101
|
Kozu K, Sugimura K, Aoki T, Tatebe S, Yamamoto S, Yaoita N, Shimizu T, Nochioka K, Sato H, Konno R, Satoh K, Miyata S, Shimokawa H. Sex differences in hemodynamic responses and long-term survival to optimal medical therapy in patients with pulmonary arterial hypertension. Heart Vessels 2018; 33:939-947. [PMID: 29441403 PMCID: PMC6060798 DOI: 10.1007/s00380-018-1140-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022]
Abstract
It is widely known that the incidence of pulmonary arterial hypertension (PAH) is higher in female, whereas prognosis is poorer in male patients. However, sex differences in hemodynamic response to and long-term prognosis with PAH-targeted treatment in the modern era remain to be fully elucidated. We examined the long-term prognosis of 129 consecutive PAH patients (34 males and 95 females) diagnosed in our hospital from April 1999 to October 2014, and assessed hemodynamic changes in response to PAH-targeted therapy. Female patients had better 5-year survival compared with male patients (74.0 vs. 53.4%, P = 0.003); however, higher age quartiles in females were associated with poor outcome. Follow-up examination after medical treatment showed significant decreases in mean pulmonary arterial pressure (mPAP), pulmonary vascular resistance (PVR), and pulmonary arterial capacitance (PAC) in both sexes (both P < 0.05), whereas only females had a significant improvement in right ventricular end-diastolic pressure (RVEDP), right atrial pressure (RAP), cardiac index, and mixed venous oxygen saturation (SvO2) (all P < 0.05). Baseline age significantly correlated with the hemodynamic changes only in female patients; particularly, there were significant sex interactions in RVEDP and RAP (both P < 0.10). The multivariable analysis showed that SvO2 at baseline and mPAP and SvO2 at follow-up were significant prognostic factors in males, whereas the changes in mPAP, PVR, and PAC and use of endothelin-receptor antagonist in females. These results indicate that female PAH patients have better long-term prognosis than males, for which better improvements of right ventricular functions and hemodynamics may be involved.
Collapse
Affiliation(s)
- Katsuya Kozu
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Koichiro Sugimura
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | - Tatsuo Aoki
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Shunsuke Tatebe
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Saori Yamamoto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Nobuhiro Yaoita
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Toru Shimizu
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Kotaro Nochioka
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Haruka Sato
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Ryo Konno
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Satoshi Miyata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| |
Collapse
|
102
|
Wang S, Zeng H, Xie XJ, Tao YK, He X, Roman RJ, Aschner JL, Chen JX. Loss of prolyl hydroxylase domain protein 2 in vascular endothelium increases pericyte coverage and promotes pulmonary arterial remodeling. Oncotarget 2018; 7:58848-58861. [PMID: 27613846 PMCID: PMC5312280 DOI: 10.18632/oncotarget.11585] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/21/2016] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a leading cause of heart failure. Although pulmonary endothelial dysfunction plays a crucial role in the progression of the PAH, the underlying mechanisms are poorly understood. The HIF-α hydroxylase system is a key player in the regulation of vascular remodeling. Knockout of HIF-2α has been reported to cause pulmonary hypertension. The present study examined the role of endothelial cell specific prolyl hydroxylase-2 (PHD2) in the development of PAH and pulmonary vascular remodeling. The PHD2f/f mouse was crossbred with VE-Cadherin-Cre promoter mouse to generate an endothelial specific PHD2 knockout (Cdh5-Cre-PHD2ECKO) mouse. Pulmonary arterial pressure and the size of the right ventricle was significantly elevated in the PHD2ECKO mice relative to the PHD2f/f controls. Knockout of PHD2 in EC was associated with vascular remodeling, as evidenced by an increase in pulmonary arterial media to lumen ratio and number of muscularized arterioles. The pericyte coverage and vascular smooth muscle cells were also significantly increased in the PA. The increase in vascular pericytes was associated with elevated expression of fibroblast specific protein-1 (FSP-1). Moreover, perivascular interstitial fibrosis of pulmonary arteries was significantly increased in the PHD2ECKO mice. Mechanistically, knockout of PHD2 in EC increased the expression of Notch3 and transforming growth factor (TGF-β) in the lung tissue. We conclude that the expression of PHD2 in endothelial cells plays a critical role in preventing pulmonary arterial remodeling in mice. Increased Notch3/TGF-β signaling and excessive pericyte coverage may be contributing to the development of PAH following deletion of endothelial PHD2.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Xue-Jiao Xie
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA.,School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yong-Kang Tao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA
| | - Judy L Aschner
- Department of Pediatrics, Albert Einstein College of Medicine and The Children's Hospital at Montefiore, Bronx, NY, USA
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, USA.,School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
103
|
Current Knowledge and Recent Advances of Right Ventricular Molecular Biology and Metabolism from Congenital Heart Disease to Chronic Pulmonary Hypertension. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1981568. [PMID: 29581963 PMCID: PMC5822779 DOI: 10.1155/2018/1981568] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/20/2017] [Indexed: 11/18/2022]
Abstract
Studies about pulmonary hypertension and congenital heart diseases have introduced the concept of right ventricular remodeling leading these pathologies to a similar outcome: right ventricular failure. However right ventricular remodeling is also a physiological process that enables the normal fetal right ventricle to adapt at birth and gain its adult phenotype. The healthy mature right ventricle is exposed to low pulmonary vascular resistances and is compliant. However, in the setting of chronic pressure overload, as in pulmonary hypertension, or volume overload, as in congenital heart diseases, the right ventricle reverts back to a fetal phenotype to sustain its function. Mechanisms include angiogenic changes and concomitant increased metabolic activity to maintain energy production. Eventually, the remodeled right ventricle cannot resist the increased afterload, leading to right ventricular failure. After comparing the fetal and adult healthy right ventricles, we sought to review the main metabolic and cellular changes occurring in the setting of PH and CHD. Their association with RV function and potential impact on clinical practice will also be discussed.
Collapse
|
104
|
Hemnes AR, Humbert M. Pathobiology of pulmonary arterial hypertension: understanding the roads less travelled. Eur Respir Rev 2017; 26:26/146/170093. [DOI: 10.1183/16000617.0093-2017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
The pathobiology of pulmonary arterial hypertension (PAH) is complex and incompletely understood. Although three pathogenic pathways have been relatively well characterised, it is widely accepted that dysfunction in a multitude of other cellular processes is likely to play a critical role in driving the development of PAH. Currently available therapies, which all target one of the three well-characterised pathways, provide significant benefits for patients; however, PAH remains a progressive and ultimately fatal disease. The development of drugs to target alternative pathogenic pathways is, therefore, an attractive proposition and one that may complement existing treatment regimens to improve outcomes for patients. Considerable research has been undertaken to identify the role of the less well-understood pathways and in this review we will highlight some of the key discoveries and the potential for utility as therapeutic targets.
Collapse
|
105
|
Shi R, Wei Z, Zhu D, Fu N, Wang C, Yin S, Liang Y, Xing J, Wang X, Wang Y. Baicalein attenuates monocrotaline-induced pulmonary arterial hypertension by inhibiting vascular remodeling in rats. Pulm Pharmacol Ther 2017; 48:124-135. [PMID: 29133079 DOI: 10.1016/j.pupt.2017.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 11/01/2017] [Accepted: 11/09/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a devastating cardiopulmonary disorder characterized by elevated pulmonary arterial pressure (PAP) and right ventricular hypertrophy (RVH) driven by progressive vascular remodeling. Reversing adverse vascular remodeling is an important concept in the treatment of PAH. Endothelial injury, inflammation, and oxidative stress are three main contributors to pulmonary vascular remodeling. Baicalein is a natural flavonoid that has been shown to possess anti-proliferative, anti-inflammatory, anti-oxidative, and cardioprotective properties. We hypothesized that baicalein may prevent the progression of PAH and preserve the right heart function by inhibiting pulmonary arterial remodeling. METHODS Male Sprague-Dawley rats were distributed randomly into 4 groups: control, monocrotaline (MCT)-exposed, and MCT-exposed plus baicalein treated rats (50 and 100 mg/kg/day for 2 weeks). Hemodynamic changes, RVH, and lung morphological features were examined on day 28. Apoptosis was determined by TUNEL staining, and the mRNA levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 were detected by qRT-PCR. The changes in oxidative indicators, including malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured using corresponding commercial kits. The levels of Bax, Bcl-2, and cleaved caspase-3, and the activation of mitogen-activated protein kinase (MAPK) and NF-κB were assessed by western blotting. RESULTS MCT induced an increase in hemodynamic parameters and RVH, which were attenuated by baicalein treatment. Baicalein also blocked MCT-induced pulmonary arterial remodeling. The levels of apoptotic (Bax/Bcl-2 ratio and cleaved caspase-3) and inflammatory (IL-6, TNF-α, and IL-1β) biomarkers in lung tissue were lower in baicalein-treated groups. Baicalein also decreased MDA level, and increased SOD and GSH-Px activity in rat pulmonary tissue. Furthermore, baicalein inhibited MCT-induced activation of the MAPK and NF-κB pathways. CONCLUSION Baicalein ameliorates MCT-induced PAH by inhibiting pulmonary arterial remodeling at least partially via the MAPK and NF-κB pathways in rats.
Collapse
Affiliation(s)
- Ruizan Shi
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Zehui Wei
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, China
| | - Diying Zhu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, China
| | - Naijie Fu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, China
| | - Chang Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, China
| | - Sha Yin
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, China
| | - Yueqin Liang
- Medical Functional Experimental Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Jianfeng Xing
- Medical Functional Experimental Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Xuening Wang
- Department of Cardiovascular Surgery, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan, 030032, China
| | - Yan Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
106
|
Hansen MS, Andersen A, Tolbod LP, Hansson NH, Nielsen R, Vonk-Noordegraaf A, Nielsen-Kudsk JE. Levosimendan improves cardiac function and myocardial efficiency in rats with right ventricular failure. Pulm Circ 2017; 8:2045893217743122. [PMID: 29099675 PMCID: PMC5731719 DOI: 10.1177/2045893217743122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Levosimendan is an inotropic and vasodilator drug, which is known to improve cardiac function in animal models of right ventricular (RV) failure. The effects of levosimendan on oxygen consumption and myocardial efficiency in the failing RV is unknown. We investigated the effects of levosimendan on RV function, myocardial oxygen consumption, myocardial external efficiency (MEE), and myocardial metabolism in rats with RV hypertrophy and failure. RV hypertrophy and failure were induced by pulmonary trunk banding in rats. Rats were randomized to seven weeks of treatment with vehicle (n = 16) or levosimendan (3 mg/kg/day) (n = 13). Control animals without pulmonary banding received vehicle treatment (n = 11). RV MEE and RV metabolism were evaluated by echocardiography, 11C-acetate positron emission tomography (PET), 18F-FDG PET, and invasive pressure measurements. We found that levosimendan improved RV MEE (26 ± 3 vs. 14 ± 1%, P < 0.01) by increasing RV external work (0.62 ± 0.06 vs. 0.30 ± 0.03 mmHgċmL, P < 0.001) without affecting RV myocardial oxygen consumption (P = 0.64). The improvement in RV MEE was not associated with a change in RV myocardial glucose uptake (1.3 ± 0.1 vs. 1.0 ± 0.1 µmol/g/min, P = 0.44). In conclusion, in the hypertrophic and failing RV of the rat, levosimendan improves RV function without increasing myocardial oxygen consumption leading to improved MEE. The improvement in RV MEE was not associated with a change in myocardial glucose uptake. This study emphasizes the potential therapeutic value of chronic levosimendan treatment RV failure. It extends previous observations on the effect profile of levosimendan and motivates clinical testing of levosimendan in RV failure.
Collapse
Affiliation(s)
- Mona S Hansen
- 1 Department of Cardiology, Institute of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Asger Andersen
- 1 Department of Cardiology, Institute of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Lars P Tolbod
- 2 Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Denmark
| | - Nils H Hansson
- 1 Department of Cardiology, Institute of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Roni Nielsen
- 1 Department of Cardiology, Institute of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Anton Vonk-Noordegraaf
- 3 Department of Pulmonary Diseases, VU University Medical Center/Institute for Cardiovascular Research, The Netherlands
| | - Jens Erik Nielsen-Kudsk
- 1 Department of Cardiology, Institute of Clinical Medicine, Aarhus University Hospital, Denmark
| |
Collapse
|
107
|
Levosimendan Prevents and Reverts Right Ventricular Failure in Experimental Pulmonary Arterial Hypertension. J Cardiovasc Pharmacol 2017. [DOI: 10.1097/fjc.0000000000000508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
108
|
Wu F, Yao W, Yang J, Zhang M, Xu Y, Hao Y, Yan L, Niu Y, Sun T, Yu J, Zhou R. Protective effects of aloperin on monocroline-induced pulmonary hypertension via regulation of Rho A/Rho kinsase pathway in rats. Biomed Pharmacother 2017; 95:1161-1168. [PMID: 28926926 DOI: 10.1016/j.biopha.2017.08.126] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 12/30/2022] Open
Abstract
Pulmonary hypertension (PH) is fatal disease which closely involves Rho A/ Rho kinsase (ROCK) pathway. Aloperine is a main active alkaloid extracted from Sophora alopecuroides, which is a traditional Chinese herbal medicine that has been used widely. However, the effects of this alkaloid on pulmonary hypertension and its mechanisms remain unclear. Therefore, this study is designed to investigate whether aloperine has protective effects on PH induced by monocrotaline, whether these effects may be related to regulation of RhoA/ROCK pathway in rats. Pulmonary hypertension was induced by monocrotaline (60mg/kg), and subsequently oral administration of aloperine (25, 50, 100mg/kg/day) for 21 days. At the end of the experiment, rats were underwent hemodynamic and morphologic assessments. At same time, the expression of Rho A, ROCK1, ROCK2, as well as activities of ROCK in the lung of rat has been detected. Afterwards, the expression of p27kip1, Bax, Bcl-2, which was the downstream proliferation and apoptosis factors of ROCK, were tested. The result indicted that aloperine treatment showed significantly improvement in hemodynamic and pathomorphologic data. Moreover, the reduction in expression of Rho A, ROCK1, ROCK2, and suppression in activities of ROCK were found in rat lungs after aloperine treatment. Furthermore, aloperine also alleviated the MCT-induced changes of p27kip1, Bax and Bcl-2. In summary, this study indicates that aloperine have protective effects on monocrotaline-induced PH. And these effects may be partially related to RhoA/ROCK pathway. Thus, aloperine could be considered a possible therapeutic strategy for PH.
Collapse
Affiliation(s)
- Fan Wu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Wanxia Yao
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Min Zhang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Yanping Xu
- Echocardiogram Room, Heart Center, General Hospital of Ningxia Medical University, Yinchuan, 750004, PR China
| | - Yinju Hao
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Lin Yan
- College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China; Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, 750004, PR China.
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, PR China; Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, 750004, PR China.
| |
Collapse
|
109
|
|
110
|
Zeng C, Liang B, Jiang R, Shi Y, Du Y. Protein kinase C isozyme expression in right ventricular hypertrophy induced by pulmonary hypertension in chronically hypoxic rats. Mol Med Rep 2017; 16:3833-3840. [PMID: 28765942 PMCID: PMC5647097 DOI: 10.3892/mmr.2017.7098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 06/06/2017] [Indexed: 11/24/2022] Open
Abstract
In chronic hypoxia, pulmonary hypertension (PH) induces right ventricular hypertrophy (RVH). Evidence indicates that protein kinase C (PKC) serves a crucial role in hypoxia-induced RVH. The present study investigated PKC isoform-specific expression and its involvement in RVH. Rats were exposed to normobaric hypoxia for a number of days to induce PH. PKC isoform-specific membrane translocation and protein expression in the myocardium were evaluated by western blotting and immunostaining. A total of six isoforms of conventional PKC (cPKC; α, βI and βII) and of novel PKC (nPKC; δ, ε and η), were detected in the rat myocardium. Hypoxic exposure (1–21 days) induced PH with RVH and vascular remodeling. nPKCδ membrane translocation at 3–7 days and cPKCβI expression at 1–21 days in the RV following hypoxic exposure were significantly decreased as compared with the normoxia control group. Membrane translocation of cPKCβII at 14–21 days and of nPKCη at 7–21 days in the left ventricle following hypoxic exposure was significantly increased when compared with the control. The results of the present study suggested that the alterations in membrane translocation, and nPKCδ and cPKCβI expression, are associated with RVH following PH, and the upregulation of cPKCβII membrane translocation is involved in left-sided heart failure.
Collapse
Affiliation(s)
- Chao Zeng
- Department of Pediatrics, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Bin Liang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Rui Jiang
- Department of Respiratory Medicine, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi 030012, P.R. China
| | - Yiwei Shi
- Department of Respiratory Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yongcheng Du
- Department of Respiratory Medicine, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
111
|
van der Bruggen CE, Tedford RJ, Handoko ML, van der Velden J, de Man FS. RV pressure overload: from hypertrophy to failure. Cardiovasc Res 2017; 113:1423-1432. [DOI: 10.1093/cvr/cvx145] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/31/2017] [Indexed: 01/31/2023] Open
Affiliation(s)
- Cathelijne E.E. van der Bruggen
- Department of Pulmonology, Amsterdam Cardiovascular Sciences, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Ryan J. Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Frances S. de Man
- Department of Pulmonology, Amsterdam Cardiovascular Sciences, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
112
|
Matsuyama S, Palmer J, Bates A, Poventud-Fuentes I, Wong K, Ngo J, Matsuyama M. Bax-induced apoptosis shortens the life span of DNA repair defect Ku70-knockout mice by inducing emphysema. Exp Biol Med (Maywood) 2017; 241:1265-71. [PMID: 27302174 DOI: 10.1177/1535370216654587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cells with DNA damage undergo apoptosis or cellular senescence if the damage cannot be repaired. Recent studies highlight that cellular senescence plays a major role in aging. However, age-associated diseases, including emphysema and neurodegenerative disorders, are caused by apoptosis of lung alveolar epithelial cells and neurons, respectively. Therefore, enhanced apoptosis also promotes aging and shortens the life span depending on the cell type. Recently, we reported that ku70(-) (/) (-)bax(-) (/) (-) and ku70(-) (/) (-)bax(+/) (-) mice showed significantly extended life span in comparison with ku70(-) (/) (-)bax(+/+) mice. Ku70 is essential for non-homologous end joining pathway for DNA double strand break repair, and Bax plays an important role in apoptosis. Our study suggests that Bax-induced apoptosis has a significant impact on shortening the life span of ku70(-) (/) (-) mice, which are defective in one of DNA repair pathways. The lung alveolar space gradually enlarges during aging, both in mouse and human, and this age-dependent change results in the decrease of respiration capacity during aging that can lead to emphysema in more severe cases. We found that emphysema occurred in ku70(-) (/) (-) mice at the age of three-months old, and that Bax deficiency was able to suppress it. These results suggest that Bax-mediated apoptosis induces emphysema in ku70(-) (/) (-) mice. We also found that the number of cells, including bronchiolar epithelial cells and type 2 alveolar epithelial cells, shows a higher DNA double strand break damage response in ku70 KO mouse lung than in wild type. Recent studies suggest that non-homologous end joining activity decreases with increased age in mouse and rat model. Together, we hypothesize that the decline of Ku70-dependent DNA repair activity in lung alveolar epithelial cells is one of the causes of age-dependent decline of lung function resulting from excess Bax-mediated apoptosis of lung alveolar epithelial cells (and their progenitor cells).
Collapse
Affiliation(s)
- Shigemi Matsuyama
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | - James Palmer
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | - Adam Bates
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | | | - Kelvin Wong
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | - Justine Ngo
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | - Mieko Matsuyama
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| |
Collapse
|
113
|
Szulcek R, Happé CM, Rol N, Fontijn RD, Dickhoff C, Hartemink KJ, Grünberg K, Tu L, Timens W, Nossent GD, Paul MA, Leyen TA, Horrevoets AJ, de Man FS, Guignabert C, Yu PB, Vonk-Noordegraaf A, van Nieuw Amerongen GP, Bogaard HJ. Delayed Microvascular Shear Adaptation in Pulmonary Arterial Hypertension. Role of Platelet Endothelial Cell Adhesion Molecule-1 Cleavage. Am J Respir Crit Care Med 2017; 193:1410-20. [PMID: 26760925 DOI: 10.1164/rccm.201506-1231oc] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Altered pulmonary hemodynamics and fluid flow-induced high shear stress (HSS) are characteristic hallmarks in the pathogenesis of pulmonary arterial hypertension (PAH). However, the contribution of HSS to cellular and vascular alterations in PAH is unclear. OBJECTIVES We hypothesize that failing shear adaptation is an essential part of the endothelial dysfunction in all forms of PAH and tested whether microvascular endothelial cells (MVECs) or pulmonary arterial endothelial cells (PAECs) from lungs of patients with PAH adapt to HSS and if the shear defect partakes in vascular remodeling in vivo. METHODS PAH MVEC (n = 7) and PAH PAEC (n = 3) morphology, function, protein, and gene expressions were compared with control MVEC (n = 8) under static culture conditions and after 24, 72, and 120 hours of HSS. MEASUREMENTS AND MAIN RESULTS PAH MVEC showed a significantly delayed morphological shear adaptation (P = 0.03) and evidence of cell injury at sites of nonuniform shear profiles that are critical loci for vascular remodeling in PAH. In clear contrast, PAEC isolated from the same PAH lungs showed no impairments. PAH MVEC gene expression and transcriptional shear activation were not altered but showed significant decreased protein levels (P = 0.02) and disturbed interendothelial localization of the shear sensor platelet endothelial cell adhesion molecule-1 (PECAM-1). The decreased PECAM-1 levels were caused by caspase-mediated cytoplasmic cleavage but not increased cell apoptosis. Caspase blockade stabilized PECAM-1 levels, restored endothelial shear responsiveness in vitro, and attenuated occlusive vascular remodeling in chronically hypoxic Sugen5416-treated rats modeling severe PAH. CONCLUSIONS Delayed shear adaptation, which promotes shear-induced endothelial injury, is a newly identified dysfunction specific to the microvascular endothelium in PAH. The shear response is normalized on stabilization of PECAM-1, which reverses intimal remodeling in vivo.
Collapse
Affiliation(s)
| | | | - Nina Rol
- 1 Department of Pulmonology.,2 Department of Physiology
| | | | | | | | - Katrien Grünberg
- 5 Department of Pathology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Ly Tu
- 6 INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,7 Université Paris-Sud, School of Médecine, Le Kremlin-Bicêtre, Paris, France
| | - Wim Timens
- 8 Department of Pathology and Medical Biology, and
| | - George D Nossent
- 9 Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and
| | | | | | | | | | - Christophe Guignabert
- 6 INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,7 Université Paris-Sud, School of Médecine, Le Kremlin-Bicêtre, Paris, France
| | - Paul B Yu
- 10 Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | |
Collapse
|
114
|
Protective effects of aloperine on monocrotaline-induced pulmonary hypertension in rats. Biomed Pharmacother 2017; 89:632-641. [DOI: 10.1016/j.biopha.2017.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 01/10/2023] Open
|
115
|
Stewart T, Burks M, Nolley SH, Hill W, Housten T, Kennedy K, Traiger G. Collaborative Care: A Defining Characteristic for a Pulmonary Hypertension Center. Pulm Ther 2017. [DOI: 10.1007/s41030-017-0039-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
116
|
Halliday SJ, Hemnes AR. Identifying "super responders" in pulmonary arterial hypertension. Pulm Circ 2017; 7:300-311. [PMID: 28597766 PMCID: PMC5467924 DOI: 10.1177/2045893217697708] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/13/2017] [Indexed: 02/01/2023] Open
Abstract
Pharmacotherapeutic options for pulmonary arterial hypertension (PAH) have increased dramatically in the last two decades and along with this have been substantial improvements in survival. Despite these advances, however, PAH remains a progressive and ultimately fatal disease for most patients and only epoprostenol has been shown to improve survival in a randomized control trial. Clinical observations of the heterogeneity of treatment response to different classes of medications across the phenotypically diverse PAH population has led to the identification of patients who derive significantly more benefit from certain medications than the population mean, the so-called "super responders." This was first recognized among PAH patients with acute vasodilator response during invasive hemodynamic testing, a subset of whom have dramatically improved survival when treated with calcium channel blocker (CCB) therapy. Retrospective studies have now suggested a sex discrepancy in response to endothelin receptor antagonists (ERA) and phosphodiesterase inhibitors, and more recently a few studies have found genomic associations with response to CCBs and ERAs. With increasing availability of "omics" technologies, recognition of these "super responders," combined with careful clinical and molecular phenotyping, will lead to advances in pharmacogenomics, precision medicine, and continued improvements in survival among PAH patients.
Collapse
Affiliation(s)
- Stephen J. Halliday
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
117
|
Idiopathic Pulmonary Arterial Hypertension in Children: A Review. Pulm Ther 2017. [DOI: 10.1007/s41030-017-0035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
118
|
Wang L, Zheng Q, Yuan Y, Li Y, Gong X. Effects of 17β-estradiol and 2-methoxyestradiol on the oxidative stress-hypoxia inducible factor-1 pathway in hypoxic pulmonary hypertensive rats. Exp Ther Med 2017; 13:2537-2543. [PMID: 28565876 DOI: 10.3892/etm.2017.4243] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the effects of 17β-estradiol (E2) and 2-methoxyestradiol (2ME) on the oxidative stress-hypoxia inducible factor-1 (OS-HIF-1) pathway in hypoxic pulmonary hypertensive rats. Female Sprague-Dawley rats were divided randomly into 4 groups, as follows: i) Control (Group A); ii) ovariectomy (OVX) + hypoxia (Group B); iii) OVX + hypoxia + E2 injection (Group C); and iv) 2ME injection (Group D). The rats were maintained under hypoxic conditions for 8 weeks, and mean pulmonary artery pressure (mPAP) and pulmonary arteriole morphology were measured. The reactive oxygen species, superoxide dismutase (SOD), manganese superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (Cu/ZnSOD) levels in serum were also measured. MnSOD and HIF-1α expression levels in lung tissue were determined by western blotting and reverse transcription-quantitative polymerase chain reaction. The mPAP and arterial remodeling index were significantly elevated following chronic hypoxia exposure; however, experimental data revealed a reduced response in E2 and 2ME intervention rats. Compared with Group A, Group B had significantly elevated oxidative stress levels, as illustrated by increased serum ROS levels, decreased serum SOD and MnSOD levels and decreased MnSOD mRNA and protein expression levels in lung tissue. Furthermore, HIF-1α mRNA and protein expression in Group B was significantly elevated compared with Group A. E2 and 2ME intervention significantly attenuated the aforementioned parameter changes, suggesting that E2 and 2ME partially ameliorate hypoxic pulmonary hypertension. The underlying mechanism of this may be associated with the increase in MnSOD activity and expression and reduction in ROS level, which reduces the levels of transcription and translation of HIF-1α.
Collapse
Affiliation(s)
- Li Wang
- Department of Respiratory Disease and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Quan Zheng
- Department of Respiratory Disease and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yadong Yuan
- Department of Respiratory Disease and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yanpeng Li
- Department of Respiratory Disease and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaowei Gong
- Department of Respiratory Disease and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
119
|
Claudin-1 regulates pulmonary artery smooth muscle cell proliferation through the activation of ERK1/2. Biomed Pharmacother 2017; 89:983-990. [PMID: 28292027 DOI: 10.1016/j.biopha.2017.02.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/17/2017] [Accepted: 02/01/2017] [Indexed: 11/22/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α), a crucial inflammatory cytokine, is involved in the pathogenesis of pulmonary arterial hypertension (PAH). TNF-α can induce claudin-1 (CLDN1) expression and CLDN1 has been reported to be associated with the regulation of cellular functions including cell proliferation, migration. Thus, we aimed to explore whether CLDN1 participated in the etiology of PAH. Our study showed that CLDN1 expression was markedly increased in the lungs of rats with monocrotaline(MCT)-induced PAH, especially in the pulmonary arterial smooth muscle sections. We also found that CLDN1 expression in primary human PASMCs was up-regulated by TNF-α, and the Nuclear factor-κB (NF-κB) inhibitor BAY 11-7082 suppressed CLDN1 up-regulation by TNF-a. CLDN1 overexpression by adenoviral transduction promoted PASMCs proliferation, while knockdown of CLDN1 by siRNA inhibited TNF-α-induced cell proliferation. Mechanistic studies revealed that CLDN1 regulated human PASMC proliferation through the activation of ERK1/2. Together, our findings indicate that up-regulation of CLDN1 promotes PASMC proliferation contributing to pulmonary arterial remodeling in PAH.
Collapse
|
120
|
Maarman GJ, Schulz R, Sliwa K, Schermuly RT, Lecour S. Novel putative pharmacological therapies to protect the right ventricle in pulmonary hypertension: a review of current literature. Br J Pharmacol 2017; 174:497-511. [PMID: 28099680 DOI: 10.1111/bph.13721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/06/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension (PH) is defined by elevated mean pulmonary artery pressure following the pathological remodelling of small pulmonary arteries. An increase in right ventricular (RV) afterload results in RV hypertrophy and RV failure. The pathophysiology of PH, and RV remodelling in particular, is not well understood, thus explaining, at least in part, why current PH therapies have a limited effect. Existing therapies mostly target the pulmonary circulation. Because the remodelled RV fails to support normal cardiac function, patients eventually succumb from RV failure. Developing novel therapies that directly target the function of the RV may therefore benefit patients with PH. In the past decade, several promising studies have investigated novel cardioprotective strategies in experimental models of PH. This review aims to comprehensively discuss and highlight these novel experimental approaches to confer, in the long-term, greater health benefit in patients with PH.
Collapse
Affiliation(s)
- Gerald J Maarman
- Hatter Institute for Cardiovascular Research in Africa (HICRA) and MRC Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Karen Sliwa
- Hatter Institute for Cardiovascular Research in Africa (HICRA) and MRC Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ralph Theo Schermuly
- Universities of Giessen and Marburg Lung Centre, Member of the German Lung Centre (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa (HICRA) and MRC Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
121
|
Nagy BM, Nagaraj C, Egemnazarov B, Kwapiszewska G, Stauber RE, Avian A, Olschewski H, Olschewski A. Lack of ABCG2 Leads to Biventricular Dysfunction and Remodeling in Response to Hypoxia. Front Physiol 2017; 8:98. [PMID: 28270772 PMCID: PMC5318436 DOI: 10.3389/fphys.2017.00098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/06/2017] [Indexed: 01/08/2023] Open
Abstract
Aims: The ATP-binding cassette (ABC)G2 transporter protects the heart from pressure overload-induced ventricular dysfunction but also protects cancer cells from chemotherapeutic agents. It is upregulated in the myocardium of heart failure patients and clears hypoxia-induced intracellular metabolites. This study employs ABCG2 knockout (KO) mice to elucidate the relevance of ABCG2 for cardiac and pulmonary vascular structure and function in chronic hypoxia, and uses human primary cardiac fibroblasts to investigate the potential role of ABCG2 in cardiac fibrosis. Methods and results: ABCG2 KO and control mice (n = 10) were subjected to 4 weeks normoxia or hypoxia. This allowed for investigation of the interaction between genotype and hypoxia (GxH). In hypoxia, KO mice showed pronounced right (RV) and left (LV) ventricular diastolic dysfunction. Compared to normoxia, end-diastolic pressure (EDP) was increased in control vs. KO mice by +1.1 ± 0.3 mmHg vs. +4.8 ± 0.3 mmHg, p for GxH < 0.001 (RV) and +3.9 ± 0.5 mmHg vs. +11.5 ± 1.6 mmHg, p for GxH = 0.110 (LV). The same applied for myocardial fibrosis with +0.3 ± 0.1% vs. 1.3 ± 0.2%, p for GxH = 0.036 (RV) and +0.06 ± 0.03% vs. +0.36 ± 0.08%, p for GxH = 0.002 (LV), whereas systolic function and capillary density was unaffected. ABCG2 deficiency did not influence hypoxia-induced pulmonary hypertension or vascular remodeling. In line with these observations, human cardiac fibroblasts showed increased collagen production upon ABCG2 silencing in hypoxia (p for GxH = 0.04). Conclusion: Here we provide evidence for the first time that ABCG2 membrane transporter can play a crucial role in ventricular dysfunction and fibrosis in hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Bence M Nagy
- Division of Pulmonology, Department of Internal Medicine, Medical University of GrazGraz, Austria; Ludwig Boltzmann Institute for Lung Vascular ResearchGraz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular ResearchGraz, Austria; Institute of Physiology, Medical University of GrazGraz, Austria
| | | | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular ResearchGraz, Austria; Institute of Physiology, Medical University of GrazGraz, Austria
| | - Rudolf E Stauber
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz Graz, Austria
| | - Alexander Avian
- Ludwig Boltzmann Institute for Lung Vascular ResearchGraz, Austria; Institute for Medical Informatics, Statistics and Documentation, Medical University of GrazGraz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of GrazGraz, Austria; Ludwig Boltzmann Institute for Lung Vascular ResearchGraz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular ResearchGraz, Austria; Institute of Physiology, Medical University of GrazGraz, Austria
| |
Collapse
|
122
|
Pullamsetti SS, Savai R, Seeger W, Goncharova EA. Translational Advances in the Field of Pulmonary Hypertension. From Cancer Biology to New Pulmonary Arterial Hypertension Therapeutics. Targeting Cell Growth and Proliferation Signaling Hubs. Am J Respir Crit Care Med 2017; 195:425-437. [PMID: 27627135 PMCID: PMC5803657 DOI: 10.1164/rccm.201606-1226pp] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/08/2016] [Indexed: 12/21/2022] Open
Affiliation(s)
- Soni Savai Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL, Giessen, Germany
- Justus Liebig University, Giessen, Germany; and
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL, Giessen, Germany
- Justus Liebig University, Giessen, Germany; and
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL, Giessen, Germany
- Justus Liebig University, Giessen, Germany; and
| | - Elena A. Goncharova
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
123
|
Cheng G, Wang X, Li Y, He L. Let-7a-transfected mesenchymal stem cells ameliorate monocrotaline-induced pulmonary hypertension by suppressing pulmonary artery smooth muscle cell growth through STAT3-BMPR2 signaling. Stem Cell Res Ther 2017; 8:34. [PMID: 28187784 PMCID: PMC5303212 DOI: 10.1186/s13287-017-0480-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/05/2017] [Accepted: 01/12/2017] [Indexed: 12/12/2022] Open
Abstract
Background Cell-based gene therapy has become a subject of interest for the treatment of pulmonary arterial hypertension (PAH), a devastating disease characterized by pulmonary artery smooth muscle cell (PASMC) hyperplasia. Mesenchymal stem cells (MSCs) have been recently acknowledged as a potential cell vector for gene therapy. Here, we investigated the effect of MSC-based let-7a for PAH. Methods After isolation and identification of MSCs from rat bone marrow, cells were infected with recombinant adenovirus vector Ad-let-7a. Lewis rats were subcutaneously injected with monocrotaline (MCT) to induce PAH, followed by the administration of MSCs, MSCs-NC (miR-control), or MSC-let-7a, respectively. Then, right ventricular systolic pressure (RVSP), right ventricular hypertrophy, and pulmonary vascular remodeling were evaluated. Rat pulmonary artery smooth muscle cells (rPASMCs) under hypoxia were co-cultured with MSCs or MSC-let-7a. Cell proliferation and apoptosis were separately determined by 3H thymidine incorporation and flow cytometry analysis. The underlying mechanism was also investigated. Results MSC transplantation enhanced let-7a levels in MCT-induced PAH rats. After injection with MSC-let-7a, RVSP, right ventricular hypertrophy, and pulmonary vascular remodeling were notably ameliorated, indicating a protective effect of MSC-let-7a against PAH. When co-cultured with MSC-let-7a, hypoxia-triggered PASMC proliferation was obviously attenuated, concomitant with the decrease in cell proliferation-associated proteins. Simultaneously, the resistance of PASMCs to apoptosis was remarkably abrogated by MSC-let-7a administration. A mechanism assay revealed that MSC-let-7a restrained the activation of signal transducers and activators of transcription 3 (STAT3) and increased its downstream bone morphogenetic protein receptor 2 (BMPR2) expression. Importantly, preconditioning with BMPR2 siRNA dramatically abated the suppressive effects of MSC-let-7a on PASMC proliferation and apoptosis resistance. Conclusions Collectively, this study suggests that MSCs modified with let-7a may ameliorate the progression of PAH by inhibiting PASMC growth through the STAT3-BMPR2 signaling, supporting a promising therapeutic strategy for PAH patients.
Collapse
Affiliation(s)
- Gesheng Cheng
- Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xingye Wang
- Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Yongxin Li
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Lu He
- Department of Cardiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| |
Collapse
|
124
|
Targeting Neurohormonal Activation in Pulmonary Arterial Hypertension. JACC Basic Transl Sci 2017; 2:36-38. [PMID: 30167553 PMCID: PMC6113518 DOI: 10.1016/j.jacbts.2016.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
125
|
Detweiler ND, Song L, McClenahan SJ, Versluis RJ, Kharade SV, Kurten RC, Rhee SW, Rusch NJ. BK channels in rat and human pulmonary smooth muscle cells are BKα-β 1 functional complexes lacking the oxygen-sensitive stress axis regulated exon insert. Pulm Circ 2017; 6:563-575. [PMID: 28090300 DOI: 10.1086/688838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A loss of K+ efflux in pulmonary arterial smooth muscle cells (PASMCs) contributes to abnormal vasoconstriction and PASMC proliferation during pulmonary hypertension (PH). Activation of high-conductance Ca2+-activated (BK) channels represents a therapeutic strategy to restore K+ efflux to the affected PASMCs. However, the properties of BK channels in PASMCs-including sensitivity to BK channel openers (BKCOs)-are poorly defined. The goal of this study was to compare the properties of BK channels between PASMCs of normoxic (N) and chronic hypoxic (CH) rats and then explore key findings in human PASMCs. Polymerase chain reaction results revealed that 94.3% of transcripts encoding BKα pore proteins in PASMCs from N rats represent splice variants lacking the stress axis regulated exon insert, which confers oxygen sensitivity. Subsequent patch-clamp recordings from inside-out (I-O) patches confirmed a dense population of BK channels insensitive to hypoxia. The BK channels were highly activated by intracellular Ca2+ and the BKCO lithocholate; these responses require BKα-β1 subunit coupling. PASMCs of CH rats with established PH exhibited a profound overabundance of the dominant oxygen-insensitive BKα variant. Importantly, human BK (hBK) channels in PASMCs from human donor lungs also represented the oxygen-insensitive BKα variant activated by BKCOs. The hBK channels showed significantly enhanced Ca2+ sensitivity compared with rat BK channels. We conclude that rat BK and hBK channels in PASMCs are oxygen-insensitive BKα-β1 complexes highly sensitive to Ca2+ and the BKCO lithocholate. BK channels are overexpressed in PASMCs of a rat model of PH and may provide an abundant target for BKCOs designed to restore K+ efflux.
Collapse
Affiliation(s)
- Neil D Detweiler
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Li Song
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Samantha J McClenahan
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Rachel J Versluis
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sujay V Kharade
- Department of Anesthesiology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard C Kurten
- Department of Physiology and Biophysics and Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, USA
| | - Sung W Rhee
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
126
|
Guignabert C, Bailly S, Humbert M. Restoring BMPRII functions in pulmonary arterial hypertension: opportunities, challenges and limitations. Expert Opin Ther Targets 2016; 21:181-190. [DOI: 10.1080/14728222.2017.1275567] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Christophe Guignabert
- INSERM UMR_S 999, Le Plessis-Robinson, France
- Univ. Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Sabine Bailly
- INSERM U1036, Grenoble, France
- Laboratoire Biologie du Cancer et de l’Infection, Commissariat à l’Énergie Atomique et aux Energies Alternatives, Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
- Université Grenoble-Alpes, Grenoble, France
| | - Marc Humbert
- INSERM UMR_S 999, Le Plessis-Robinson, France
- Univ. Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
- AP-HP, Service de Pneumologie, Centre de Référence de l’Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital de Bicêtre, France
| |
Collapse
|
127
|
Lu Z, Li S, Zhao S, Fa X. Upregulated miR-17 Regulates Hypoxia-Mediated Human Pulmonary Artery Smooth Muscle Cell Proliferation and Apoptosis by Targeting Mitofusin 2. Med Sci Monit 2016; 22:3301-8. [PMID: 27640178 PMCID: PMC5029176 DOI: 10.12659/msm.900487] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a fatal disease characterized by impaired regulation of pulmonary artery vascular growth and remodeling. Aberrant expression of miR-17 has been shown to be involved in the pathogenesis of PAH, but its underlying molecular mechanism has not been elucidated. MATERIAL AND METHODS Mitofusin 2 (MFN2) expression was determined by qRT-PCR. The protein expression levels of MFN2, proliferating cell nuclear antigen (PCNA), and pro-apoptotic protein cleaved Caspase-3 were measured using Western blot analysis. Cell proliferation and apoptosis were assessed by CellTiter-Glo reagent and flow cytometry, respectively. Caspase-3/7 activity was measured using an Apo-ONE Homogeneous Caspase-3/7 assay kit. The regulation of miR-17 on MFN2 expression was assessed using luciferase reporter assay system. RESULTS miR-17 expression was upregulated in human pulmonary artery smooth muscle cells (hPASMCs) treated with hypoxia and lung tissues of PAH patients. Inhibition of miR-17 suppressed hypoxia-induced proliferation and promoted apoptosis in hPASMCs. miR-17 inhibited MFN2 expression by binding to its 3'-UTR. Decreased cell viability and increased apoptosis and Caspase-3 activity were observed in the anti-miR-17 + siNC group compared with the anti-miR-NC + siNC group. The expression of cleaved Caspase-3 was upregulated and the expression of PCNA was downregulated in the anti-miR-17 + siNC group. Moreover, these alterations were attenuated by knockdown of MFN2. CONCLUSIONS miR-17 regulates proliferation and apoptosis in hPASMCs through MFN2 modulation. We found that miR-17 acts as a potential regulator of proliferation and apoptosis of hPASMCs, and that it might be developed as a promising new strategy for the treatment of PAH.
Collapse
Affiliation(s)
- Zheng Lu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Sujun Li
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Shunxin Zhao
- Department of Intensive Care Unit (ICU), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Xianen Fa
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
128
|
de Raaf MA, Herrmann FE, Schalij I, de Man FS, Vonk-Noordegraaf A, Guignabert C, Wollin L, Bogaard HJ. Tyrosine kinase inhibitor BIBF1000 does not hamper right ventricular pressure adaptation in rats. Am J Physiol Heart Circ Physiol 2016; 311:H604-12. [DOI: 10.1152/ajpheart.00656.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 06/20/2016] [Indexed: 01/05/2023]
Abstract
BIBF1000 is a small molecule tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), and platelet-derived growth factor receptor (PDGFR) and is a powerful inhibitor of fibrogenesis. BIBF1000 is very similar to BIBF1120 (nintedanib), a drug recently approved for the treatment of idiopathic pulmonary fibrosis (IPF). A safety concern pertaining to VEGFR, FGFR, and PDGFR inhibition is the possible interference with right ventricular (RV) responses to an increased afterload, which could adversely affect clinical outcome in patients with IPF who developed pulmonary hypertension. We tested the effect of BIBF1000 on the adaptation of the RV in rats subjected to mechanical pressure overload. BIBF1000 was administered for 35 days in pulmonary artery-banded (PAB) rats. RV adaptation was assessed by echocardiography, pressure volume loop analysis, histology, and determination of atrial natriuretic peptide (ANP) expression. BIBF1000 treatment resulted in growth attenuation but had no effects on RV function after PAB, given absence of changes in cardiac index, end-systolic elastance, connective tissue disposition, and capillary density. We conclude that, in this experimental model of increased afterload, combined VEGFR, FGFR, and PDGFR inhibition does not hamper RV adaptation to pressure overload.
Collapse
Affiliation(s)
- Michiel Alexander de Raaf
- Department of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, School of Medicine, Kremlin-Bicêtre, France
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | | | - Ingrid Schalij
- Department of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - Frances S. de Man
- Department of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - Anton Vonk-Noordegraaf
- Department of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - Christophe Guignabert
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, School of Medicine, Kremlin-Bicêtre, France
| | - Lutz Wollin
- Boehringer Ingelheim Pharma, Dept. Respiratory Diseases Research, Biberach, Germany
| | - Harm Jan Bogaard
- Department of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| |
Collapse
|
129
|
Modafinil improves monocrotaline-induced pulmonary hypertension rat model. Pediatr Res 2016; 80:119-27. [PMID: 26959484 DOI: 10.1038/pr.2016.38] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) progressively leads to increases in pulmonary vasoconstriction. Modafinil plays a role in vasorelaxation and blocking KCa3.1 channel with a result of elevating intracellular cyclic adenosine monophosphate (cAMP) levels. The purpose of this study is to evaluate the effects on modafinil in monocrotaline (MCT)-induced PAH rat. METHODS The rats were separated into three groups: the control group, the monocrotaline (M) group (MCT 60 mg/kg), and the modafinil (MD) group (MCT 60 mg/kg + modafinil). RESULTS Reduced right ventricular pressure (RVP) was observed in the MD group. Right ventricular hypertrophy was improved in the MD group. Reduced number of intra-acinar pulmonary arteries and medial wall thickness were noted in the MD group. After the administration of modafinil, protein expressions of endothelin-1 (ET-1), endothelin receptor A (ERA) and KCa3.1 channel were significantly reduced. Modafinil suppressed pulmonary artery smooth muscle cell (PASMC) proliferation via cAMP and KCa3.1 channel. Additionally, we confirmed protein expressions such as Bcl-2-associated X, vascular endothelial growth factor, tumor necrosis factor-α, and interleukin-6 were reduced in the MD group. CONCLUSION Modafinil improved PAH by vasorelaxation and a decrease in medial thickening via ET-1, ERA, and KCa3.1 down regulation. This is a meaningful study of a modafinil in PAH model.
Collapse
|
130
|
Huertas A, Phan C, Bordenave J, Tu L, Thuillet R, Le Hiress M, Avouac J, Tamura Y, Allanore Y, Jovan R, Sitbon O, Guignabert C, Humbert M. Regulatory T Cell Dysfunction in Idiopathic, Heritable and Connective Tissue-Associated Pulmonary Arterial Hypertension. Chest 2016; 149:1482-93. [DOI: 10.1016/j.chest.2016.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/27/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022] Open
|
131
|
Voelkel NF, Tamosiuniene R, Nicolls MR. Challenges and opportunities in treating inflammation associated with pulmonary hypertension. Expert Rev Cardiovasc Ther 2016; 14:939-51. [PMID: 27096622 DOI: 10.1080/14779072.2016.1180976] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Inflammatory cells are present in the lungs from patients with many, if not all, forms of severe pulmonary hypertension. AREAS COVERED Historically the first inflammatory cell identified in the pulmonary vascular lesions was the mast cell. T and B lymphocytes, as well as macrophages, are present in and around the pulmonary arterioles and many patients have elevated blood levels of interleukin 1 and 6; some patients show elevated levels of leukotriene B4. An overlap between collagen-vascular disease-associated pulmonary arterial hypertension (PAH) and idiopathic PAH exists, yet only a few studies have been designed that evaluate the effect of anti-inflammatory treatments. Here we review the pertinent data that connect PAH and inflammation/autoimmune dysregulation and evaluate experimental models of severe PAH with an emphasis on the Sugen/athymic rat model of severe PAH. Expert commentary: We postulate that there are several inflammatory phenotypes and predict that there will be several anti-inflammatory treatment strategies for severe PAH.
Collapse
Affiliation(s)
- Norbert F Voelkel
- a School of Pharmacy , Virginia Commonwealth University , Richmond , VA , USA
| | - Rasa Tamosiuniene
- b Pulmonary and Critical Care Medicine Division , Stanford University , Palo Alto , CA , USA
| | - Mark R Nicolls
- b Pulmonary and Critical Care Medicine Division , Stanford University , Palo Alto , CA , USA
| |
Collapse
|
132
|
Francis M, Xu N, Zhou C, Stevens T. Transient Receptor Potential Channel 4 Encodes a Vascular Permeability Defect and High-Frequency Ca(2+) Transients in Severe Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1701-9. [PMID: 27083517 DOI: 10.1016/j.ajpath.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 11/19/2022]
Abstract
The canonical transient receptor potential channel 4 (TRPC4) comprises an endothelial store-operated Ca(2+) entry channel, and TRPC4 inactivation confers a survival benefit in pulmonary arterial hypertension (PAH). Endothelial Ca(2+) signals mediated by TRPC4 enhance vascular permeability in vitro, but the contribution of TRPC4-dependent Ca(2+) signals to the regulation of endothelial permeability in PAH is poorly understood. We tested the hypothesis that TRPC4 increases vascular permeability and alters the frequency of endothelial Ca(2+) transients in PAH. We measured permeability in isolated lungs, and found that TRPC4 exaggerated permeability responses to thapsigargin in Sugen/hypoxia-treated PAH rats. We compared endothelial Ca(2+) activity of wild-type with TRPC4-knockout rats using confocal microscopy, and evaluated how Ca(2+) signals were influenced in response to thapsigargin and sequential treatment with acetylcholine. We found that thapsigargin-stimulated Ca(2+) signals were increased in PAH, and recovered by TRPC4 inactivation. Store depletion revealed bimodal Ca(2+) responses to acetylcholine, with both short- and long-duration populations. Our results show that TRPC4 underlies an exaggerated endothelial permeability response in PAH. Furthermore, TRPC4 increased the frequency of endothelial Ca(2+) transients in severe PAH, suggesting that TRPC4 provides a Ca(2+) source associated with endothelial dysfunction in the pathophysiology of PAH. This phenomenon represents a new facet of the etiology of PAH, and may contribute to PAH vasculopathy by enabling inflammatory mediator flux across the endothelial barrier.
Collapse
Affiliation(s)
- Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Ningyong Xu
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Chun Zhou
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama; Center for Lung Biology, University of South Alabama, Mobile, Alabama; Department of Medicine, University of South Alabama, Mobile, Alabama.
| |
Collapse
|
133
|
Benza RL, Gomberg-Maitland M, Demarco T, Frost AE, Torbicki A, Langleben D, Pulido T, Correa-Jaque P, Passineau MJ, Wiener HW, Tamari M, Hirota T, Kubo M, Tiwari HK. Endothelin-1 Pathway Polymorphisms and Outcomes in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2016; 192:1345-54. [PMID: 26252367 DOI: 10.1164/rccm.201501-0196oc] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is a progressive fatal disease. Variable response and tolerability to PAH therapeutics suggests that genetic differences may influence outcomes. The endothelin pathway is central to pulmonary vascular function, and several polymorphisms and/or mutations in the genes coding for endothelin (ET)-1 and its receptors correlate with the clinical manifestations of other diseases. OBJECTIVES To examine the interaction of ET-1 pathway polymorphisms and treatment responses of patients with PAH treated with ET receptor antagonists (ERAs). METHODS A total of 1,198 patients with PAH were prospectively enrolled from 45 U.S. and Canadian pulmonary hypertension centers or retrospectively from global sites participating in the STRIDE (Sitaxsentan To Relieve Impaired Exercise) trials. Comprehensive objective measures including a 6-minute-walk test, Borg dyspnea score, functional class, and laboratory studies were completed at baseline, before the initiation of ERAs, and repeated serially. Single-nucleotide polymorphisms from ET-1 pathway candidate genes were selected from a completed genome-wide association study performed on the study cohort. MEASUREMENTS AND MAIN RESULTS Patient efficacy outcomes were analyzed for a relationship between ET-1 pathway polymorphisms and clinical efficacy using predefined, composite positive and negative outcome measures in 715 European descent samples. A single-nucleotide polymorphism (rs11157866) in the G-protein alpha and gamma subunits gene was significantly associated, accounting for multiple testing, with a combined improvement in functional class and 6-minute-walk distance at 12 and 18 months and marginally significant at 24 months. CONCLUSIONS ET-1 pathway associated polymorphisms may influence the clinical efficacy of ERA therapy for PAH. Further prospective studies are needed.
Collapse
Affiliation(s)
- Raymond L Benza
- 1 Division of Cardiovascular Disease, Department of Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Mardi Gomberg-Maitland
- 2 Division of Cardiovascular Disease, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Teresa Demarco
- 3 Division of Cardiovascular Disease, Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Adam Torbicki
- 5 Department of Pulmonary Circulation and Thromboembolic Diseases, Centre of Postgraduate Medical Education, ECZ, Otwock, Poland
| | - David Langleben
- 6 Department of Medicine, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Canada
| | - Tomas Pulido
- 7 Cardiopulmonary Department, National Heart Institute, Mexico City, Mexico
| | - Priscilla Correa-Jaque
- 1 Division of Cardiovascular Disease, Department of Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Michael J Passineau
- 1 Division of Cardiovascular Disease, Department of Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | | | - Mayumi Tamari
- 9 Institute of Physical and Chemical Research (RIKEN), Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomomitsu Hirota
- 9 Institute of Physical and Chemical Research (RIKEN), Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michiaki Kubo
- 9 Institute of Physical and Chemical Research (RIKEN), Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hemant K Tiwari
- 10 Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
134
|
Li G, Tang L, Jia P, Zhao J, Liu D, Liu B. Elevated Plasma Connective Tissue Growth Factor Levels in Children with Pulmonary Arterial Hypertension Associated with Congenital Heart Disease. Pediatr Cardiol 2016; 37:714-21. [PMID: 26714814 DOI: 10.1007/s00246-015-1335-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/15/2015] [Indexed: 12/23/2022]
Abstract
We aimed to investigate plasma connective tissue growth factor (CTGF) levels in pulmonary arterial hypertension (PAH) associated with congenital heart disease (CHD) (PAH-CHD) in children and the relationships of CTGF with hemodynamic parameters. Plasma CTGF levels were calculated in 30 children with CHD, 30 children with PAH-CHD and 25 health volunteers, using the subtraction method. Cardiac catheterization was performed to measure clinical hemodynamic parameters. Plasma CTGF levels were significantly higher in PAH-CHD than in those with CHD and health volunteers (p < 0.01). In cyanotic PAH-CHD, plasma CTGF levels were significantly elevated compared with acyanotic PAH-CHD in the same group (p < 0.05). Plasma CTGF levels showed positive correlation with B-type natriuretic peptide (BNP) in PAH-CHD (r = 0.475, p < 0.01), while oxygen saturation was inversely related to plasma CTGF levels (r = -0.436, p < 0.05). There was no correlation between CTGF and hemodynamic parameters. Even though the addition of CTGF to BNP did not significantly increase area under curve for diagnosis of PAH-CHD compared with BNP alone (p > 0.05), it revealed a moderately better specificity, positive predictive value and positive likelihood ratio than BNP alone. Plasma CTGF levels could be a promising diagnostic biomarker for PAH-CHD in children.
Collapse
Affiliation(s)
- Gang Li
- Department of Pediatrics, The First Affiliated Hospital of Sichuan Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan, China
| | - Li Tang
- Medical Research Center, The First Affiliated Hospital of Sichuan Medical University, Luzhou, 646000, Sichuan, China
| | - Peng Jia
- Department of Pediatrics, The First Affiliated Hospital of Sichuan Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan, China
| | - Jian Zhao
- Department of Pediatrics, The First Affiliated Hospital of Sichuan Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan, China
| | - Dong Liu
- Department of Pediatrics, The First Affiliated Hospital of Sichuan Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan, China
| | - Bin Liu
- Department of Pediatrics, The First Affiliated Hospital of Sichuan Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
135
|
Happé CM, de Raaf MA, Rol N, Schalij I, Vonk-Noordegraaf A, Westerhof N, Voelkel NF, de Man FS, Bogaard HJ. Pneumonectomy combined with SU5416 induces severe pulmonary hypertension in rats. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1088-97. [PMID: 27036867 DOI: 10.1152/ajplung.00023.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/23/2016] [Indexed: 11/22/2022] Open
Abstract
The SU5416 + hypoxia (SuHx) rat model is a commonly used model of severe pulmonary arterial hypertension. While it is known that exposure to hypoxia can be replaced by another type of hit (e.g., ovalbumin sensitization) it is unknown whether abnormal pulmonary blood flow (PBF), which has long been known to invoke pathological changes in the pulmonary vasculature, can replace the hypoxic exposure. Here we studied if a combination of SU5416 administration combined with pneumonectomy (PNx), to induce abnormal PBF in the contralateral lung, is sufficient to induce severe pulmonary arterial hypertension (PAH) in rats. Sprague Dawley rats were subjected to SuPNx protocol (SU5416 + combined with left pneumonectomy) or standard SuHx protocol, and comparisons between models were made at week 2 and 6 postinitiation. Both SuHx and SuPNx models displayed extensive obliterative vascular remodeling leading to an increased right ventricular systolic pressure at week 6 Similar inflammatory response in the lung vasculature of both models was observed alongside increased endothelial cell proliferation and apoptosis. This study describes the SuPNx model, which features severe PAH at 6 wk and could serve as an alternative to the SuHx model. Our study, together with previous studies on experimental models of pulmonary hypertension, shows that the typical histopathological findings of PAH, including obliterative lesions, inflammation, increased cell turnover, and ongoing apoptosis, represent a final common pathway of a disease that can evolve as a consequence of a variety of insults to the lung vasculature.
Collapse
Affiliation(s)
- C M Happé
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands; Department of Pulmonology, VU University Medical Center, Amsterdam, the Netherlands; and
| | - M A de Raaf
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands; Department of Pulmonology, VU University Medical Center, Amsterdam, the Netherlands; and
| | - N Rol
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands; Department of Pulmonology, VU University Medical Center, Amsterdam, the Netherlands; and
| | - I Schalij
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands; Department of Pulmonology, VU University Medical Center, Amsterdam, the Netherlands; and
| | - A Vonk-Noordegraaf
- Department of Pulmonology, VU University Medical Center, Amsterdam, the Netherlands; and
| | - N Westerhof
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - N F Voelkel
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - F S de Man
- Department of Pulmonology, VU University Medical Center, Amsterdam, the Netherlands; and
| | - H J Bogaard
- Department of Pulmonology, VU University Medical Center, Amsterdam, the Netherlands; and
| |
Collapse
|
136
|
Liu Y, Liu G, Zhang H, Wang J. MiRNA-199a-5p influences pulmonary artery hypertension via downregulating Smad3. Biochem Biophys Res Commun 2016; 473:859-866. [PMID: 27038547 DOI: 10.1016/j.bbrc.2016.03.140] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/29/2016] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) play important roles in pulmonary artery hypertension (PAH). Recently, it has been reported that miR-199a-5p participates in the progression of chronic obstructive pulmonary disease, ventricular hypertrophy and heart failure. However, the roles of miR-199a-5p in PAH are still unclear. In the present study, miR-199a-5p was investigated in PAH rat models and in human pulmonary artery smooth muscle cells (HPASMCs) and endothelial cells (HPAECs). The expression of miR-199a-5p was significantly increased following PAH induction, and anti-miR-199a-5p could increase the nitric oxide (NO) level and decrease the PAH-induced upregulation of pulmonary artery pressure and right ventricular hypertrophy. Moreover, in HPASMCs and HPAECs, miR-199a-5p overexpression could inhibit the level of NO and promote the concentration of Ca(2+), but anti-miR-199a-5p showed opposite results. Further analysis demonstrated that miR-199a-5p attenuated the expression of Smad3. Importantly, Smad3 was confirmed to be the target gene of miR-199a-5p using dual-luciferase reporter assay. Mechanism analyses revealed that the downregulation of NO and the upregulation of Ca(2+) caused by miR-199a-5p were all reversed by Smad3 overexpression in HPASMCs and HPAECs. Moreover, in PAH model, Smad3, p-Smad3 and Smad4 were all downregulated in lung tissues, and SIS3 (Smad3 inhibitor) could reverse the effects of anti-miR-199a-5p in PAH rats. Our date suggest that miR-199a-5p may function as a regulator of PAH by targeting Smad3, indicating a novel therapeutic strategy for patients with PAH.
Collapse
Affiliation(s)
- Yuanhua Liu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of ZhengZhou University, ZhengZhou 450052, China
| | - Guanghui Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of ZhengZhou University, ZhengZhou 450052, China
| | - Hui Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of ZhengZhou University, ZhengZhou 450052, China
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of ZhengZhou University, ZhengZhou 450052, China.
| |
Collapse
|
137
|
Abstract
In patients with pulmonary hypertension (PH), the primary cause of death is right ventricular (RV) failure. Improvement in RV function is therefore one of the most important treatment goals. In order to be able to reverse RV dysfunction and also prevent RV failure, a detailed understanding of the pathobiology of RV failure and the underlying mechanisms concerning the transition from a pressure-overloaded adapted right ventricle to a dilated and failing right ventricle is required. Here, we propose that insufficient RV contractility, myocardial fibrosis, capillary rarefaction, and a disturbed metabolism are important features of a failing right ventricle. Furthermore, an overview is provided about the potential direct RV effects of PH-targeted therapies and the effects of RV-directed medical treatments.
Collapse
Affiliation(s)
- Mariëlle C van de Veerdonk
- Department of Pulmonary Diseases, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Harm J Bogaard
- Department of Pulmonary Diseases, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Norbert F Voelkel
- The Victoria Johnson Pulmonary Research Laboratory, Virginia Commonwealth University, 1220 East Broad Street, Richmond, VA, 23298, USA.
| |
Collapse
|
138
|
|
139
|
Le Hiress M, Tu L, Ricard N, Phan C, Thuillet R, Fadel E, Dorfmüller P, Montani D, de Man F, Humbert M, Huertas A, Guignabert C. Proinflammatory Signature of the Dysfunctional Endothelium in Pulmonary Hypertension. Role of the Macrophage Migration Inhibitory Factor/CD74 Complex. Am J Respir Crit Care Med 2016. [PMID: 26203495 DOI: 10.1164/rccm.201402-0322oc] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Inflammation and endothelial dysfunction are considered two primary instigators of pulmonary arterial hypertension (PAH). CD74 is a receptor for the proinflammatory cytokine macrophage migration inhibitory factor (MIF). This ligand/receptor complex initiates survival pathways and cell proliferation, and it triggers the synthesis and secretion of major proinflammatory factors and cell adhesion molecules. OBJECTIVES We hypothesized that the MIF/CD74 signaling pathway is overexpressed in idiopathic PAH (iPAH) and contributes to a proinflammatory endothelial cell (EC) phenotype. METHODS Primary early passage cultures of human ECs isolated from lung tissues obtained from patients with iPAH and controls were examined for their ability to secrete proinflammatory mediators and bind inflammatory cells with or without modulation of the functional activities of the MIF/CD74 complex. In addition, we tested the efficacies of curative treatments with either the MIF antagonist ISO-1 or anti-CD74 neutralizing antibodies on the aberrant proinflammatory EC phenotype in vitro and in vivo and on the progression of monocrotaline-induced pulmonary hypertension. MEASUREMENTS AND MAIN RESULTS In human lung tissues, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expressions are markedly up-regulated in the endothelium of distal iPAH pulmonary arteries. Circulating MIF levels are increased in the serum of patients with PAH compared with control subjects, and T-cell lymphocytes represent a source of this overabundance. In addition, CD74 is highly expressed in the endothelium of muscularized pulmonary arterioles and in cultured pulmonary ECs from iPAH, contributing to an exaggerated recruitment of peripheral blood mononuclear cells to pulmonary iPAH ECs. Finally, we found that curative treatments with the MIF antagonist ISO-1 or anti-CD74 neutralizing antibodies partially reversed development of pulmonary hypertension in rats and substantially reduced inflammatory cell infiltration. CONCLUSIONS We report here that CD74 and MIF are markedly increased and activated in patients with iPAH, contributing to the abnormal proinflammatory phenotype of pulmonary ECs in iPAH.
Collapse
Affiliation(s)
- Morane Le Hiress
- 1 INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,2 Université Paris-Sud and Université Paris-Saclay, School of Médecine, Kremlin-Bicêtre, France
| | - Ly Tu
- 1 INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,2 Université Paris-Sud and Université Paris-Saclay, School of Médecine, Kremlin-Bicêtre, France
| | - Nicolas Ricard
- 1 INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,2 Université Paris-Sud and Université Paris-Saclay, School of Médecine, Kremlin-Bicêtre, France
| | - Carole Phan
- 1 INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,2 Université Paris-Sud and Université Paris-Saclay, School of Médecine, Kremlin-Bicêtre, France
| | - Raphaël Thuillet
- 1 INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,2 Université Paris-Sud and Université Paris-Saclay, School of Médecine, Kremlin-Bicêtre, France
| | - Elie Fadel
- 1 INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,2 Université Paris-Sud and Université Paris-Saclay, School of Médecine, Kremlin-Bicêtre, France
| | - Peter Dorfmüller
- 1 INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,2 Université Paris-Sud and Université Paris-Saclay, School of Médecine, Kremlin-Bicêtre, France
| | - David Montani
- 1 INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,2 Université Paris-Sud and Université Paris-Saclay, School of Médecine, Kremlin-Bicêtre, France.,3 AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital de Bicêtre, Kremlin-Bicêtre, France; and
| | - Frances de Man
- 4 Department of Pulmonology, VU University Medical Center/Institute of Cardiovascular Research, Amsterdam, the Netherlands
| | - Marc Humbert
- 1 INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,2 Université Paris-Sud and Université Paris-Saclay, School of Médecine, Kremlin-Bicêtre, France.,3 AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital de Bicêtre, Kremlin-Bicêtre, France; and
| | - Alice Huertas
- 1 INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,2 Université Paris-Sud and Université Paris-Saclay, School of Médecine, Kremlin-Bicêtre, France.,3 AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital de Bicêtre, Kremlin-Bicêtre, France; and
| | - Christophe Guignabert
- 1 INSERM UMR_S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,2 Université Paris-Sud and Université Paris-Saclay, School of Médecine, Kremlin-Bicêtre, France
| |
Collapse
|
140
|
Reconciling paradigms of abnormal pulmonary blood flow and quasi-malignant cellular alterations in pulmonary arterial hypertension. Vascul Pharmacol 2016; 83:17-25. [PMID: 26804008 DOI: 10.1016/j.vph.2016.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/19/2016] [Indexed: 01/29/2023]
Abstract
In pulmonary arterial hypertension (PAH) structural and functional abnormalities of the small lung vessels interact and lead to a progressive increase in pulmonary vascular resistance and right heart failure. A current pathobiological concept characterizes PAH as a 'quasi-malignant' disease focusing on cancer-like alterations in endothelial cells (EC) and the importance of their acquired apoptosis-resistant, hyper-proliferative phenotype in the process of vascular remodeling. While changes in pulmonary blood flow (PBF) have been long-since recognized and linked to the development of PAH, little is known about a possible relationship between an altered PBF and the quasi-malignant cell phenotype in the pulmonary vascular wall. This review summarizes recognized and hypothetical effects of an abnormal PBF on the pulmonary vascular bed and links these to quasi-malignant changes found in the pulmonary endothelium. Here we describe that abnormal PBF does not only trigger a pulmonary vascular cell growth program, but may also maintain the cancer-like phenotype of the endothelium. Consequently, normalization of PBF and EC response to abnormal PBF may represent a treatment strategy in patients with established PAH.
Collapse
|
141
|
Hay BR, Pugh ME, Robbins IM, Hemnes AR. Parenteral Prostanoid Use at a Tertiary Referral Center: A Retrospective Cohort Study. Chest 2016; 149:660-6. [PMID: 26378379 DOI: 10.1378/chest.15-1051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/30/2015] [Accepted: 09/01/2015] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Evidence-based guidelines recommend the use of parenteral prostaglandin (PP) therapy in patients with advanced pulmonary arterial hypertension (PAH). Despite this, many patients with PAH die without PP therapy. We sought to examine the frequency of PP use at a large referral center and characterize patients with PAH who died without receiving PP. METHODS We conducted a single-center retrospective cohort analysis of consecutive patients with PAH between 2008 and 2012. Clinical data and cause of death were compared between patients with PAH treated with PP (PAH-PP) and those who were not but were not documented as poor PP candidates (PAH-nonPP). RESULTS Of the 101 patients who received a diagnosis of PAH and died, 61 received PP therapy. Of the 40 patients not treated with PP, 10 did not have documented evaluations for PP therapy (PAH-nonPP) whereas 30 were not considered candidates or refused PP therapy. Compared with PAH-PP, PAH-nonPP had a longer 6-min walk distance, had a longer duration between time of diagnosis and date of worse functional class visit, were less likely to be diagnosed as functional class IV, and had significantly lower right atrial pressure. None of the PAH-nonPP died of progressive PAH. CONCLUSIONS We found that most patients who die with PAH are evaluated for PP therapy at a large referral center and the small minority of PAH-nonPP tended to have less severe disease and die of non-PAH-related causes. Our data suggest that at large pulmonary hypertension (PH) centers, the vast majority of patients who are appropriate candidates receive PP therapy.
Collapse
Affiliation(s)
- Bryan R Hay
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University Medical Center, Nashville, TN
| | - Meredith E Pugh
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ivan M Robbins
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
142
|
Szulcek R, van Bezu J, Boonstra J, van Loon JJWA, van Nieuw Amerongen GP. Transient Intervals of Hyper-Gravity Enhance Endothelial Barrier Integrity: Impact of Mechanical and Gravitational Forces Measured Electrically. PLoS One 2015; 10:e0144269. [PMID: 26637177 PMCID: PMC4670102 DOI: 10.1371/journal.pone.0144269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/16/2015] [Indexed: 11/24/2022] Open
Abstract
Background Endothelial cells (EC) guard vascular functions by forming a dynamic barrier throughout the vascular system that sensitively adapts to ‘classical’ biomechanical forces, such as fluid shear stress and hydrostatic pressure. Alterations in gravitational forces might similarly affect EC integrity, but remain insufficiently studied. Methods In an unique approach, we utilized Electric Cell-substrate Impedance Sensing (ECIS) in the gravity-simulators at the European Space Agency (ESA) to study dynamic responses of human EC to simulated micro- and hyper-gravity as well as to classical forces. Results Short intervals of micro- or hyper-gravity evoked distinct endothelial responses. Stimulated micro-gravity led to decreased endothelial barrier integrity, whereas hyper-gravity caused sustained barrier enhancement by rapid improvement of cell-cell integrity, evidenced by a significant junctional accumulation of VE-cadherin (p = 0.011), significant enforcement of peripheral F-actin (p = 0.008) and accompanied by a slower enhancement of cell-matrix interactions. The hyper-gravity triggered EC responses were force dependent and nitric-oxide (NO) mediated showing a maximal resistance increase of 29.2±4.8 ohms at 2g and 60.9±6.2 ohms at 4g vs. baseline values that was significantly suppressed by NO blockage (p = 0.011). Conclusion In conclusion, short-term application of hyper-gravity caused a sustained improvement of endothelial barrier integrity, whereas simulated micro-gravity weakened the endothelium. In clear contrast, classical forces of shear stress and hydrostatic pressure induced either short-lived or no changes to the EC barrier. Here, ECIS has proven a powerful tool to characterize subtle and distinct EC gravity-responses due to its high temporal resolution, wherefore ECIS has a great potential for the study of gravity-responses such as in real space flights providing quantitative assessment of a variety of cell biological characteristics of any adherent growing cell type in an automated and continuous fashion.
Collapse
Affiliation(s)
- Robert Szulcek
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
- Department of Pulmonology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| | - Jan van Bezu
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Johannes Boonstra
- Deptartment of Cellular Architecture and Dynamics, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Jack J. W. A. van Loon
- Dutch Experiment Support Center (DESC), ESTEC, TEC-MMG-Lab, European Space Agency (ESA), Noordwijk, The Netherlands
- Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), Amsterdam, The Netherlands
| | - Geerten P. van Nieuw Amerongen
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
143
|
Chai S, Wang W, Liu J, Guo H, Zhang Z, Wang C, Wang J. Leptin knockout attenuates hypoxia-induced pulmonary arterial hypertension by inhibiting proliferation of pulmonary arterial smooth muscle cells. Transl Res 2015; 166:772-82. [PMID: 26470682 DOI: 10.1016/j.trsl.2015.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/07/2015] [Accepted: 09/18/2015] [Indexed: 11/19/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease characterized by excessive vascular smooth muscle cells proliferation in small pulmonary arteries, leading to elevation of pulmonary vascular resistance with consequent right ventricular (RV) failure and death. Recently, emerging evidence has shown that leptin signaling is involved in different cardiac pathologies; however, the role of leptin remains limited in the setting of PAH. Thus, in this study, we tested the hypothesis of direct involvement of leptin in the development of PAH. Our data show that leptin activity in plasma and protein level in the lung were higher in hypoxia- and monocrotaline-induced PAH models compared with control animals. Wild-type (WT) and C57BL/6J-Lep(ob) (ob/ob) male mice were exposed to normobaric hypoxia (10% O(2)) or normoxia (21% O(2)). After 2 and 4 weeks of chronic hypoxia exposure, WT mice developed PAH as reflected by the increased values of RV systolic pressure, RV hypertrophy index, the medial wall thickness of pulmonary arterioles, and muscularization of pulmonary arterioles. And, all these alterations were attenuated in ob/ob mice treated with hypoxia. Leptin could stimulate the proliferation of pulmonary arterial smooth muscle cells (PASMCs) by activating extracellular signal-regulated kinase (ERK), signal transducer and activator of transcription 3 (STAT3), and Akt pathways. These data suggest that the leptin signaling pathway is crucial for the development of PAH. Leptin activates ERK, STAT, and Akt pathways and subsequently PASMCs proliferation, providing new mechanistic information about hypoxia-induced PAH.
Collapse
Affiliation(s)
- SanBao Chai
- Department of Physiology, Capital Medical University, Beijing, P.R. China
| | - Wang Wang
- Department of Physiology, Capital Medical University, Beijing, P.R. China
| | - Jie Liu
- Department of Physiology, Capital Medical University, Beijing, P.R. China
| | - Huan Guo
- Department of Physiology, Capital Medical University, Beijing, P.R. China
| | - ZhiFei Zhang
- Department of Physiology, Capital Medical University, Beijing, P.R. China
| | - Chen Wang
- Department of Respiration, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Jun Wang
- Department of Physiology, Capital Medical University, Beijing, P.R. China.
| |
Collapse
|
144
|
Wang L, Li W, Yang Y, Wu W, Cai Q, Ma X, Xiong C, He J, Fang W. Quantitative assessment of right ventricular glucose metabolism in idiopathic pulmonary arterial hypertension patients: a longitudinal study. Eur Heart J Cardiovasc Imaging 2015; 17:1161-8. [DOI: 10.1093/ehjci/jev297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/13/2015] [Indexed: 11/13/2022] Open
|
145
|
Nanoliposomal Nitroglycerin Exerts Potent Anti-Inflammatory Effects. Sci Rep 2015; 5:16258. [PMID: 26584637 PMCID: PMC4653649 DOI: 10.1038/srep16258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022] Open
Abstract
Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify its anti-inflammatory effects and ameliorate adverse effects associated with high-dose NTG administration. Our findings reveal that NTG significantly inhibits human U937 cell adhesion to NO-deficient human microvascular ECs in vitro through an increase in endothelial NO and decrease in endothelial ICAM-1 clustering, as determined by NO analyzer, microfluorimetry, and immunofluorescence staining. Nanoliposomal NTG (NTG-NL) was formulated by encapsulating NTG within unilamellar lipid vesicles (DPhPC, POPC, Cholesterol, DHPE-Texas Red at molar ratio of 6:2:2:0.2) that were ~155 nm in diameter and readily uptaken by ECs, as determined by dynamic light scattering and quantitative fluorescence microscopy, respectively. More importantly, NTG-NL produced a 70-fold increase in NTG therapeutic efficacy when compared with free NTG while preventing excessive mitochondrial superoxide production associated with high NTG doses. Thus, these findings, which are the first to reveal the superior therapeutic effects of an NTG nanoformulation, provide the rationale for their detailed investigation for potentially superior vascular normalization therapies.
Collapse
|
146
|
Freund-Michel V, Cardoso Dos Santos M, Guignabert C, Montani D, Phan C, Coste F, Tu L, Dubois M, Girerd B, Courtois A, Humbert M, Savineau JP, Marthan R, Muller B. Role of Nerve Growth Factor in Development and Persistence of Experimental Pulmonary Hypertension. Am J Respir Crit Care Med 2015; 192:342-55. [PMID: 26039706 DOI: 10.1164/rccm.201410-1851oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
RATIONALE Pulmonary hypertension (PH) is characterized by a progressive elevation in mean pulmonary arterial pressure, often leading to right ventricular failure and death. Growth factors play significant roles in the pathogenesis of PH, and their targeting may therefore offer novel therapeutic strategies in this disease. OBJECTIVES To evaluate the nerve growth factor (NGF) as a potential new target in PH. METHODS Expression and/or activation of NGF and its receptors were evaluated in rat experimental PH induced by chronic hypoxia or monocrotaline and in human PH (idiopathic or associated with chronic obstructive pulmonary disease). Effects of exogenous NGF were evaluated ex vivo on pulmonary arterial inflammation and contraction, and in vitro on pulmonary vascular cell proliferation, migration, and cytokine secretion. Effects of NGF inhibition were evaluated in vivo with anti-NGF blocking antibodies administered both in rat chronic hypoxia- and monocrotaline-induced PH. MEASUREMENTS AND MAIN RESULTS Our results show increased expression of NGF and/or increased expression/activation of its receptors in experimental and human PH. Ex vivo/in vitro, we found out that NGF promotes pulmonary vascular cell proliferation and migration, pulmonary arterial hyperreactivity, and secretion of proinflammatory cytokines. In vivo, we demonstrated that anti-NGF blocking antibodies prevent and reverse PH in rats through significant reduction of pulmonary arterial inflammation, hyperreactivity, and remodeling. CONCLUSIONS This study highlights the critical role of NGF in PH. Because of the recent development of anti-NGF blocking antibodies as a possible new pain treatment, such a therapeutic strategy of NGF inhibition may be of interest in PH.
Collapse
Affiliation(s)
- Véronique Freund-Michel
- 1 University Bordeaux and.,2 INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | | | - Christophe Guignabert
- 3 Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France.,4 INSERM UMR-S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - David Montani
- 3 Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France.,4 INSERM UMR-S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,5 Centre de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, DHU Thorax Innovation, Assistance Publique Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France; and
| | - Carole Phan
- 3 Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France.,4 INSERM UMR-S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Florence Coste
- 1 University Bordeaux and.,2 INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,6 CHU de Bordeaux, Bordeaux, France
| | - Ly Tu
- 3 Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France.,4 INSERM UMR-S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Mathilde Dubois
- 1 University Bordeaux and.,2 INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Barbara Girerd
- 3 Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France.,4 INSERM UMR-S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,5 Centre de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, DHU Thorax Innovation, Assistance Publique Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France; and
| | - Arnaud Courtois
- 1 University Bordeaux and.,2 INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Marc Humbert
- 3 Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France.,4 INSERM UMR-S 999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France.,5 Centre de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, DHU Thorax Innovation, Assistance Publique Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France; and
| | - Jean-Pierre Savineau
- 1 University Bordeaux and.,2 INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Roger Marthan
- 1 University Bordeaux and.,2 INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,6 CHU de Bordeaux, Bordeaux, France
| | - Bernard Muller
- 1 University Bordeaux and.,2 INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| |
Collapse
|
147
|
Couperus LE, Vliegen HW, Henkens IR, Maan AC, Treskes RW, de Vries JK, Schouffoer AA, Swenne CA, Schalij MJ, Scherptong RWC. Electrocardiographic detection of pulmonary hypertension in patients with systemic sclerosis using the ventricular gradient. J Electrocardiol 2015; 49:60-8. [PMID: 26489821 DOI: 10.1016/j.jelectrocard.2015.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a leading cause of death in systemic sclerosis (SSc) patients. The current study assessed the ability of the ECG-derived ventricular gradient (VG-RVPO) to detect PH and predict all-cause mortality in PH patients with subtypes of SSc differing in the extent of multi-organ involvement. METHODS ECGs were obtained from 196 patients with limited and 77 patients with diffuse SSc included from our screening programme on cardiac complications. The association of the VG-RVPO with (1) the presence of PH, (2) conventional screening parameters and (3) survival in PH patients was assessed. RESULTS In limited SSc patients an elevated VG-RVPO corresponded with the presence of PH (-5±12 mV.ms vs -22±16 mV.ms, P<0.01), correlated significantly with conventional screening parameters and had a better diagnostic performance than the presence of a right heart axis (AUC 0.81 vs 0.60; P=0.04). These differences were not observed in patients with diffuse SSc. An elevated VG-RVPO was associated with decreased survival in all SSc patients with PH (3 year survival 30% vs 64%, P=0.02). CONCLUSION An elevated VG-RVPO is associated with PH in limited SSc patients and with decreased survival in all SSc patients with PH.
Collapse
Affiliation(s)
- L E Couperus
- Department of Cardiology, Leiden University Medical Center, the Netherlands
| | - H W Vliegen
- Department of Cardiology, Leiden University Medical Center, the Netherlands
| | - I R Henkens
- Department of Cardiology, Leiden University Medical Center, the Netherlands
| | - A C Maan
- Department of Cardiology, Leiden University Medical Center, the Netherlands
| | - R W Treskes
- Department of Cardiology, Leiden University Medical Center, the Netherlands
| | - J K de Vries
- Department of Rheumatology, Leiden University Medical Center, the Netherlands
| | - A A Schouffoer
- Department of Rheumatology, Leiden University Medical Center, the Netherlands
| | - C A Swenne
- Department of Cardiology, Leiden University Medical Center, the Netherlands
| | - M J Schalij
- Department of Cardiology, Leiden University Medical Center, the Netherlands
| | - R W C Scherptong
- Department of Cardiology, Leiden University Medical Center, the Netherlands.
| |
Collapse
|
148
|
|
149
|
Abdalla M, Sabbineni H, Prakash R, Ergul A, Fagan SC, Somanath PR. The Akt inhibitor, triciribine, ameliorates chronic hypoxia-induced vascular pruning and TGFβ-induced pulmonary fibrosis. Br J Pharmacol 2015; 172:4173-88. [PMID: 26033700 PMCID: PMC4543621 DOI: 10.1111/bph.13203] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 04/22/2015] [Accepted: 05/21/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Interstitial lung disease accounts for a group of chronic and progressive disorders associated with severe pulmonary vascular remodelling, peripheral vascular rarefaction and fibrosis, thus limiting lung function. We have previously shown that Akt is necessary for myofibroblast differentiation, a critical event in organ fibrosis. However, the contributory role of the Akt-mTOR pathway in interstitial lung disease and the therapeutic benefits of targeting Akt and mTOR remain unclear. EXPERIMENTAL APPROACH We investigated the role of the Akt-mTOR pathway and its downstream molecular mechanisms in chronic hypoxia- and TGFβ-induced pulmonary vascular pruning and fibrosis in mice. We also determined the therapeutic benefits of the Akt inhibitor triciribine and the mTOR inhibitor rapamycin for the treatment of pulmonary fibrosis in mice. KEY RESULTS Akt1(-) (/) (-) mice were protected from chronic hypoxia-induced peripheral vascular pruning. In contrast, hyperactivation of Akt1 induced focal fibrosis similar to TGFβ-induced fibrosis. Pharmacological inhibition of Akt, but not the Akt substrate mTOR, inhibited hypoxia- and TGFβ-induced pulmonary vascular rarefaction and fibrosis. Mechanistically, we found that Akt1 modulates pulmonary remodelling via regulation of thrombospondin1 (TSP1) expression. Hypoxic Akt1(-) (/) (-) mice lungs expressed less TSP1. Moreover, TSP1(-) (/) (-) mice were resistant to adMyrAkt1-induced pulmonary fibrosis. CONCLUSIONS AND IMPLICATIONS Our study identified Akt1 as a novel target for the treatment of interstitial lung disease and provides preclinical data on the potential benefits of the Akt inhibitor triciribine for the treatment of interstitial lung disease.
Collapse
Affiliation(s)
- Maha Abdalla
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical CenterAugusta, GA, USA
- Department of Pharmaceutical Sciences, South College School of PharmacyKnoxville, TN, USA
| | - Harika Sabbineni
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical CenterAugusta, GA, USA
| | - Roshini Prakash
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical CenterAugusta, GA, USA
| | - Adviye Ergul
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical CenterAugusta, GA, USA
- Department of Physiology, Georgia Regents UniversityAugusta, GA, USA
| | - Susan C Fagan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical CenterAugusta, GA, USA
- Department of Neurology, Georgia Regents UniversityAugusta, GA, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical CenterAugusta, GA, USA
- Department of Medicine, Georgia Regents UniversityAugusta, GA, USA
- Vascular Biology Center, Georgia Regents UniversityAugusta, GA, USA
- Cancer Center, Georgia Regents UniversityAugusta, GA, USA
| |
Collapse
|
150
|
Abstract
Until recently, three classes of medical therapy were available for the treatment of pulmonary arterial hypertension (PAH)--prostanoids, endothelin receptor antagonists and phosphodiesterase type 5 (PDE5) inhibitors. With the approval of the soluble guanylate cyclase stimulator riociguat, an additional drug class has become available targeting a distinct molecular target in the same pathway as PDE5 inhibitors. Treatment recommendations currently include the use of all four drug classes to treat PAH, but there is a lack of comparative data for these therapies. Therefore, an understanding of the mechanistic differences between these agents is critical when making treatment decisions. Combination therapy is often used to treat PAH and it is therefore important that physicians understand how the modes of action of these drugs may interact to work as complementary partners, or potentially with unwanted consequences. Furthermore, different patient phenotypes mean that patients respond differently to treatment; while a certain monotherapy may be adequate for some patients, for others it will be important to consider alternating or combining compounds with different molecular targets. This review describes how the four currently approved drug classes target the complex pathobiology of PAH and will consider the distinct target molecules of each drug class, their modes of action, and review the pivotal clinical trial data supporting their use. It will also discuss the rationale for combining drugs (or not) from the different classes, and review the clinical data from studies on combination therapy.
Collapse
Affiliation(s)
- Marc Humbert
- Service de Pneumologie, DHU Thorax Innovation, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Paris, France Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et Innovation Thérapeutique, Paris, France INSERM Unité 999, Le Kremlin-Bicêtre, Paris, France
| | - Hossein-Ardeschir Ghofrani
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center of Lung Research (DZL), Giessen, Germany Department of Medicine, Imperial College London, London, UK
| |
Collapse
|