101
|
Nagy EE, Frigy A, Szász JA, Horváth E. Neuroinflammation and microglia/macrophage phenotype modulate the molecular background of post-stroke depression: A literature review. Exp Ther Med 2020; 20:2510-2523. [PMID: 32765743 PMCID: PMC7401670 DOI: 10.3892/etm.2020.8933] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence hints to the central role of neuroinflammation in the development of post-stroke depression. Danger signals released in the acute phase of ischemia trigger microglial activation, along with the infiltration of neutrophils and macrophages. The increased secretion of proinflammatory cytokines interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor α (TNFα) provokes neuronal degeneration and apoptosis, whereas IL-6, interferon γ (IFNγ), and TNFα induce aberrant tryptophane degradation with the accumulation of the end-product quinolinic acid in resident glial cells. This promotes glutamate excitotoxicity via hyperexcitation of N-methyl-D-aspartate receptors and antagonizes 5-hydroxy-tryptamine, reducing synaptic plasticity and neuronal survival, thus favoring depression. In the post-stroke period, CX3CL1 and the CD200-CD200R interaction mediates the activation of glial cells, whereas CCL-2 attracts infiltrating macrophages. CD206 positive cells grant the removal of excessive danger signals; the high number of regulatory T cells, IL-4, IL-10, transforming growth factor β (TGFβ), and intracellular signaling via cAMP response element-binding protein (CREB) support the M2 type differentiation. In favorable conditions, these cells may exert efficient clearance, mediate tissue repair, and might be essential players in the downregulation of molecular pathways that promote post-stroke depression.
Collapse
Affiliation(s)
- Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Attila Frigy
- Department of Internal Medicine IV, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540103 Targu Mures, Romania
| | - József Attila Szász
- Neurology Clinic II, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Emőke Horváth
- Department of Pathology, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
102
|
He Y, Gao Y, Zhang Q, Zhou G, Cao F, Yao S. IL-4 Switches Microglia/macrophage M1/M2 Polarization and Alleviates Neurological Damage by Modulating the JAK1/STAT6 Pathway Following ICH. Neuroscience 2020; 437:161-171. [PMID: 32224230 DOI: 10.1016/j.neuroscience.2020.03.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/02/2023]
Abstract
Inflammatory damage following ICH is often attributed to microglia/macrophage activation. In many diseases, IL-4 has been proven to switch microglia/macrophages from the pro-inflammatory to the anti-inflammatory subtype. However, the role and underlying mechanism of IL-4 in ICH, especially in neuroprotection, remain unknown. In our study, we constructed a microglia/macrophage polarization model in BV2 cells to verify that the M2 shift of microglia/macrophages was mediated by JAK1/STAT6 after IL-4 treatment and then revealed that in vitro administration of IL-4 decreased M1 markers, pro-inflammatory cytokines and neuroapoptosis markers but significantly increased M2 markers and anti-inflammatory cytokines. Using an ICH model in mice, we observed that IL-4 administration decreased neurological deficits, brain edema and infarct lesions induced by ICH. We verified that IL-4 mediates inflammation by regulating M1/M2 polarization in ICH and explored the underlying mechanism. Furthermore, we discovered that pathway components and apoptosis-related proteins showed consistent trends based on their respective roles, and inferred that the process that TNF-α activates caspase-3 may be the crosstalk that microglia phagocytosis developed into accelerate apoptosis of cells in ICH. In conclusion, our study demonstrates that IL-4 may promote M2 microglia/macrophage polarization partly through the JAK1/STAT6 pathway to alleviate neuroinflammation after ICH.
Collapse
Affiliation(s)
- Yang He
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, No.149, Dalian Road, Zunyi 563000, China
| | - Yang Gao
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, No.149, Dalian Road, Zunyi 563000, China
| | - Qiang Zhang
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, No.149, Dalian Road, Zunyi 563000, China
| | - Guiyin Zhou
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, No.149, Dalian Road, Zunyi 563000, China
| | - Fang Cao
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, No.149, Dalian Road, Zunyi 563000, China
| | - Shengtao Yao
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, No.149, Dalian Road, Zunyi 563000, China.
| |
Collapse
|
103
|
Li LZ, Huang YY, Yang ZH, Zhang SJ, Han ZP, Luo YM. Potential microglia-based interventions for stroke. CNS Neurosci Ther 2020; 26:288-296. [PMID: 32064759 PMCID: PMC7052807 DOI: 10.1111/cns.13291] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/10/2019] [Accepted: 01/16/2020] [Indexed: 12/17/2022] Open
Abstract
A large number of families worldwide suffer from the physical and mental burden posed by stroke. An increasing number of studies aimed at the prevention and treatment of stroke have been conducted. Specifically, manipulating the immune response to stroke is under intense investigation. Microglia are the principal immune cells in the brain and are the first line of defense against the pathophysiology induced by stroke. Increasing evidence has suggested that microglia play diverse roles that depend on dynamic interactions with neurons, astrocytes, and other neighboring cells both in the normal brain and under pathological conditions, including stroke. Moreover, there are dynamic alterations in microglial functions with respect to aging and sex differences in the human brain, which offer a deep understanding of the conditions of stroke patients of different ages and sex. Hence, we review the dynamic microglial reactions caused by aging, sex, and crosstalk with neighboring cells both in normal conditions and after stroke and relevant potential interventions.
Collapse
Affiliation(s)
- Ling-Zhi Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yu-You Huang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhen-Hong Yang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Si-Jia Zhang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zi-Ping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yu-Min Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
104
|
Zhang Y, Wang J, Zhang D, Lu Z, Man J. Effects of RO27-3225 on neurogenesis, PDGFRβ + cells and neuroinflammation after cerebral infarction. Int Immunopharmacol 2020; 81:106281. [PMID: 32058930 DOI: 10.1016/j.intimp.2020.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/01/2020] [Accepted: 02/02/2020] [Indexed: 12/01/2022]
Abstract
Cerebral infarction causes severe social and economic burdens to patients due to its high morbidity and mortality rates, and the available treatments are limited. RO27-3225 is a highly selective melanocortin receptor 4 agonist that alleviates damage in many nervous system diseases, such as cerebral hemorrhage, traumatic brain injury and chronic neurodegenerative diseases. However, the effect of RO27-3225 on cerebral infarction remains unclear. In this study, we used a mouse model of transient middle cerebral artery occlusion (tMCAO) and administered RO27-3225 or saline to the mice through intraperitoneal injection. RO27-3225 increased the number of Nestin+/BrdU+ cells and doublecortin (DCX)+/BrdU+ cells in the subventricular zone (SVZ) and the number of DCX+/BrdU+ cells in the peri-infarct area on day 7 after tMCAO. Furthermore, RO27-3225 decreased the number of activated microglia (Iba1+ cells with a specific morphology) and the expression levels of Iba1, TNFα, IL6, and iNOS proteins and increased the number of PDGFRβ+ cells in the peri-infarct region on day 3 after tMCAO. Finally, RO27-3225-treated mice exhibited significantly decreased infarct volumes, brain water contents, and neurological deficits after cerebral infarction. Thus, RO27-3225 can improve the outcomes following cerebral infarction, partially by regulating neurogenesis in the SVZ, PDGFRβ+ cell survival and neuroinflammation in the peri-infarct zone. Our research reveals that RO27-3225 is a potential new treatment for cerebral infarction.
Collapse
Affiliation(s)
- Yongxin Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jianping Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Di Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhengfang Lu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiang Man
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
105
|
Tschoe C, Bushnell CD, Duncan PW, Alexander-Miller MA, Wolfe SQ. Neuroinflammation after Intracerebral Hemorrhage and Potential Therapeutic Targets. J Stroke 2020; 22:29-46. [PMID: 32027790 PMCID: PMC7005353 DOI: 10.5853/jos.2019.02236] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a catastrophic illness causing significant morbidity and mortality. Despite advances in surgical technique addressing primary brain injury caused by ICH, little progress has been made treating the subsequent inflammatory cascade. Pre-clinical studies have made advancements identifying components of neuroinflammation, including microglia, astrocytes, and T lymphocytes. After cerebral insult, inflammation is initially driven by the M1 microglia, secreting cytokines (e.g., interleukin-1β [IL-1β] and tumor necrosis factor-α) that are involved in the breakdown of the extracellular matrix, cellular integrity, and the blood brain barrier. Additionally, inflammatory factors recruit and induce differentiation of A1 reactive astrocytes and T helper 1 (Th1) cells, which contribute to the secretion of inflammatory cytokines, augmenting M1 polarization and potentiating inflammation. Within 7 days of ICH ictus, the M1 phenotype coverts to a M2 phenotype, key for hematoma removal, tissue healing, and overall resolution of inflammation. The secretion of anti-inflammatory cytokines (e.g., IL-4, IL-10) can drive Th2 cell differentiation. M2 polarization is maintained by the secretion of additional anti-inflammatory cytokines by the Th2 cells, suppressing M1 and Th1 phenotypes. Elucidating the timing and trigger of the anti-inflammatory phenotype may be integral in improving clinical outcomes. A challenge in current translational research is the absence of an equivalent disease animal model mirroring the patient population and comorbid pathophysiologic state. We review existing data and describe potential therapeutic targets around which we are creating a bench to bedside translational research model that better reflects the pathophysiology of ICH patients.
Collapse
Affiliation(s)
- Christine Tschoe
- Department of Neurological Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cheryl D Bushnell
- Department of Neurology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Pamela W Duncan
- Department of Neurology, Wake Forest Baptist Health, Winston-Salem, NC, USA.,Department of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Stacey Q Wolfe
- Department of Neurological Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
106
|
Takada S, Sakakima H, Matsuyama T, Otsuka S, Nakanishi K, Norimatsu K, Itashiki Y, Tani A, Kikuchi K. Disruption of Midkine gene reduces traumatic brain injury through the modulation of neuroinflammation. J Neuroinflammation 2020; 17:40. [PMID: 31996236 PMCID: PMC6990546 DOI: 10.1186/s12974-020-1709-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/12/2020] [Indexed: 01/29/2023] Open
Abstract
Background Midkine (MK) is a multifunctional cytokine found upregulated in the brain in the presence of different disorders characterized by neuroinflammation, including neurodegenerative disorders and ischemia. The neuroinflammatory response to traumatic brain injury (TBI) represents a key secondary injury factor that can result in further neuronal injury. In the present study, we investigated the role of endogenous MK in secondary injury, including neuroinflammation, immune response, and neuronal apoptosis activity, after TBI. Methods Wild type (Mdk+/+) and MK gene deficient (Mdk−/−) mice were subjected to fluid percussion injury for TBI models and compared at 3, 7, and 14 days after TBI, in terms of the following: brain tissue loss, neurological deficits, microglia response, astrocytosis, expression of proinflammatory M1 and anti-inflammatory M2 microglia/macrophage phenotype markers, and apoptotic activity. Results As opposed to Mdk+/+ mice, Mdk−/− mice reported a significantly reduced area of brain tissue loss and an improvement in their neurological deficits. The ratios of the Iba1-immunoreactive microglia/macrophages in the perilesional site were significantly decreased in Mdk−/− than in the Mdk+/+ mice at 3 days after TBI. However, the ratios of the glial fibrillary acidic protein immunoreactive area were similar between the two groups. The M1 phenotype marker (CD16/32) immunoreactive areas were significantly reduced in Mdk−/− than in the Mdk+/+ mice. Likewise, the mRNA levels of the M1 phenotype markers (TNF-α, CD11b) were significantly decreased in Mdk−/− mice than in Mdk+/+ mice. Furthermore, flow cytometry analysis identified the M2 markers, i.e., CD163+ macrophages cells and arginase-1+ microglia cells, to be significantly higher in Mdk−/− than in Mdk+/+ mice. Finally, the ratios of apoptotic neurons were significantly decreased in the area surrounding the lesion in Mdk−/− than in Mdk+/+ mice following TBI. Conclusion Our findings suggest that MK-deficiency reduced tissue infiltration of microglia/macrophages and altered their polarization status thereby reducing neuroinflammation, neuronal apoptosis, and tissue loss and improving neurological outcomes after TBI. Therefore, targeting MK to modulate neuroinflammation may represent a potential therapeutic strategy for TBI management.
Collapse
Affiliation(s)
- Seiya Takada
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Harutoshi Sakakima
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Takahiro Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shotaro Otsuka
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kazuki Nakanishi
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kosuke Norimatsu
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yuki Itashiki
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Akira Tani
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kiyoshi Kikuchi
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
107
|
Bai Q, Xue M, Yong VW. Microglia and macrophage phenotypes in intracerebral haemorrhage injury: therapeutic opportunities. Brain 2020; 143:1297-1314. [PMID: 31919518 DOI: 10.1093/brain/awz393] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 10/20/2019] [Indexed: 01/24/2023] Open
Abstract
Abstract
The prognosis of intracerebral haemorrhage continues to be devastating despite much research into this condition. A prominent feature of intracerebral haemorrhage is neuroinflammation, particularly the excessive representation of pro-inflammatory CNS-intrinsic microglia and monocyte-derived macrophages that infiltrate from the circulation. The pro-inflammatory microglia/macrophages produce injury-enhancing factors, including inflammatory cytokines, matrix metalloproteinases and reactive oxygen species. Conversely, the regulatory microglia/macrophages with potential reparative and anti-inflammatory roles are outcompeted in the early stages after intracerebral haemorrhage, and their beneficial roles appear to be overwhelmed by pro-inflammatory microglia/macrophages. In this review, we describe the activation of microglia/macrophages following intracerebral haemorrhage in animal models and clinical subjects, and consider their multiple mechanisms of cellular injury after haemorrhage. We review strategies and medications aimed at suppressing the pro-inflammatory activities of microglia/macrophages, and those directed at elevating the regulatory properties of these myeloid cells after intracerebral haemorrhage. We consider the translational potential of these medications from preclinical models to clinical use after intracerebral haemorrhage injury, and suggest that several approaches still lack the experimental support necessary for use in humans. Nonetheless, the preclinical data support the use of deactivator or inhibitor of pro-inflammatory microglia/macrophages, whilst enhancing the regulatory phenotype, as part of the therapeutic approach to improve the prognosis of intracerebral haemorrhage.
Collapse
Affiliation(s)
- Qian Bai
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
108
|
Jiang C, Wang Y, Hu Q, Shou J, Zhu L, Tian N, Sun L, Luo H, Zuo F, Li F, Wang Y, Zhang J, Wang J, Wang J, Zhang J. Immune changes in peripheral blood and hematoma of patients with intracerebral hemorrhage. FASEB J 2020; 34:2774-2791. [PMID: 31912591 DOI: 10.1096/fj.201902478r] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/27/2019] [Accepted: 12/09/2019] [Indexed: 01/22/2023]
Abstract
Immunologic changes in the hematoma of patients with intracerebral hemorrhage (ICH) and the contribution of these changes to prognosis are unknown. We collected the blood samples and hematoma fluid from 35 patients with acute ICH (<30 hours from symptom onset) and 55 age-matched healthy controls. Using flow cytometry and ELISA, we found that the percentages of granulocytes, regulatory T cells, helper T (Th) 17 cells, and dendritic cells were higher in the peripheral blood of patients with ICH than in healthy controls, whereas the percentages of lymphocytes, M1-like macrophages, and M2-like macrophages were lower. Levels of IL-6, IL-17, IL-23, TNF-α, IL-4, IL-10, and TGF-β were higher in the peripheral blood of patients with ICH. The absolute counts of white blood cells, lymphocytes, monocytes, and granulocytes in the hematoma tended to be greater at 12-30 hours than they were within 12 hours after ICH, but the percentage of Th cells decreased in peripheral blood. Increased levels of IL-10 in the serum and hematoma, and a reduction in M1-like macrophages in hematoma were independently associated with favorable outcome on day 90. These results indicate that immunocytes present in the hematoma may participate in the acute-phase inflammatory response after ICH.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Yali Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Qiangfu Hu
- Department of Anesthesiology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Jixin Shou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Li Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Ning Tian
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Lu Sun
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Huan Luo
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Fangfang Zuo
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Fangfang Li
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Yingying Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Jing Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Jiarui Wang
- Winston Churchill High School, Potomac, Maryland
| | - Jian Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
109
|
Lu X, Zhang HY, He ZY. MicroRNA-181c provides neuroprotection in an intracerebral hemorrhage model. Neural Regen Res 2020; 15:1274-1282. [PMID: 31960813 PMCID: PMC7047781 DOI: 10.4103/1673-5374.272612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Apoptosis is an important factor during the early stage of intracerebral hemorrhage. MiR-181c plays a key regulatory role in apoptosis. However, whether miR-181c is involved in apoptosis of prophase cells after intracerebral hemorrhage remains unclear. Therefore, in vitro and in vivo experiments were conducted to test this hypothesis. In vivo experiments: collagenase type VII was injected into the basal ganglia of adult Sprague-Dawley rats to establish an intracerebral hemorrhage model. MiR-181c mimic or inhibitor was injected in situ 4 hours after intracerebral hemorrhage. Neurological functional defects (neurological severity scores) were assessed 1, 7, and 14 days after model establishment. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and western blot assay were conducted 14 days after model establishment. In vitro experiments: PC12 cells were cultured under oxygen-glucose deprivation, and hemins were added to simulate intracerebral hemorrhage in vitro. MiR-181c mimic or inhibitor was added to regulate miR-181c expression. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, luciferase reporter system, and western blot assay were performed. Experimental results revealed differences in miR-181c expression in brain tissues of both patients and rats with cerebral hemorrhage. In addition, in vitro experiments found that miR-181c overexpression could upregulate the Bcl-2/Bax ratio to inhibit apoptosis, while inhibition of miR-181c expression could reduce the Bcl-2/Bax ratio and aggravate apoptosis of cells. Regulation of apoptosis occurred through the phosphoinositide 3 kinase (PI3K)/Akt pathway by targeting of phosphatase and tensin homolog deleted on chromosome ten (PTEN). Higher miR-181c overexpression correlated with lower neurological severity scores, indicating better recovery of neurological function. In conclusion, miR-181c affects the prognosis of intracerebral hemorrhage by regulating apoptosis, and these effects might be directly mediated and regulated by targeting of the PTEN\PI3K/Akt pathway and Bcl-2/Bax ratio. Furthermore, these results indicated that miR-181c played a neuroprotective role in intracerebral hemorrhage by regulating apoptosis of nerve cells, thus providing a potential target for the prevention and treatment of intracerebral hemorrhage. Testing of human serum was authorized by the Ethics Committee of China Medical University (No. 2012-38-1) on February 20, 2012. The protocol was registered with the Chinese Clinical Trial Registry (Registration No. ChiCTR-COC-17013559). The animal study was approved by the Institutional Animal Care and Use Committee of China Medical University (approval No. 2017008) on March 8, 2017.
Collapse
Affiliation(s)
- Xi Lu
- First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hui-Yuan Zhang
- First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhi-Yi He
- First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
110
|
Duan CM, Zhang JR, Wan TF, Wang Y, Chen HS, Liu L. SRT2104 attenuates chronic unpredictable mild stress-induced depressive-like behaviors and imbalance between microglial M1 and M2 phenotypes in the mice. Behav Brain Res 2020; 378:112296. [DOI: 10.1016/j.bbr.2019.112296] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/23/2019] [Accepted: 10/09/2019] [Indexed: 01/11/2023]
|
111
|
Zhao D, Qin XP, Chen SF, Liao XY, Cheng J, Liu R, Lei Y, Zhang ZF, Wan Q. PTEN Inhibition Protects Against Experimental Intracerebral Hemorrhage-Induced Brain Injury Through PTEN/E2F1/β-Catenin Pathway. Front Mol Neurosci 2019; 12:281. [PMID: 31866820 PMCID: PMC6906195 DOI: 10.3389/fnmol.2019.00281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke with highest mortality and morbidity. We have previously demonstrated that dipotassium bisperoxo (picolinato) oxovanadate (V), (bpV[pic]) inhibits phosphatase and tensin homolog (PTEN) and activates extracellular signal-regulated kinase (ERK)1/2. In this study, we examined the effect of bpV[pic] in the rat ICH model in vivo and the hemin-induced injury model in rat cortical cultures. The rat model of ICH was created by injecting autologous blood into the striatum, and bpV[pic] was intraperitoneally injected. The effects of bpV[pic] were evaluated by neurological tests, Fluoro-Jade C (FJC) staining, and Nissl staining. We demonstrate that bpV[pic] attenuates ICH-induced brain injury in vivo and hemin-induced neuron injury in vitro. The expression of E2F1 was increased, but β-catenin expression was decreased after ICH, and the altered expressions of E2F1 and β-catenin after ICH were blocked by bpV[pic] treatment. Our results further show that bpV[pic] increases β-catenin expression through downregulating E2F1 in cortical neurons and prevents hemin-induced neuronal damage through E2F1 downregulation and subsequent upregulation of β-catenin. By testing the effect of PTEN-siRNA, PTEN cDNA, or combined use of ERK1/2 inhibitor and bpV[pic] in cultured cortical neurons after hemin-induced injury, we provide evidence suggesting that PTEN inhibition by bpV[pic] confers neuroprotection through E2F1 and β-catenin pathway, but the neuroprotective role of ERK1/2 activation by bpV[pic] cannot be excluded.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xing-Ping Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song-Feng Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Xin-Yu Liao
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Jing Cheng
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Rui Liu
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Yang Lei
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Zhi-Feng Zhang
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Department of Neurosurgery of the Affiliated Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
112
|
Liu Z, Ran Y, Qie S, Gong W, Gao F, Ding Z, Xi J. Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway. CNS Neurosci Ther 2019; 25:1353-1362. [PMID: 31793209 PMCID: PMC6887673 DOI: 10.1111/cns.13261] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
AIMS Microglia and infiltrated macrophages play important roles in inflammatory processes after ischemic stroke. Modulating microglia/macrophage polarization from pro-inflammatory phenotype to anti-inflammatory state has been suggested as a potential therapeutic approach in the treatment of ischemic stroke. Melatonin has been shown to be neuroprotective in experimental stroke models. However, the effect of melatonin on microglia polarization after stroke and underlying mechanisms remain unknown. METHODS In vivo, cerebral ischemia was induced by distal middle cerebral artery occlusion (dMCAO) in C57BL/6J mice. Melatonin was injected intraperitoneally (20 mg/kg) at 0 and 24 hours after ischemia. In vitro, the microglial cell line BV2 was stimulated to the pro-inflammatory state with conditioned media (CM) collected from oxygen-glucose deprivation (OGD) challenged neuronal cell line Neuro-2a (N2a). Real-time PCR was utilized to detect the mRNA expression of microglia phenotype markers. Activation of signal transducer and activator of transcription 3 (STAT3) pathway was determined by Western blot of phosphorylated STAT3 (pSTAT3). A neuron-microglia co-culture system was used to determine whether melatonin can inhibit the neurotoxic effect of pro-inflammatory microglia to post-OGD neurons. RESULTS Melatonin treatment reduced brain infarct and improved neurological functions 3 days after dMCAO, which was accompanied by decreased expression of pro-inflammatory markers and increased expression of anti-inflammatory markers in the ischemic brain. In vitro studies confirmed that melatonin directly inhibited the pro-inflammatory responses in BV2 cells upon exposure to OGD neuron CM. The microglia possessing pro-inflammatory phenotype exacerbated post-OGD N2a cells death, whereas melatonin reduced such neurotoxic effect. Further, melatonin enhanced the otherwise inhibited pSTAT3 expression in BV2 cells treated with OGD neuron CM. STAT3 blockade significantly reduced the effect of melatonin on microglial phenotype shift. CONCLUSION Melatonin treatment ameliorates brain damage at least partially through shifting microglia phenotype from pro-inflammatory to anti-inflammatory polarity in a STAT3-dependent manner.
Collapse
Affiliation(s)
- Zong‐Jian Liu
- Department of RehabilitationBeijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Yuan‐Yuan Ran
- Department of RehabilitationBeijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Shu‐Yan Qie
- Department of RehabilitationBeijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Wei‐Jun Gong
- Department of RehabilitationBeijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Fu‐Hai Gao
- Department of RehabilitationBeijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Zi‐Tong Ding
- Department of RehabilitationBeijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Jia‐Ning Xi
- Department of RehabilitationBeijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
113
|
Yang H, Gao XJ, Li YJ, Su JB, E TZ, Zhang X, Ni W, Gu YX. Minocycline reduces intracerebral hemorrhage-induced white matter injury in piglets. CNS Neurosci Ther 2019; 25:1195-1206. [PMID: 31556245 PMCID: PMC6776747 DOI: 10.1111/cns.13220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/11/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Aims White matter (WM) injury after intracerebral hemorrhage (ICH) results in poor or even fatal outcomes. As an anti‐inflammatory drug, minocycline has been considered a promising choice to treat brain injury after ICH. However, whether minocycline can reduce WM injury after ICH is still controversial. In the present study, we investigate the effect and underlying mechanism of minocycline on WM injury after ICH. Methods An ICH model was induced by an injection of autologous blood into the right frontal lobe of piglets. First, transcriptional analysis was performed at day 1 or 3 to investigate the dynamic changes in neuroinflammatory gene expression in WM after ICH. Second, ICH piglets were treated either with minocycline or with vehicle alone. All piglets then underwent magnetic resonance imaging to measure brain swelling. Brain tissue was used for real‐time polymerase chain reaction (RT‐PCR), immunohistochemistry, Western blot, and electron microscopy. Results Transcriptional analysis demonstrated that transforming growth factor‐β (TGF‐β)/mitogen‐activated protein kinase (MAPK) signaling is associated with microglia/macrophage‐mediated inflammation activation after ICH and is then involved in WM injury after ICH in piglets. Minocycline treatment results in less ICH‐induced brain swelling, fewer neurological deficits, and less WM injury in comparison with the vehicle alone. In addition, minocycline reduces microglial activation and alleviates demyelination in white matter after ICH. Finally, we found that minocycline attenuates WM injury by increasing the expression of TGF‐β and suppressing MAPK activation after ICH. Conclusion These results indicate that TGF‐β–mediated MAPK signaling contributes to WM injury after ICH, which can be altered by minocycline treatment.
Collapse
Affiliation(s)
- Heng Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin-Jie Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan-Jiang Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Bin Su
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tong-Zhou E
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Xiang Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
114
|
Evans FL, Dittmer M, de la Fuente AG, Fitzgerald DC. Protective and Regenerative Roles of T Cells in Central Nervous System Disorders. Front Immunol 2019; 10:2171. [PMID: 31572381 PMCID: PMC6751344 DOI: 10.3389/fimmu.2019.02171] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Pathogenic mechanisms of T cells in several central nervous system (CNS) disorders are well-established. However, more recent studies have uncovered compelling beneficial roles of T cells in neurological diseases, ranging from tissue protection to regeneration. These divergent functions arise due to the diversity of T cell subsets, particularly CD4+ T cells. Here, we review the beneficial impact of T cell subsets in a range of neuroinflammatory and neurodegenerative diseases including multiple sclerosis, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, stroke, and CNS trauma. Both T cell-secreted mediators and direct cell contact-dependent mechanisms deliver neuroprotective, neuroregenerative and immunomodulatory signals in these settings. Understanding the molecular details of these beneficial T cell mechanisms will provide novel targets for therapeutic exploitation that can be applied to a range of neurological disorders.
Collapse
Affiliation(s)
- Frances L Evans
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Marie Dittmer
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Alerie G de la Fuente
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Denise C Fitzgerald
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
115
|
Stamova B, Ander BP, Jickling G, Hamade F, Durocher M, Zhan X, Liu DZ, Cheng X, Hull H, Yee A, Ng K, Shroff N, Sharp FR. The intracerebral hemorrhage blood transcriptome in humans differs from the ischemic stroke and vascular risk factor control blood transcriptomes. J Cereb Blood Flow Metab 2019; 39:1818-1835. [PMID: 29651892 PMCID: PMC6727143 DOI: 10.1177/0271678x18769513] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding how the blood transcriptome of human intracerebral hemorrhage (ICH) differs from ischemic stroke (IS) and matched controls (CTRL) will improve understanding of immune and coagulation pathways in both disorders. This study examined RNA from 99 human whole-blood samples using GeneChip® HTA 2.0 arrays to assess differentially expressed transcripts of alternatively spliced genes between ICH, IS and CTRL. We used a mixed regression model with FDR-corrected p(Dx) < 0.2 and p < 0.005 and |FC| > 1.2 for individual comparisons. For time-dependent analyses, subjects were divided into four time-points: 0(CTRL), <24 h, 24-48 h, >48 h; 489 transcripts were differentially expressed between ICH and CTRL, and 63 between IS and CTRL. ICH had differentially expressed T-cell receptor and CD36 genes, and iNOS, TLR, macrophage, and T-helper pathways. IS had more non-coding RNA. ICH and IS both had angiogenesis, CTLA4 in T lymphocytes, CD28 in T helper cells, NFAT regulation of immune response, and glucocorticoid receptor signaling pathways. Self-organizing maps revealed 4357 transcripts changing expression over time in ICH, and 1136 in IS. Understanding ICH and IS transcriptomes will be useful for biomarker development, treatment and prevention strategies, and for evaluating how well animal models recapitulate human ICH and IS.
Collapse
Affiliation(s)
- Boryana Stamova
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Bradley P Ander
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Glen Jickling
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA.,2 Department of Medicine, University of Alberta, Edmonton, Canada
| | - Farah Hamade
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Marc Durocher
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Xinhua Zhan
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Da Zhi Liu
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Xiyuan Cheng
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Heather Hull
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Alan Yee
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Kwan Ng
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Natasha Shroff
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Frank R Sharp
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
116
|
Wang M, Cheng L, Chen ZL, Mungur R, Xu SH, Wu J, Liu XL, Wan S. Hyperbaric oxygen preconditioning attenuates brain injury after intracerebral hemorrhage by regulating microglia polarization in rats. CNS Neurosci Ther 2019; 25:1126-1133. [PMID: 31411803 PMCID: PMC6776759 DOI: 10.1111/cns.13208] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
AIMS Hyperbaric oxygen preconditioning (HBOP) attenuates brain edema, microglia activation, and inflammation after intracerebral hemorrhage (ICH). In this present study, we investigated the role of HBOP in ICH-induced microglia polarization and the potential involved signal pathway. METHODS Male Sprague-Dawley rats were divided into three groups: SHAM, ICH, and ICH + HBOP group. Before surgery, rats in SHAM and HBOP groups received HBO for 5 days. Rats in SHAM group received needle injection, while rats in ICH and ICH + HBOP groups received 100 μL autologous blood injection into the right basal ganglia. Rats were euthanized at 24 hours after ICH, and the brains were removed for immunohistochemistry and Western blotting. Neurological deficits and brain water content were determined. RESULTS Intracerebral hemorrhage induced brain edema, which was significantly lower in the HBOP group. The levels of MMP9 were also less in the HBOP group. HBO pretreatment resulted in less neuronal death and neurological deficits after ICH. Their immunoactivity and protein levels of M1 markers were downregulated, but the M2 markers were unchanged by HBOP. In addition, ICH-induced pro-inflammatory cytokine (TNF-α and IL-1β) levels and the phosphorylation of JNK and STAT1 were also lower in the HBOP rats. CONCLUSIONS HBO pretreatment attenuated ICH-induced brain injuries and MMP9 upregulation, which may through the inhibiting of M1 polarization of microglia and inflammatory signal pathways after ICH.
Collapse
Affiliation(s)
- Ming Wang
- Department of Neurosurgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lin Cheng
- Brain Center, Zhejiang Hospital, Hangzhou, China
| | | | - Rajneesh Mungur
- Department of Neurosurgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shan-Hu Xu
- Brain Center, Zhejiang Hospital, Hangzhou, China
| | - Jiong Wu
- Brain Center, Zhejiang Hospital, Hangzhou, China
| | - Xiao-Li Liu
- Brain Center, Zhejiang Hospital, Hangzhou, China
| | - Shu Wan
- Brain Center, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
117
|
Yao K, Zu HB. Microglial polarization: novel therapeutic mechanism against Alzheimer's disease. Inflammopharmacology 2019; 28:95-110. [PMID: 31264132 DOI: 10.1007/s10787-019-00613-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease that results in progressive dementia, and exhibits high disability and fatality rates. Recent evidence has demonstrated that neuroinflammation is critical in the pathophysiological processes of AD, which is characterized by the activation of microglia and astrocytes. Under different stimuli, microglia are usually activated into two polarized states, termed the classical 'M1' phenotype and the alternative 'M2' phenotype. M1 microglia are considered to promote inflammatory injury in AD; in contrast, M2 microglia exert neuroprotective effects. Imbalanced microglial polarization, in the form of excessive activation of M1 microglia and dysfunction of M2 microglia, markedly promotes the development of AD. Furthermore, an increasing number of studies have shown that the transition of microglia from the M1 to M2 phenotype could potently alleviate pathological damage in AD. Hence, this article reviews the current knowledge regarding the role of microglial M1/M2 polarization in the pathophysiology of AD. In addition, we summarize several approaches that protect against AD by altering the polarization states of microglia. This review aims to contribute to a better understanding of the pathogenesis of AD and, moreover, to explore the potential of novel drugs for the treatment of AD in the future.
Collapse
Affiliation(s)
- Kai Yao
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Heng-Bing Zu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
118
|
Zhou J, Zheng J, Zhang Y, Zheng P, Tang T, Luo JK, Cui HJ, Song RR, Wang Y. Chitosan Hydrogel Delivery System Containing Herbal Compound Functions as a Potential Antineuroinflammatory Agent. ACS OMEGA 2019; 4:10185-10191. [PMID: 31460111 PMCID: PMC6648881 DOI: 10.1021/acsomega.9b00971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Rhein (4,5-dihydroxyanthraquinone-2-carboxylic acid) is an anthraquinone compound mainly isolated from the herbal medicine rhubarb. It possesses a wide spectrum of pharmacological effects. However, the lack of sustained release properties and the poor bioavailability hinder clinical transformation. Hydrogel-based drug delivery system provides an ideal carrier to improve the release control and the therapeutic efficacy of drugs. Herein, we present a chitosan hydrogel for the delivery of rhein. This rhein-chitosan hydrogel (CS-Rh gel) exhibited superior characteristics including mechanical strength, sustained release, and low toxicity. For medical application, the enzyme-linked immunosorbent assay and Western blot analyses indicated that CS-Rh gel significantly suppressed the production of proinflammatory cytokines including TNF-α and IL-1β in lipopolysaccharide-induced BV2 cells. Additionally, CS-Rh gel blocked the neuroinflammation-related mitogen-activated protein kinase (JNK, ERK, and p38)-signaling pathways. Interestingly, these inhibitory effects at 48 h outperformed the pharmacologic actions at 24 h, showing that the CS-Rh gel exerted optimal sustained antineuroinflammation. This study highlights a novel chitosan hydrogel containing rhein used as a potential antineuroinflammatory agent.
Collapse
Affiliation(s)
- Jing Zhou
- Institute
of Integrative Medicine, Xiangya Hospital,
Central South University, Changsha 410008, China
- Department
of Oncology, Shanxi Provincial Institute of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, Shanxi 030012, China
| | - Jun Zheng
- College
of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yi Zhang
- College
of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Piao Zheng
- Institute
of Integrative Medicine, Xiangya Hospital,
Central South University, Changsha 410008, China
| | - Tao Tang
- Institute
of Integrative Medicine, Xiangya Hospital,
Central South University, Changsha 410008, China
| | - Jie-Kun Luo
- Institute
of Integrative Medicine, Xiangya Hospital,
Central South University, Changsha 410008, China
| | - Han-Jin Cui
- Institute
of Integrative Medicine, Xiangya Hospital,
Central South University, Changsha 410008, China
| | - Ru-Ru Song
- College
of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yang Wang
- Institute
of Integrative Medicine, Xiangya Hospital,
Central South University, Changsha 410008, China
| |
Collapse
|
119
|
Zheng J, Sun Z, Liang F, Xu W, Lu J, Shi L, Shao A, Yu J, Zhang J. AdipoRon Attenuates Neuroinflammation After Intracerebral Hemorrhage Through AdipoR1-AMPK Pathway. Neuroscience 2019; 412:116-130. [PMID: 31176703 DOI: 10.1016/j.neuroscience.2019.05.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/10/2019] [Accepted: 05/30/2019] [Indexed: 12/22/2022]
Abstract
Neuroinflammation is considered to be a critical component in the pathological process after intracerebral hemorrhage (ICH). Microglia are the foremost and earliest inflammatory cells participating in the pathological process of ICH. AdipoRon is the agonist of AdipoR1 (Adiponectin receptor 1), which enhances P-AMPK (phosphorylated AMP-activated protein kinase) activation. The activated AMPK facilitates microglia/macrophage polarization by driving the cell state from pro-inflammatory M1 state to anti-inflammatory M2 state. The study aims to investigate the role of AdipoRon in microglial polarization and neuroprotection after ICH. The experimental ICH model was established by autologous blood injection, and the treated group was done additionally by intraperitoneal injection of drugs. Flow cytometry analysis and immunofluorescence staining were performed to quantify the ratio of M1 to M2 phenotype microglia in mice. The present study indicated that AdipoRon could ameliorate neurological deficits in mice after ICH. Flow cytometric analysis demonstrated that the proportion of CD206+ cells to CD45+low CD11b+ cells (microglia isolated from the brain tissue of mice) was increased after AdipoRon treatment. AdipoR1 siRNA and AMPK inhibitor could reverse the positive effects of AdipoRon. AdipoR1 and P-AMPK expression was also significantly increased after AdipoRon treatment. The in vitro experiment showed that AdipoRon not only directly inhibited neuronal ROS overproduction, but also indirectly decreased the neuronal death in a transwell co-culture system. In summary, AdipoRon protects against ICH induced injury through promoting M2a microglia polarization and reducing neuronal death. These effects of AdipoRon rely on the activation of AdipoR1-AMPK signaling pathway.
Collapse
Affiliation(s)
- Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Zeyu Sun
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Feng Liang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jun Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China; Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
120
|
Saand AR, Yu F, Chen J, Chou SHY. Systemic inflammation in hemorrhagic strokes - A novel neurological sign and therapeutic target? J Cereb Blood Flow Metab 2019; 39:959-988. [PMID: 30961425 PMCID: PMC6547186 DOI: 10.1177/0271678x19841443] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Growing evidences suggest that stroke is a systemic disease affecting many organ systems beyond the brain. Stroke-related systemic inflammatory response and immune dysregulations may play an important role in brain injury, recovery, and stroke outcome. The two main phenomena in stroke-related peripheral immune dysregulations are systemic inflammation and post-stroke immunosuppression. There is emerging evidence suggesting that the spleen contracts following ischemic stroke, activates peripheral immune response and this may further potentiate brain injury. Whether similar brain-immune crosstalk occurs in hemorrhagic strokes such as intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) is not established. In this review, we systematically examined animal and human evidence to date on peripheral immune responses associated with hemorrhagic strokes. Specifically, we reviewed the impact of clinical systemic inflammatory response syndrome (SIRS), inflammation- and immune-associated biomarkers, the brain-spleen interaction, and cellular mediators of peripheral immune responses to ICH and SAH including regulatory T cells (Tregs). While there is growing data suggesting that peripheral immune dysregulation following hemorrhagic strokes may be important in brain injury pathogenesis and outcome, details of this brain-immune system cross-talk remain insufficiently understood. This is an important unmet scientific need that may lead to novel therapeutic strategies in this highly morbid condition.
Collapse
Affiliation(s)
- Aisha R Saand
- 1 Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fang Yu
- 2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- 2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sherry H-Y Chou
- 1 Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,2 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,3 Department of Neurosurgery, School of Medicine, University of Pittsburgh, PA, USA
| |
Collapse
|
121
|
T-Regulatory Cells Confer Increased Myelination and Stem Cell Activity after Stroke-Induced White Matter Injury. J Clin Med 2019; 8:jcm8040537. [PMID: 31010132 PMCID: PMC6518209 DOI: 10.3390/jcm8040537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 12/29/2022] Open
Abstract
Stroke-induced hypoxia causes oligodendrocyte death due to inflammation, lack of oxygen and exacerbation of cell death. Bone marrow-derived stem cells (BMSCs) possess an endogenous population of T-regulatory cells (Tregs) which reduce secretion of pro-inflammatory cytokines that lead to secondary cell death. Here, we hypothesize that oligodendrocyte progenitor cells (OPCs) cultured with BMSCs containing their native Treg population show greater cell viability, less pro-inflammatory cytokine secretion and greater myelin production after exposure to oxygen-glucose deprivation and reoxygenation (OGD/R) than OPCs cultured without Tregs. OPCs were cultured and then exposed to OGD/R. BMSCs with or without Tregs were added to the co-culture immediately after ischemia. The Tregs were depleted by running the BMSCs through a column containing a magnetic substrate. Fibroblast growth factor beta (FGF-β) and interleukin 6 (IL-6) ELISAs determined BMSC activity levels. Immunohistochemistry assessed OPC differentiation. OPCs cultured with BMSCs containing their endogenous Tregs showed increased myelin production compared to the BMSCs with depleted Tregs. IL-6 and FGF-β were increased in the group cultured with Tregs. Collectively, these results suggest that BMSCs containing Tregs are more therapeutically active, and that Tregs have beneficial effects on OPCs subjected to ischemia. Tregs play an important role in stem cell therapy and can potentially treat white matter injury post-stroke.
Collapse
|
122
|
Yu J, Zheng J, Lu J, Sun Z, Wang Z, Zhang J. AdipoRon Protects Against Secondary Brain Injury After Intracerebral Hemorrhage via Alleviating Mitochondrial Dysfunction: Possible Involvement of AdipoR1-AMPK-PGC1α Pathway. Neurochem Res 2019; 44:1678-1689. [PMID: 30982205 DOI: 10.1007/s11064-019-02794-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/04/2019] [Accepted: 04/04/2019] [Indexed: 01/29/2023]
Abstract
Intracerebral hemorrhage (ICH) is a stroke subtype that is associated with high mortality and disability rate. Mitochondria plays a crucial role in neuronal survival after ICH. This study first showed that activation of adiponectin receptor 1 (AdipoR1) by AdipoRon could attenuate mitochondrial dysfunction after ICH. In vivo, experimental ICH model was established by autologous blood injection in mice. AdipoRon was injected intraperitoneally (50 mg/kg). Immunofluorescence staining were performed to explicit the location of AdipoR1, AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-γ coactivator-1a (PGC1α). The PI staining was used to quantify neuronal survival. The expression of AdipoR1 and its downstream signaling molecules were detected by Western blotting. In vitro, 10 μM oxyhemoglobin (OxyHb) was used to induce the neuronal injury in SH-SY5Y cells. Annexin V-FITC/PI staining was used to detect the neuronal apoptosis and necrosis. Mitochondrial membrane potential (Δψm) was measured by a JC-1 kit and mitochondrial mass was quantified by mitochondrial fluorescent probe. In vivo, PI staining showed that the administration of AdipoRon could reduce neuronal death at 72 h after ICH in mice. AdipoRon treatment enhanced ATP levels and reduced ROS levels in perihematoma tissues, and increased the protein expression of AdipoR1, P-AMPK, PGC1α, NRF1 and TFAM. In vitro, the JC-1 staining and Mito-tracker™ Green showed that AdipoRon significantly alleviated OxyHb-induced collapse of Δψm and enhanced mitochondrial mass. Moreover, flow cytometry analysis indicated that the neurons treated with AdipoRon showed low necrotic and apoptotic rate. AdipoRon alleviates mitochondrial dysfunction after intracerebral hemorrhage via the AdipoR1-AMPK-PGC1α pathway.
Collapse
Affiliation(s)
- Jun Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Zeyu Sun
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Zefeng Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China. .,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
123
|
Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol 2019; 178:101610. [PMID: 30923023 DOI: 10.1016/j.pneurobio.2019.03.003] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/18/2022]
Abstract
Intracerebral hemorrhage (ICH) is a common and severe cerebrovascular disease that has high mortality. Few survivors achieve self-care. Currently, patients receive only symptomatic treatment for ICH and benefit poorly from this regimen. Inflammatory cytokines are important participants in secondary injury after ICH. Increases in proinflammatory cytokines may aggravate the tissue injury, whereas increases in anti-inflammatory cytokines might be protective in the ICH brain. Inflammatory cytokines have been studied as therapeutic targets in a variety of acute and chronic brain diseases; however, studies on ICH are limited. This review summarizes the roles and functions of various pro- and anti-inflammatory cytokines in secondary brain injury after ICH and discusses pathogenic mechanisms and emerging therapeutic strategies and directions for treatment of ICH.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhiqiang Wang
- Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Jixu Yu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China; Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiuli Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feng He
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhenchuan Liu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Hong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
124
|
Chen B, Sun H, Zhao Y, Lun P, Feng Y. An 85-Gene Coexpression Module for Progression of Hypertension-Induced Spontaneous Intracerebral Hemorrhage. DNA Cell Biol 2019; 38:449-456. [PMID: 30839233 DOI: 10.1089/dna.2018.4425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH) represents the most lethal form of stroke. We sought to identify potential genes that might contribute to progression of hypertension-induced spontaneous ICH (HIS-ICH). RNA-sequencing data set of cerebral vessel samples from HIS-ICH mice and normal mice was obtained from the Gene Expression Omnibus. Differential expression genes in HIS-ICH samples were obtained compared with normal samples followed by functional enrichment analysis. What is more, we explored the potential gene coexpression module (GCM) for HIS-ICH progression by using weighted gene coexpression network analysis. We further conducted protein-protein interaction network analysis for genes contained in GCM that was closely correlated with HIS-ICH to disclose their biological interactions. As a result, 554 genes were found to aberrantly express in HIS-ICH mice compared with normal mice, which were mainly associated with cancer-related pathways in addition to some well-known ICH-related pathways. A total of 28 GCMs were obtained, and darkturquoise module that contained 85 genes, which were closely associated with mitochondrion and hydrolase activity, was significantly correlated with HIS-ICH progression. Besides, we identified dense biological interactions among some genes in darkturquoise, such as Psma gene family and Hsp90a gene family. This study should shed new light on HIS-ICH progression and its treatment.
Collapse
Affiliation(s)
- Bing Chen
- 1 Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hu Sun
- 1 Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,2 Department of Neurosurgery, Zibo Central Hospital, Zibo, Shandong, China
| | - Yan Zhao
- 1 Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Lun
- 1 Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yugong Feng
- 1 Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
125
|
Qin J, Li Z, Gong G, Li H, Chen L, Song B, Liu X, Shi C, Yang J, Yang T, Xu Y. Early increased neutrophil-to-lymphocyte ratio is associated with poor 3-month outcomes in spontaneous intracerebral hemorrhage. PLoS One 2019; 14:e0211833. [PMID: 30730945 PMCID: PMC6366889 DOI: 10.1371/journal.pone.0211833] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to evaluate the association of dynamic neutrophil-to-lymphocyte ratio (NLR) with 3-month functional outcomes in patients with sICH. We retrospectively identified 213 consecutive patients with sICH hospitalized in The First Affiliated Hospital of Zhengzhou University from January 2017 to May 2018. Patients were divided into functional independence (FI) or unfavorable prognosis (UP) groups based on 3-month outcomes. Admission leukocyte counts within 24 hours of symptom onset were obtained, and the recorded fraction, of which the numerator is neutrophil and the denominator is lymphocyte, as NLR0. Determined NLR1, NLR3, NLR7, and NLR14 were recorded on day 1 (n = 77), day 3 (n = 126), day 7 (n = 123), and day 14 (n = 105), respectively. The relationships between dynamic NLR or leukocyte counts and clinical features were evaluated using Spearman’s or Kendall’s correlation analysis. Logistic regression analyses were used to identify the risk factors for unfavorable 3-month prognosis. The patients’ dynamic NLR was positively associated with the National Institutes of Health Stroke Scale, ICH score, and hematoma volume at admission, while inversely correlated to the onset GCS score and FI at 3-month follow-up. Furthermore, higher NLR or lower absolute lymphocyte count obtained at admission was independently risk factor for UP at 3 months (adjusted odds ratio [OR]: 1.06, 95% confidence interval [CI]: 1.003, 1.12; OR: 0.41, 95% CI: 0.18, 0.94, respectively). In conclusion, higher NLR and lower lymphocyte counts at early stages were predictive of 3-month unfavorable outcomes in sICH patients.
Collapse
Affiliation(s)
- Jie Qin
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
- * E-mail: (JQ); (GG)
| | - Zhu Li
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Guangming Gong
- Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
- * E-mail: (JQ); (GG)
| | - Hongwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Ling Chen
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Bo Song
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xinjing Liu
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Changhe Shi
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jing Yang
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Ting Yang
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yuming Xu
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| |
Collapse
|
126
|
Li Q, Lan X, Han X, Wang J. Expression of Tmem119/ Sall1 and Ccr2/ CD69 in FACS-Sorted Microglia- and Monocyte/Macrophage-Enriched Cell Populations After Intracerebral Hemorrhage. Front Cell Neurosci 2019; 12:520. [PMID: 30687011 PMCID: PMC6333739 DOI: 10.3389/fncel.2018.00520] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/12/2018] [Indexed: 11/30/2022] Open
Abstract
Activation and polarization of microglia and macrophages are critical events in neuroinflammation and hematoma resolution after intracerebral hemorrhage (ICH). However, distinguishing microglia and monocyte-derived macrophages histologically can be difficult. Although they share most cell surface markers, evidence indicates that the gene regulation and function of these two cell types might be different. Flow cytometry is the gold standard for discriminating between the two cell populations, but it is rarely used in the ICH research field. We developed a flow cytometry protocol to identify and sort microglia and monocyte-derived macrophages from mice that have undergone well-established ICH models induced by collagenase or blood injection. In addition, we combined a recently established magnetic-activated cell separation system that allows eight tissue samples to be assessed together. This protocol can be completed within 5–8 h. Sorted cells are fully preserved and maintain expression of microglia-specific (Tmem119/Sall1) and macrophage-specific (Ccr2/CD69) markers. They retain phagocytic ability, respond to lipopolysaccharide stimulation, and engulf fluorescent latex beads. Thus, this protocol represents a very important tool for researching microglial and monocyte-derived macrophage biologic function after ICH and other brain diseases.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
127
|
Lan X, Han X, Liu X, Wang J. Inflammatory responses after intracerebral hemorrhage: From cellular function to therapeutic targets. J Cereb Blood Flow Metab 2019; 39:184-186. [PMID: 30346222 PMCID: PMC6311675 DOI: 10.1177/0271678x18805675] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inflammatory responses occur rapidly after intracerebral hemorrhage and participate in both short-term toxicity and long-term recovery. Microglia/macrophages react to hemorrhagic injury and exhibit dynamic phenotypes and phagocytic capability. Astrocytes secrete cytokines, chemokines, and gliotransmitters that can regulate neuroinflammation. In addition, infiltrating neutrophils and T-lymphocytes modulate immunoreactions, which further cross-talk with microglia/macrophages. Thus, the search for effective immunotherapy to target specific cell type-mediated inflammation might represent a new direction for intracerebral hemorrhage treatment, separate from traditional anti-inflammatory drug discovery.
Collapse
Affiliation(s)
- Xi Lan
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoning Han
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xi Liu
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,2 Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Wang
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
128
|
Wang X, Xuan W, Zhu ZY, Li Y, Zhu H, Zhu L, Fu DY, Yang LQ, Li PY, Yu WF. The evolving role of neuro-immune interaction in brain repair after cerebral ischemic stroke. CNS Neurosci Ther 2018; 24:1100-1114. [PMID: 30350341 DOI: 10.1111/cns.13077] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke is the world's leading cause of disability with limited brain repair treatments which effectively improve long-term neurological deficits. The neuroinflammatory responses persist into the late repair phase of stroke and participate in all brain repair elements, including neurogenesis, angiogenesis, synaptogenesis, remyelination and axonal sprouting, shedding new light on post-stroke brain recovery. Resident brain glial cells, such as astrocytes not only contribute to neuroinflammation after stroke, but also secrete a wide range of trophic factors that can promote post-stroke brain repair. Alternatively, activated microglia, monocytes, and neutrophils in the innate immune system, traditionally considered as major damaging factors after stroke, have been suggested to be extensively involved in brain repair after stroke. The adaptive immune system may also have its bright side during the late regenerative phase, affecting the immune suppressive regulatory T cells and B cells. This review summarizes the recent findings in the evolving role of neuroinflammation in multiple post-stroke brain repair mechanisms and poses unanswered questions that may generate new directions for future research and give rise to novel therapeutic targets to improve stroke recovery.
Collapse
Affiliation(s)
- Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Xuan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Yu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ling Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dan-Yun Fu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
129
|
The Role of Interleukin-10 in Mediating the Effect of Immune Challenge on Mouse Gonadotropin-Releasing Hormone Neurons In Vivo. eNeuro 2018; 5:eN-NWR-0211-18. [PMID: 30406179 PMCID: PMC6220573 DOI: 10.1523/eneuro.0211-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022] Open
Abstract
Immune challenge alters neural functioning via cytokine production. Inflammation has profound impact on the central regulation of fertility, but the mechanisms involved are not clearly defined. The anti-inflammatory cytokine interleukin (IL)-10 is responsible for balancing the immune response in the brain. To examine whether IL-10 has an effect on the function of the gonadotropin-releasing hormone (GnRH) neurons, we first examined the effect of immune responses with distinct cytokine profiles, such as the T cell-dependent (TD) and T cell-independent (TI) B-cell response. We investigated the effect of the TD and TI immune responses on ERK1/2 phosphorylation in GnRH neurons by administering fluorescein isothiocyanate/keyhole limpet hemocyanin (KLH-FITC) or dextran-FITC to female mice. Although dextran-FITC had no effect, KLH-FITC induced ERK1/2 phosphorylation in GnRH neurons after 6 d. KLH-FITC treatment increased the levels of IL-10 in the hypothalamus (HYP), but this treatment did not cause lymphocyte infiltration or an increase in the levels of proinflammatory cytokines. In IL-10 knock-out (KO) mice, KLH-FITC-induced ERK1/2 phosphorylation in the GnRH neurons was absent. We also showed that in IL-10 KO mice, the estrous cycle was disrupted. Perforated patch-clamp recordings from GnRH-GFP neurons, IL-10 immunohistochemistry, and in vitro experiments on acute brain slices revealed that IL-10 can directly alter GnRH neuron firing and induce ERK1/2 phosphorylation. These observations demonstrate that IL-10 plays a role in influencing signaling of GnRH neurons in the TD immune response. These results also provide the first evidence that IL-10 can directly alter the function of GnRH neurons and may help the maintenance of the integrity of the estrous cycle.
Collapse
|
130
|
Cantharidin inhibits melanoma cell proliferation via the miR‑21‑mediated PTEN pathway. Mol Med Rep 2018; 18:4603-4610. [PMID: 30221692 DOI: 10.3892/mmr.2018.9440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/26/2018] [Indexed: 11/05/2022] Open
Abstract
Cantharidin (CTD) is an active component isolated from the blister beetle that has been demonstrated to exert antitumor effects on multiple types of cancer. The current study aimed to investigate whether the potential inhibitory effects of CTD exist in human melanoma cells and to assess the underlying antitumor mechanisms of CTD. Using the Cell Counting Kit‑8 assay, it was demonstrated that CTD treatment reduced A375 cell proliferation significantly in a dose‑dependent manner. The colony formation assay demonstrated that CTD treatment could decrease the number of A375 cell colonies. Using subcutaneous xenograft tumor models, it was also demonstrated that CTD retarded solid tumor growth significantly. Furthermore, CTD treatment could induce A375 cell apoptosis, as detected by Annexin V‑fluorescein isothiocyanate/propidium iodide staining and western blot analysis. Notably, CTD treatment reduced microRNA (miR)‑21 expression and enhanced phosphatase and tensin homolog (PTEN) protein expression levels in A375 cells. Furthermore, overexpressing miR‑21 in A375 cells with the miR‑21 agomir blocked the antitumor effect of CTD both in vitro and in vivo. Finally, it was demonstrated that the inhibitory effects of CTD on A375 cells may be regulated by attenuating miR‑21‑mediated PTEN suppression. Based on these observations, it was suggested that CTD be used as a novel anti‑proliferation agent of human melanoma via targeting the miR‑21‑PTEN signaling pathway.
Collapse
|
131
|
Hu X, Leak RK, Thomson AW, Yu F, Xia Y, Wechsler LR, Chen J. Promises and limitations of immune cell-based therapies in neurological disorders. Nat Rev Neurol 2018; 14:559-568. [PMID: 29925925 PMCID: PMC6237550 DOI: 10.1038/s41582-018-0028-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The healthy immune system has natural checkpoints that temper pernicious inflammation. Cells mediating these checkpoints include regulatory T cells, regulatory B cells, regulatory dendritic cells, microglia, macrophages and monocytes. Here, we highlight discoveries on the beneficial functions of regulatory immune cells and their mechanisms of action and evaluate their potential use as novel cell-based therapies for brain disorders. Regulatory immune cell therapies have the potential not only to mitigate the exacerbation of brain injury by inflammation but also to promote an active post-injury brain repair programme. By harnessing the reparative properties of these cells, we can reduce over-reliance on medications that mask clinical symptoms but fail to impede or reverse the progression of brain disorders. Although these discoveries encourage further testing and genetic engineering of regulatory immune cells for the clinical management of neurological disorders, a number of challenges must be surmounted to improve their safety and efficacy in humans.
Collapse
Affiliation(s)
- Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuguo Xia
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lawrence R Wechsler
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
132
|
Yang Z, Liu Q, Shi H, Jiang X, Wang S, Lu Y, Zhang J, Huang X, Yu A. Interleukin 17A exacerbates ER-stress-mediated inflammation of macrophages following ICH. Mol Immunol 2018; 101:38-45. [DOI: 10.1016/j.molimm.2018.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/22/2022]
|
133
|
Chen Z, Chen S, Liu J. The role of T cells in the pathogenesis of Parkinson's disease. Prog Neurobiol 2018; 169:1-23. [PMID: 30114440 DOI: 10.1016/j.pneurobio.2018.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/24/2018] [Accepted: 08/12/2018] [Indexed: 02/06/2023]
Abstract
Recent evidence has shown that neuroinflammation plays a key role in the pathogenesis of Parkinson's disease (PD). However, different components of the brain's immune system may exert diverse effects on neuroinflammatory events in PD. The adaptive immune response, especially the T cell response, can trigger type 1 pro-inflammatory activities and suppress type 2 anti-inflammatory activities, eventually resulting in deregulated neuroinflammation and subsequent dopaminergic neurodegeneration. Additionally, studies have increasingly shown that therapies targeting T cells can alleviate neurodegeneration and motor behavior impairment in animal models of PD. Therefore, we conclude that abnormal T cell-mediated immunity is a fundamental pathological process that may be a promising translational therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
134
|
Ran Y, Liu Z, Huang S, Shen J, Li F, Zhang W, Chen C, Geng X, Ji Z, Du H, Hu X. Splenectomy Fails to Provide Long-Term Protection Against Ischemic Stroke. Aging Dis 2018; 9:467-479. [PMID: 29896434 PMCID: PMC5988601 DOI: 10.14336/ad.2018.0130] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Splenectomy before or immediately after stroke provides early brain protection. This study aims to explore the effect of splenectomy on long-term neurological recovery after stroke, which is currently lacking in the field. Adult male rats were randomized into splenectomy or sham groups and then subjected to 90 min of middle cerebral artery occlusion (MCAO). Spleen was removed right upon reperfusion or 3d after MCAO. Infarct volume, neurological functions, and peripheral immune cell populations were assessed up to 28d after stroke. The results show that delayed removal of spleen did not reduce brain tissue loss and showed no effect on sensorimotor function (Rotarod, beam balance, forelimb placing, grid walk, and adhesive removal tests) or cognitive function (Morris water maze). Spleen removal immediately upon reperfusion, although significantly reduced the infarct size and immune cell infiltration 3d after MCAO, also failed to promote long-term recovery. Flow cytometry analysis demonstrated that immediate splenectomy after MCAO resulted in a prolonged decrease in the percentage of CD3+CD4+ and CD3+CD8+ T cells in total lymphocytes as compared to non-splenectomy MCAO rats. In contrast, the percentage of CD3-CD45RA+ B cells was significantly elevated after splenectomy. As a result, the ratio of T/B cells was significantly reduced in stroke rats with splenectomy. In conclusion, delayed splenectomy failed to provide long-term protection to the ischemic brain or improve functional recovery. The acute neuroprotective effect achieved by early splenectomy after stroke cannot last for long term. This loss of neuroprotection might be related to the prolonged disturbance in the T cell to B cell ratio.
Collapse
Affiliation(s)
- Yuanyuan Ran
- 1China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,2Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zongjian Liu
- 1China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,2Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Shuo Huang
- 1China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,2Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jiamei Shen
- 1China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Fengwu Li
- 1China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wenxiu Zhang
- 2Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Chen Chen
- 1China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- 1China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zhili Ji
- 1China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Huishan Du
- 1China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Hu
- 1China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,3Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
135
|
Mays RW, Savitz SI. Intravenous Cellular Therapies for Acute Ischemic Stroke. Stroke 2018; 49:1058-1065. [DOI: 10.1161/strokeaha.118.018287] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Robert W. Mays
- From the Department of Neurosciences, Athersys, Inc, (R.W.M.)
| | - Sean I. Savitz
- Institute for Stroke and Cerebrovascular Disease, UTHealth, Houston, TX (S.I.S.)
| |
Collapse
|
136
|
Yang L, Niu F, Yao H, Liao K, Chen X, Kook Y, Ma R, Hu G, Buch S. Exosomal miR-9 Released from HIV Tat Stimulated Astrocytes Mediates Microglial Migration. J Neuroimmune Pharmacol 2018; 13:330-344. [PMID: 29497921 DOI: 10.1007/s11481-018-9779-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/19/2018] [Indexed: 12/22/2022]
Abstract
Chronic neuroinflammation still remains a common underlying feature of HIV-infected patients on combined anti-retroviral therapy (cART). Previous studies have reported that despite near complete suppression of virus replication by cART, cytotoxic viral proteins such as HIV trans-activating regulatory protein (Tat) continue to persist in tissues such as the brain and the lymph nodes, thereby contributing, in part, to chronic glial activation observed in HIV-associated neurological disorders (HAND). Understanding how the glial cells cross talk to mediate neuropathology is thus of paramount importance. MicroRNAs (miR) also known as regulators of gene expression, have emerged as key paracrine signaling mediators that regulate disease pathogenesis and cellular crosstalk, through their transfer via the extracellular vesicles (EV). In the current study we have identified a novel function of miR-9, that of mediating microglial migration. We demonstrate that miR-9 released from Tat-stimulated astrocytes can be taken up by microglia resulting in their migratory phenotype. Exposure of human astrocytoma (A172) cells to HIV Tat resulted in induction and release of miR-9 in the EVs, which, was taken up by microglia, leading in turn, increased migration of the latter cells, a process that could be blocked by both an exosome inhibitor GW4869 or a specific target protector of miR-9. Furthermore, it was also demonstrated that EV miR-9 mediated inhibition of the expression of target PTEN, via its binding to the 3'UTR seed sequence of the PTEN mRNA, was critical for microglial migration. To validate the role of miR-9 in this process, microglial cells were treated with EVs loaded with miR-9, which resulted in significant downregulation of PTEN expression with a concomitant increase in microglial migration. These findings were corroborated by transfecting microglia with a specific target protector of PTEN, that blocked miR-9-mediated downregulation of PTEN as well as microglial migration. In vivo studies wherein the miR-9 precursor-transduced microglia were transplanted into the striatum of mice, followed by assessing their migration in response to a stimulus administered distally, further validated the role of miR-9 in mediating microglial migration. Collectively, our findings provide evidence that glial crosstalk via miRs released from EVs play a vital role in mediating disease pathogenesis and could provide new avenues for development of novel therapeutic strategies aimed at dampening neuropathogenesis.
Collapse
Affiliation(s)
- Lu Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, Southeast University, Nanjing, China.,Key Laboratory of Developmental Genes and Human Disease, Southeast University, Institute of Life Sciences, Nanjing, China
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xufeng Chen
- The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yeonhee Kook
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rong Ma
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
137
|
Ren H, Kong Y, Liu Z, Zang D, Yang X, Wood K, Li M, Liu Q. Selective NLRP3 (Pyrin Domain-Containing Protein 3) Inflammasome Inhibitor Reduces Brain Injury After Intracerebral Hemorrhage. Stroke 2017; 49:184-192. [PMID: 29212744 PMCID: PMC5753818 DOI: 10.1161/strokeaha.117.018904] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Intracerebral hemorrhage (ICH) is a devastating disease without effective treatment. As a key component of the innate immune system, the NOD-like receptor (NLR) family, NLRP3 (pyrin domain-containing protein 3) inflammasome, when activated after ICH, promotes neuroinflammation and brain edema. MCC950 is a potent, selective, small-molecule NLRP3 inhibitor that blocks NLRP3 activation at nanomolar concentrations. Here, we examined the effect of MCC950 on brain injury and inflammation in 2 models of ICH in mice. METHODS In mice with ICH induced by injection of autologous blood or bacterial collagenase, we determined the therapeutic potential of MCC950 and its mechanisms of neuroprotection. RESULTS MCC950 reduced IL-1β (interleukin-1β) production and attenuated neurodeficits and perihematomal brain edema after ICH induction by injection of either autologous blood or collagenase. In mice with autologous blood-induced ICH, the protection of MCC950 was associated with reduced leukocyte infiltration into the brain and microglial production of IL-6. MCC950 improved blood-brain barrier integrity and diminished cell death. Notably, the protective effect of MCC950 was abolished in mice depleted of either microglia or Gr-1+ myeloid cells. CONCLUSIONS These results indicate that the NLRP3 inflammasome inhibitor, MCC950, attenuates brain injury and inflammation after ICH. Hence, NLRP3 inflammasome inhibition is a potential therapy for ICH that warrants further investigation.
Collapse
Affiliation(s)
- Honglei Ren
- From the Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China (H.R., Y.K., Z.L., X.Y., M.L., Q.L.); Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ (K.W., M.L., Q.L.); and Department of Neurosurgery, Tianjin Huanhu Hospital, China (D.Z.)
| | - Ying Kong
- From the Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China (H.R., Y.K., Z.L., X.Y., M.L., Q.L.); Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ (K.W., M.L., Q.L.); and Department of Neurosurgery, Tianjin Huanhu Hospital, China (D.Z.)
| | - Zhijia Liu
- From the Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China (H.R., Y.K., Z.L., X.Y., M.L., Q.L.); Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ (K.W., M.L., Q.L.); and Department of Neurosurgery, Tianjin Huanhu Hospital, China (D.Z.)
| | - Dongyun Zang
- From the Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China (H.R., Y.K., Z.L., X.Y., M.L., Q.L.); Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ (K.W., M.L., Q.L.); and Department of Neurosurgery, Tianjin Huanhu Hospital, China (D.Z.)
| | - Xiaoxia Yang
- From the Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China (H.R., Y.K., Z.L., X.Y., M.L., Q.L.); Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ (K.W., M.L., Q.L.); and Department of Neurosurgery, Tianjin Huanhu Hospital, China (D.Z.)
| | - Kristofer Wood
- From the Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China (H.R., Y.K., Z.L., X.Y., M.L., Q.L.); Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ (K.W., M.L., Q.L.); and Department of Neurosurgery, Tianjin Huanhu Hospital, China (D.Z.)
| | - Minshu Li
- From the Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China (H.R., Y.K., Z.L., X.Y., M.L., Q.L.); Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ (K.W., M.L., Q.L.); and Department of Neurosurgery, Tianjin Huanhu Hospital, China (D.Z.)
| | - Qiang Liu
- From the Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China (H.R., Y.K., Z.L., X.Y., M.L., Q.L.); Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ (K.W., M.L., Q.L.); and Department of Neurosurgery, Tianjin Huanhu Hospital, China (D.Z.).
| |
Collapse
|
138
|
Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, Zhang X, Yin KJ, Gao Y, Bennett MVL, Leak RK, Chen J. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog Neurobiol 2017; 163-164:27-58. [PMID: 29032144 DOI: 10.1016/j.pneurobio.2017.10.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a widely expressed ligand-modulated transcription factor that governs the expression of genes involved in inflammation, redox equilibrium, trophic factor production, insulin sensitivity, and the metabolism of lipids and glucose. Synthetic PPARγ agonists (e.g. thiazolidinediones) are used to treat Type II diabetes and have the potential to limit the risk of developing brain injuries such as stroke by mitigating the influence of comorbidities. If brain injury develops, PPARγ serves as a master gatekeeper of cytoprotective stress responses, improving the chances of cellular survival and recovery of homeostatic equilibrium. In the acute injury phase, PPARγ directly restricts tissue damage by inhibiting the NFκB pathway to mitigate inflammation and stimulating the Nrf2/ARE axis to neutralize oxidative stress. During the chronic phase of acute brain injuries, PPARγ activation in injured cells culminates in the repair of gray and white matter, preservation of the blood-brain barrier, reconstruction of the neurovascular unit, resolution of inflammation, and long-term functional recovery. Thus, PPARγ lies at the apex of cell fate decisions and exerts profound effects on the chronic progression of acute injury conditions. Here, we review the therapeutic potential of PPARγ in stroke and brain trauma and highlight the novel role of PPARγ in long-term tissue repair. We describe its structure and function and identify the genes that it targets. PPARγ regulation of inflammation, metabolism, cell fate (proliferation/differentiation/maturation/survival), and many other processes also has relevance to other neurological diseases. Therefore, PPARγ is an attractive target for therapies against a number of progressive neurological disorders.
Collapse
Affiliation(s)
- Wei Cai
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huan Liu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lijuan Han
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kai Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA
| | - Xuejing Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Michael V L Bennett
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai 200032, China; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh PA, USA.
| |
Collapse
|
139
|
Anti-inflammatory and immunomodulatory mechanisms of atorvastatin in a murine model of traumatic brain injury. J Neuroinflammation 2017; 14:167. [PMID: 28835272 PMCID: PMC5569493 DOI: 10.1186/s12974-017-0934-2] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/07/2017] [Indexed: 12/25/2022] Open
Abstract
Background Neuroinflammation is an important secondary injury mechanism that has dual beneficial and detrimental roles in the pathophysiology of traumatic brain injury (TBI). Compelling data indicate that statins, a group of lipid-lowering drugs, also have extensive immunomodulatory and anti-inflammatory properties. Among statins, atorvastatin has been demonstrated as a neuroprotective agent in experimental TBI; however, there is a lack of evidence regarding its effects on neuroinflammation during the acute phase of TBI. The current study aimed to evaluate the effects of atorvastatin therapy on modulating the immune reaction, and to explore the possible involvement of peripheral leukocyte invasion and microglia/macrophage polarization in the acute period post-TBI. Methods C57BL/6 mice were subjected to TBI using a controlled cortical impact (CCI) device. Either atorvastatin or vehicle saline was administered orally starting 1 h post-TBI for three consecutive days. Short-term neurological deficits were evaluated using the modified neurological severity score (mNSS) and Rota-rod. Brain-invading leukocyte subpopulations were analyzed by flow cytometry and immunohistochemistry. Pro- and anti-inflammatory cytokines and chemokines were examined using enzyme-linked immunosorbent assay (ELISA). Markers of classically activated (M1) and alternatively activated (M2) microglia/macrophages were then determined by quantitative real-time PCR (qRT-PCR) and flow cytometry. Neuronal apoptosis was identified by double staining of terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL) staining and immunofluorescence labeling for neuronal nuclei (NeuN). Results Acute treatment with atorvastatin at doses of 1 mg/kg/day significantly reduced neuronal apoptosis and improved behavioral deficits. Invasions of T cells, neutrophils and natural killer (NK) cells were attenuated profoundly after atorvastatin therapy, as was the production of pro-inflammatory cytokines (IFN-γ and IL-6) and chemokines (RANTES and IP-10). Notably, atorvastatin treatment significantly increased the proportion of regulatory T cells (Tregs) in both the peripheral spleen and brain, and at the same time, increased their main effector cytokines IL-10 and TGF-β1. We also found that atorvastatin significantly attenuated total microglia/macrophage activation but augmented the M2/M1 ratio by both inhibiting M1 polarization and enhancing M2 polarization. Conclusions Our data demonstrated that acute atorvastatin administration could modulate post-TBI neuroinflammation effectively, via a mechanism that involves altering peripheral leukocyte invasion and the alternative polarization of microglia/macrophages.
Collapse
|
140
|
Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol 2017; 13:420-433. [PMID: 28524175 PMCID: PMC5575938 DOI: 10.1038/nrneurol.2017.69] [Citation(s) in RCA: 610] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracerebral haemorrhage (ICH) is the most lethal subtype of stroke but currently lacks effective treatment. Microglia are among the first non-neuronal cells on the scene during the innate immune response to ICH. Microglia respond to acute brain injury by becoming activated and developing classic M1-like (proinflammatory) or alternative M2-like (anti-inflammatory) phenotypes. This polarization implies as yet unrecognized actions of microglia in ICH pathology and recovery, perhaps involving microglial production of proinflammatory or anti-inflammatory cytokines and chemokines. Furthermore, alternatively activated M2-like microglia might promote phagocytosis of red blood cells and tissue debris, a major contribution to haematoma clearance. Interactions between microglia and other cells modulate microglial activation and function, and are also important in ICH pathology. This Review summarizes key studies on modulators of microglial activation and polarization after ICH, including M1-like and M2-like microglial phenotype markers, transcription factors and key signalling pathways. Microglial phagocytosis, haematoma resolution, and the potential crosstalk between microglia and T lymphocytes, neurons, astrocytes, and oligodendrocytes in the ICH brain are described. Finally, the clinical and translational implications of microglial polarization in ICH are presented, including the evidence that therapeutic approaches aimed at modulating microglial function might mitigate ICH injury and improve brain repair.
Collapse
Affiliation(s)
- Xi Lan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| | - Qian Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing 400037, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| |
Collapse
|
141
|
Mao LL, Yuan H, Wang WW, Wang YJ, Yang MF, Sun BL, Zhang ZY, Yang XY. Adoptive Regulatory T-cell Therapy Attenuates Perihematomal Inflammation in a Mouse Model of Experimental Intracerebral Hemorrhage. Cell Mol Neurobiol 2017; 37:919-929. [PMID: 27678140 PMCID: PMC11482213 DOI: 10.1007/s10571-016-0429-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/22/2016] [Indexed: 01/01/2023]
Abstract
The CD4+CD25+ regulatory T cells (Tregs), an innate immunomodulator, suppress cerebral inflammation and maintain immune homeostasis in multiple central nervous system injury, but its role in intracerebral hemorrhage (ICH) has not been fully characterized. This study investigated the effect of Tregs on brain injury using the mouse ICH model, which is established by autologous blood infusion. The results showed that tail intravenous injection of Tregs significantly reduced brain water content and Evans blue dye extravasation of perihematoma at day (1, 3 and 7), and improved short- and long-term neurological deficits following ICH in mouse model. Tregs treatment reduced the content of pro-inflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and malondialdehyde, while increasing the superoxide dismutase (SOD) enzymatic activity at day (1, 3 and 7) following ICH. Furthermore, Tregs treatment obviously reduced the number of NF-κB+, IL-6+, TUNEL+ and active caspase-3+ cells at day 3 after ICH. These results indicate that adoptive transfer of Tregs may provide neuroprotection following ICH in mouse models.
Collapse
Affiliation(s)
- Lei-Lei Mao
- Key Lab of Cerebral Microcirculation at the Universities of Shandong, Life Science Research Centre of Taishan Medical University, Taian, 271016, Shandong, China
| | - Hui Yuan
- Key Lab of Cerebral Microcirculation at the Universities of Shandong, Life Science Research Centre of Taishan Medical University, Taian, 271016, Shandong, China
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, 271016, Shandong, China
| | - Wen-Wen Wang
- Key Lab of Cerebral Microcirculation at the Universities of Shandong, Life Science Research Centre of Taishan Medical University, Taian, 271016, Shandong, China
| | - Yu-Jing Wang
- Key Lab of Cerebral Microcirculation at the Universities of Shandong, Life Science Research Centre of Taishan Medical University, Taian, 271016, Shandong, China
| | - Ming-Feng Yang
- Key Lab of Cerebral Microcirculation at the Universities of Shandong, Life Science Research Centre of Taishan Medical University, Taian, 271016, Shandong, China
| | - Bao-Liang Sun
- Key Lab of Cerebral Microcirculation at the Universities of Shandong, Life Science Research Centre of Taishan Medical University, Taian, 271016, Shandong, China
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, 271016, Shandong, China
| | - Zong-Yong Zhang
- Key Lab of Cerebral Microcirculation at the Universities of Shandong, Life Science Research Centre of Taishan Medical University, Taian, 271016, Shandong, China.
| | - Xiao-Yi Yang
- Key Lab of Cerebral Microcirculation at the Universities of Shandong, Life Science Research Centre of Taishan Medical University, Taian, 271016, Shandong, China.
| |
Collapse
|
142
|
Wang J, Lu Z, Fu X, Zhang D, Yu L, Li N, Gao Y, Liu X, Yin C, Ke J, Li L, Zhai M, Wu S, Fan J, Lv L, Liu J, Chen X, Yang Q, Wang J. Alpha-7 Nicotinic Receptor Signaling Pathway Participates in the Neurogenesis Induced by ChAT-Positive Neurons in the Subventricular Zone. Transl Stroke Res 2017; 8:10.1007/s12975-017-0541-7. [PMID: 28551702 PMCID: PMC5704989 DOI: 10.1007/s12975-017-0541-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022]
Abstract
Choline acetyltransferase-positive (ChAT+) neurons within the subventricular zone (SVZ) have been shown to promote neurogenesis after stroke in mice by secreting acetylcholine (ACh); however, the mechanisms remain unclear. Receptors known to bind ACh include the nicotinic ACh receptors (nAChRs), which are present in the SVZ and have been shown to be important for cell proliferation, differentiation, and survival. In this study, we investigated the neurogenic role of the alpha-7 nAChR (α7 nAChR) in a mouse model of middle cerebral artery occlusion (MCAO) by using α7 nAChR inhibitor methyllycaconitine. Mice subjected to MCAO exhibited elevated expression of cytomembrane and nuclear fibroblast growth factor receptor 1 (FGFR1), as well as increased expression of PI3K, pAkt, doublecortin (DCX), polysialylated - neuronal cell adhesion molecule (PSA-NCAM), and mammalian achaete-scute homolog 1 (Mash1). MCAO mice also had more glial fibrillary acidic protein (GFAP)/5-bromo-2'-deoxyuridine (BrdU)-positive cells and DCX-positive cells in the SVZ than did the sham-operated group. Methyllycaconitine treatment increased cytomembrane FGFR1 expression and GFAP/BrdU-positive cells, upregulated the levels of phosphoinositide 3-kinase (PI3K) and phospho-Akt (pAkt), decreased nuclear FGFR1 expression, decreased the number of DCX-positive cells, and reduced the levels of DCX, PSA-NCAM, and Mash1 in the SVZ of MCAO mice compared with levels in vehicle-treated MCAO mice. MCAO mice treated with α7 nAChR agonist PNU-282987 exhibited the opposite effects. Our data show that α7 nAChR may decrease the proliferation of neural stem cells and promote differentiation of existing neural stem cells after stroke. These results identify a new mechanism of SVZ ChAT+ neuron-induced neurogenesis.
Collapse
Affiliation(s)
- Jianping Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Zhengfang Lu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaojie Fu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Di Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lie Yu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Nan Li
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yufeng Gao
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xianliang Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Chunmao Yin
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Junji Ke
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Liyuan Li
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Mengmeng Zhai
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shiwen Wu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jiahong Fan
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Liang Lv
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Junchao Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- Department of Anesthesiology/Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
143
|
Li M, Ren H, Sheth KN, Shi FD, Liu Q. A TSPO ligand attenuates brain injury after intracerebral hemorrhage. FASEB J 2017; 31:3278-3287. [PMID: 28416580 PMCID: PMC5503714 DOI: 10.1096/fj.201601377rr] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/27/2017] [Indexed: 01/25/2023]
Abstract
Intracerebral hemorrhage (ICH) is a devastating disease without effective treatment. After ICH, the immediate infiltration of leukocytes and activation of microglia are accompanied by a rapid up-regulation of the 18-kDa translocator protein (TSPO). TSPO ligands have shown anti-inflammatory and neuroprotective properties in models of CNS injury. In this study, we determined the impact of a TSPO ligand, etifoxine, on brain injury and inflammation in 2 mouse models of ICH. TSPO was up-regulated in Iba1+ cells from brains of patients with ICH and in CD11b+CD45int cells from mice subjected to collagenase-induced ICH. Etifoxine significantly reduced neurodeficits and perihematomal brain edema after ICH induction by injection of either autologous blood or collagenase. In collagenase-induced ICH mice, the protection of etifoxine was associated with reduced leukocyte infiltration into the brain and microglial production of IL-6 and TNF-α. Etifoxine improved blood–brain barrier integrity and diminished cell death. Notably, the protective effect of etifoxine was abolished in mice depleted of microglia by using a colony-stimulating factor 1 receptor inhibitor. These results indicate that the TSPO ligand etifoxine attenuates brain injury and inflammation after ICH. TSPO may be a viable therapeutic target that requires further investigations in ICH.—Li, M., Ren, H., Sheth, K. N., Shi, F.-D., Liu, Q. A TSPO ligand attenuates brain injury after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Honglei Ren
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Kevin N Sheth
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; .,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
144
|
Alternative activation-skewed microglia/macrophages promote hematoma resolution in experimental intracerebral hemorrhage. Neurobiol Dis 2017; 103:54-69. [PMID: 28365213 DOI: 10.1016/j.nbd.2017.03.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 02/24/2017] [Accepted: 03/28/2017] [Indexed: 12/27/2022] Open
Abstract
Microglia/macrophages (MMΦ) are highly plastic phagocytes that can promote both injury and repair in diseased brain through the distinct function of classically activated and alternatively activated subsets. The role of MMΦ polarization in intracerebral hemorrhage (ICH) is unknown. Herein, we comprehensively characterized MMΦ dynamics after ICH in mice and evaluated the relevance of MMΦ polarity to hematoma resolution. MMΦ accumulated within the hematoma territory until at least 14days after ICH induction. Microglia rapidly reacted to the hemorrhagic insult as early as 1-1.5h after ICH and specifically presented a "protective" alternatively activated phenotype. Substantial numbers of activated microglia and newly recruited monocytes also assumed an early alternatively activated phenotype, but the phenotype gradually shifted to a mixed spectrum over time. Ultimately, markers of MMΦ classic activation dominated at the chronic stage of ICH. We enhanced MMΦ alternative activation by administering intraperitoneal injections of rosiglitazone, and subsequently observed elevations in CD206 expression on brain-isolated CD11b+ cells and increases in IL-10 levels in serum and perihematomal tissue. Enhancement of MMΦ alternative activation correlated with hematoma volume reduction and improvement in neurologic deficits. Intraventricular injection of alternative activation signature cytokine IL-10 accelerated hematoma resolution, whereas microglial phagocytic ability was abolished by IL-10 receptor neutralization. Our results suggest that MMΦ respond dynamically to brain hemorrhage by exhibiting diverse phenotypic changes at different stages of ICH. Alternative activation-skewed MMΦ aid in hematoma resolution, and IL-10 signaling might contribute to regulation of MMΦ phagocytosis and hematoma clearance in ICH.
Collapse
|
145
|
Wang J, Liu J, Wang Y, Lin M, Tian W, Zhou L, Ye X, Lin L. High glucose induces alternative activation of macrophages via PI3K/Akt signaling pathway. J Recept Signal Transduct Res 2017; 37:409-415. [PMID: 28292218 DOI: 10.1080/10799893.2017.1298131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE It has been proved that lactate-4.25% dialysate could result in peritoneal fibrosis by inducing alternative activation of macrophages in our previous study, but the mechanism of high glucose-induced alternative activation has not been elucidated. This study was, therefore, to investigate the mechanism by high glucose stimuli. METHODS In this study, Raw264.7 (murine macrophage cell line) cells were cultured and stimulated by 4.25% glucose medium, and mannitol medium was used as osmotic pressure control. Cells were harvested at 0 h, 4 h, 8 h, and 12 h to examine the expression of Arg-1, CD206, and p-Akt. After blocking PI3K by LY294002, the expression of Arg-1, CD206, and p-Akt was examined again. RESULTS The expression of Arg-1 and CD206 was increased in a time-dependent manner induced by high glucose medium. On the contrary, there was mainly no Agr-1 or CD206 expressed in cells cultured in the mannitol medium with the same osmotic pressure. What's more, Akt was phosphorylated at the eighth hour stimulated by high glucose medium, and LY294002 inhibited the expression of Arg-1 and CD206 by blocking the phosphorylation of Akt. CONCLUSIONS Our study indicated that high glucose rather than high osmotic pressure induced M2 phenotype via PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jie Wang
- a Department of Dermatology , Union Hospital, Fujian Medical University , Fuzhou , China
| | - Jingjing Liu
- a Department of Dermatology , Union Hospital, Fujian Medical University , Fuzhou , China
| | - Yuying Wang
- a Department of Dermatology , Union Hospital, Fujian Medical University , Fuzhou , China
| | - Minghui Lin
- a Department of Dermatology , Union Hospital, Fujian Medical University , Fuzhou , China
| | - Wei Tian
- a Department of Dermatology , Union Hospital, Fujian Medical University , Fuzhou , China
| | - Lingling Zhou
- a Department of Dermatology , Union Hospital, Fujian Medical University , Fuzhou , China
| | - Xiaoyin Ye
- a Department of Dermatology , Union Hospital, Fujian Medical University , Fuzhou , China
| | - Lihang Lin
- a Department of Dermatology , Union Hospital, Fujian Medical University , Fuzhou , China
| |
Collapse
|
146
|
Zhao Y, Wei ZZ, Zhang JY, Zhang Y, Won S, Sun J, Yu SP, Li J, Wei L. GSK-3β Inhibition Induced Neuroprotection, Regeneration, and Functional Recovery After Intracerebral Hemorrhagic Stroke. Cell Transplant 2017; 26:395-407. [PMID: 28195036 DOI: 10.3727/096368916x694364] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hemorrhagic stroke is a devastating disease that lacks effective therapies. In the present investigation, we tested 6-bromoindirubin-3'-oxime (BIO) as a selective glycogen synthase kinase-3β (GSK-3β) inhibitor in a mouse model of intracerebral hemorrhage (ICH). ICH was induced by injection of collagenase IV into the striatum of 8- to 10-week-old C57BL/6 mice. BIO (8 μg/kg, IP) was administered following either an acute delivery (0-2 h delay) or a prolonged regimen (every 48 h starting at 3 days post-ICH). At 2 days post-ICH, the acute BIO treatment significantly reduced the hematoma volume. In the perihematoma regions, BIO administration blocked GSK-3β phosphorylation/activation, increased Bcl-2 and β-catenin levels, and significantly increased viability of neurons and other cell types. The prolonged BIO regimen maintained a higher level of β-catenin, upregulated VEGF and BDNF, and promoted neurogenesis and angiogenesis in peri-injury zones at 14 days after ICH. The BIO treatment also promoted proliferation of neural stem cells (NSCs) and migration of nascent DCX+ neuroblasts from the subventricular zone (SVZ) to the lesioned cortex. BIO improved functional outcomes on both the neurological severity score and rotarod tests. The findings of this study corroborate the neuroprotective and regenerative effects of BIO and suggest that the Wnt/GSK-3β/β-catenin pathway may be explored for the treatment of acute or chronic ICH.
Collapse
|
147
|
Lobo-Silva D, Carriche GM, Castro AG, Roque S, Saraiva M. Balancing the immune response in the brain: IL-10 and its regulation. J Neuroinflammation 2016; 13:297. [PMID: 27881137 PMCID: PMC5121946 DOI: 10.1186/s12974-016-0763-8] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022] Open
Abstract
Background The inflammatory response is critical to fight insults, such as pathogen invasion or tissue damage, but if not resolved often becomes detrimental to the host. A growing body of evidence places non-resolved inflammation at the core of various pathologies, from cancer to neurodegenerative diseases. It is therefore not surprising that the immune system has evolved several regulatory mechanisms to achieve maximum protection in the absence of pathology. Main body The production of the anti-inflammatory cytokine interleukin (IL)-10 is one of the most important mechanisms evolved by many immune cells to counteract damage driven by excessive inflammation. Innate immune cells of the central nervous system, notably microglia, are no exception and produce IL-10 downstream of pattern recognition receptors activation. However, whereas the molecular mechanisms regulating IL-10 expression by innate and acquired immune cells of the periphery have been extensively addressed, our knowledge on the modulation of IL-10 expression by central nervous cells is much scattered. This review addresses the current understanding on the molecular mechanisms regulating IL-10 expression by innate immune cells of the brain and the implications of IL-10 modulation in neurodegenerative disorders. Conclusion The regulation of IL-10 production by central nervous cells remains a challenging field. Answering the many remaining outstanding questions will contribute to the design of targeted approaches aiming at controlling deleterious inflammation in the brain.
Collapse
Affiliation(s)
- Diogo Lobo-Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga, Portugal
| | - Guilhermina M Carriche
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - A Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga, Portugal
| | - Susana Roque
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
148
|
Lan X, Han X, Li Q, Wang J. (-)-Epicatechin, a Natural Flavonoid Compound, Protects Astrocytes Against Hemoglobin Toxicity via Nrf2 and AP-1 Signaling Pathways. Mol Neurobiol 2016; 54:7898-7907. [PMID: 27864733 DOI: 10.1007/s12035-016-0271-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/30/2016] [Indexed: 12/21/2022]
Abstract
(-)-Epicatechin is a brain-permeable, natural product found at high concentrations in green tea and cocoa. Our previous research has shown that (-)-epicatechin treatment reduces hemorrhagic stroke injury via nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in vivo. However, the mechanism of action of this compound in modulation of oxidant stress and in protection against hemoglobin-induced astrocyte injury is unclear. Therefore, we explored the cellular and molecular mechanisms that underlie these protective effects in vitro. Mouse primary astrocytes isolated from wild-type mice and Nrf2 knockout (KO) mice were preconditioned with hemoglobin to simulate intracerebral hemorrhage (ICH) in vitro. Effects of (-)-epicatechin were measured by Western blotting, immunostaining, MTT assay, and reactive oxidant stress (ROS) assay. (-)-Epicatechin increased Nrf2 nuclear accumulation and cytoplasmic levels of superoxide dismutase 1 (SOD1) in wild-type astrocytes but did not increase SOD1 expression in Nrf2 knockout (KO) astrocytes. Furthermore, (-)-epicatechin treatment did not alter heme oxygenase 1 (HO1) expression in wild-type astrocytes after hemoglobin exposure, but it did decrease HO1 expression in similarly treated Nrf2 KO astrocytes. In both wild-type and Nrf2 KO astrocytes, (-)-epicatechin suppressed phosphorylated JNK and nuclear expression of JNK, c-jun, and c-fos, indicating that inhibition of activator protein-1 (AP-1) activity by (-)-epicatechin is Nrf2-independent. These novel findings indicate that (-)-epicatechin protects astrocytes against hemoglobin toxicity through upregulation of Nrf2 and inhibition of AP-1 activity. These cellular and molecular effects may partially explain the cerebroprotection as we previously observed for (-)-epicatechin in animal models of ICH.
Collapse
Affiliation(s)
- Xi Lan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross Bldg 370B, Baltimore, MD, 21205, USA
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross Bldg 370B, Baltimore, MD, 21205, USA
| | - Qian Li
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross Bldg 370B, Baltimore, MD, 21205, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross Bldg 370B, Baltimore, MD, 21205, USA.
| |
Collapse
|