101
|
ZHANG DI, ZHOU PEIHUA, WANG WEI, WANG XIAOLONG, LI JUNHUI, SUN XUEJUN, ZHANG LI. MicroRNA-616 promotes the migration, invasion and epithelial-mesenchymal transition of HCC by targeting PTEN. Oncol Rep 2015; 35:366-74. [DOI: 10.3892/or.2015.4334] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/02/2015] [Indexed: 11/06/2022] Open
|
102
|
Amirkhah R, Schmitz U, Linnebacher M, Wolkenhauer O, Farazmand A. MicroRNA-mRNA interactions in colorectal cancer and their role in tumor progression. Genes Chromosomes Cancer 2015; 54:129-41. [PMID: 25620079 DOI: 10.1002/gcc.22231] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNA/miR) play an important role in gene regulatory networks through targeting mRNAs. They are involved in diverse biological processes such as cell proliferation, differentiation, angiogenesis, and apoptosis. Due to their pivotal effects on multiple genes and pathways, dysregulated miRNAs have been reported to be associated with different diseases, including colorectal cancer (CRC). Recent evidence indicates that aberrant miRNA expression is tightly linked with the initiation and progression of CRC. To elucidate the influence of miRNA regulation in CRC, it is critical to identify dysregulated miRNAs, their target mRNA genes and their involvement in gene regulatory and signaling networks. Various experimental and computational studies have been conducted to decipher the function of miRNAs involved in CRC. Experimental studies that are used for this purpose can be classified into two categories: direct/individual and indirect/high-throughput gene expression studies. Here we review miRNA target identification studies related to CRC with an emphasis on experimental data based on Luciferase reporter assays. Recent advances in determining the function of miRNAs and the signaling pathways they are involved in have also been summarized. The review helps bioinformaticians and biologists to find extensive information about downstream targets of dysregulated miRNAs, and their pro-/anti-CRC effects.
Collapse
Affiliation(s)
- Raheleh Amirkhah
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | | | | | | |
Collapse
|
103
|
Wang J, Song YX, Ma B, Wang JJ, Sun JX, Chen XW, Zhao JH, Yang YC, Wang ZN. Regulatory Roles of Non-Coding RNAs in Colorectal Cancer. Int J Mol Sci 2015; 16:19886-919. [PMID: 26307974 PMCID: PMC4581331 DOI: 10.3390/ijms160819886] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 12/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have recently gained attention because of their involvement in different biological processes. An increasing number of studies have demonstrated that mutations or abnormal expression of ncRNAs are closely associated with various diseases including cancer. The present review is a comprehensive examination of the aberrant regulation of ncRNAs in colorectal cancer (CRC) and a summary of the current findings on ncRNAs, including long ncRNAs, microRNAs, small interfering RNAs, small nucleolar RNAs, small nuclear RNAs, Piwi-interacting RNAs, and circular RNAs. These ncRNAs might become novel biomarkers and targets as well as potential therapeutic tools for the treatment of CRC in the near future and this review may provide important clues for further research on CRC and for the selection of effective therapeutic targets.
Collapse
Affiliation(s)
- Jun Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Yong-Xi Song
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Bin Ma
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Jia-Jun Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Xiao-Wan Chen
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Jun-Hua Zhao
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Yu-Chong Yang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang 110001, China.
| |
Collapse
|
104
|
|
105
|
Xia H, Long J, Zhang R, Yang X, Ma Z. MiR-32 contributed to cell proliferation of human breast cancer cells by suppressing of PHLPP2 expression. Biomed Pharmacother 2015; 75:105-10. [PMID: 26276160 DOI: 10.1016/j.biopha.2015.07.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/26/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have been identified as important regulators that potentially play critical roles in various biological and pathological processes of cancer cells. The aim of the present study was to investigate the expression of miR-32 in breast cancer and its biological role in tumor progression. MiR-32 expression was markedly upregulated in breast cancer tissues and breast cancer cells. Ectopic expression of miR-32 promoted cell proliferation of breast cancer, whereas miR-32-in suppressed this function. Mechanically, data from luciferase reporter assays revealed that miR-32 directly targeted to the 3'-untranslated region (3'-UTR) of PHLPP2. Overexpression of miR-32 led to downregulation of PHLPP2 protein, which resulted in the downregulation of p21 and upregulation of cyclin D1 and p-Rb. In functional assays, PHLPP2-silenced in miR-32-in-transfected ZR-75-30 cells have positive effect to promote cell proliferation, suggesting that direct PHLPP2 downregulation is required for miR-32-induced cell proliferation of breast cancer. Our findings highlighted the importance of miR-32 in promoting tumor progression, and implicate miR-32 as a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Haoming Xia
- Breast Disease Center, Department of Surgery, The First Affiliated Hospital, SUN Yat-Sen University, Guangzhou, 510080, China
| | - Jianting Long
- Department of Medicinal Oncology, The First Affiliated Hospital, SUN Yat-Sen University, Guangzhou, 510080, China
| | - Ruifen Zhang
- Department of Endocrinology, Shenzhen Luohu People's Hospital, Shenzhen, 518001, China
| | - Xiaosong Yang
- Breast Disease Center, Department of Surgery, The First Affiliated Hospital, SUN Yat-Sen University, Guangzhou, 510080, China
| | - Zhefu Ma
- Breast Disease Center, Department of Surgery, The First Affiliated Hospital, SUN Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
106
|
Mo ZH, Wu XD, Li S, Fei BY, Zhang B. Expression and clinical significance of microRNA-376a in colorectal cancer. Asian Pac J Cancer Prev 2015; 15:9523-7. [PMID: 25422250 DOI: 10.7314/apjcp.2014.15.21.9523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The incidence of colorectal cancer (CRC) is increasing in many Asian countries and microRNAs have already been proven to be associated with tumorigenesis. Currently, microRNA-376a (miR-376a) expression and association with clinical factors in CRC remains unclear. In this study, real-time quantitative reverse transcriptase- polymerase chain reaction (qRT-PCR) was carried out on 53 matched pairs of CRC and adjacent normal mucosa to investigate the expression levels of miR-376a. According to the high or low expression of miR-376a, patients were divided into two groups. The relationship between miR-376a expression and clinicopathological factors of 53 patients was evaluated. Survival analysis of 53 CRC patients was performed with clinical follow- up information and survival curves were assessed by the Kaplan-Meier method. Immunohistochemistry (IHC) staining was performed on sections of paraffin-embedded tissue to investigate the vascular endothelial growth factor (VEGF) expression. MiR-376a showed low expression in cancer tissues compared to the adjacent normal tissues and altered high miR-376a expression tended to be positively correlated with advanced lymph node metastasis and shorter patient survival. VEGF IHC positivity was significantly more common in patients with high expression levels of miR-376a.Those results demonstrated that miR-376a may be a meaningful prognostic biomarker and potential therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Zhan-Hao Mo
- Endoscopy Center, China- Japan Union Hospital, Jilin University, Changchun, China E-mail :
| | | | | | | | | |
Collapse
|
107
|
Bermúdez Brito M, Goulielmaki E, Papakonstanti EA. Focus on PTEN Regulation. Front Oncol 2015; 5:166. [PMID: 26284192 PMCID: PMC4515857 DOI: 10.3389/fonc.2015.00166] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022] Open
Abstract
The role of phosphatase and tensin homolog on chromosome 10 (PTEN) as a tumor suppressor has been for a long time attributed to its lipid phosphatase activity against PI(3,4,5)P3, the phospholipid product of the class I PI3Ks. Besides its traditional role as a lipid phosphatase at the plasma membrane, a wealth of data has shown that PTEN can function independently of its phosphatase activity and that PTEN also exists and plays a role in the nucleus, in cytoplasmic organelles, and extracellularly. Accumulating evidence has shed light on diverse physiological functions of PTEN, which are accompanied by a complex regulation of its expression and activity. PTEN levels and function are regulated transcriptionally, post-transcriptionally, and post-translationally. PTEN is also sensitive to regulation by its interacting proteins and its localization. Herein, we summarize the current knowledge on mechanisms that regulate the expression and enzymatic activity of PTEN and its role in human diseases.
Collapse
Affiliation(s)
- Miriam Bermúdez Brito
- Department of Biochemistry, School of Medicine, University of Crete , Heraklion , Greece
| | - Evangelia Goulielmaki
- Department of Biochemistry, School of Medicine, University of Crete , Heraklion , Greece
| | | |
Collapse
|
108
|
Zhu D, Chen H, Yang X, Chen W, Wang L, Xu J, Yu L. miR-32 functions as a tumor suppressor and directly targets SOX9 in human non-small cell lung cancer. Onco Targets Ther 2015; 8:1773-83. [PMID: 26229485 PMCID: PMC4516199 DOI: 10.2147/ott.s72457] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose MicroRNA-32 (miR-32) is dysregulated in certain human malignancies and correlates with tumor progression. However, its expression and function in non-small cell lung cancer (NSCLC) remain unclear. Thus, the aim of this study was to explore the effects of miR-32 expression on NSCLC tumorigenesis and development. Methods Using real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR), we detected miR-32 expression in NSCLC cell lines and primary tumor tissues. The association of miR-32 expression with clinicopathological factors and prognosis was also analyzed. Then, the effects of miR-32 expression on the biological behavior of NSCLC cells were investigated. Finally, the potential regulatory effect of miR-32 on SOX9 expression was confirmed. Results miR-32 expression levels were significantly downregulated in NSCLC compared with the corresponding noncancerous lung tissues (P<0.001). In addition, decreased miR-32 expression was significantly associated with lymph node metastasis (P=0.002), advanced tumor/nodes/metastasis (TNM) classification stages (P<0.001), and shorter overall survival (P<0.001). Multivariate regression analysis corroborated that downregulated miR-32 expression was an independent unfavorable prognostic factor for NSCLC patients. In vitro studies demonstrated that miR-32 overexpression reduced A549 cell proliferation, migration, and invasion, and promoted apoptosis. Furthermore, SOX9 was confirmed as a direct target of miR-32, using a luciferase reporter assay. Conclusion These findings indicate that miR-32 may act as a tumor suppressor in NSCLC and could serve as a novel therapeutic agent for miR-based therapy.
Collapse
Affiliation(s)
- Dan Zhu
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, People's Republic of China
| | - Hui Chen
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, People's Republic of China
| | - Xiguang Yang
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, People's Republic of China
| | - Weisong Chen
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, People's Republic of China
| | - Linying Wang
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, People's Republic of China
| | - Jilin Xu
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, People's Republic of China
| | - Long Yu
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, People's Republic of China
| |
Collapse
|
109
|
Dey N, Bera A, Das F, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. High glucose enhances microRNA-26a to activate mTORC1 for mesangial cell hypertrophy and matrix protein expression. Cell Signal 2015; 27:1276-85. [PMID: 25797045 PMCID: PMC4437875 DOI: 10.1016/j.cellsig.2015.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/06/2015] [Accepted: 03/15/2015] [Indexed: 02/06/2023]
Abstract
High glucose milieu inhibits PTEN expression to activate Akt kinase and induces glomerular mesangial cell hypertrophy and matrix protein expression in diabetic nephropathy. Specific mechanism by which high glucose inhibits PTEN expression is not clear. We found that high glucose increased the expression of the microRNA-26a (miR-26a) in mesangial cells. Using a sensor plasmid with 3'UTR-driven luciferase, we showed PTEN as a target of miR-26a in response to high glucose. Overexpression of miR-26a reduced the PTEN protein levels resulting in increased Akt kinase activity similar to high glucose treatment. In contrast, anti-miR-26a reversed high glucose-induced suppression of PTEN with concomitant inhibition of Akt kinase activity. Akt-mediated phosphorylation of tuberin and PRAS40 regulates mTORC1, which is necessary for mesangial cell hypertrophy and matrix protein expression. Inhibition of high glucose-induced miR-26a blocked phosphorylation of tuberin and PRAS40, which lead to suppression of phosphorylation of S6 kinase and 4EBP-1, two substrates of mTORC1. Furthermore, we show that expression of miR-26a induced mesangial cell hypertrophy and increased fibronectin and collagen I (α2) expression similar to that observed with the cells incubated with high glucose. Anti-miR-26a inhibited these phenomena in response to high glucose. Together our results provide the first evidence for the involvement of miR-26a in high glucose-induced mesangial cell hypertrophy and matrix protein expression. These data indicate the potential therapeutic utility of anti-miR-26a for the complications of diabetic kidney disease.
Collapse
Affiliation(s)
- Nirmalya Dey
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States
| | - Amit Bera
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States
| | - Nandini Ghosh-Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Pathology, University of Texas Health Science Center at San Antonio, Texas, United States
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States; VA Research, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States; VA Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, United States.
| |
Collapse
|
110
|
MicroRNAs as Regulator of Signaling Networks in Metastatic Colon Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:823620. [PMID: 26064956 PMCID: PMC4438141 DOI: 10.1155/2015/823620] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, noncoding RNA molecules capable of regulating gene expression translationally and/or transcriptionally. A large number of evidence have demonstrated that miRNAs have a functional role in both physiological and pathological processes by regulating the expression of their target genes. Recently, the functionalities of miRNAs in the initiation, progression, angiogenesis, metastasis, and chemoresistance of tumors have gained increasing attentions. Particularly, the alteration of miRNA profiles has been correlated with the transformation and metastasis of various cancers, including colon cancer. This paper reports the latest findings on miRNAs involved in different signaling networks leading to colon cancer metastasis, mainly focusing on miRNA profiling and their roles in PTEN/PI3K, EGFR, TGFβ, and p53 signaling pathways of metastatic colon cancer. The potential of miRNAs used as biomarkers in the diagnosis, prognosis, and therapeutic targets in colon cancer is also discussed.
Collapse
|
111
|
Oridonin triggers apoptosis in colorectal carcinoma cells and suppression of microRNA-32 expression augments oridonin-mediated apoptotic effects. Biomed Pharmacother 2015; 72:125-34. [DOI: 10.1016/j.biopha.2015.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 04/07/2015] [Accepted: 04/15/2015] [Indexed: 12/12/2022] Open
|
112
|
Ura B, Feriotto G, Monasta L, Bilel S, Zweyer M, Celeghini C. Potential role of circulating microRNAs as early markers of preeclampsia. Taiwan J Obstet Gynecol 2015; 53:232-4. [PMID: 25017274 DOI: 10.1016/j.tjog.2014.03.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2014] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE To identify microRNAs (miRNAs) differentially expressed at early stages of gestation (12-14 weeks) in the serum of pregnant women, who later developed severe preeclampsia (sPE) in the third trimester of pregnancy (n = 24) compared to women with normal pregnancy (n = 24). MATERIALS AND METHODS Sera from 12-14-week-gestation whole blood were subjected to microarray analysis with TaqMan Low Density Array chips (human microRNA panel V3.0), and to quantitative real-time polymerase chain reaction. RESULTS By using the TaqMan Low Density Array chip technology, 19 mature miRNAs appeared differentially expressed in the group of women who later developed sPE as compared to normal women. The expression of four miRNAs (miR-1233, miR-520, miR-210, miR-144) was validated by quantitative real-time polymerase chain reaction analysis. MiR-1233 was the most overexpressed in the serum of women who later developed sPE. CONCLUSION Circulating miRNAs deserve further investigation in order to explore their potential role in the pathogenesis of preeclampsia. In particular, miR-1233 might represent a potential marker of early sPE.
Collapse
Affiliation(s)
- Blendi Ura
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy.
| | - Giordana Feriotto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Lorenzo Monasta
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Sabrine Bilel
- Higher Institute of Technological Studies, University of Bizerte, Bizerte, Tunisia
| | - Marina Zweyer
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | |
Collapse
|
113
|
Lim HJ, Crowe P, Yang JL. Current clinical regulation of PI3K/PTEN/Akt/mTOR signalling in treatment of human cancer. J Cancer Res Clin Oncol 2015; 141:671-89. [PMID: 25146530 DOI: 10.1007/s00432-014-1803-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/08/2014] [Indexed: 01/14/2023]
Abstract
PURPOSE PTEN is an essential tumour suppressor gene which encodes a phosphatase protein that antagonises the PI3K/Akt/mTOR antiapoptotic pathway. Impairment of this tumour suppressor pathway potentially becomes a causal factor for development of malignancies. This review aims to assess current understanding of mechanisms of dysfunction involving the PI3K/PTEN/Akt/mTOR pathway linked to tumorigenesis and evaluate the evidence for targeted therapy directed at this signalling axis. METHODS Relevant articles in scientific databases were identified using a combination of search terms, including "malignancies", "targeted therapy", "PTEN", and "combination therapy". These databases included Medline, Embase, Cochrane Review, Pubmed, and Scopus. RESULTS PI3K/PTEN expression is frequently deregulated in a majority of malignancies through genetic, epigenetic, and post-transcriptional modifications. This contributes to the upregulation of the PI3K/Akt/mTOR pathway which has been the focus of intense clinical studies. Targeted agents aimed at this pathway offer a novel treatment approach in a variety of haematologic malignancies and solid tumours. Compared to single-agent use, greater response rates were obtained in combination regimens, supporting further investigation of suitable drug combinations in a broad spectrum of malignancies. CONCLUSION Activation of the PI3K/PTEN/Akt/mTOR pathway is implicated both in the pathogenesis of malignancies and development of resistance to anticancer therapies. Therefore, PI3K/Akt/mTOR inhibitors are a promising therapeutic option, in association with systemic cytotoxic and biological therapies, to enable sustained clinical outcomes in cancer treatment. Therapeutic strategies could be tailored according to appropriate biomarkers and patient-specific mutation profiles to maximise benefit of combination therapies.
Collapse
Affiliation(s)
- Hui Jun Lim
- Adult Cancer Program, Sarcoma and Nano-oncology Group, Faculty of Medicine, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Room 209, Randwick, Sydney, NSW, 2052, Australia
| | | | | |
Collapse
|
114
|
Fibroblasts from patients with major depressive disorder show distinct transcriptional response to metabolic stressors. Transl Psychiatry 2015; 5:e523. [PMID: 25756806 PMCID: PMC4354345 DOI: 10.1038/tp.2015.14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/12/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is increasingly viewed as interplay of environmental stressors and genetic predisposition, and recent data suggest that the disease affects not only the brain, but the entire body. As a result, we aimed at determining whether patients with major depression have aberrant molecular responses to stress in peripheral tissues. We examined the effects of two metabolic stressors, galactose (GAL) or reduced lipids (RL), on the transcriptome and miRNome of human fibroblasts from 16 pairs of patients with MDD and matched healthy controls (CNTR). Our results demonstrate that both MDD and CNTR fibroblasts had a robust molecular response to GAL and RL challenges. Most importantly, a significant part (messenger RNAs (mRNAs): 26-33%; microRNAs (miRNAs): 81-90%) of the molecular response was only observed in MDD, but not in CNTR fibroblasts. The applied metabolic challenges uncovered mRNA and miRNA signatures, identifying responses to each stressor characteristic for the MDD fibroblasts. The distinct responses of MDD fibroblasts to GAL and RL revealed an aberrant engagement of molecular pathways, such as apoptosis, regulation of cell cycle, cell migration, metabolic control and energy production. In conclusion, the metabolic challenges evoked by GAL or RL in dermal fibroblasts exposed adaptive dysfunctions on mRNA and miRNA levels that are characteristic for MDD. This finding underscores the need to challenge biological systems to bring out disease-specific deficits, which otherwise might remain hidden under resting conditions.
Collapse
|
115
|
MiR-32 induces cell proliferation, migration, and invasion in hepatocellular carcinoma by targeting PTEN. Tumour Biol 2015; 36:4747-55. [PMID: 25647261 DOI: 10.1007/s13277-015-3124-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/29/2014] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression by inhibiting translation of target messenger RNAs (mRNAs) through pairing with miRNA recognition elements (MREs), usually in 3'-UTRs. miRNAs are involved in the pathogenesis of several types of cancers. Specifically, microRNA-32 (miR-32) is overexpressed in colorectal carcinoma, wherein accumulating evidence indicates that it functions as an oncogene. However, the function of miR-32 in hepatocellular carcinoma (HCC) has not been totally elucidated. In the present study, we found the expression of miR-32 was up-regulated in HCC tissue and cell lines, inversely the expression of phosphatase and tensin homolog (PTEN) decreased. Besides, miRNA-32 down-regulates PTEN through binding to 3'-UTR of PTEN mRNA from luciferase reporter assay, and the expression level of miR-32 could affect the proliferation, migration, and invasion of liver cancer cell lines via PTEN/Akt signaling pathway. Down-expression of PTEN could significantly attenuate the inhibitory effects of knockdown miR-32 on the proliferation, migration, and invasion of liver cancer cells, suggesting that miR-32 could be a potential target for HCC treatment.
Collapse
|
116
|
Köpke S, Buhrke T, Lampen A. miRNA expression in human intestinal Caco-2 cells is comparably regulated by cis- and trans-fatty acids. Lipids 2015; 50:227-39. [PMID: 25612549 DOI: 10.1007/s11745-015-3988-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/06/2015] [Indexed: 01/13/2023]
Abstract
Trans-fatty acids are unsaturated fatty acids with at least one double bond in trans configuration. While their role in the development of coronary heart disease is broadly accepted, a potential impact of these fatty acids on colon carcinogenesis is still under discussion. MiRNAs are small non-coding RNAs that regulate the gene expression at a post-transcriptional level by inhibiting the translation of target mRNAs. We investigated the effect of 16 different C 18 fatty acid isomers on the expression of 84 cancer-related miRNAs in the human colorectal adenocarcinoma cell line Caco-2 by using a qRT-PCR array. 66 of these 84 miRNAs were deregulated by at least one fatty acid, however, there was no trans-specific impact on miRNA expression as the corresponding cis isomer of a given fatty acid generally had comparable effects on the miRNA expression profile. The most pronounced effects were observed for hsa-miR-146a-5p, which was upregulated by four of the 16 investigated fatty acids, and hsa-miR-32-5p, which was strongly downregulated by five fatty acids. As hsa-miR-32-5p was described to target genes being involved in the regulation of apoptosis, the effect of α-eleostearic acid on the expression of the apoptosis-associated genes BCL2L11, BCL-2, and BCL-XL was examined. The qPCR results indicate that fatty acid-mediated downregulation of hsa-miR-32-5p is accompanied by a downregulation of BCL-2 and BCL2L11 mRNA whereas BCL-XL was shown to be simultaneously upregulated. In conclusion, our data indicate that several fatty acids are able to regulate miRNA expression of human colon cancer cells. However, no trans-specific regulation was observed.
Collapse
Affiliation(s)
- Solveigh Köpke
- Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | | | | |
Collapse
|
117
|
Bai Y, Wang YL, Yao WJ, Guo L, Xi HF, Li SY, Zhao BS. Expression of miR-32 in human non-small cell lung cancer and its correlation with tumor progression and patient survival. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:824-829. [PMID: 25755781 PMCID: PMC4348924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
INTRODUCTION miR-32 has recently been found to be implicated in many critical processes in various types of human cancer. However, its clinical significance in human non-small cell lung cancer (NSCLC) has not yet been elucidated. In the present study, we investigated the expression of miR-32 in NSCLC and analyzed its association with clinical features and prognosis of NSCLC patients. METHODS Quantitative real-time PCR (qRT-PCR) was used to measure expression level of miR-32 in lung cancer cell lines, normal bronchial epithelial cells, 90 pairs of tumor samples and adjacent non-tumor tissues. To determine its prognostic value, overall survival was evaluated using the Kaplan-Meier method. Univariate and multivariate analysis were performed using the Cox proportional hazard analysis. RESULTS The expression of miR-32 was significantly decreased in lung cancer cell lines and NSCLC tissues compared with normal bronchial epithelial cells and adjacent non-tumor tissues (P < 0.05). This reduction of miR-32 was associated with tumor stage and lymph node metastasis (P < 0.05). Moreover, Kaplan-Meier analysis demonstrated that patients with low miR-32 expression had shorter overall survival time than those with high miR-32 expression (P < 0.05). Univariate analysis revealed statistically significant correlations between overall survival and miR-32 level, tumor stage and lymph node metastasis (P < 0.05). Furthermore, miR-32 levels, tumor stage and lymph node metastasis were independently associated with overall survival (P < 0.05). CONCLUSIONS Our results provided the first evidence that down-regulation of miR-32 was correlated with NSCLC progression, and miR-32 might be a potential molecular biomarker for predicting the prognosis of patients.
Collapse
Affiliation(s)
- Yu Bai
- Department of Pathology, Xinxiang Medical UniversityXinxiang 453000, China
| | - Yong-Lian Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, China
| | - Wen-Jian Yao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, China
| | - Ling Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, China
| | - Hui-Fang Xi
- Department of Pediatric Surgery, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, China
| | - Song-Yue Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, China
| | - Bao-Sheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, China
| |
Collapse
|
118
|
Zhou MK, Liu XJ, Zhao ZG, Cheng YM. MicroRNA-100 functions as a tumor suppressor by inhibiting Lgr5 expression in colon cancer cells. Mol Med Rep 2014; 11:2947-52. [PMID: 25483280 DOI: 10.3892/mmr.2014.3052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 10/01/2014] [Indexed: 11/05/2022] Open
Abstract
Previous studies have demonstrated that microRNAs (miRNAs), a class of single‑stranded RNA molecules that are 18‑27 nucleotides in length, serve a critical function in tumorigenesis, including in the development of colon cancer. In the current study, miR‑100 levels were demonstrated to be reduced in colon cancer tissues compared with the levels in matched adjacent normal tissues. Forced overexpression of miR‑100 by transfection with miR‑100 mimics substantially inhibited the proliferation, migration and invasion of SW480 and HCT116 cells, whereas reduced expression, resulting from transfection of antisense oligonucleotides, promoted these processes. At the molecular level, miR‑100 was observed to reduce the levels of leucine‑rich repeat‑containing G protein‑coupled receptor 5 (Lgr5), by binding to its 3'‑untranslated region. As a result of this, Wnt/β‑catenin signaling was affected by fluctuations in the level of miR‑100 mimics or antisense. Collectively, the results of the current study elucidate a novel regulatory pathway involving miR‑100 and Lgr5 in colon cancer cells, which may present a potential therapeutic target.
Collapse
Affiliation(s)
- Ming-Kai Zhou
- Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Xiao-Jun Liu
- Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Zhi-Guo Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Yi-Meng Cheng
- Department of Neurology, The Third Hospital of Zhengzhou, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
119
|
Zhang D, Ni Z, Xu X, Xiao J. MiR-32 functions as a tumor suppressor and directly targets EZH2 in human oral squamous cell carcinoma. Med Sci Monit 2014; 20:2527-35. [PMID: 25472588 PMCID: PMC4266205 DOI: 10.12659/msm.892636] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background MicroRNA-32 (miR-32) is dysregulated in certain human malignancies and correlates with tumor progression. However, its expression and function in oral squamous cell carcinoma (OSCC) remain unclear. Thus, the aim of this study was to explore the effects of miR-32 expression on OSCC tumorigenesis and development. Material/Methods Real-time quantitative PCR was applied to evaluate the expression level of miR-32 in OSCC cell lines and primary tumor tissues. The association of miR-32 expression with clinicopathological factors and prognosis was also analyzed. In vitro cell proliferation, apoptosis, invasion, and migration assays were executed to elucidate biological effects of miR-32. Western blotting and luciferase assays were performed to confirm the regulation of EZH2 by miR-32. Results Down-regulation of miR-32 was found in OSCC tissues compared with corresponding noncancerous tissues (P<0.001). Decreased miR-32 expression was significantly associated with advanced T classifications, positive N classification, advanced TNM stage, and shorter overall survival (all P<0.05). Multivariate regression analysis corroborated that low-level expression of miR-32 was an independent unfavorable prognostic factor for OSCC patients. In vitro functional assays showed that overexpression of miR-32 reduced OSCC cell proliferation, migration, and invasion, and promoted cell apoptosis. In contrast, miR-32 knock-down resulted in an increase in cell growth and invasiveness. Finally, we identified EZH2 as the functional downstream target of miR-32 by directly targeting the 3′-UTR of EZH2. Conclusions These findings indicate that miR-32 may act as a tumor suppressor in OSCC and could serve as a novel therapeutic agent for miR-based therapy.
Collapse
Affiliation(s)
- Dafeng Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Zhenyu Ni
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Xingqiao Xu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Jin Xiao
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
120
|
Eritja N, Santacana M, Maiques O, Gonzalez-Tallada X, Dolcet X, Matias-Guiu X. Modeling glands with PTEN deficient cells and microscopic methods for assessing PTEN loss: endometrial cancer as a model. Methods 2014; 77-78:31-40. [PMID: 25461816 DOI: 10.1016/j.ymeth.2014.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 01/30/2023] Open
Abstract
PTEN is an important tumor suppressor gene. Interpreting PTEN deficiency in the appropriate microscopic context of cancer may be important to understand its role in tumor development and progression. This may be particularly relevant in heterogeneous tumors. Here, we discuss the usefulness of 3D cultures in understanding the consequences of PTEN inactivation in tissue architecture. Afterwards, we discuss the role of immunohistochemistry and fluorescent in situ hybridization in assessing PTEN loss in tumors. In this review, endometrial carcinoma is used as a model.
Collapse
Affiliation(s)
- Núria Eritja
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Maria Santacana
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Oscar Maiques
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Xavier Gonzalez-Tallada
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics/Oncologic Pathology Group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida, Spain.
| |
Collapse
|
121
|
Okugawa Y, Toiyama Y, Goel A. An update on microRNAs as colorectal cancer biomarkers: where are we and what's next? Expert Rev Mol Diagn 2014; 14:999-1021. [PMID: 25163355 PMCID: PMC4374444 DOI: 10.1586/14737159.2014.946907] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
miRNAs are abundant classes of small, endogenous non-coding RNAs, which inhibit the expression of target gene via post-transcriptional regulation. In addition to an important functional role miRNAs play in carcinogenesis, emerging evidence has demonstrated their feasibility as robust cancer biomarkers. In particular, the recent discovery of miRNAs in the body fluids provides an attractive opportunity for the development of non-invasive biomarkers for the diagnosis, prognosis and predictive response to cancer therapy. Colorectal cancer (CRC) is one of the most common cancers worldwide, and accumulating data provides a compelling case for the potential exploitation of miRNAs as CRC-biomarkers. This review summarizes the current state of literature in the field, focusing on the clinical relevance of miRNAs as potential biomarkers for CRC treatment and discussing the forthcoming challenges to further advance this exciting field of 'academic research' into 'bedside clinical care' of patients suffering from CRC.
Collapse
Affiliation(s)
- Yoshinaga Okugawa
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas 75246-2017, USA
| | - Yuji Toiyama
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas 75246-2017, USA
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie 514-8507, Japan
| | - Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas 75246-2017, USA
| |
Collapse
|
122
|
MicroRNA-20b promotes cell growth of breast cancer cells partly via targeting phosphatase and tensin homologue (PTEN). Cell Biosci 2014; 4:62. [PMID: 25364498 PMCID: PMC4216355 DOI: 10.1186/2045-3701-4-62] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/29/2014] [Indexed: 11/30/2022] Open
Abstract
Background MicroRNAs (miRNAs) are endogenous, small non-coding RNAs that play important roles in multiple biological processes. MiR-20b has been reported to participate in breast cancer tumorigenic progression, however, the functional roles are still unclear and under debating. The aim of this study is to explicit the molecular mechanism of miR-20b underlying breast cancer tumorigenesis. Results In the present study, we showed that miR-20b was overexpressed in human breast cancer tissues and cell lines compared with paired adjacent normal tissues and normal cell lines, respectively. We identified PTEN, a well-known tumor suppressor, as the functional downstream target of miR-20b. Luciferase assays confirmed that miR-20b could directly bind to the 3′ untranslated region(UTR) of PTEN and suppress translation. Alteration of miR-20b expression changed PTEN protein level but not mRNA expression in ZR-75-30 and MCF-7 breast cancer cells, suggesting miR-20b regulates PTEN gene expression at the posttranscriptional level. Furthermore, upregulation of miR-20b significantly promoted the proliferation, colony formation and DNA synthesis of ZR-75-30 and MCF-7 breast cancer cells. Conversely, knockdown of miR-20b expression inhibited the growth of breast cancer cells in vitro and in vivo. Conclusion Dysregulation of miR-20b plays critical roles in the breast cancer tumorigenesis, at least in part via targeting the tumor suppressor PTEN. This microRNA may serve as a potential diagnostic marker and therapeutic target for breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/2045-3701-4-62) contains supplementary material, which is available to authorized users.
Collapse
|
123
|
Orang AV, Barzegari A. MicroRNAs in Colorectal Cancer: from Diagnosis to Targeted Therapy. Asian Pac J Cancer Prev 2014; 15:6989-99. [DOI: 10.7314/apjcp.2014.15.17.6989] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
124
|
Lei H, Tang J, Li H, Zhang H, Lu C, Chen H, Li W, Xia Y, Tang W. MiR-195 affects cell migration and cell proliferation by down-regulating DIEXF in Hirschsprung's disease. BMC Gastroenterol 2014; 14:123. [PMID: 25007945 PMCID: PMC4099404 DOI: 10.1186/1471-230x-14-123] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 06/26/2014] [Indexed: 12/27/2022] Open
Abstract
Background Hirschsprung’s disease (HSCR) is the most common congenital gut motility disorder. We aimed to investigate the roles of miR-195 in the pathogenesis of HSCR. Methods In this study, we measured the expression levels of miRNA, mRNA, and protein in colon tissues from 78 patients with HSCR and 66 controls without HSCR. Transwell, Cell Counting Kit-8 (CCK-8) and flow cytometry assay were employed to detect the function role of miR-195 in vitro. Results Our results showed that expression levels of miR-195 from patients with HSCR were significantly higher than control group; along with aberrant lower expression levels of digestive-organ expansion factor (DIEXF) were tested. Increased level of miR-195 could suppress the level of DIEXF in cell, which induced the impairment of cell migration and proliferation. Conclusions Aberrant expression of miR-195 may involved in the pathogenesis of HSCR by down-regulated the level of DIEXF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weibing Tang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
125
|
Li J, Tan Q, Yan M, Liu L, Lin H, Zhao F, Bao G, Kong H, Ge C, Zhang F, Yu T, Li J, He X, Yao M. miRNA-200c inhibits invasion and metastasis of human non-small cell lung cancer by directly targeting ubiquitin specific peptidase 25. Mol Cancer 2014; 13:166. [PMID: 24997798 PMCID: PMC4105889 DOI: 10.1186/1476-4598-13-166] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/02/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Growing evidence indicates that miR-200c is involved in carcinogenesis and tumor progression in non-small-cell lung cancer (NSCLC). However, its precise biological role remains largely elusive. METHODS The functions of miR-200c and USP25 in migration/invasion and lung metastasis formation were determined by transwell and tail vein injection assays, respectively. The potential regulatory targets of miR-200c were determined by prediction tools, correlation with target protein expression, and luciferase reporter assay. The mRNA expression levels of miR-200c and USP25 were examined in NSCLC cell lines and patient specimens using quantitative reverse transcription-PCR. The protein expression levels of USP25 were examined in NSCLC cell lines and patient specimens using western blot and immunohistochemical staining. RESULTS We demonstrated that over-expression of miR-200c inhibited NSCLC cells migration, invasion, epithelial-mesenchymal transition (EMT) in vitro and lung metastasis formation in vivo. Further studies revealed that USP25 was a downstream target of miR-200c in NSCLC cells as miR-200c bound directly to the 3'-untranslated region of USP25, thus reducing both the messenger RNA and protein levels of USP25. Silencing of the USP25 gene recapitulated the effects of miR-200c over-expression. Clinical analysis indicated that miR-200c was negatively correlated with clinical stage, lymph node metastasis in NSCLC patients. Moreover, USP25 protein and mRNA level expressions were higher in NSCLC patients, compared to healthy control, and correlated with clinical stage and lymphatic node metastasis. CONCLUSIONS These findings indicate that miR-200c exerts tumor-suppressive effects for NSCLC through the suppression of USP25 expression and suggests a new therapeutic application of miR-200c in the treatment of NSCLC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032 Shanghai, China.
| |
Collapse
|
126
|
Xu JQ, Zhang WB, Wan R, Yang YQ. MicroRNA-32 inhibits osteosarcoma cell proliferation and invasion by targeting Sox9. Tumour Biol 2014; 35:9847-53. [DOI: 10.1007/s13277-014-2229-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 06/11/2014] [Indexed: 12/13/2022] Open
|
127
|
Eom HJ, Chatterjee N, Lee J, Choi J. Integrated mRNA and micro RNA profiling reveals epigenetic mechanism of differential sensitivity of Jurkat T cells to AgNPs and Ag ions. Toxicol Lett 2014; 229:311-8. [PMID: 24974767 DOI: 10.1016/j.toxlet.2014.05.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 01/20/2023]
Abstract
In our previous in vitro study of the toxicity on silver nanoparticles (AgNPs), we observed a dramatically higher sensitivity of Jurkat T cells to AgNPs than to Ag ions, and DNA damage and apoptosis were found to be involved in that toxicity. In this study, to understand underlying mechanism of different sensitivity of Jurket T cells to AgNPs and Ag ions, mRNA microarray and micro RNA microarray were concomitantly conducted on AgNPs and Ag ions exposed Jurkat T cells. Surprisingly only a small number of genes were differentially expressed by exposure to each of the silver (15 altered mRNA by AgNPs exposure, whereas 4 altered mRNA by Ag ions exposure, as determined 1.5-fold change as the cut-off value). miRNA microarray revealed that the expression of 63 miRNAs was altered by AgNPs exposure, whereas that of 32 miRNAs was altered by Ag ions exposure. An integrated analysis of mRNA and miRNA expression revealed that the expression of hsa-miR-219-5p, was negatively correlated with the expression of metallothionein 1F (MT1F) and tribbles homolog 3 (TRIB3), in cells exposed to AgNPs; whereas, the expression of hsa-miR-654-3p was negatively correlated with the expression of mRNA, endonuclease G-like 1 (EDGL1) in cells exposed to Ag ions. Network analysis were further conducted on mRNA-miRNA pairs, which revealed that miR-219-5p-MT1F and -TRIB3 pairs by AgNPs are being involved in various cellular processes, such as, oxidative stress, cell cycle and apoptosis, whereas, miR-654-3p and ENDOGL1 pair by Ag ions generated a much simpler network. The putative target genes of AgNPs-induced miR-504, miR-33 and miR-302 identified by Tarbase 6.0 are also found to be involved in DNA damage and apoptosis. These results collectively suggest that distinct epigenetic regulation may be an underlying mechanism of different sensitivity of Jurkat T cells to AgNPs and Ag ion. Further identification of putative target genes of DE miRNA by AgNPs and Ag ions may provide additional clues for the mechanism of differential toxicity. Overall results suggest that epigenetic mechanism is involved in toxicity of AgNPs and Ag ions in Jurkat T cells.
Collapse
Affiliation(s)
- Hyun-Jeong Eom
- School of Environmental Engineering, Graduate School of Energy and Environmental system Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 130-743, South Korea
| | - Nivedita Chatterjee
- School of Environmental Engineering, Graduate School of Energy and Environmental system Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 130-743, South Korea
| | - Jeongsoo Lee
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Jinhee Choi
- School of Environmental Engineering, Graduate School of Energy and Environmental system Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 130-743, South Korea.
| |
Collapse
|
128
|
Li J, Zhang Y, Gao Y, Cui Y, Liu H, Li M, Tian Y. Downregulation of HNF1 homeobox B is associated with drug resistance in ovarian cancer. Oncol Rep 2014; 32:979-88. [PMID: 24968817 DOI: 10.3892/or.2014.3297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/29/2014] [Indexed: 11/05/2022] Open
Abstract
The expression of HNF1 homeobox B (HNF1B) is associated with cancer risk in several tumors, including ovarian cancer, and its decreased expression play roles in cancer development. However, the study of HNF1B and cancer is limited, and its association with drug resistance in cancer has never been reported. On the basis of array data retrieved from Oncomine and Gene Expression Omnibus (GEO) online database, we found that the mRNA expression of HNF1B in 586 ovarian serous cystadenocarcinomas and in platinum-resistant A2780 epithelial ovarian cancer cells was significantly decreased, indicating a potential role of HNF1B in drug resistance in ovarian cancer. Based on this finding, comprehensive bioinformatics analyses, including protein/gene interaction, protein-small molecule/chemical interaction, biological process annotation, gene co-occurrence and pathway enrichment analysis and microRNA-mRNA interaction, were performed to illustrate the association of HNF1B with drug resistance in ovarian cancer. We found that among the proteins/genes, small molecules/chemicals and microRNAs which directly interacted with HNF1B, the majority was associated with drug resistance in cancer, particularly in ovarian cancer. Biological process annotation revealed that HNF1B closely related to 24 biological processes which were all notably associated with ovarian cancer and drug resistance. These results indicated that the downregulation of HNF1B may contribute to drug resistance in ovarian cancer, via its direct interactions with these drug resistance-related proteins/genes, small molecules/chemicals and microRNAs, and via its regulations on the drug resistance-related biological processes. Pathway enrichment analysis of 36 genes which co-occurred with HNF1B, ovarian cancer and drug resistance indicated that the HNF1B may perform its drug resistance-related functions through 4 pathways including ErbB signaling, focal adhesion, apoptosis and p53 signaling. Collectively, in this study, we illustrated for the first time that HNF1B may contribute to drug resistance in ovarian cancer, potentially through the 4 pathways. The present study may pave the way for further investigation of the drug resistance-related functions of HNF1B in ovarian cancer.
Collapse
Affiliation(s)
- Jianchao Li
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Yonghong Zhang
- Department of Obstetrics and Gynecology, Muping Traditional Chinese Medicine Hospital, Yantai, Shandong, P.R. China
| | - Yutao Gao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University, Beijing, P.R. China
| | - Yuqian Cui
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, P.R. China
| | - Mi Li
- Department of Nursing, Shandong College of Traditional Chinese Medicine, Yantai, Shandong, P.R. China
| | - Yongjie Tian
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
129
|
Angiotensin II-regulated microRNA 483-3p directly targets multiple components of the renin-angiotensin system. J Mol Cell Cardiol 2014; 75:25-39. [PMID: 24976017 DOI: 10.1016/j.yjmcc.2014.06.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 11/21/2022]
Abstract
Improper regulation of signaling in vascular smooth muscle cells (VSMCs) by angiotensin II (AngII) can lead to hypertension, vascular hypertrophy and atherosclerosis. The extent to which the homeostatic levels of the components of signaling networks are regulated through microRNAs (miRNA) modulated by AngII type 1 receptor (AT1R) in VSMCs is not fully understood. Whether AT1R blockers used to treat vascular disorders modulate expression of miRNAs is also not known. To report differential miRNA expression following AT1R activation by AngII, we performed microarray analysis in 23 biological and technical replicates derived from humans, rats and mice. Profiling data revealed a robust regulation of miRNA expression by AngII through AT1R, but not the AngII type 2 receptor (AT2R). The AT1R-specific blockers, losartan and candesartan antagonized >90% of AT1R-regulated miRNAs and AngII-activated AT2R did not modulate their expression. We discovered VSMC-specific modulation of 22 miRNAs by AngII, and validated AT1R-mediated regulation of 17 of those miRNAs by real-time polymerase chain reaction analysis. We selected miR-483-3p as a novel representative candidate for further study because mRNAs of multiple components of the renin-angiotensin system (RAS) were predicted to contain the target sequence for this miRNA. MiR-483-3p inhibited the expression of luciferase reporters bearing 3'-UTRs of four different RAS genes and the inhibition was reversed by antagomir-483-3p. The AT1R-regulated expression levels of angiotensinogen and angiotensin converting enzyme 1 (ACE-1) proteins in VSMCs are modulated specifically by miR-483-3p. Our study demonstrates that the AT1R-regulated miRNA expression fingerprint is conserved in VSMCs of humans and rodents. Furthermore, we identify the AT1R-regulated miR-483-3p as a potential negative regulator of steady-state levels of RAS components in VSMCs. Thus, miRNA-regulation by AngII to affect cellular signaling is a novel aspect of RAS biology, which may lead to discovery of potential candidate prognostic markers and therapeutic targets.
Collapse
|
130
|
Sun XJ, Liu H, Zhang P, Zhang XD, Jiang ZW, Jiang CC. miR-10b promotes migration and invasion in nasopharyngeal carcinoma cells. Asian Pac J Cancer Prev 2014; 14:5533-7. [PMID: 24175854 DOI: 10.7314/apjcp.2013.14.9.5533] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
MicroRNA-10b (miR-10b) has been reported to play an important role in some types of cancer, but the effects and possible mechanisms of action of miR-10b in the metastasis of nasopharyngeal carcinoma cells (NPC) have not been explored. The aim of the present study was to investigate the function of miR-10b in nasopharyngeal carcinoma and to determine the molecular mechanisms underlying its action. The MTT assay was used to assess proliferation of CNE-2Z cells. Wound healing and transwell migration assays were applied to assess cell migration and invasion, while and expression of E-cadherin and MMP-9 were detected using Western blot analysis. Real-time PCR was employed to detect the expression of genes related to migration and invasion and the 2-??Ct method was used to calculate the degree of expression. MTT assay showed the expression of miR-10b to have no effect on the proliferation of NPC cell lines. The wound healing assay showed that miR-10b mimics promoted the mobility and invasion of NPC cell lines. Inhibitors of miR-10b reduced the ability of NPC cell lines to migrate and invade. In addition, the expression of genes related to migration and invasion, such as E-cadherin, vimentin, and MMP-9, were confirmed to be different in the CNE-2Z NPC cell line transfected with miR-10b mimics and with miR-10b inhibitors. In the present study, miR-10b was found to upregulate the expression of MMP-9 and knockdown of miR-10b was found to significantly downregulate the expression of E-cadherin. On the whole, these results showed that miR-10b plays an important role in the invasion and metastasis of NPC cells.
Collapse
Affiliation(s)
- Xiao-Jin Sun
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China E-mail : ,
| | | | | | | | | | | |
Collapse
|
131
|
The use of multidimensional data to identify the molecular biomarker for pancreatic ductal adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2014; 2013:798054. [PMID: 24171174 PMCID: PMC3793503 DOI: 10.1155/2013/798054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/23/2013] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, and the patient has an extremely poor overall survival with a less than 5% 5-year survival rate. Development of potential biomarkers provides a critical foundation for the diagnosis of PDAC. In this project, we have adopted an integrative approach to simultaneously identify biomarker and generate testable hypothesis from multidimensional omics data. We first examine genes for which expression levels are correlated with survival data. The gene list was screened with TF regulation, predicted miRNA targets information, and KEGG pathways. We identified that 273 candidate genes are correlated with patient survival data. 12 TF regulation gene sets, 11 miRNAs targets gene sets, and 15 KEGG pathways are enriched with these survival genes. Notably, CEBPA/miRNA32/PER2 signaling to the clock rhythm qualifies this pathway as a suitable target for therapeutic intervention in PDAC. PER2 expression was highly associated with survival data, thus representing a novel biomarker for earlier detection of PDAC.
Collapse
|
132
|
Imamura Y, Lochhead P, Yamauchi M, Kuchiba A, Qian ZR, Liao X, Nishihara R, Jung S, Wu K, Nosho K, Wang YE, Peng S, Bass AJ, Haigis KM, Meyerhardt JA, Chan AT, Fuchs CS, Ogino S. Analyses of clinicopathological, molecular, and prognostic associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: cohort study and literature review. Mol Cancer 2014; 13:135. [PMID: 24885062 PMCID: PMC4051153 DOI: 10.1186/1476-4598-13-135] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 05/07/2014] [Indexed: 12/14/2022] Open
Abstract
Background KRAS mutations in codons 12 and 13 are established predictive biomarkers for anti-EGFR therapy in colorectal cancer. Previous studies suggest that KRAS codon 61 and 146 mutations may also predict resistance to anti-EGFR therapy in colorectal cancer. However, clinicopathological, molecular, and prognostic features of colorectal carcinoma with KRAS codon 61 or 146 mutation remain unclear. Methods We utilized a molecular pathological epidemiology database of 1267 colon and rectal cancers in the Nurse’s Health Study and the Health Professionals Follow-up Study. We examined KRAS mutations in codons 12, 13, 61 and 146 (assessed by pyrosequencing), in relation to clinicopathological features, and tumor molecular markers, including BRAF and PIK3CA mutations, CpG island methylator phenotype (CIMP), LINE-1 methylation, and microsatellite instability (MSI). Survival analyses were performed in 1067 BRAF-wild-type cancers to avoid confounding by BRAF mutation. Cox proportional hazards models were used to compute mortality hazard ratio, adjusting for potential confounders, including disease stage, PIK3CA mutation, CIMP, LINE-1 hypomethylation, and MSI. Results KRAS codon 61 mutations were detected in 19 cases (1.5%), and codon 146 mutations in 40 cases (3.2%). Overall KRAS mutation prevalence in colorectal cancers was 40% (=505/1267). Of interest, compared to KRAS-wild-type, overall, KRAS-mutated cancers more frequently exhibited cecal location (24% vs. 12% in KRAS-wild-type; P < 0.0001), CIMP-low (49% vs. 32% in KRAS-wild-type; P < 0.0001), and PIK3CA mutations (24% vs. 11% in KRAS-wild-type; P < 0.0001). These trends were evident irrespective of mutated codon, though statistical power was limited for codon 61 mutants. Neither KRAS codon 61 nor codon 146 mutation was significantly associated with clinical outcome or prognosis in univariate or multivariate analysis [colorectal cancer-specific mortality hazard ratio (HR) = 0.81, 95% confidence interval (CI) = 0.29-2.26 for codon 61 mutation; colorectal cancer-specific mortality HR = 0.86, 95% CI = 0.42-1.78 for codon 146 mutation]. Conclusions Tumors with KRAS mutations in codons 61 and 146 account for an appreciable proportion (approximately 5%) of colorectal cancers, and their clinicopathological and molecular features appear generally similar to KRAS codon 12 or 13 mutated cancers. To further assess clinical utility of KRAS codon 61 and 146 testing, large-scale trials are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave,, Room M422, 02215 Boston, MA, USA.
| |
Collapse
|
133
|
Ye JJ, Cao J. MicroRNAs in colorectal cancer as markers and targets: Recent advances. World J Gastroenterol 2014; 20:4288-4299. [PMID: 24764666 PMCID: PMC3989964 DOI: 10.3748/wjg.v20.i15.4288] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/02/2014] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are evolutionarily conserved small non-coding RNA molecules encoded by eukaryotic genomic DNA, and function in post-transcriptional regulation of gene expression via base-pairing with complementary sequences in target mRNAs, resulting in translational repression or degradation of target mRNAs. They represent one of the major types of epigenetic modification and play important roles in all aspects of cellular activities. Altered expression of microRNAs has been found in various human diseases including cancer. Many efforts have been made to discover the characteristic microRNA expression profiles, to understand the roles of aberrantly expressed microRNAs and underlying mechanisms in different cancers. With the application of DNA microarray, real-time quantitative polymerase chain reaction and other molecular biology techniques, increasing evidence has been accumulated which reveal that aberrant microRNAs can be detected not only intracellularly within the cancer cells, but also extracellularly in plasma of patients, postulating the potential of aberrant microRNAs as promising diagnostic/prognostic markers and attracting therapeutic targets. This review is intended to provide the most recent advances in microRNA studies in one of the most common cancers, colorectal cancer, especially the identification of those specifically altered microRNAs in colorectal cancer, validation for their relevance to clinical pathological parameters of patients, functional analyses and potential applications of these microRNAs.
Collapse
|
134
|
Ma J, Liu J, Wang Z, Gu X, Fan Y, Zhang W, Xu L, Zhang J, Cai D. NF-kappaB-dependent microRNA-425 upregulation promotes gastric cancer cell growth by targeting PTEN upon IL-1β induction. Mol Cancer 2014; 13:40. [PMID: 24571667 PMCID: PMC3941686 DOI: 10.1186/1476-4598-13-40] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/20/2014] [Indexed: 01/16/2023] Open
Abstract
Overexpression of the proinflammatory cytokine IL-1β is associated with diverse diseases, including cancer. Alteration of microRNAs has been observed in cancer cells exposed to proinflammatory cytokines, yet their function in inflammation stress remains elusive. Here, we show that IL-1β induces the upregulation of miR-425, which negatively regulates phosphatase and tensin homolog expression by targeting its 3’ UTR. An increase in miR-425 depends on IL-1β-induced NF-kappaB activation, which enhances miR-425 gene transcription upon IL-1β induction. Consequently, repression of phosphatase and tensin homolog by miR-425 promotes gastric cancer cell proliferation, which is required to protect cells from cisplatin-induced apoptosis. Taken together, our data support a critical role for NF-kappaB-dependent upregulation of miR-425, which represents a new pathway for the repression of phosphatase and tensin homolog activation and the promotion of cell survival upon IL-1β induction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianjun Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | | |
Collapse
|
135
|
Chen B, Huang T, Jiang J, Lv L, Li H, Xia S. miR-141 suppresses proliferation and motility of gastric cancer cells by targeting HDGF. Mol Cell Biochem 2013; 388:211-8. [PMID: 24276755 DOI: 10.1007/s11010-013-1912-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/15/2013] [Indexed: 12/18/2022]
Abstract
miR-141 belongs to the miR-200 family, and has been found to be associated with numerous human malignancies; however, its role in gastric cancer (GC) has not been examined in detail. Here, we validated that miR-141 was decreased in GC tissues and cell lines. Forced expression of miR-141 significantly repressed GC cell proliferation and colony formation. Furthermore, miR-141 suppressed in vitro migration and invasion of GC cells. Hepatoma-derived growth factor (HDGF) was confirmed to be a direct target of miR-141 in GC cells. The suppressive effects of miR-141 on GC cell proliferation, colony formation, in vitro migration, and invasion were partially mediated by suppressing HDGF expression. Moreover, the expression of HDGF was negatively correlated with miR-141 in GC tissues. Our data suggest that miR-141 might be associated and plays essential role in GC progression.
Collapse
Affiliation(s)
- Bitao Chen
- Department of Gastroenterology, The No.1 People's Hospital of Jingmen, Jingmen, 448000, China
| | | | | | | | | | | |
Collapse
|
136
|
Xin C, Zhang H, Liu Z. miR-154 suppresses colorectal cancer cell growth and motility by targeting TLR2. Mol Cell Biochem 2013; 387:271-7. [PMID: 24242044 DOI: 10.1007/s11010-013-1892-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/05/2013] [Indexed: 02/07/2023]
Abstract
MicroRNAs play critical roles in the development and progression of colorectal cancer (CRC). miR-154 acts as a tumor suppressor in several tumors; however, its role in CRC is poorly understood. Herein, we found that miR-154 was decreased in CRC tissues and cell lines. Ectopic expression of miR-154 remarkably suppressed cell proliferation and colony formation, migration and invasion in CRC cells. The toll-like receptor 2 (TLR2) was found to be a direct target of miR-154 in CRC cells. Inhibition of TLR2 performed similar effects with miR-154 overexpression on CRC cells, and overexpression of TLR2 could significantly reverse the tumor suppressive effects of miR-154 on CRC cells. This study suggests an essential role for miR-154 in CRC.
Collapse
Affiliation(s)
- Chaoguang Xin
- Anus-Intestines Department, Daqing Oilfield General Hospital, Daqing, 163000, China
| | | | | |
Collapse
|
137
|
Zhu Y, Yang P, Zhang X, Zhang L, Cui G, Wang Q, Lv L, Zhang Y, Xin X, Yan T, Zhao M, Zhang N. The effect and mechanism of CXCR4 silencing on metastasis suppression of human glioma U87 cell line. Anat Rec (Hoboken) 2013; 296:1857-64. [PMID: 24249397 DOI: 10.1002/ar.22825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/25/2013] [Indexed: 11/09/2022]
Abstract
Tumor metastasis is the major cause of treatment failure and poor prognosis of glioma. Inhibiting metastasis has become an important therapeutic strategy for glioma treatment. CXCR4 has been proved to play an important role in the occurrence and development of tumors. In order to illustrate the effect of CXCR4 on glioma metastasis, we investigated the role of CXCR4 in U87 cells metastasis based on the CXCR4 silencing tumor cells. In this study, we found that CXCR4 silencing could suppress U87 cells invasion and adhesion potential, production of TGF-β1, IL-6, and IL-8, and blocked the G0/G1 phase of the cell cycle. We also found that CXCR4 silencing could up-regulate the mRNA and protein expression of p53, p21, and E-cadherin, and down-regulate the mRNA and protein expression of CD44 and MMP-2/-9. Meanwhile, CXCR4 silencing could decrease the phosphorylation of p-AKT and transcription activity of NF-κB promoter, and increased the phosphorylation of PTEN. The results provided a new research basis for the further study of CXCR4 gene, the screening of human glioma, as well as the target treatment for glioma and its prognosis.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Clinical Laboratory, Tianjin Huan Hu Hospital, Tianjin, 300060, China; Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin, 300060, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Wu W, Yang P, Feng X, Wang H, Qiu Y, Tian T, He Y, Yu C, Yang J, Ye S, Zhou Y. The relationship between and clinical significance of MicroRNA-32 and phosphatase and tensin homologue expression in colorectal cancer. Genes Chromosomes Cancer 2013; 52:1133-40. [PMID: 24123284 DOI: 10.1002/gcc.22108] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/08/2013] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs, miRs) are suspected to play important roles in carcinogenesis. MiR-32 has altered expression in colorectal cancer (CRC); however, the clinical significance of miR-32 expression in the process of carcinogenesis is poorly understood. In this study, we determined the levels of, the correlation between, and the clinical significance of the expression of miR-32 and phosphatase and tensin homologue (PTEN), a tumor suppressor targeted by miR-32, in CRC. The levels of miR-32 and PTEN gene expression in 35 colorectal carcinoma samples, 35 corresponding cancer-adjacent tissue samples, 27 colorectal adenoma samples, and 16 normal tissue samples were quantified using real-time quantitative reverse transcriptase-polymerase chain reaction. PTEN protein expression was determined using western blot and immunohistochemistry (IHC). The relationship between the miR-32 and PTEN protein expression and clinicopathological factors was analyzed. Significant upregulation of miR-32 expression and reduction of PTEN were identified in CRC tissues. High miR-32 levels were significantly associated with lymph node and distant metastasis, and Kaplan-Meier analysis indicated that patients with high miR-32 expression had a poor overall survival. Low PTEN protein expression was also significantly correlated with distant metastasis. An inverse relationship between miR-32 and PTEN protein expression was identified. In addition, IHC analysis revealed weak or indiscernible PTEN staining in tumor tissue. MiR-32 overexpression was correlated with specific CRC clinicopathological features and may be a marker of poor prognosis in CRC patients. MiR-32 and PTEN expression were inversely correlated, and miR-32 may be associated with the development of CRC.
Collapse
Affiliation(s)
- Weiyun Wu
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, South Peoples Avenue No. 57, Xiashan District, Zhanjiang, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Mlcochova J, Faltejskova P, Nemecek R, Svoboda M, Slaby O. MicroRNAs targeting EGFR signalling pathway in colorectal cancer. J Cancer Res Clin Oncol 2013; 139:1615-24. [PMID: 23817698 DOI: 10.1007/s00432-013-1470-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 06/21/2013] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are short, 18-25-nucleotide long, non-coding single-stranded RNAs, which are capable to regulate gene expression on post-transcriptional level through binding to their target protein-encoding mRNAs. miRNAs regulate individual components of multiple oncogenic pathways. One of them is epidermal growth factor receptor (EGFR) signalling pathway that regulates cell proliferation, differentiation, migration, angiogenesis and apoptosis. All these processes are deregulated in colorectal cancer (CRC). Moreover, EGFR has been validated as the therapeutic target in CRC, and monoclonal antibodies cetuximab and panitumumab are used in the therapy of patients with metastatic CRC. Because of the extensive involvement of miRNAs in the regulation of EGFR signalling, it seems they could also serve as promising predictive biomarkers to anti-EGFR therapy. In this review, we summarize current knowledge about miRNAs targeting EGFR signalling pathway, their functioning in CRC pathogenesis and potential usage as biomarkers.
Collapse
Affiliation(s)
- Jitka Mlcochova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic, Europe
| | | | | | | | | |
Collapse
|