101
|
Faict S, Oudaert I, D’Auria L, Dehairs J, Maes K, Vlummens P, De Veirman K, De Bruyne E, Fostier K, Vande Broek I, Schots R, Vanderkerken K, Swinnen JV, Menu E. The Transfer of Sphingomyelinase Contributes to Drug Resistance in Multiple Myeloma. Cancers (Basel) 2019; 11:cancers11121823. [PMID: 31756922 PMCID: PMC6966559 DOI: 10.3390/cancers11121823] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) is well-known for the development of drug resistance, leading to relapse. Therefore, finding novel treatment strategies remains necessary. By performing a lipidomics assay on MM patient plasma, we aimed to identify new targets. We observed a dysregulation in the sphingolipid metabolism, with the upregulation of several ceramides and downregulation of sphingomyelin. This imbalance suggests an increase in sphingomyelinase, the enzyme responsible for hydrolyzing sphingomyelin into ceramide. We confirmed the upregulation of acid sphingomyelinase (ASM) in primary MM cells. Furthermore, we observed an increase in ASM expression in MM cell lines treated with melphalan or bortezomib, as well as in their exosomes. Exosomes high in ASM content were able to transfer the drug-resistant phenotype to chemosensitive cells, hereby suggesting a tumor-protective role for ASM. Finally, inhibition of ASM by amitriptyline improved drug sensitivity in MM cell lines and primary MM cells. In summary, this study is the first to analyze differences in plasma lipid composition of MM patients and match the observed differences to an upregulation of ASM. Moreover, we demonstrate that amitriptyline is able to inhibit ASM and increase sensitivity to anti-myeloma drugs. This study, therefore, provides a rational to include ASM-targeting-drugs in combination strategies in myeloma patients.
Collapse
Affiliation(s)
- Sylvia Faict
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, UZ Brussel, B-1090 Brussels, Belgium; (S.F.); (I.O.); (K.M.); (P.V.); (K.D.V.); (E.D.B.); (R.S.); (K.V.)
| | - Inge Oudaert
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, UZ Brussel, B-1090 Brussels, Belgium; (S.F.); (I.O.); (K.M.); (P.V.); (K.D.V.); (E.D.B.); (R.S.); (K.V.)
| | - Ludovic D’Auria
- Neurochemistry Unit, Institute of Neuroscience, Université Catholique de Louvain, B-1200 Brussels, Belgium;
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI-Leuven Cancer Institute, KU Leuven, B-3000 Leuven, Belgium; (J.D.); (J.V.S.)
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, UZ Brussel, B-1090 Brussels, Belgium; (S.F.); (I.O.); (K.M.); (P.V.); (K.D.V.); (E.D.B.); (R.S.); (K.V.)
| | - Philip Vlummens
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, UZ Brussel, B-1090 Brussels, Belgium; (S.F.); (I.O.); (K.M.); (P.V.); (K.D.V.); (E.D.B.); (R.S.); (K.V.)
- Department of Clinical Hematology, Universitair Ziekenhuis Gent, B-9000 Ghent, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, UZ Brussel, B-1090 Brussels, Belgium; (S.F.); (I.O.); (K.M.); (P.V.); (K.D.V.); (E.D.B.); (R.S.); (K.V.)
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, UZ Brussel, B-1090 Brussels, Belgium; (S.F.); (I.O.); (K.M.); (P.V.); (K.D.V.); (E.D.B.); (R.S.); (K.V.)
| | - Karel Fostier
- Department of Clinical Hematology, Onze-Lieve-Vrouwziekenhuis Aalst, B-9300 Aalst, Belgium;
| | - Isabelle Vande Broek
- Department of Clinical Hematology, Algemeen Ziekenhuis Nikolaas, B-9100 Sint-Niklaas, Belgium;
| | - Rik Schots
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, UZ Brussel, B-1090 Brussels, Belgium; (S.F.); (I.O.); (K.M.); (P.V.); (K.D.V.); (E.D.B.); (R.S.); (K.V.)
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, UZ Brussel, B-1090 Brussels, Belgium; (S.F.); (I.O.); (K.M.); (P.V.); (K.D.V.); (E.D.B.); (R.S.); (K.V.)
| | - Johannes V. Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI-Leuven Cancer Institute, KU Leuven, B-3000 Leuven, Belgium; (J.D.); (J.V.S.)
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, UZ Brussel, B-1090 Brussels, Belgium; (S.F.); (I.O.); (K.M.); (P.V.); (K.D.V.); (E.D.B.); (R.S.); (K.V.)
- Correspondence:
| |
Collapse
|
102
|
Yan S, Vandewalle N, De Beule N, Faict S, Maes K, De Bruyne E, Menu E, Vanderkerken K, De Veirman K. AXL Receptor Tyrosine Kinase as a Therapeutic Target in Hematological Malignancies: Focus on Multiple Myeloma. Cancers (Basel) 2019; 11:E1727. [PMID: 31694201 PMCID: PMC6896070 DOI: 10.3390/cancers11111727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 01/13/2023] Open
Abstract
AXL belongs to the TAM (TYRO3, AXL, and MERTK) receptor family, a unique subfamily of the receptor tyrosine kinases. Their common ligand is growth arrest-specific protein 6 (GAS6). The GAS6/TAM signaling pathway regulates many important cell processes and plays an essential role in immunity, hemostasis, and erythropoiesis. In cancer, AXL overexpression and activation has been associated with cell proliferation, chemotherapy resistance, tumor angiogenesis, invasion, and metastasis; and has been correlated with a poor prognosis. In hematological malignancies, the expression and function of AXL is highly diverse, not only between the different tumor types but also in the surrounding tumor microenvironment. Most research and clinical evidence has been provided for AXL inhibitors in acute myeloid leukemia. However, recent studies also revealed an important role of AXL in lymphoid leukemia, lymphoma, and multiple myeloma. In this review, we summarize the basic functions of AXL in various cell types and the role of AXL in different hematological cancers, with a focus on AXL in the dormancy of multiple myeloma. In addition, we provide an update on the most promising AXL inhibitors currently in preclinical/clinical evaluation and discuss future perspectives in this emerging field.
Collapse
Affiliation(s)
- Siyang Yan
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
- Department of Hematology, Tianjin Medical University, Tianjin 300060, China
| | - Niels Vandewalle
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Nathan De Beule
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Sylvia Faict
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| |
Collapse
|
103
|
Raj S, Guha B, Rodriguez C, Krishnaswamy G. Paraproteinemia and serum protein electrophoresis interpretation. Ann Allergy Asthma Immunol 2019; 122:11-16. [PMID: 30579431 DOI: 10.1016/j.anai.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Shailaja Raj
- Division of Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Division of Hematology and Oncology, Department of Medicine, Bill Hefner VA Medical Center, Salisbury, North Carolina
| | - Bhuvana Guha
- Division of General Internal Medicine, Department of Medicine, Bill Hefner VA Medical Center, Salisbury, North Carolina; Kernersville Health Care Center, Kernersville, North Carolina
| | - Cesar Rodriguez
- Division of Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Guha Krishnaswamy
- Kernersville Health Care Center, Kernersville, North Carolina; Division of Allergy and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Division of Allergy and Immunology, Department of Medicine, Bill Hefner VA Medical Center, Salisbury, North Carolina.
| |
Collapse
|
104
|
Dhodapkar MV, Dhodapkar KM. Moving Immunoprevention Beyond Virally Mediated Malignancies: Do We Need to Link It to Early Detection? Front Immunol 2019; 10:2385. [PMID: 31649683 PMCID: PMC6795703 DOI: 10.3389/fimmu.2019.02385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
Vaccines can successfully prevent viral infections and have emerged as an effective strategy for preventing some virally mediated malignancies. They also represent our major hope for cost-effective reduction of the cancer burden. The concept that the immune system mediates surveillance and editing roles against tumors is now well-established in murine models. However, harnessing the immune system to prevent human cancers that do not have a known viral etiology has not yet been realized. Most human cancers originate in a premalignant phase that is more common than the cancer itself. Many of the genetic changes that underlie carcinogenesis originate at this stage when the malignant phenotype is not manifest. Studies evaluating host response in human premalignancy have documented that these lesions are immunogenic, setting the stage for immune-based approaches for targeted prevention of human cancer. However, recent studies suggest that the hierarchy of T cell exhaustion and immune-suppressive factors have already begun to emerge in many preneoplastic states. These considerations underscore the need to link immune prevention to earlier detection of such lesions and to personalize such approaches based on the status of the pre-existing immune response.
Collapse
Affiliation(s)
- Madhav V. Dhodapkar
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Kavita M. Dhodapkar
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
105
|
Zheng Y, Zhu W, Haribhai D, Williams CB, Aster RH, Wen R, Wang D. Regulatory T Cells Control PF4/Heparin Antibody Production in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1786-1792. [PMID: 31471526 PMCID: PMC6944762 DOI: 10.4049/jimmunol.1900196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/31/2019] [Indexed: 11/19/2022]
Abstract
Heparin-induced thrombocytopenia is a relatively common drug-induced immune disorder that can have life-threatening consequences for affected patients. Immune complexes consisting of heparin, platelet factor 4 (PF4), and PF4/heparin-reactive Abs are central to the pathogenesis of heparin-induced thrombocytopenia. Regulatory T (Treg) cells are a subpopulation of CD4 T cells that play a key role in regulating immune responses, but their role in controlling PF4/heparin-specific Ab production is unknown. In the studies described in this article, we found that Foxp3-deficient mice lacking functional Treg cells spontaneously produced PF4/heparin-specific Abs. Following transplantation with bone marrow cells from Foxp3-deficient but not wild-type mice, Rag1-deficient recipients also produced PF4/heparin-specific Abs spontaneously. Adoptively transferred Treg cells prevented spontaneous production of PF4/heparin-specific Abs in Foxp3-deficient mice and inhibited PF4/heparin complex-induced production of PF4/heparin-specific IgGs in wild-type mice. Treg cells suppress immune responses mainly through releasing anti-inflammatory cytokines, such as IL-10. IL-10-deficient mice spontaneously produced PF4/heparin-specific Abs. Moreover, bone marrow chimeric mice with CD4 T cell-specific deletion of IL-10 increased PF4/heparin-specific IgG production upon PF4/heparin complex challenge. Short-term IL-10 administration suppresses PF4/heparin-specific IgG production in wild-type mice. Taken together, these findings demonstrate that Treg cells play an important role in suppressing PF4/heparin-specific Ab production.
Collapse
Affiliation(s)
- Yongwei Zheng
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | - Wen Zhu
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | - Dipica Haribhai
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Calvin B Williams
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | | | - Renren Wen
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | - Demin Wang
- Blood Research Institute, Versiti, Milwaukee, WI 53226;
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
106
|
Marsh-Wakefield F, Kruzins A, McGuire HM, Yang S, Bryant C, Fazekas de St Groth B, Nassif N, Byrne SN, Gibson J, Brown C, Larsen S, McCulloch D, Boyle R, Clark G, Joshua D, Ho PJ, Vuckovic S. Mass Cytometry Discovers Two Discrete Subsets of CD39 -Treg Which Discriminate MGUS From Multiple Myeloma. Front Immunol 2019; 10:1596. [PMID: 31428081 PMCID: PMC6688400 DOI: 10.3389/fimmu.2019.01596] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple Myeloma (MM) is preceded by the clinically stable condition monoclonal gammopathy of undetermined significance (MGUS). Critical immune events that discriminate MGUS from newly diagnosed MM (ND)MM patients remain unknown, but may involve changes in the regulatory T cell (Treg) compartment that favor myeloma growth. To address this possibility, we used mass cytometry and the unsupervised clustering algorithm Flow self-organizing map (FlowSOM) to interrogate the distribution of multiple subsets within CD25+CD127low/negTreg in matched bone marrow (BM) and peripheral blood (PB) of MGUS and NDMM patients. Both mass cytometry and flow cytometry confirmed a trend toward prevalence of CD39-Treg within the Treg compartment in BM and PB of NDMM patients compared to CD39-Treg in MGUS patients. FlowSOM clustering displayed a phenotypic organization of Treg into 25 metaclusters that confirmed Treg heterogeneity. It identified two subsets which emerged within CD39-Treg of NDMM patients that were negligible or absent in CD39-Treg of MGUS patients. One subset was found in both BM and PB which phenotypically resembled activated Treg based on CD45RO, CD49d, and CD62L expression; another subset resembled BM-resident Treg based on its tissue-resident CD69+CD62L-CD49d- phenotype and restricted location within the BM. Both subsets co-expressed PD-1 and TIGIT, but PD-1 was expressed at higher levels on BM-resident Treg than on activated Treg. Within BM, both subsets had limited Perforin and Granzyme B production, whilst activated Treg in PB acquired high Perforin and Granzyme B production. In conclusion, the use of mass cytometry and FlowSOM clustering discovered two discrete subsets of CD39-Treg which are discordant in MGUS and NDMM patients and may be permissive of myeloma growth which warrants further study. Understanding the regulatory properties of these subsets may also advance MGUS and MM diagnosis, prognosis, and therapeutic implications for MM patients.
Collapse
Affiliation(s)
- Felix Marsh-Wakefield
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, NSW, Australia.,Discipline of Pathology, Faculty of Medicine and Health, School of Medical Science, The University of Sydney, Sydney, NSW, Australia
| | - Annabel Kruzins
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Helen M McGuire
- Ramaciotti Facility for Human Systems Biology, The University of Sydney, Sydney, NSW, Australia.,Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Shihong Yang
- Royal Prince Alfred Hospital, Institute of Haematology, Sydney, NSW, Australia
| | - Christian Bryant
- Royal Prince Alfred Hospital, Institute of Haematology, Sydney, NSW, Australia
| | - Barbara Fazekas de St Groth
- Ramaciotti Facility for Human Systems Biology, The University of Sydney, Sydney, NSW, Australia.,Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Najah Nassif
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Scott N Byrne
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - John Gibson
- Royal Prince Alfred Hospital, Institute of Haematology, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Christina Brown
- Royal Prince Alfred Hospital, Institute of Haematology, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Stephen Larsen
- Royal Prince Alfred Hospital, Institute of Haematology, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Derek McCulloch
- Royal Prince Alfred Hospital, Institute of Haematology, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Richard Boyle
- Orthopaedics Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Georgina Clark
- Concord Repatriation General Hospital, ANZAC Research Institute, Concord, NSW, Australia
| | - Douglas Joshua
- Royal Prince Alfred Hospital, Institute of Haematology, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Phoebe Joy Ho
- Royal Prince Alfred Hospital, Institute of Haematology, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Slavica Vuckovic
- Royal Prince Alfred Hospital, Institute of Haematology, Sydney, NSW, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
107
|
Dong S, Ghobrial IM. Immunotherapy for hematological malignancies. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2019; 1:46-52. [PMID: 31453573 PMCID: PMC6709701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumor immune tolerance remains a major barrier for effective anti-cancer therapy. A growing number of pathways whereby solid tumors escape immune surveillance have been characterized (1). This progress led us to revisit the "hallmarks of cancer" and brought forward many promising immunotherapies. Every growing bodies of research have brought forward many exciting treatment strategies for hematological cancers like chimeric antigen receptor T cells (CAR-T cells) and immune checkpoint inhibitors. Given the distinct characteristics of the different cancers, some benefited profoundly from such therapies while some remain challenging for scientists and physicians. Here, we discuss the unique aspect of hematological malignancies, and briefly review the history, existing and future of immunotherapies for this group of cancer.
Collapse
Affiliation(s)
- Shuai Dong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA Harvard Institute of Medicine Room 237, 4 Blackfan Circle, Boston MA 02115
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA Harvard Institute of Medicine Room 237, 4 Blackfan Circle, Boston MA 02115
| |
Collapse
|
108
|
Bailur JK, McCachren SS, Doxie DB, Shrestha M, Pendleton K, Nooka AK, Neparidze N, Parker TL, Bar N, Kaufman JL, Hofmeister CC, Boise LH, Lonial S, Kemp ML, Dhodapkar KM, Dhodapkar MV. Early alterations in stem-like/resident T cells, innate and myeloid cells in the bone marrow in preneoplastic gammopathy. JCI Insight 2019; 5:127807. [PMID: 31013254 DOI: 10.1172/jci.insight.127807] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Preneoplastic lesions carry many of the antigenic targets found in cancer cells but often exhibit prolonged dormancy. Understanding how the host response to premalignancy is maintained and altered during malignant transformation is needed to prevent cancer. In order to understand the immune microenvironment in precursor monoclonal gammopathy of undetermined significance (MGUS) and myeloma, we analyzed bone marrow immune cells from 12 healthy donors and 26 MGUS/myeloma patients by mass cytometry and concurrently profiled transcriptomes of 42,606 single immune cells from these bone marrows. Compared to age-matched healthy donors, memory T cells from both MGUS and myeloma patients exhibit greater terminal-effector differentiation. However, memory T cells in MGUS show greater enrichment of stem-like TCF1/7hi cells. Clusters of T cells with stem-like and tissue-residence genes were also found to be enriched in MGUS by single-cell transcriptome analysis. Early changes in both NK and myeloid cells were also observed in MGUS. Enrichment of stem-like T cells correlated with a distinct genomic profile of myeloid cells and levels of Dickkopf-1 in bone-marrow plasma. These data describe the landscape of changes in both innate and adaptive immunity in premalignancy and suggest that attrition of the bone-marrow-resident T cell compartment due to loss of stem-like cells may underlie loss of immune surveillance in myeloma.
Collapse
Affiliation(s)
- Jithendra Kini Bailur
- Department of Hematology/Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Samuel S McCachren
- Department of Hematology/Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Deon B Doxie
- Department of Hematology/Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mahesh Shrestha
- Department of Hematology/Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Katherine Pendleton
- Department of Hematology/Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ajay K Nooka
- Department of Hematology/Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Atlanta, Georgia, USA
| | - Natalia Neparidze
- Section of Hematology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Terri L Parker
- Section of Hematology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Noffar Bar
- Section of Hematology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jonathan L Kaufman
- Department of Hematology/Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Atlanta, Georgia, USA
| | - Craig C Hofmeister
- Department of Hematology/Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Atlanta, Georgia, USA
| | - Lawrence H Boise
- Department of Hematology/Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Atlanta, Georgia, USA
| | - Sagar Lonial
- Department of Hematology/Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Atlanta, Georgia, USA
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Kavita M Dhodapkar
- Winship Cancer Institute, Atlanta, Georgia, USA.,Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Madhav V Dhodapkar
- Department of Hematology/Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|
109
|
Monoclonal gammopathy of undetermined significance. Blood 2019; 133:2484-2494. [PMID: 31010848 DOI: 10.1182/blood.2019846782] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022] Open
Abstract
Monoclonal gammopathy of undetermined significance (MGUS) is a premalignant plasma cell dyscrasia that consistently precedes multiple myeloma (MM) with a 1% risk of progression per year. Recent advances have improved understanding of the complex genetic and immunologic factors that permit progression from the aberrant plasma cell clone to MGUS and overt MM. Additional evidence supports bidirectional interaction of MGUS cells with surrounding cells in the bone marrow niche that regulates malignant transformation. However, there are no robust prognostic biomarkers. Herein we review the current body of literature on the biology of MGUS and provide a rationale for the improved identification of high-risk MGUS patients who may be appropriate for novel clinical interventions to prevent progression or eradicate premalignant clones prior to the development of overt MM.
Collapse
|
110
|
Risk stratification of smoldering multiple myeloma: predictive value of free light chains and group-based trajectory modeling. Blood Adv 2019; 2:1470-1479. [PMID: 29945937 DOI: 10.1182/bloodadvances.2018016998] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
We investigated the predictive role for serum free light chain ratio (FLCr) ≥100, bone marrow plasma cell (BMPC) ≥60%, and evolving biomarkers through group-based trajectory modeling (GBTM) as high-risk defining events in 273 smoldering multiple myeloma (SMM) patients with a median follow-up of 74 months. FLCr ≥100 was confirmed as a marker for high-risk progression with a median time to progression (TTP) of 40 months with a 44% risk of progression of disease (PD) at 2 years; however, 44% of FLCr ≥100 also did not progress during follow-up. For patients with BMPC ≥60% by core biopsy, the median TTP was 31 months with a 2-year PD of 41%. GBTM established high-risk trajectories for evolving hemoglobin (eHb; characterized as a 1.57 g/dL decrease in hemoglobin), evolving m-protein (eMP; 64% increase in m-protein), and evolving differences in FLC (edFLC; 169% increase in dFLC) within 1 year of diagnosis associated with a decreased median TTP and an increased 2 year rate of PD. Of all the variables examined, we identify a model where immunoparesis, eHb, eMP, and edFLC were significant predictors for ultra-high-risk progression with a median TTP of only 13 months with 3 or more variables present. Our results not only confirm a more modest 2 year PD associated with FLCr ≥100 and BMPC ≥60 but also suggest that eHb, eMP, and edFLC may help identify an ultra-high-risk SMM group.
Collapse
|
111
|
Hartmann L, Metzeler KH. Clonal hematopoiesis and preleukemia-Genetics, biology, and clinical implications. Genes Chromosomes Cancer 2019; 58:828-838. [PMID: 30939217 DOI: 10.1002/gcc.22756] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022] Open
Abstract
Myeloid neoplasms including myelodysplastic syndromes and acute myeloid leukemia (AML) originate from hematopoietic stem cells through sequential acquisition of genetic and epigenetic alterations that ultimately cause the disease-specific phenotype of impaired differentiation and increased proliferation. It has become clear that preleukemic clonal hematopoiesis (CH), characterized by an expansion of stem and progenitor cells that carry somatic mutations but are still capable of normal differentiation, can precede the development of clinically overt myeloid neoplasia by many years. CH commonly develops in the aging hematopoietic system, yet progression to myelodysplasia or AML is rare. The discovery that myeloid neoplasms frequently develop from premalignant precursor conditions that are detectable in many healthy individuals has important consequences for the diagnosis, and potentially for the treatment of these disorders. In this review, we summarize the current knowledge on CH as a precursor of myeloid cancers and the implications of CH-related gene mutations in the diagnostic workup of patients with suspected myelodysplastic syndrome. We will discuss the risk of progression associated with CH in healthy persons and in patients undergoing chemotherapy for a non-hematologic cancer, and the significance of CH in autologous and allogeneic stem cell transplantation. Finally, we will review the significance of preleukemic clones in AML and their persistence in patients who achieve a remission after chemotherapeutic treatment.
Collapse
Affiliation(s)
| | - Klaus H Metzeler
- Laboratory for Leukemia Diagnostics, Department of Internal Medicine III, LMU Munich, Munich, Germany
| |
Collapse
|
112
|
[Associated tripe palms and monoclonal gammopathy of unknown significance]. Ann Dermatol Venereol 2019; 146:414-415. [PMID: 30910332 DOI: 10.1016/j.annder.2019.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/26/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
|
113
|
Haferlach C, Haferlach T. Dreams can come true: the first steps toward a peripheral blood screening test for the early detection of tumors have been taken. Ann Oncol 2019; 30:12-13. [PMID: 30462156 DOI: 10.1093/annonc/mdy499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- C Haferlach
- Munich Leukemia Laboratory, Munich, Germany.
| | | |
Collapse
|
114
|
Strittmatter-Keller U, Walter C, Rauld C, Egli N, Regairaz C, Rabe S, Zenke G, Carballido J, Schweighoffer T. Fingerprints of CD8+ T cells on human pre-plasma and memory B cells. PLoS One 2018; 13:e0208187. [PMID: 30540814 PMCID: PMC6291140 DOI: 10.1371/journal.pone.0208187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Differentiation of B cells is a stringently controlled multi-step process, which is still incompletely understood. Here we identify and characterize a rare population of human B cells, which surprisingly carry CD8AB on their surface. Existence of such cells was demonstrated both in tonsils and in human apheresis material. Gene expression profiling and real time PCR detected however no CD8A or CD8B message in these cells. Instead, we found that surface CD8 was hijacked from activated CD8+ T cells by a transfer process that required direct cell-to-cell contact. A focused transcriptome analysis at single cell level allowed the dissection of the CD8 positive B cell population. We found that the affected cells are characteristically of the CD27+CD200- phenotype, and consist of two discrete late-stage subpopulations that carry signatures of activated memory B like cells, and early plasmablasts. Thus, there is only a restricted time window in the differentiation process during which B cells can intimately interact with CD8+ T cells. The findings point to a novel link between the T and B arms of the adaptive immune system, and suggest that CD8+ T cells have the capability to directly shape the global antibody repertoire.
Collapse
Affiliation(s)
| | - Caroline Walter
- Novartis Institutes for Biomedical Research (NIBR), Basel, Switzerland
| | - Celine Rauld
- Novartis Institutes for Biomedical Research (NIBR), Basel, Switzerland
| | - Nicole Egli
- Novartis Institutes for Biomedical Research (NIBR), Basel, Switzerland
| | - Camille Regairaz
- Novartis Institutes for Biomedical Research (NIBR), Basel, Switzerland
| | - Sabine Rabe
- Novartis Institutes for Biomedical Research (NIBR), Basel, Switzerland
| | - Gerhard Zenke
- Novartis Institutes for Biomedical Research (NIBR), Basel, Switzerland
| | - José Carballido
- Novartis Institutes for Biomedical Research (NIBR), Basel, Switzerland
| | - Tamás Schweighoffer
- Novartis Institutes for Biomedical Research (NIBR), Basel, Switzerland
- * E-mail:
| |
Collapse
|
115
|
Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma. Nat Med 2018; 24:1867-1876. [DOI: 10.1038/s41591-018-0269-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022]
|
116
|
Wang JN, Cao XX, Zhao AL, Cai H, Wang X, Li J. Increased activated regulatory T cell subsets and aging Treg-like cells in multiple myeloma and monoclonal gammopathy of undetermined significance: a case control study. Cancer Cell Int 2018; 18:187. [PMID: 30479566 PMCID: PMC6245875 DOI: 10.1186/s12935-018-0687-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Background Accumulating evidence have indicated that regulatory T cells (Tregs) play an essential role in T cell-mediated immune response and development of multiple myeloma (MM). CD4+FoxP3+ T cells are composed of three phenotypically and functionally distinct subpopulations: CD45RA+FoxP3lo resting Tregs (rTregs), CD45RA-FoxP3hi activated Tregs (aTregs) and CD45RA-FoxP3lo non-suppressive T cells (non-Tregs). We aimed to clarify the frequency and function of these three subpopulations in newly diagnosed multiple myeloma and monoclonal gammopathy of undetermined significance (MGUS) patients. In addition, CD28-CD4+FoxP3+ Treg-like cell is a senescent regulatory T cell subset with partial suppressive function, which could be impaired during myelomagenesis. Methods we examined 20 patients with MGUS, 26 patients with newly diagnosed MM and 18 healthy volunteers. Flow cytometric analysis in peripheral blood and bone marrow was performed for frequency study. The immunosuppressive function of Treg subsets was assessed by their ability to suppress the proliferation of responder cells in co-culture. Concentration of cytokine from the culture supernatants of proliferation assay was measured using ELISA. Results The proportion of activated Tregs in CD4+ T cells was significantly higher in MGUS and MM patients than healthy controls (P = 0.01, P < 0.001) in both PB and BM; while the proportion of rTregs in MGUS, MM patients was significantly lower than that of controls (P = 0.02, P < 0.01) only in BM. There was no significant difference in frequencies of non-Tregs from MGUS to MM patients with normal controls (P = 0.14, P = 0.88). Significant increase in PB and BM Treg-like cells was observed in MGUS and MM cohort compared with healthy controls (P < 0.01, P < 0.01). Treg-like cells in MM patients were significantly higher than those in MGUS patients (P < 0.01). The inhibition rate of aTreg in bone marrow of MM patients was significantly higher than that of rTreg (P < 0.01), while the inhibition rate of non-Treg was significantly lower than that of rTreg cells (P < 0.01). Functional assays revealed the suppressive and secretory abilities of three Treg subsets were intact in MM patients. Conclusions In summary, aTregs and aging Treg-like cells were quantitatively altered in MGUS and MM patients, which might be associated with disease progression and prognosis.
Collapse
Affiliation(s)
- Ji-Nuo Wang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Xin Cao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ai-Lin Zhao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Cai
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuan Wang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
117
|
Klausen U, Holmberg S, Holmström MO, Jørgensen NGD, Grauslund JH, Svane IM, Andersen MH. Novel Strategies for Peptide-Based Vaccines in Hematological Malignancies. Front Immunol 2018; 9:2264. [PMID: 30327655 PMCID: PMC6174926 DOI: 10.3389/fimmu.2018.02264] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Peptides vaccination is an interesting approach to activate T-cells toward desired antigens in hematological malignancies. In addition to classical tumor associated antigens, such as cancer testis antigens, new potential targets for peptide vaccination comprise neo-antigens including JAK2 and CALR mutations, and antigens from immune regulatory proteins in the tumor microenvironment such as programmed death 1 ligands (PD-L1 and PD-L2). Immunosuppressive defenses of tumors are an important challenge to overcome and the T cell suppressive ligands PD-L1 and PD-L2 are often present in tumor microenvironments. Thus, PD-L1 and PD-L2 are interesting targets for peptide vaccines in diseases where the tumor microenvironment is known to play an essential role such as multiple myeloma and follicular lymphoma. In myelodysplastic syndromes the drug azacitidine re-exposes tumor associated antigens, why vaccination with related peptides would be an interesting addition. In myeloproliferative neoplasms the JAK2 and CALR mutations has proven to be immunogenic neo-antigens and thus possible targets for peptide vaccination. In this mini review we summarize the basis for these novel approaches, which has led to the initiation of clinical trials with various peptide vaccines in myelodysplastic syndromes, myeloproliferative neoplasms, multiple myeloma, and follicular lymphoma.
Collapse
Affiliation(s)
- Uffe Klausen
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
| | - Staffan Holmberg
- Department of Hematology, Herlev Hospital, Herlev, Denmark
- Division of Immunology - T cells & Cancer, DTU Nanotech, Technical University of Denmark, Lyngby, Denmark
| | - Morten Orebo Holmström
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Jacob Handlos Grauslund
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy, Herlev Hospital, Department of Hematology and Oncology, Herlev, Denmark
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
118
|
Capp JP, Bataille R. Multiple Myeloma Exemplifies a Model of Cancer Based on Tissue Disruption as the Initiator Event. Front Oncol 2018; 8:355. [PMID: 30250824 PMCID: PMC6140628 DOI: 10.3389/fonc.2018.00355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
The standard model of multiple myeloma (MM) oncogenesis is based on the genetic instability of MM cells and presents its evolution as the emergence of clones with more and more aggressive genotypes, giving them surviving and proliferating advantage. The micro-environment has a passive role. In contrast, many works have shown that the progression of MM is also characterized by the selection of clones with extended phenotypes able to destroy bone trabeculae, suggesting a major role for early micro-environmental disruption. We present a model of MM oncogenesis in which genetic instability is the consequence of the disruption of normal interactions between plasma cells and their environment, the bone remodeling compartment. These interactions, which normally ensure the stability of the genotypes and phenotypes of normal plasma cells could be disrupted by many factors as soon as the early steps of the disease (MGUS, pre-MGUS states). Therapeutical implications of the model are presented.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- LISBP, UMR CNRS 5504, UMR INRA 792, INSA Toulouse, University of Toulouse, Toulouse, France
| | - Régis Bataille
- Faculty of Medecine, University of Angers, Angers, France
| |
Collapse
|
119
|
Bolli N, Maura F, Minvielle S, Gloznik D, Szalat R, Fullam A, Martincorena I, Dawson KJ, Samur MK, Zamora J, Tarpey P, Davies H, Fulciniti M, Shammas MA, Tai YT, Magrangeas F, Moreau P, Corradini P, Anderson K, Alexandrov L, Wedge DC, Avet-Loiseau H, Campbell P, Munshi N. Genomic patterns of progression in smoldering multiple myeloma. Nat Commun 2018; 9:3363. [PMID: 30135448 PMCID: PMC6105687 DOI: 10.1038/s41467-018-05058-y] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022] Open
Abstract
We analyzed whole genomes of unique paired samples from smoldering multiple myeloma (SMM) patients progressing to multiple myeloma (MM). We report that the genomic landscape, including mutational profile and structural rearrangements at the smoldering stage is very similar to MM. Paired sample analysis shows two different patterns of progression: a "static progression model", where the subclonal architecture is retained as the disease progressed to MM suggesting that progression solely reflects the time needed to accumulate a sufficient disease burden; and a "spontaneous evolution model", where a change in the subclonal composition is observed. We also observe that activation-induced cytidine deaminase plays a major role in shaping the mutational landscape of early subclinical phases, while progression is driven by APOBEC cytidine deaminases. These results provide a unique insight into myelomagenesis with potential implications for the definition of smoldering disease and timing of treatment initiation.
Collapse
Affiliation(s)
- Niccolò Bolli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
- Department of Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Francesco Maura
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Stephane Minvielle
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, 44035, France
- CHU de Nantes, Nantes, 44093, France
| | - Dominik Gloznik
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Raphael Szalat
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA
| | - Anthony Fullam
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Inigo Martincorena
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Kevin J Dawson
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Mehmet Kemal Samur
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA
| | - Jorge Zamora
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Patrick Tarpey
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Helen Davies
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Mariateresa Fulciniti
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA
| | - Masood A Shammas
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA
| | - Yu Tzu Tai
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA
| | - Florence Magrangeas
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, 44035, France
- CHU de Nantes, Nantes, 44093, France
| | - Philippe Moreau
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, 44035, France
- CHU de Nantes, Nantes, 44093, France
| | - Paolo Corradini
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
- Department of Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, 20133, Italy
| | - Kenneth Anderson
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA
| | - Ludmil Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - David C Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Herve Avet-Loiseau
- Genomics of Myeloma Laboratory, L'Institut Universitaire du Cancer Oncopole, Toulouse, 31100, France.
| | - Peter Campbell
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy.
| | - Nikhil Munshi
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, MA, USA.
- Veterans Administration Boston Healthcare System, West Roxbury, 02132, MA, USA.
| |
Collapse
|
120
|
Subclonal evolution in disease progression from MGUS/SMM to multiple myeloma is characterised by clonal stability. Leukemia 2018; 33:457-468. [PMID: 30046162 PMCID: PMC6365384 DOI: 10.1038/s41375-018-0206-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/01/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022]
Abstract
Multiple myeloma (MM) is a largely incurable haematological malignancy defined by the clonal proliferation of malignant plasma cells (PCs) within the bone marrow. Clonal heterogeneity has recently been established as a feature in MM, however, the subclonal evolution associated with disease progression has not been described. Here, we performed whole-exome sequencing of serial samples from 10 patients, providing new insights into the progression from monoclonal gammopathy of undetermined significance (MGUS) and smouldering MM (SMM), to symptomatic MM. We confirm that intraclonal genetic heterogeneity is a common feature at diagnosis and that the driving events involved in disease progression are more subtle than previously reported. We reveal that MM evolution is mainly characterised by the phenomenon of clonal stability, where the transformed subclonal PC populations identified at MM are already present in the asymptomatic MGUS/SMM stages. Our findings highlight the possibility that PC extrinsic factors may play a role in subclonal evolution and MGUS/SMM to MM progression.
Collapse
|
121
|
Nair S, Sng J, Boddupalli CS, Seckinger A, Chesi M, Fulciniti M, Zhang L, Rauniyar N, Lopez M, Neparidze N, Parker T, Munshi NC, Sexton R, Barlogie B, Orlowski R, Bergsagel L, Hose D, Flavell RA, Mistry PK, Meffre E, Dhodapkar MV. Antigen-mediated regulation in monoclonal gammopathies and myeloma. JCI Insight 2018; 3:98259. [PMID: 29669929 DOI: 10.1172/jci.insight.98259] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/16/2018] [Indexed: 12/22/2022] Open
Abstract
A role for antigen-driven stimulation has been proposed in the pathogenesis of monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) based largely on the binding properties of monoclonal Ig. However, insights into antigen binding to clonal B cell receptors and in vivo responsiveness of the malignant clone to antigen-mediated stimulation are needed to understand the role of antigenic stimulation in tumor growth. Lysolipid-reactive clonal Ig were detected in Gaucher disease (GD) and some sporadic gammopathies. Here, we show that recombinant Ig (rIg) cloned from sort-purified single tumor cells from lipid-reactive sporadic and GD-associated gammopathy specifically bound lysolipids. Liposome sedimentation and binding assays confirmed specific interaction of lipid-reactive monoclonal Ig with lysolipids. The clonal nature of lysolipid-binding Ig was validated by protein sequencing. Gene expression profiling and cytogenetic analyses from 2 patient cohorts showed enrichment of nonhyperdiploid tumors in lipid-reactive patients. In vivo antigen-mediated stimulation led to an increase in clonal Ig and plasma cells (PCs) in GD gammopathy and also reactivated previously suppressed antigenically related nonclonal PCs. These data support a model wherein antigenic stimulation mediates an initial polyclonal phase, followed by evolution of monoclonal tumors enriched in nonhyperdiploid genomes, responsive to underlying antigen. Targeting underlying antigens may therefore prevent clinical MM.
Collapse
Affiliation(s)
| | - Joel Sng
- Immunobiology, Yale University, New Haven, Connecticut, USA
| | | | - Anja Seckinger
- Labor für Myelomforschung, Medizinische Klinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | | | | | | | - Navin Rauniyar
- Yale Proteomics Core Facility, New Haven, Connecticut, USA
| | - Michael Lopez
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | - Rachael Sexton
- Cancer Research and Biostatistics, Southwest Oncology Group (SWOG), Seattle, Washington, USA
| | | | | | | | - Dirk Hose
- Labor für Myelomforschung, Medizinische Klinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | | | | | - Eric Meffre
- Immunobiology, Yale University, New Haven, Connecticut, USA
| | - Madhav V Dhodapkar
- Department of Medicine and.,Immunobiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
122
|
Berger NA. Young Adult Cancer: Influence of the Obesity Pandemic. Obesity (Silver Spring) 2018; 26:641-650. [PMID: 29570247 PMCID: PMC5868416 DOI: 10.1002/oby.22137] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/07/2017] [Accepted: 01/11/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The purpose of this article is to review the association of the obesity pandemic with appearance of cancers in young adults under age 50 and to define potential mechanisms by which obesity may accelerate the development of malignancy. METHODS A comprehensive narrative review was performed to integrate preclinical, clinical, and epidemiologic evidence describing the association of obesity with cancer in young adults based on a search of PubMed and Google databases. RESULTS Results from more than 100 publications are summarized. Although they differ in age groups analyzed and incidence of obesity, sufficient data exists to suggest an influence of the obesity pandemic on the increase of cancer among young adults. CONCLUSIONS Cancer in young adults is occurring with increasing frequency. Overweight and obesity have become major public health issues reaching pandemic proportions. Excess weight is associated with increased cancer risk, morbidity, and mortality. Multiple murine models indicate that obesity not only increases cancer incidence but also accelerates its development. Thus, the possibility exists that overweight and obesity may be contributing to the appearance of specific malignancies at younger ages. This prospect, in association with the worldwide expansion of obesity, suggests an impending explosive increase in obesity-associated cancers in young adults.
Collapse
Affiliation(s)
- Nathan A Berger
- Hematology/Oncology Division, Departments of Medicine, Biochemistry, Genetics & Genome Sciences, Center for Science, Health, and Society, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
123
|
Lozano E, Díaz T, Mena MP, Suñe G, Calvo X, Calderón M, Pérez-Amill L, Rodríguez V, Pérez-Galán P, Roué G, Cibeira MT, Rosiñol L, Isola I, Rodríguez-Lobato LG, Martin-Antonio B, Bladé J, Fernández de Larrea C. Loss of the Immune Checkpoint CD85j/LILRB1 on Malignant Plasma Cells Contributes to Immune Escape in Multiple Myeloma. THE JOURNAL OF IMMUNOLOGY 2018. [DOI: 10.4049/jimmunol.1701622] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
124
|
Go RS, Rajkumar SV. How I manage monoclonal gammopathy of undetermined significance. Blood 2018; 131:163-173. [PMID: 29183887 PMCID: PMC5757684 DOI: 10.1182/blood-2017-09-807560] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/19/2017] [Indexed: 12/16/2022] Open
Abstract
Monoclonal gammopathy of undetermined significance (MGUS) is, in many ways, a unique hematologic entity. Unlike most hematologic conditions in which the diagnosis is intentional and credited to hematologists, the discovery of MGUS is most often incidental and made by nonhematologists. MGUS is considered an obligate precursor to several lymphoplasmacytic malignancies, including immunoglobulin light-chain amyloidosis, multiple myeloma, and Waldenström macroglobulinemia. Therefore, long-term follow-up is generally recommended. Despite its high prevalence, there is surprisingly limited evidence to inform best clinical practice both at the time of diagnosis and during follow-up. We present 7 vignettes to illustrate common clinical management questions that arise during the course of MGUS. Where evidence is present, we provide a concise summary of the literature and clear recommendations on management. Where evidence is lacking, we describe how we practice and provide a rationale for our approach. We also discuss the potential harms associated with MGUS diagnosis, a topic that is rarely, if ever, broached between patients and providers, or even considered in academic debate.
Collapse
Affiliation(s)
- Ronald S Go
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - S Vincent Rajkumar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
125
|
Changes in bone marrow innate lymphoid cell subsets in monoclonal gammopathy: target for IMiD therapy. Blood Adv 2017; 1:2343-2347. [PMID: 29296884 DOI: 10.1182/bloodadvances.2017012732] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 10/26/2017] [Indexed: 12/16/2022] Open
Abstract
Altered number, subset composition, and function of bone marrow innate lymphoid cells are early events in monoclonal gammopathies.Pomalidomide therapy leads to reduction in Ikzf1 and Ikzf3 and enhanced human innate lymphoid cell function in vivo.
Collapse
|
126
|
Hewett DR, Vandyke K, Lawrence DM, Friend N, Noll JE, Geoghegan JM, Croucher PI, Zannettino ACW. DNA Barcoding Reveals Habitual Clonal Dominance of Myeloma Plasma Cells in the Bone Marrow Microenvironment. Neoplasia 2017; 19:972-981. [PMID: 29091798 PMCID: PMC5678743 DOI: 10.1016/j.neo.2017.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/30/2017] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy resulting from the uncontrolled proliferation of antibody-producing plasma cells in the bone marrow. At diagnosis, independent plasma cell tumors are found throughout the skeleton. The recirculation of mutant plasma cells from the initial lesion and their recolonization of distant marrow sites are thought to occur by a process similar to solid tumor metastasis. However, the efficiency of this bone marrow homing process and the proportion of disseminated cells that actively divide and contribute to new tumor growth in MM are both unknown. We used the C57BL/KaLwRij mouse model of myeloma, lentiviral-mediated DNA barcoding of 5TGM1 myeloma cells, and next-generation sequencing to investigate the relative efficiency of plasma cell migration to, and growth within, the bone marrow. This approach revealed three major findings: firstly, establishment of metastasis within the bone marrow was extremely inefficient, with approximately 0.01% of circulating myeloma cells becoming resident long term in the bone marrow of each long bone; secondly, the individual cells of each metastasis exhibited marked differences in their proliferative fates, with the majority of final tumor burden within a bone being attributable to the progeny of between 1 and 8 cells; and, thirdly, the proliferative fate of individual clonal plasma cells differed at each bone marrow site in which the cells “landed.” These findings suggest that individual myeloma plasma cells are subjected to vastly different selection pressures within the bone marrow microenvironment, highlighting the importance of niche-driven factors, which determine the disease course and outcome.
Collapse
Affiliation(s)
- Duncan R Hewett
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia.
| | - Kate Vandyke
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - David M Lawrence
- Centre for Cancer Biology, Australian Cancer Research Fund Cancer Genomics Facility, SA Pathology, Adelaide, Australia; School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Natasha Friend
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Jacqueline E Noll
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Joel M Geoghegan
- Centre for Cancer Biology, Australian Cancer Research Fund Cancer Genomics Facility, SA Pathology, Adelaide, Australia
| | - Peter I Croucher
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales, 2010
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
127
|
Jaffee EM, Dang CV, Agus DB, Alexander BM, Anderson KC, Ashworth A, Barker AD, Bastani R, Bhatia S, Bluestone JA, Brawley O, Butte AJ, Coit DG, Davidson NE, Davis M, DePinho RA, Diasio RB, Draetta G, Frazier AL, Futreal A, Gambhir SS, Ganz PA, Garraway L, Gerson S, Gupta S, Heath J, Hoffman RI, Hudis C, Hughes-Halbert C, Ibrahim R, Jadvar H, Kavanagh B, Kittles R, Le QT, Lippman SM, Mankoff D, Mardis ER, Mayer DK, McMasters K, Meropol NJ, Mitchell B, Naredi P, Ornish D, Pawlik TM, Peppercorn J, Pomper MG, Raghavan D, Ritchie C, Schwarz SW, Sullivan R, Wahl R, Wolchok JD, Wong SL, Yung A. Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncol 2017; 18:e653-e706. [PMID: 29208398 PMCID: PMC6178838 DOI: 10.1016/s1470-2045(17)30698-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
We are in the midst of a technological revolution that is providing new insights into human biology and cancer. In this era of big data, we are amassing large amounts of information that is transforming how we approach cancer treatment and prevention. Enactment of the Cancer Moonshot within the 21st Century Cures Act in the USA arrived at a propitious moment in the advancement of knowledge, providing nearly US$2 billion of funding for cancer research and precision medicine. In 2016, the Blue Ribbon Panel (BRP) set out a roadmap of recommendations designed to exploit new advances in cancer diagnosis, prevention, and treatment. Those recommendations provided a high-level view of how to accelerate the conversion of new scientific discoveries into effective treatments and prevention for cancer. The US National Cancer Institute is already implementing some of those recommendations. As experts in the priority areas identified by the BRP, we bolster those recommendations to implement this important scientific roadmap. In this Commission, we examine the BRP recommendations in greater detail and expand the discussion to include additional priority areas, including surgical oncology, radiation oncology, imaging, health systems and health disparities, regulation and financing, population science, and oncopolicy. We prioritise areas of research in the USA that we believe would accelerate efforts to benefit patients with cancer. Finally, we hope the recommendations in this report will facilitate new international collaborations to further enhance global efforts in cancer control.
Collapse
Affiliation(s)
| | - Chi Van Dang
- Ludwig Institute for Cancer Research New York, NY; Wistar Institute, Philadelphia, PA, USA.
| | - David B Agus
- University of Southern California, Beverly Hills, CA, USA
| | - Brian M Alexander
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Alan Ashworth
- University of California San Francisco, San Francisco, CA, USA
| | | | - Roshan Bastani
- Fielding School of Public Health and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Sangeeta Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey A Bluestone
- University of California San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Atul J Butte
- University of California San Francisco, San Francisco, CA, USA
| | - Daniel G Coit
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Nancy E Davidson
- Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA
| | - Mark Davis
- California Institute for Technology, Pasadena, CA, USA
| | | | | | - Giulio Draetta
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - A Lindsay Frazier
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew Futreal
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Patricia A Ganz
- Fielding School of Public Health and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Levi Garraway
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA; Eli Lilly and Company, Boston, MA, USA
| | | | - Sumit Gupta
- Division of Haematology/Oncology, Hospital for Sick Children, Faculty of Medicine and IHPME, University of Toronto, Toronto, Canada
| | - James Heath
- California Institute for Technology, Pasadena, CA, USA
| | - Ruth I Hoffman
- American Childhood Cancer Organization, Beltsville, MD, USA
| | - Cliff Hudis
- Breast Cancer Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Chanita Hughes-Halbert
- Medical University of South Carolina and the Hollings Cancer Center, Charleston, SC, USA
| | - Ramy Ibrahim
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Hossein Jadvar
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian Kavanagh
- Department of Radiation Oncology, University of Colorado, Denver, CO, USA
| | - Rick Kittles
- College of Medicine, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | | | - Scott M Lippman
- University of California San Diego Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - David Mankoff
- Department of Radiology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine R Mardis
- The Institute for Genomic Medicine at Nationwide Children's Hospital Columbus, OH, USA; College of Medicine, Ohio State University, Columbus, OH, USA
| | - Deborah K Mayer
- University of North Carolina Lineberger Cancer Center, Chapel Hill, NC, USA
| | - Kelly McMasters
- The Hiram C Polk Jr MD Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dean Ornish
- University of California San Francisco, San Francisco, CA, USA
| | - Timothy M Pawlik
- Department of Surgery, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | | | - Martin G Pomper
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek Raghavan
- Levine Cancer Institute, Carolinas HealthCare, Charlotte, NC, USA
| | | | - Sally W Schwarz
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Richard Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jedd D Wolchok
- Ludwig Center for Cancer Immunotherapy, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Sandra L Wong
- Department of Surgery, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Alfred Yung
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
128
|
Bosseboeuf A, Feron D, Tallet A, Rossi C, Charlier C, Garderet L, Caillot D, Moreau P, Cardó-Vila M, Pasqualini R, Arap W, Nelson AD, Wilson BS, Perreault H, Piver E, Weigel P, Girodon F, Harb J, Bigot-Corbel E, Hermouet S. Monoclonal IgG in MGUS and multiple myeloma targets infectious pathogens. JCI Insight 2017; 2:95367. [PMID: 28978808 DOI: 10.1172/jci.insight.95367] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/05/2017] [Indexed: 12/31/2022] Open
Abstract
Subsets of mature B cell neoplasms are linked to infection with intracellular pathogens such as Epstein-Barr virus (EBV), hepatitis C virus (HCV), or Helicobacter pylori. However, the association between infection and the immunoglobulin-secreting (Ig-secreting) B proliferative disorders remains largely unresolved. We investigated whether the monoclonal IgG (mc IgG) produced by patients diagnosed with monoclonal gammopathy of undetermined significance (MGUS) or multiple myeloma (MM) targets infectious pathogens. Antigen specificity of purified mc IgG from a large patient cohort (n = 244) was determined using a multiplex infectious-antigen array (MIAA), which screens for reactivity to purified antigens or lysates from 9 pathogens. Purified mc IgG from 23.4% of patients (57 of 244) specifically recognized 1 pathogen in the MIAA. EBV was the most frequent target (15.6%), with 36 of 38 mc IgGs recognizing EBV nuclear antigen-1 (EBNA-1). MM patients with EBNA-1-specific mc IgG (14.0%) showed substantially greater bone marrow plasma cell infiltration and higher β2-microglobulin and inflammation/infection-linked cytokine levels compared with other smoldering myeloma/MM patients. Five other pathogens were the targets of mc IgG: herpes virus simplex-1 (2.9%), varicella zoster virus (1.6%), cytomegalovirus (0.8%), hepatitis C virus (1.2%), and H. pylori (1.2%). We conclude that a dysregulated immune response to infection may underlie disease onset and/or progression of MGUS and MM for subsets of patients.
Collapse
Affiliation(s)
| | | | - Anne Tallet
- Laboratoire de Biochimie, CHU Tours, Tours, France
| | | | - Cathy Charlier
- CNRS UMR6286, Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, Nantes, France
| | - Laurent Garderet
- Inserm, UMRS938, Paris, France.,Département d'Hématologie et de Thérapie Cellulaire, Hôpital Saint Antoine, Paris, France.,Sorbonne Universités, UPMC Université Paris 6, Paris, France
| | | | | | - Marina Cardó-Vila
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.,University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Renata Pasqualini
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.,University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Wadih Arap
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA.,Division of Hematology/Oncology, Department of Internal Medicine, and
| | - Alfreda Destea Nelson
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA.,Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Bridget S Wilson
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA.,Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Hélène Perreault
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eric Piver
- Laboratoire de Biochimie, CHU Tours, Tours, France.,Inserm UMR966, Tours, France
| | - Pierre Weigel
- CNRS UMR6286, Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, Nantes, France
| | | | - Jean Harb
- Centre de Recherche en Transplantation et Immunologie UMR1064, Inserm, Université de Nantes, Nantes, France.,Laboratoire de Biochimie and
| | - Edith Bigot-Corbel
- CRCINA, Inserm, Université de Nantes, Nantes, France.,Laboratoire de Biochimie and
| | - Sylvie Hermouet
- CRCINA, Inserm, Université de Nantes, Nantes, France.,Laboratoire d'Hématologie, CHU Nantes, Nantes, France
| |
Collapse
|
129
|
Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, Giannakis M, Shilatifard A, Finn OJ, Dhodapkar M, Kay NE, Braggio E, Vilar E, Mazzilli SA, Rebbeck TR, Garber JE, Velculescu VE, Disis ML, Wallace DC, Lippman SM. Precancer Atlas to Drive Precision Prevention Trials. Cancer Res 2017; 77:1510-1541. [PMID: 28373404 PMCID: PMC6681830 DOI: 10.1158/0008-5472.can-16-2346] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
Cancer development is a complex process driven by inherited and acquired molecular and cellular alterations. Prevention is the holy grail of cancer elimination, but making this a reality will take a fundamental rethinking and deep understanding of premalignant biology. In this Perspective, we propose a national concerted effort to create a Precancer Atlas (PCA), integrating multi-omics and immunity - basic tenets of the neoplastic process. The biology of neoplasia caused by germline mutations has led to paradigm-changing precision prevention efforts, including: tumor testing for mismatch repair (MMR) deficiency in Lynch syndrome establishing a new paradigm, combinatorial chemoprevention efficacy in familial adenomatous polyposis (FAP), signal of benefit from imaging-based early detection research in high-germline risk for pancreatic neoplasia, elucidating early ontogeny in BRCA1-mutation carriers leading to an international breast cancer prevention trial, and insights into the intricate germline-somatic-immunity interaction landscape. Emerging genetic and pharmacologic (metformin) disruption of mitochondrial (mt) respiration increased autophagy to prevent cancer in a Li-Fraumeni mouse model (biology reproduced in clinical pilot) and revealed profound influences of subtle changes in mt DNA background variation on obesity, aging, and cancer risk. The elaborate communication between the immune system and neoplasia includes an increasingly complex cellular microenvironment and dynamic interactions between host genetics, environmental factors, and microbes in shaping the immune response. Cancer vaccines are in early murine and clinical precancer studies, building on the recent successes of immunotherapy and HPV vaccine immune prevention. Molecular monitoring in Barrett's esophagus to avoid overdiagnosis/treatment highlights an important PCA theme. Next generation sequencing (NGS) discovered age-related clonal hematopoiesis of indeterminate potential (CHIP). Ultra-deep NGS reports over the past year have redefined the premalignant landscape remarkably identifying tiny clones in the blood of up to 95% of women in their 50s, suggesting that potentially premalignant clones are ubiquitous. Similar data from eyelid skin and peritoneal and uterine lavage fluid provide unprecedented opportunities to dissect the earliest phases of stem/progenitor clonal (and microenvironment) evolution/diversity with new single-cell and liquid biopsy technologies. Cancer mutational signatures reflect exogenous or endogenous processes imprinted over time in precursors. Accelerating the prevention of cancer will require a large-scale, longitudinal effort, leveraging diverse disciplines (from genetics, biochemistry, and immunology to mathematics, computational biology, and engineering), initiatives, technologies, and models in developing an integrated multi-omics and immunity PCA - an immense national resource to interrogate, target, and intercept events that drive oncogenesis. Cancer Res; 77(7); 1510-41. ©2017 AACR.
Collapse
Affiliation(s)
- Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ludmil Alexandrov
- Theoretical Division, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rafael Bejar
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madhav Dhodapkar
- Department of Hematology and Immunology, Yale Cancer Center, New Haven, Connecticut
| | - Neil E Kay
- Department of Hematology, Mayo Clinic Hospital, Rochester, Minnesota
| | - Esteban Braggio
- Department of Hematology, Mayo Clinic Hospital, Phoenix, Arizona
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah A Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Timothy R Rebbeck
- Division of Hematology and Oncology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor E Velculescu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Mary L Disis
- Department of Medicine, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott M Lippman
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|