (PPGO), Federal University of Santa Catarina (UFSC), Florianopolis, SC, Brazil
| | - Amira Begic
- Department of Oral Surgery and Implantology, Johann Wolfgang Goethe-University, Carolinum, Frankfurt, Germany
| | - Robert Sader
- Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frank Schwarz
- Department of Oral Surgery and Implantology, Johann Wolfgang Goethe-University, Carolinum, Frankfurt, Germany.
- Department of Oral Surgery, Universitätsklinikum Düsseldorf, Dusseldorf, Germany.
| |
Collapse
|
147
|
Rapone B, Ferrara E, Corsalini M, Qorri E, Converti I, Lorusso F, Delvecchio M, Gnoni A, Scacco S, Scarano A. Inflammatory Status and Glycemic Control Level of Patients with Type 2 Diabetes and Periodontitis: A Randomized Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063018. [PMID: 33804123 PMCID: PMC7998112 DOI: 10.3390/ijerph18063018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022]
Abstract
Background: Based on the holistic approach to prevention diabetic disease, the role of periodontal inflammation in type 2 diabetes mellitus (T2DM) is under intensive scrutiny. Data from clinical trials have shown benefit from a periodontal therapy in providing patients with type 2 diabetes improvement despite relatively disappointing long-terms response rates. The aim of this study was to investigate the short-term glycemic control level and systemic inflammatory status after periodontal therapy. Methods: This was a randomized trial with a 6-months follow-up. Participants aged 56.4 ± 7.9 years with diagnosed type 2 diabetes and periodontitis were enrolled. Among the 187 type 2 diabetic patients, 93 were randomly assigned to receive non-surgical periodontal treatment immediately and 94 to receive the delayed treatment. Within and between groups comparison was done during the study period, and the differences between groups were assessed. Results: The difference between HbA1c values at baseline (Mdn = 7.7) and 6 months after non-surgical periodontal treatment (Mdn = 7.2) was statistically significant, U = 3174.5, p = 0.012, r = 0.187. However, although technically a positive correlation, the relationship between the glycated hemoglobin value and periodontal variables was weak. The differences between both the groups over 6 months were not statistically considerable, failing to reach statistical significance. At 6 months the difference between groups about the C-reactive protein (CRP) levels was statistically significant, U=1839.5, p = 0, r = 0.472, with a lower concentration for the intervention group. Furthermore, the intervention group showed a statistically significant difference between baseline and 6 months evaluation (U = 2606.5, p = 0, r = 0.308). Conclusions: The periodontal intervention potentially may allow individuals with type 2 diabetes to improve glycemic control and CRP concentrations, and diabetes alters the periodontal status.
Collapse
Affiliation(s)
- Biagio Rapone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70121 Bari, Italy; (A.G.); (S.S.)
- Correspondence: ; Tel.: +39-3477619817
| | - Elisabetta Ferrara
- Complex Operative Unit of Odontostomatology, Hospital S.S. Annunziata, 66100 Chieti, Italy;
| | - Massimo Corsalini
- Interdisciplinary Department of Medicine, University of Bari, 70121 Bari, Italy;
| | - Erda Qorri
- Dean Faculty of Medical Sciences, Albanian University, Bulevardi Zogu I, 1001 Tirana, Albania;
| | - Ilaria Converti
- Department of Emergency and Organ Transplantation, Division of Plastic and Reconstructive Surgery, “Aldo Moro” University of Bari, 70121 Bari, Italy;
| | - Felice Lorusso
- Department of Oral Science, Nano and Biotechnology and CeSi-Met University of Chieti-Pescara, 66100 Chieti, Italy; (F.L.); (A.S.)
| | - Maurizio Delvecchio
- Department of Metabolic and Genetic Diseases, Giovanni XXIII Children’s Hospital, 70126 Bari, Italy;
| | - Antonio Gnoni
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70121 Bari, Italy; (A.G.); (S.S.)
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70121 Bari, Italy; (A.G.); (S.S.)
| | - Antonio Scarano
- Department of Oral Science, Nano and Biotechnology and CeSi-Met University of Chieti-Pescara, 66100 Chieti, Italy; (F.L.); (A.S.)
| |
Collapse
|
148
|
Hathaway-Schrader JD, Novince CM. Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000 2021; 86:157-187. [PMID: 33690918 DOI: 10.1111/prd.12368] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar bone is a unique osseous tissue due to the proximity of dental plaque biofilms. Periodontal health and homeostasis are mediated by a balanced host immune response to these polymicrobial biofilms. Dysbiotic shifts within dental plaque biofilms can drive a proinflammatory immune response state in the periodontal epithelial and gingival connective tissues, which leads to paracrine signaling to subjacent bone cells. Sustained chronic periodontal inflammation disrupts "coupled" osteoclast-osteoblast actions, which ultimately result in alveolar bone destruction. This chapter will provide an overview of alveolar bone physiology and will highlight why the oral microbiota is a critical regulator of alveolar bone remodeling. The ecology of dental plaque biofilms will be discussed in the context that periodontitis is a polymicrobial disruption of host homeostasis. The pathogenesis of periodontal bone loss will be explained from both a historical and current perspective, providing the opportunity to revisit the role of fibrosis in alveolar bone destruction. Periodontal immune cell interactions with bone cells will be reviewed based on our current understanding of osteoimmunological mechanisms influencing alveolar bone remodeling. Lastly, probiotic and prebiotic interventions in the oral microbiota will be evaluated as potential noninvasive therapies to support alveolar bone homeostasis and prevent periodontal bone loss.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
149
|
Ebersole JL, Kirakodu SS, Orraca L, Gonzalez Martinez J, Gonzalez OA. Gingival transcriptomics of follicular T cell footprints in progressing periodontitis. Clin Exp Immunol 2021; 204:373-395. [PMID: 33565609 DOI: 10.1111/cei.13584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/22/2022] Open
Abstract
Follicular helper T cells (Tfh) cells have been identified in the circulation and in tertiary lymphoid structures in chronic inflammation. Gingival tissues with periodontitis reflect chronic inflammation, so genomic footprints of Tfh cells should occur in these tissues and may differ related to aging effects. Macaca mulatta were used in a ligature-induced periodontitis model [adult group (aged 12-23 years); young group (aged 3-7 years)]. Gingival tissue and subgingival microbiome samples were obtained at matched healthy ligature-induced disease and clinical resolution sites. Microarray analysis examined Tfh genes (n = 54) related to microbiome characteristics documented using 16S MiSeq. An increase in the major transcription factor of Tfh cells, BCL6, was found with disease in both adult and young animals, while master transcription markers of other T cell subsets were either decreased or showed minimal change. Multiple Tfh-related genes, including surface receptors and transcription factors, were also significantly increased during disease. Specific microbiome patterns were significantly associated with profiles indicative of an increased presence/function of Tfh cells. Importantly, unique microbial complexes showed distinctive patterns of interaction with Tfh genes differing in health and disease and with the age of the animals. An increase in Tfh cell responsiveness occurred in the progression of periodontitis, affected by age and related to specific microbial complexes in the oral microbiome. The capacity of gingival Tfh cells to contribute to localized B cell activation and active antibody responses, including affinity maturation, may be critical for controlling periodontal lesions and contributing to limiting and/or resolving the lesions.
Collapse
Affiliation(s)
- J L Ebersole
- Department of Biomedical Science, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - S S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - L Orraca
- School of Dental Medicine, University of Puerto Rico, San Juan, PR, USA
| | - J Gonzalez Martinez
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, USA
| | - O A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
150
|
Avetisyan A, Markaryan M, Rokaya D, Tovani-Palone MR, Zafar MS, Khurshid Z, Vardanyan A, Heboyan A. Characteristics of Periodontal Tissues in Prosthetic Treatment with Fixed Dental Prostheses. Molecules 2021; 26:1331. [DOI: https:/doi.org/10.3390/molecules26051331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
The objective of the present study was to investigate the effects of various types of fixed prostheses on periodontal tissues and explore the association of gingival biotype and gum recession in relation to prosthesis types. The study participants (N = 95) were divided into three groups based on the type of dental prosthesis: Group-I: cobalt-chrome (Co-Cr) ceramic prosthesis fabricated by the conventional method (n = 35); Group-II: consisted of patients with Co-Cr ceramic prostheses fabricated by a computer-aided design and computer aided manufacturing (CAD/CAM) technique (n = 30); and Group-III: zirconia-based prostheses fabricated by the CAD/CAM technique (n = 30). Following the use of prostheses, periodontal examinations were performed using the Community Periodontal Index (CPI) and Modified Approximal Plaque Index (MAPI). In addition, the gingival biotype was examined using a probe transparency method. The Statistical Package for the Social Sciences (SPSS), Version 20 (IBM Company, Chicago, IL, USA), was used to analyze the results, and the significance level was set at p = 0.05. It showed the MAPI results after the use of prosthetic rehabilitation for 12 months of periodontitis in 87.9% ± 15.4 of patients in Group-I, in 80.6% ± 17.97 in those in Group-II, and in 62.5% ± 21.4 in those in Group-III (p < 0.01). The CPI index results indicated a high prevalence of periodontal disease in all groups. The number of people with healthy periodontium constituted 17.1% of patients in Group-I, 24.2% in Group-II, and 37.1% in Group-III. Our study concluded that prosthetic treatment with periodontal diseases showed better outcomes while using dental prostheses fabricated by the CAD/CAM technique compared to the conventionally fabricated dental prostheses. The thin gingival biotype is more often associated with gingival recession than the thick biotype.
Collapse
|