101
|
Gupta P, Gurudutta GU, Verma YK, Kishore V, Gulati S, Sharma RK, Chandra R, Saluja D. PU.1: An ETS Family Transcription Factor That Regulates Leukemogenesis Besides Normal Hematopoiesis. Stem Cells Dev 2006; 15:609-17. [PMID: 16978063 DOI: 10.1089/scd.2006.15.609] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The hematopoietic transcription factor PU.1, which is required for lymphomyeloid differentiation of stem cells, was originally identified as an oncogene. In erythroid progenitors, the integration of spleen focus-forming virus (SFFV) into the PU.1 locus causes its overexpression, which blocks their terminal differentiation into erythrocytes and ultimately leads to the development of erythroleukemia. However, in myeloid lineages, PU.1 promotes granulocytic and monocytic differentiation, and graded reduction in its expression blocks their differentiation or maturation and thereby causes myelogenous leukemia. Thus, in addition to normal hematopoietic regulation, PU.1 plays a significant role in leukemogenesis. In the following review, we have consolidated our understanding of the role of transcription factor PU.1 in the development of erythroid as well myeloid leukemia.
Collapse
Affiliation(s)
- Pallavi Gupta
- Stem Cell Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), DRDO, Delhi-110054, India
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Knoche E, McLeod HL, Graubert TA. Pharmacogenetics of alkylator-associated acute myeloid leukemia. Pharmacogenomics 2006; 7:719-29. [PMID: 16886897 DOI: 10.2217/14622416.7.5.719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Therapy-related acute myeloid leukemia (t-AML) is a lethal late complication of alkylator chemotherapy. The genetic basis of susceptibility to t-AML is poorly understood. Both t-AML and de novo AML are complex genetic diseases, requiring cooperating mutations in interacting pathways for disease initiation and progression. Germline variants of these ‘leukemia pathway’ genes may cooperate with somatic mutations to induce both de novo and therapy-related AML. Several cancer susceptibility syndromes have been identified that cause an inherited predisposition to de novo and t-AML. The genes responsible for these syndromes are also somatically mutated in sporadic AML. We reason that germline polymorphism in any gene somatically mutated in AML could contribute to t-AML risk in the general population. Identification of these susceptibility alleles should help clinicians develop tailored therapies that reduce the relative risk of t-AML.
Collapse
Affiliation(s)
- Eric Knoche
- Washington University School of Medicine, Division of Oncology, Stem Cell Biology Section, Campus Box 8007, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | | | |
Collapse
|
103
|
Guillouf C, Gallais I, Moreau-Gachelin F. Spi-1/PU.1 Oncoprotein Affects Splicing Decisions in a Promoter Binding-dependent Manner. J Biol Chem 2006; 281:19145-55. [PMID: 16698794 DOI: 10.1074/jbc.m512049200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of the Spi-1/PU.1 transcription factor is tightly regulated as a function of the hematopoietic lineage. It is required for myeloid and B lymphoid differentiation. When overexpressed in mice, Spi-1 is associated with the emergence of transformed proerythroblasts unable to differentiate. In the course of a project undertaken to characterize the oncogenic function of Spi-1, we found that Spi-1 interacts with proteins of the spliceosome in Spi-1-transformed proerythroblasts and participates in alternative splice site selection. Because Spi-1 is a transcription factor, it could be hypothesized that these two functions are coordinated. Here, we have developed a system allowing the characterization of transcription and splicing from a single target. It is shown that Spi-1 is able to regulate alternative splicing of a pre-mRNA for a gene whose transcription it regulates. Using a combination of Spi-1 mutants and Spi-1-dependent promoters, we demonstrate that Spi-1 must bind and transactivate a given promoter to favor the use of the proximal 5' alternative site. This establishes that Spi-1 affects splicing decisions in a promoter binding-dependent manner. These results provide new insight into how Spi-1 may act in the blockage of differentiation by demonstrating that it can deregulate gene expression and also modify the nature of the products generated from target genes.
Collapse
|
104
|
Is PU.1 pivotal to APL? Blood 2006. [DOI: 10.1182/blood-2006-01-0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
105
|
Metcalf D, Dakic A, Mifsud S, Di Rago L, Wu L, Nutt S. Inactivation of PU.1 in adult mice leads to the development of myeloid leukemia. Proc Natl Acad Sci U S A 2006; 103:1486-91. [PMID: 16432184 PMCID: PMC1360594 DOI: 10.1073/pnas.0510616103] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetically primed adult C57BL mice were deleted of exon 5 of the gene encoding the transcription factor PU.1 by IFN activation of Cre recombinase. After a 13-week delay, conditionally deleted (PU.1(-/-)) mice began dying of myeloid leukemia, and 95% of the mice surviving from early postinduction death developed transplantable myeloid leukemia whose cells were deleted of PU.1 and uniformly Gr-1 positive. The leukemic cells formed autonomous colonies in semisolid culture with varying clonal efficiency, but colony formation was enhanced by IL-3 and sometimes by granulocyte-macrophage colony-stimulating factor. Nine of 13 tumors analyzed had developed a capacity for autocrine IL-3 or granulocyte-macrophage colony-stimulating factor production, and there was evidence of rearrangement of the IL-3 gene. Acquisition of autocrine growth-factor production and autonomous growth appeared to be major events in the transformation of conditionally deleted PU.1(-/-) cells to fully developed myeloid leukemic populations.
Collapse
Affiliation(s)
- Donald Metcalf
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3050, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
106
|
Mueller BU, Pabst T, Fos J, Petkovic V, Fey MF, Asou N, Buergi U, Tenen DG. ATRA resolves the differentiation block in t(15;17) acute myeloid leukemia by restoring PU.1 expression. Blood 2005; 107:3330-8. [PMID: 16352814 PMCID: PMC1895760 DOI: 10.1182/blood-2005-07-3068] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tightly regulated expression of the transcription factor PU.1 is crucial for normal hematopoiesis. PU.1 knockdown mice develop acute myeloid leukemia (AML), and PU.1 mutations have been observed in some populations of patients with AML. Here we found that conditional expression of promyelocytic leukemia-retinoic acid receptor alpha (PML-RARA), the protein encoded by the t(15;17) translocation found in acute promyelocytic leukemia (APL), suppressed PU.1 expression, while treatment of APL cell lines and primary cells with all-trans retinoic acid (ATRA) restored PU.1 expression and induced neutrophil differentiation. ATRA-induced activation was mediated by a region in the PU.1 promoter to which CEBPB and OCT-1 binding were induced. Finally, conditional expression of PU.1 in human APL cells was sufficient to trigger neutrophil differentiation, whereas reduction of PU.1 by small interfering RNA (siRNA) blocked ATRA-induced neutrophil differentiation. This is the first report to show that PU.1 is suppressed in acute promyelocytic leukemia, and that ATRA restores PU.1 expression in cells harboring t(15;17).
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Line, Tumor
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 17/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Knockout
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neutrophils/metabolism
- Neutrophils/pathology
- Octamer Transcription Factor-1/metabolism
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Translocation, Genetic/genetics
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Beatrice U Mueller
- Department of Internal Medicine, University Hospital, 3010 Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Kosmider O, Denis N, Lacout C, Vainchenker W, Dubreuil P, Moreau-Gachelin F. Kit-activating mutations cooperate with Spi-1/PU.1 overexpression to promote tumorigenic progression during erythroleukemia in mice. Cancer Cell 2005; 8:467-78. [PMID: 16338660 DOI: 10.1016/j.ccr.2005.11.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 10/18/2005] [Accepted: 11/17/2005] [Indexed: 11/17/2022]
Abstract
The erythroleukemia developed by spi-1/PU.1 transgenic mice is a multistage process characterized by an early arrest of the proerythroblast differentiation followed later on by malignant transformation. Herein, we report the presence of acquired mutations in the SCF receptor gene (Kit) in 86% of tumors isolated during the late stage of the disease. Kit mutations affect codon 814 or 818. Ectopic expression of Kit mutants in nonmalignant proerythroblasts confers erythropoietin independence and tumorigenicity to cells. Using PP1, PP2, and imatinib mesylate, we show that Kit mutants are responsible for the autonomous expansion of malignant cells via Erk1/2 and PI3K/Akt activations. These findings represent a proof of principle for oncogenic cooperativity between one proliferative and one differentiation blocking event for the development of an overt leukemia.
Collapse
Affiliation(s)
- Olivier Kosmider
- Inserm U528, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
108
|
Inomata M, Takahashi S, Harigae H, Kameoka J, Kaku M, Sasaki T. Inverse correlation between Flt3 and PU.1 expression in acute myeloblastic leukemias. Leuk Res 2005; 30:659-64. [PMID: 16271760 DOI: 10.1016/j.leukres.2005.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 07/27/2005] [Accepted: 07/28/2005] [Indexed: 10/25/2022]
Abstract
Over-expression of the Flt3 is prevalent in acute myeloblastic leukemia (AML), playing a role in leukemogenesis while decreased expression of PU.1 induces AML in mice model. Therefore, we speculated that there is an inverse relationship between these two factors. To clarify this, we measured the expression level of Flt3 and PU.1 in 24 primary AML specimens. As a result, there is a significant negative correlation between Flt3 and PU.1 (r=-0.43, p<0.05). Furthermore, we revealed that flt3 gene promoter is suppressed by the over-expression of PU.1, suggesting that PU.1 is a potential suppressor of flt3 gene promoter.
Collapse
Affiliation(s)
- Mitsue Inomata
- Department of Rheumatology and Hematology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | | | | | | | | | | |
Collapse
|
109
|
Abstract
The mechanisms underlying the unequivocal association between ionizing radiation and the development of leukaemia remain unknown. Recent progress in defining sub-cellular events has contributed to our understanding of the production of genetic lesions in irradiated cells but the importance of tissue effects in response to radiation damage has attracted much less attention. Thus, genetic lesions induced by radiation are considered to result from the deposition of energy in the cell nucleus and the initiating lesion for radiation-induced transformation has been similarly attributed to direct DNA damage. Recently, however, there have been many reports of radiation effects, characteristically associated with the consequences of energy deposition in the cell nucleus, arising in non-irradiated cells as a consequence of communication with irradiated cells. These, so-called, non-targeted radiation effects pose major challenges to current views of the mechanisms of radiation-induced DNA damage and the mechanisms underlying radiogenic malignancies. Considered together with data obtained from laboratory model systems, a rather complex picture of radiation leukaemogenesis is emerging in which, additional to any damage induced directly in target stem cells, the haemopoietic microenvironment can be a source of damaging signals and cellular interactions make important genotype-dependent contributions to determining overall outcome after radiation exposures.
Collapse
Affiliation(s)
- Eric G Wright
- University of Dundee, Cancer Biology and Clinical Pathology Unit, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK.
| |
Collapse
|
110
|
Walter MJ, Park JS, Ries RE, Lau SKM, McLellan M, Jaeger S, Wilson RK, Mardis ER, Ley TJ. Reduced PU.1 expression causes myeloid progenitor expansion and increased leukemia penetrance in mice expressing PML-RARalpha. Proc Natl Acad Sci U S A 2005; 102:12513-8. [PMID: 16113082 PMCID: PMC1188022 DOI: 10.1073/pnas.0504247102] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PU.1 is a member of the ETS family of transcription factors that is known to be important for hematopoietic development. Recently, haploinsufficiency for PU.1 has been shown to cause a shift in myelomonocytic progenitor fate toward the myeloid lineage. We have previously shown that transgenic mice expressing PML-RARalpha (PR) and RARalpha-PML frequently develop acute promyelocytic leukemia (APL) in association with a large (>20 Mb) interstitial deletion of chromosome 2 that includes PU.1. To directly assess the relevance of levels of expression of PU.1 for leukemia progression, we bred hCG-PR mice with PU.1+/- mice and assessed their phenotype. Young, nonleukemic hCG-PR x PU.1+/- mice developed splenomegaly because of the abnormal expansion of myeloid cells in their spleens. hCG-PR x PU.1+/- mice developed a typical APL syndrome after a long latent period, but the penetrance of disease was 84%, compared with 7% in hCG-PR x PU.1+/+ mice (P < 0.0001). The residual PU.1 allele in hCG-PR x PU.1+/- APL cells was expressed, and complete exonic resequencing revealed no detectable mutations in nine of nine samples. However, PR expression in U937 myelomonocytic cells and primary murine myeloid bone marrow cells caused a reduction in PU.1 mRNA levels. Therefore, the loss of one copy of PU.1 through a deletional mechanism, plus down-regulation of the residual allele caused by PR expression, may synergize to expand the pool of myeloid progenitors that are susceptible to transformation, increasing the penetrance of APL.
Collapse
MESH Headings
- Animals
- Chromosome Deletion
- Down-Regulation
- Gene Expression
- Humans
- Leukemia, Promyelocytic, Acute/etiology
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myeloid Progenitor Cells/pathology
- Neoplasm Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Phenotype
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Splenomegaly/etiology
- Splenomegaly/genetics
- Splenomegaly/pathology
- Trans-Activators/deficiency
- Trans-Activators/genetics
- U937 Cells
Collapse
Affiliation(s)
- Matthew J Walter
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Dakic A, Metcalf D, Di Rago L, Mifsud S, Wu L, Nutt SL. PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. ACTA ACUST UNITED AC 2005; 201:1487-502. [PMID: 15867096 PMCID: PMC2213186 DOI: 10.1084/jem.20050075] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although the transcription factor PU.1 is essential for fetal lymphomyelopoiesis, we unexpectedly found that elimination of the gene in adult mice allowed disturbed hematopoiesis, dominated by granulocyte production. Impaired production of lymphocytes was evident in PU.1-deficient bone marrow (BM), but myelocytes and clonogenic granulocytic progenitors that are responsive to granulocyte colony-stimulating factor or interleukin-3 increased dramatically. No identifiable common lymphoid or myeloid progenitor populations were discernable by flow cytometry; however, clonogenic assays suggested an overall increased frequency of blast colony-forming cells and BM chimeras revealed existence of long-term self-renewing PU.1-deficient cells that required PU.1 for lymphoid, but not granulocyte, generation. PU.1 deletion in granulocyte-macrophage progenitors, but not in common myeloid progenitors, resulted in excess granulocyte production; this suggested specific roles of PU.1 at different stages of myeloid development. These findings emphasize the distinct nature of adult hematopoiesis and reveal that PU.1 regulates the specification of the multipotent lymphoid and myeloid compartments and restrains, rather than promotes, granulopoiesis.
Collapse
Affiliation(s)
- Aleksandar Dakic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | | | | | | | | | | |
Collapse
|
112
|
Du Y, Spence SE, Jenkins NA, Copeland NG. Cooperating cancer-gene identification through oncogenic-retrovirus-induced insertional mutagenesis. Blood 2005; 106:2498-505. [PMID: 15961513 PMCID: PMC1895273 DOI: 10.1182/blood-2004-12-4840] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple cooperating mutations that deregulate different signaling pathways are required to induce cancer. Identifying these cooperating mutations is a prerequisite for developing better combinatorial therapies for treating cancer. Here we show that cooperating cancer mutations can be identified through oncogenic-retrovirus-induced insertional mutagenesis. Among 13 myeloid leukemias induced by transplanting into mice bone marrow cells infected in vitro with a replication-defective retrovirus carrying the Sox4 oncogene, 9 contained insertional mutations at known or suspected cancer genes. This likely occurred because rare bone marrow cells, in which the oncogenic retrovirus happened to integrate and in which it mutated a cooperating cancer gene, were selected because the host harbored a cooperating cancer mutation. Cooperativity between Sox4 and another gene, Mef2c, was subsequently confirmed in transplantation studies, in which deregulated Mef2c expression was shown to accelerate the myeloid leukemia induced by Sox4. Insertional mutagenesis of cooperating cancer genes by a defective oncogenic retrovirus provides a new method for identifying cooperating cancer genes and could aid in the development of better therapies for treating cancer.
Collapse
Affiliation(s)
- Yang Du
- Mouse Cancer Genetics Program, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | | | | | | |
Collapse
|
113
|
Rosenbauer F, Koschmieder S, Steidl U, Tenen DG. Effect of transcription-factor concentrations on leukemic stem cells. Blood 2005; 106:1519-24. [PMID: 15914558 PMCID: PMC1895222 DOI: 10.1182/blood-2005-02-0717] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Increasing evidence suggests that leukemias are sustained by leukemic stem cells. However, the molecular pathways underlying the transformation of normal cells into leukemic stem cells are still poorly understood. The involvement of a small group of key transcription factors into this process was suggested by their frequent mutation or down-regulation in patients with acute myeloid leukemia (AML). Recent findings in mice with hypomorphic transcription-factor genes demonstrated that leukemic stem-cell formation in AML could directly be caused by reduced transcription-factor activity beyond a critical threshold. Most interestingly, those experimental models and the paucity of biallelic null mutations or deletions in transcription-factor genes in patients suggest that AML is generally associated with graded down-regulation rather than complete disruption of transcription factors. Here, we discuss the effects of transcription-factor concentrations on hematopoiesis and leukemia, with a focus on the regulation of transcription-factor gene expression as a major mechanism that alters critical threshold levels during blood development and cancer.
Collapse
Affiliation(s)
- Frank Rosenbauer
- Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
114
|
Nutt SL, Metcalf D, D'Amico A, Polli M, Wu L. Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. ACTA ACUST UNITED AC 2005; 201:221-31. [PMID: 15657291 PMCID: PMC2212785 DOI: 10.1084/jem.20041535] [Citation(s) in RCA: 249] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PU.1 is an Ets family transcription factor that is essential for fetal liver hematopoiesis. We have generated a PU.1gfp reporter strain that allowed us to examine the expression of PU.1 in all hematopoietic cell lineages and their early progenitors. Within the bone marrow progenitor compartment, PU.1 is highly expressed in the hematopoietic stem cell, the common lymphoid progenitor, and a proportion of common myeloid progenitors (CMPs). Based on Flt3 and PU.1 expression, the CMP could be divided into three subpopulations, Flt3+ PU.1hi, Flt3− PU.1hi, and Flt3− PU.1lo CMPs. Colony-forming assays and in vivo lineage reconstitution demonstrated that the Flt3+ PU.1hi and Flt3− PU.1hi CMPs were efficient precursors for granulocyte/macrophage progenitors (GMPs), whereas the Flt3− PU.1lo CMPs were highly enriched for committed megakaryocyte/erythrocyte progenitors (MEPs). CMPs have been shown to rapidly differentiate into GMPs and MEPs in vitro. Interestingly, short-term culture revealed that the Flt3+ PU.1hi and Flt3− PU.1hi CMPs rapidly became CD16/32high (reminiscent of GMPs) in culture, whereas the Flt3− PU.1lo CMPs were the immediate precursors of the MEP. Thus, down-regulation of PU.1 expression in the CMP is the first molecularly identified event associated with the restriction of differentiation to erythroid and megakaryocyte lineages.
Collapse
Affiliation(s)
- Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Victoria 3050, Australia.
| | | | | | | | | |
Collapse
|