101
|
Pilotti E, Bianchi MV, De Maria A, Bozzano F, Romanelli MG, Bertazzoni U, Casoli C. HTLV-1/-2 and HIV-1 co-infections: retroviral interference on host immune status. Front Microbiol 2013; 4:372. [PMID: 24391628 PMCID: PMC3870298 DOI: 10.3389/fmicb.2013.00372] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/20/2013] [Indexed: 01/03/2023] Open
Abstract
The human retroviruses HIV-1 and HTLV-1/HTLV-2 share similar routes of transmission but cause significantly different diseases. In this review we have outlined the immune mediated mechanisms by which HTLVs affect HIV-1 disease in co-infected hosts. During co-infection with HIV-1, HTLV-2 modulates the cellular microenvironment favoring its own viability and inhibiting HIV-1 progression. This is achieved when the HTLV-2 proviral load is higher than that of HIV-1, and thanks to the ability of HTLV-2 to: (i) up-regulate viral suppressive CCL3L1 chemokine expression; (ii) overcome HIV-1 capacity to activate the JAK/STAT pathway; (iii) reduce the activation of T and NK cells; (iv) modulate the host miRNA profiles. These alterations of immune functions have been mainly attributed to the effects of the HTLV-2 regulatory protein Tax and suggest that HTLV-2 exerts a protective role against HIV-1 infection. Contrary to HIV-1/HTLV-2, the effect of HIV-1/HTLV-1 co-infection on immunological and pathological conditions is still controversial. There is evidence that indicates a worsening of HIV-1 infection, while other evidence does not show clinically relevant effects in HIV-positive people. Possible differences on innate immune mechanisms and a particularly impact on NK cells are becoming evident. The differences between the two HIV-1/HTLV-1 and HIV-1/HTLV-2 co-infections are highlighted and further discussed.
Collapse
Affiliation(s)
- Elisabetta Pilotti
- GEMIB Laboratory, Center for Medical Research and Molecular Diagnostics Parma, Italy
| | - Maria V Bianchi
- GEMIB Laboratory, Center for Medical Research and Molecular Diagnostics Parma, Italy
| | - Andrea De Maria
- Department of Health Sciences, University of Genova Genova, Italy ; Center of Excellence for Biomedical Research, University of Genova Genova, Italy ; IRCCS AOU San Martino-IST Genova Genova, Italy
| | - Federica Bozzano
- Department of Health Sciences, University of Genova Genova, Italy ; Center of Excellence for Biomedical Research, University of Genova Genova, Italy
| | - Maria G Romanelli
- Department of Life and Reproduction Sciences, University of Verona Verona, Italy
| | - Umberto Bertazzoni
- Department of Life and Reproduction Sciences, University of Verona Verona, Italy
| | - Claudio Casoli
- GEMIB Laboratory, Center for Medical Research and Molecular Diagnostics Parma, Italy
| |
Collapse
|
102
|
Liu J, Duan X, Sun J, Yin Y, Li G, Wang L, Liu B. Bi-factor analysis based on noise-reduction (BIFANR): a new algorithm for detecting coevolving amino acid sites in proteins. PLoS One 2013; 8:e79764. [PMID: 24278175 PMCID: PMC3835919 DOI: 10.1371/journal.pone.0079764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/29/2013] [Indexed: 11/23/2022] Open
Abstract
Previous statistical analyses have shown that amino acid sites in a protein evolve in a correlated way instead of independently. Even though located distantly in the linear sequence, the coevolved amino acids could be spatially adjacent in the tertiary structure, and constitute specific protein sectors. Moreover, these protein sectors are independent of one another in structure, function, and even evolution. Thus, systematic studies on protein sectors inside a protein will contribute to the clarification of protein function. In this paper, we propose a new algorithm BIFANR (Bi-factor Analysis Based on Noise-reduction) for detecting protein sectors in amino acid sequences. After applying BIFANR on S1A family and PDZ family, we carried out internal correlation test, statistical independence test, evolutionary rate analysis, evolutionary independence analysis, and function analysis to assess the prediction. The results showed that the amino acids in certain predicted protein sector are closely correlated in structure, function, and evolution, while protein sectors are nearly statistically independent. The results also indicated that the protein sectors have distinct evolutionary directions. In addition, compared with other algorithms, BIFANR has higher accuracy and robustness under the influence of noise sites.
Collapse
Affiliation(s)
- Juntao Liu
- School of Mathematics, Shandong University, Jinan, China
| | - Xiaoyun Duan
- School of Life Science, Shandong University, Jinan, China
| | - Jianyang Sun
- School of Mathematics, Shandong University, Jinan, China
| | - Yanbin Yin
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Guojun Li
- School of Mathematics, Shandong University, Jinan, China
| | - Lushan Wang
- School of Life Science, Shandong University, Jinan, China
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, China
- * E-mail: Bingqiang Liu:
| |
Collapse
|
103
|
Aida Y, Murakami H, Takahashi M, Takeshima SN. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front Microbiol 2013; 4:328. [PMID: 24265629 PMCID: PMC3820957 DOI: 10.3389/fmicb.2013.00328] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/17/2013] [Indexed: 11/27/2022] Open
Abstract
Bovine leukemia virus (BLV) and human T-cell leukemia virus type 1 (HTLV-1) make up a unique retrovirus family. Both viruses induce chronic lymphoproliferative diseases with BLV affecting the B-cell lineage and HTLV-1 affecting the T-cell lineage. The pathologies of BLV- and HTLV-induced infections are notably similar, with an absence of chronic viraemia and a long latency period. These viruses encode at least two regulatory proteins, namely, Tax and Rex, in the pX region located between the env gene and the 3′ long terminal repeat. The Tax protein is a key contributor to the oncogenic potential of the virus, and is also the key protein involved in viral replication. However, BLV infection is not sufficient for leukemogenesis, and additional events such as gene mutations must take place. In this review, we first summarize the similarities between the two viruses in terms of genomic organization, virology, and pathology. We then describe the current knowledge of the BLV model, which may also be relevant for the understanding of leukemogenesis caused by HTLV-1. In addition, we address our improved understanding of Tax functions through the newly identified BLV Tax mutants, which have a substitution between amino acids 240 and 265.
Collapse
Affiliation(s)
- Yoko Aida
- Viral Infectious Diseases Unit, RIKEN Wako, Saitama, Japan
| | | | | | | |
Collapse
|
104
|
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is causally associated with adult T-cell leukemia (ATL), an aggressive T-cell malignancy with a poor prognosis. To elucidate ATL pathogenesis in vivo, a variety of animal models have been established; however, the mechanisms driving this disorder remain poorly understood due to deficiencies in each of these animal models. Here, we report a novel HTLV-1-infected humanized mouse model generated by intra-bone marrow injection of human CD133(+) stem cells into NOD/Shi-scid/IL-2Rγc null (NOG) mice (IBMI-huNOG mice). Upon infection, the number of CD4(+) human T cells in the periphery increased rapidly, and atypical lymphocytes with lobulated nuclei resembling ATL-specific flower cells were observed 4 to 5 months after infection. Proliferation was seen in both CD25(-) and CD25(+) CD4 T cells with identical proviral integration sites; however, a limited number of CD25(+)-infected T-cell clones eventually dominated, indicating an association between clonal selection of infected T cells and expression of CD25. Additionally, HTLV-1-specific adaptive immune responses were induced in infected mice and might be involved in the control of HTLV-1-infected cells. Thus, the HTLV-1-infected IBMI-huNOG mouse model successfully recapitulated the development of ATL and may serve as an important tool for investigating in vivo mechanisms of ATL leukemogenesis and evaluating anti-ATL drug and vaccine candidates.
Collapse
|
105
|
Forlani G, Abdallah R, Accolla RS, Tosi G. The MHC-II transactivator CIITA, a restriction factor against oncogenic HTLV-1 and HTLV-2 retroviruses: similarities and differences in the inhibition of Tax-1 and Tax-2 viral transactivators. Front Microbiol 2013; 4:234. [PMID: 23986750 PMCID: PMC3749491 DOI: 10.3389/fmicb.2013.00234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/30/2013] [Indexed: 11/13/2022] Open
Abstract
The activation of CD4(+) T helper cells is strictly dependent on the presentation of antigenic peptides by MHC class II (MHC-II) molecules. MHC-II expression is primarily regulated at the transcriptional level by the AIR-1 gene product CIITA (class II transactivator). Thus, CIITA plays a pivotal role in the triggering of the adaptive immune response against pathogens. Besides this well known function, we recently found that CIITA acts as an endogenous restriction factor against HTLV-1 (human T cell lymphotropic virus type 1) and HTLV-2 oncogenic retroviruses by targeting their viral transactivators Tax-1 and Tax-2, respectively. Here we review our findings on CIITA-mediated inhibition of viral replication and discuss similarities and differences in the molecular mechanisms by which CIITA specifically counteracts the function of Tax-1 and Tax-2 molecules. The dual function of CIITA as a key regulator of adaptive and intrinsic immunity represents a rather unique example of adaptation of host-derived factors against pathogen infections during evolution.
Collapse
Affiliation(s)
| | | | - Roberto S. Accolla
- Laboratory of General Pathology and Immunology, Department of Surgical and Morphological Sciences, University of InsubriaVarese, Italy
| | | |
Collapse
|
106
|
Shirinian M, Kfoury Y, Dassouki Z, El-Hajj H, Bazarbachi A. Tax-1 and Tax-2 similarities and differences: focus on post-translational modifications and NF-κB activation. Front Microbiol 2013; 4:231. [PMID: 23966989 PMCID: PMC3744011 DOI: 10.3389/fmicb.2013.00231] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/29/2013] [Indexed: 11/13/2022] Open
Abstract
Although human T cell leukemia virus type 1 and 2 (HTLV-1 and HTLV-2) share similar genetic organization, they have major differences in their pathogenesis and disease manifestation. HTLV-1 is capable of transforming T lymphocytes in infected patients resulting in adult T cell leukemia/lymphoma whereas HTLV-2 is not clearly associated with lymphoproliferative diseases. Numerous studies have provided accumulating evidence on the involvement of the viral transactivators Tax-1 versus Tax-2 in T cell transformation. Tax-1 is a potent transcriptional activator of both viral and cellular genes. Tax-1 post-translational modifications and specifically ubiquitylation and SUMOylation have been implicated in nuclear factor-kappaB (NF-κB) activation and may contribute to its transformation capacity. Although Tax-2 has similar protein structure compared to Tax-1, the two proteins display differences both in their protein–protein interaction and activation of signal transduction pathways. Recent studies on Tax-2 have suggested ubiquitylation and SUMOylation independent mechanisms of NF-κB activation. In this present review, structural and functional differences between Tax-1 and Tax-2 will be summarized. Specifically, we will address their subcellular localization, nuclear trafficking and their effect on cellular regulatory proteins. A special attention will be given to Tax-1/Tax-2 post-translational modification such as ubiquitylation, SUMOylation, phosphorylation, acetylation, NF-κB activation, and protein–protein interactions involved in oncogenecity both in vivo and in vitro.
Collapse
Affiliation(s)
- Margret Shirinian
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | | | | | | | | |
Collapse
|
107
|
Barbeau B, Peloponese JM, Mesnard JM. Functional comparison of antisense proteins of HTLV-1 and HTLV-2 in viral pathogenesis. Front Microbiol 2013; 4:226. [PMID: 23966985 PMCID: PMC3736048 DOI: 10.3389/fmicb.2013.00226] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/25/2013] [Indexed: 12/24/2022] Open
Abstract
The production of antisense transcripts from the 3′ long terminal repeat (LTR) in human T-lymphotropic retroviruses has now been clearly demonstrated. After the identification of the antisense strand-encoded human T-lymphotropic virus type 1 (HTLV-1) bZIP (HBZ) factor, we reported that HBZ could interact with CRE-binding protein (CREB) transcription factors and consequently turn off the important activating potential of the viral Tax protein on HTLV-1 5′ LTR promoter activity. We have recently accumulated new results demonstrating that antisense transcripts also exist in HTLV-2, -3, and -4. Furthermore, our data have confirmed the existence of encoded proteins from these antisense transcripts (termed antisense proteins of HTLVs or APHs). APHs are also involved in the down-regulation of Tax-dependent viral transcription. In this review, we will focus on the different molecular mechanisms used by HBZ and APH-2 to control viral expression. While HBZ interacts with CREB through its basic zipper domain, APH-2 binds to this cellular factor through a five amino acid motif localized in its carboxyl terminus. Moreover, unlike APH-2, HBZ possesses an N-terminal activation domain that also contributes to the inhibition of the viral transcription by interacting with the KIX domain of p300/CBP. On the other hand, HBZ was found to induce T cell proliferation while APH-2 was unable to promote such proliferation. Interestingly, HTLV-2 has not been causally linked to human T cell leukemia, while HTLV-1 is responsible for the development of the adult T cell leukemia/lymphoma. We will further discuss the possible role played by antisense proteins in the establishment of pathologies induced by viral infection.
Collapse
Affiliation(s)
- Benoit Barbeau
- Département des sciences biologiques and Centre de recherche BioMed, Université du Québec à Montréal Montréal, QC, Canada
| | | | | |
Collapse
|
108
|
Chan CP, Siu YT, Kok KH, Ching YP, Tang HMV, Jin DY. Group I p21-activated kinases facilitate Tax-mediated transcriptional activation of the human T-cell leukemia virus type 1 long terminal repeats. Retrovirology 2013; 10:47. [PMID: 23622267 PMCID: PMC3651266 DOI: 10.1186/1742-4690-10-47] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 04/23/2013] [Indexed: 12/12/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and tropical spastic paraparesis. HTLV-1 encodes transactivator protein Tax that interacts with various cellular factors to modulate transcription and other biological functions. Additional cellular mediators of Tax-mediated transcriptional activation of HTLV-1 long terminal repeats (LTR) remain to be identified and characterized. Results In this study, we investigated the regulatory role of group I p21-activated kinases (Paks) in Tax-induced LTR activation. Both wild-type and kinase-dead mutants of Pak3 were capable of potentiating the activity of Tax to activate LTR transcription. The effect of Paks on the LTR was attributed to the N-terminal regulatory domain and required the action of CREB, CREB-regulating transcriptional coactivators (CRTCs) and p300/CREB-binding protein. Paks physically associated with Tax and CRTCs. Paks were recruited to the LTR in the presence of Tax. siRNAs against either Pak1 or Pak3 prevented the interaction of Tax with CRTC1 and the recruitment of Tax to the LTR. These siRNAs also inhibited LTR-dependent transcription in HTLV-1-transformed MT4 cells and in cells transfected with an infectious clone of HTLV-1. Conclusion Group I Paks augment Tax-mediated transcriptional activation of HTLV-1 LTR in a kinase-independent manner.
Collapse
Affiliation(s)
- Ching-Ping Chan
- Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong
| | | | | | | | | | | |
Collapse
|
109
|
The four and a half LIM family members are novel interactants of the human T-cell leukemia virus type 1 Tax oncoprotein. J Virol 2013; 87:7435-44. [PMID: 23616667 DOI: 10.1128/jvi.00070-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia (ATL). The viral regulatory protein Tax1 plays a pivotal role in T-cell transformation and ATL development. Previous studies in our laboratory, using the yeast 2-hybrid approach to screen a T-cell library for Tax1-interacting partners, identified the cellular Four and a Half Lim domain protein 3 (FHL3) as a possible Tax1-interacting candidate. FHL3 is a member of the FHL family of proteins, which function as transcriptional coactivators and cytoskeleton regulators and have a role in cancer progression and development. The aim of this study was to investigate the physical and functional interaction between Tax1 and members of the FHL family of proteins. We show that Tax1 and FHL3 interact both in vitro and in vivo. Furthermore, both FHL1 and -2 also interact with Tax1. We have demonstrated that FHL3 enhances Tax1-mediated activation of the viral long terminal repeat (LTR) without affecting basal activity and that FHL1 to -3 regulate NF-κB activation by Tax1 in a cell-specific manner. In addition, we have found that the interaction between Tax1 and FHL1 to -3 affects the localization of these proteins, leading to their redistribution in cells. Tax1 also affected FHL3 cytoskeleton function by increasing FHL3-mediated cell spreading. Overall, our results suggest that the interaction between Tax1 and the FHL family alters both the transactivating activity and the subcellular localization of Tax1 and provide new insights into molecular mechanisms that underlie the oncogenic nature of this HTLV-1 protein.
Collapse
|
110
|
Tang HMV, Gao WW, Chan CP, Siu YT, Wong CM, Kok KH, Ching YP, Takemori H, Jin DY. LKB1 tumor suppressor and salt-inducible kinases negatively regulate human T-cell leukemia virus type 1 transcription. Retrovirology 2013; 10:40. [PMID: 23577667 PMCID: PMC3640950 DOI: 10.1186/1742-4690-10-40] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 04/02/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Treatment options are limited and prophylactic agents are not available. We have previously demonstrated an essential role for CREB-regulating transcriptional coactivators (CRTCs) in HTLV-1 transcription. RESULTS In this study we report on the negative regulatory role of LKB1 tumor suppressor and salt-inducible kinases (SIKs) in the activation of HTLV-1 long terminal repeats (LTR) by the oncoprotein Tax. Activation of LKB1 and SIKs effectively blunted Tax activity in a phosphorylation-dependent manner, whereas compromising these kinases, but not AMP-dependent protein kinases, augmented Tax function. Activated LKB1 and SIKs associated with Tax and suppressed Tax-induced LTR activation by counteracting CRTCs and CREB. Enforced expression of LKB1 or SIK1 in cells transfected with HTLV-1 molecular clone pX1MT repressed proviral transcription. On the contrary, depletion of LKB1 in pX1MT-transfected cells and in HTLV-1-transformed T cells boosted the expression of Tax. Treatment of HTLV-1 transformed cells with metformin led to LKB1/SIK1 activation, reduction in Tax expression, and inhibition of cell proliferation. CONCLUSIONS Our findings revealed a new function of LKB1 and SIKs as negative regulators of HTLV-1 transcription. Pharmaceutical activation of LKB1 and SIKs might be considered as a new strategy in anti-HTLV-1 and anti-ATL therapy.
Collapse
Affiliation(s)
- Hei-Man Vincent Tang
- Department of Biochemistry, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Nakano K, Ando T, Yamagishi M, Yokoyama K, Ishida T, Ohsugi T, Tanaka Y, Brighty DW, Watanabe T. Viral interference with host mRNA surveillance, the nonsense-mediated mRNA decay (NMD) pathway, through a new function of HTLV-1 Rex: implications for retroviral replication. Microbes Infect 2013; 15:491-505. [PMID: 23541980 DOI: 10.1016/j.micinf.2013.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 01/08/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is an essential and conserved cellular mRNA quality control mechanism. RNA signals to express viral genes from overlapping open reading frames potentially initiate NMD, nevertheless it is not clear whether viral RNAs are sensitive to NMD or if viruses have evolved mechanisms to evade NMD. Here we demonstrate that the genomic and full-length mRNAs of Human-T-cell Leukemia Virus type-I (HTLV-1), a retrovirus responsible for Adult T-cell Leukemia (ATL), are sensitive to NMD. They exhibit accelerated turnover in NMD-activated cells, while siRNA-mediated knockdown of NMD-master-regulator, UPF1, promotes enhanced stability of them. These effects on RNA stability were recapitulated by a reporter construct encoding the HTLV-1 translational frameshift signal of gag-pol. In agreement with the RNA stability, viral protein expression from the integrated provirus was inversely correlated with cellular NMD activity. We further demonstrated that the viral RNA-binding protein, Rex, approves the stability of viral RNA by inhibiting NMD. Significantly, Rex establishes a general block to NMD, as both NMD-responsive reporter transcripts and natural host-encoded NMD substrates were stabilized in the presence of Rex. Thus, we suggest that Rex not only stabilizes viral transcripts, but also perturbs cellular mRNA metabolism and host cell homeostasis via inhibition of NMD.
Collapse
Affiliation(s)
- Kazumi Nakano
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minatoku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Yasunaga JI, Matsuoka M. [HTLV-1: Recent topics in epidemiologic, basic and clinical research]. Uirusu 2013; 63:165-174. [PMID: 25366051 DOI: 10.2222/jsv.63.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) belongs to Delta Retorviridae, and induces a malignancy of CD4+CD25+ T-cells, adult T-cell leukemia (ATL), and several chronic inflammatory diseases, such as HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and HTLV-1 uveitis. A nationwide survey of HTLV-1-infected subjects, which was recently conducted by Japanese government, revealed that the numbers of HTLV-1 carriers and patients with HTLV-1-associated diseases have not decreased much over the last two decades in Japan. In contrast, novel findings on HTLV-1 dynamics in vivo and molecular mechanisms of its pathogenesis are accumulating by detailed analysis of newly identified viral and cellular factors, novel technologies such as next-generation sequencing, and appropriate animal models for HTLV-1 research. In this review, we summarize the recent progress of HTLV-1 research.
Collapse
|
113
|
Currer R, Van Duyne R, Jaworski E, Guendel I, Sampey G, Das R, Narayanan A, Kashanchi F. HTLV tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Front Microbiol 2012; 3:406. [PMID: 23226145 PMCID: PMC3510432 DOI: 10.3389/fmicb.2012.00406] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/12/2012] [Indexed: 12/18/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) has been identified as the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The virus infects between 15 and 20 million people worldwide of which approximately 2-5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator, and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications (PTMs) of Tax and subcellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK) complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis.
Collapse
Affiliation(s)
- Robert Currer
- National Center for Biodefense and Infectious Diseases, George Mason University Manassas, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
The cellular autophagy pathway modulates human T-cell leukemia virus type 1 replication. J Virol 2012; 87:1699-707. [PMID: 23175371 DOI: 10.1128/jvi.02147-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autophagy, a general homeostatic process for degradation of cytosolic proteins or organelles, has been reported to modulate the replication of many viruses. The role of autophagy in human T-cell leukemia virus type 1 (HTLV-1) replication has, however, been uncharacterized. Here, we report that HTLV-1 infection increases the accumulation of autophagosomes and that this accumulation increases HTLV-1 production. We found that the HTLV-1 Tax protein increases cellular autophagosome accumulation by acting to block the fusion of autophagosomes to lysosomes, preventing the degradation of the former by the latter. Interestingly, the inhibition of cellular autophagosome-lysosome fusion using bafilomycin A increased the stability of the Tax protein, suggesting that cellular degradation of Tax occurs in part through autophagy. Our current findings indicate that by interrupting the cell's autophagic process, Tax exerts a positive feedback on its own stability.
Collapse
|
115
|
Bcl-3 suppresses Tax-induced NF-κB activation through p65 nuclear translocation blockage in HTLV-1-infected cells. Int J Oncol 2012; 42:269-76. [PMID: 23135533 DOI: 10.3892/ijo.2012.1685] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/16/2012] [Indexed: 11/05/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) Tax-induced persistent activation of the NF-κB pathway is perceived as the primary cause of adult T cell leukemia (ATL), an aggressive leukemia caused by HTLV-1. Although elevated oncoprotein Bcl-3 levels are found in many HTLV-1-infected T cell lines and ATL cells, the role of Bcl-3 in the malignant progression caused by HTLV-1 retrovirus remains poorly understood. We confirmed, in the present study, that the Tax-induced NF-κB activation involves the regulation of Bcl-3. Both knockdown and overexpression of Bcl-3 inhibit the Tax-induced NF-κB activation. Similarly, excessive Bcl-3 inhibits the NF-κB/DNA binding activity and significantly decreases Tax-induced p65 nuclear translocation. The present results demonstrate the pleiotropic roles of Bcl-3 in Tax-induced NF-κB activation and indicate that a balance in the aberrant Bcl-3 expression may be established to play an important role in the maintenance of proliferation and inhibition of apoptosis in HTLV-1-infected and ATL cells.
Collapse
|
116
|
Mochizuki M, Sugita S, Kamoi K. Immunological homeostasis of the eye. Prog Retin Eye Res 2012; 33:10-27. [PMID: 23108335 DOI: 10.1016/j.preteyeres.2012.10.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 12/22/2022]
Abstract
Uveitis is a sight-threatening disease caused by autoimmune or infection-related immune responses. Studies in experimental autoimmune uveitis and in human diseases imply that activated CD4(+) T cells, Th1 and Th17 cells, play an effector role in ocular inflammation. The eye has a unique regional immune system to protect vision-related cells and tissues from these effector T cells. The immunological balance between the pathogenic CD4(+) T cells and regional immune system in the eye contributes to the maintenance of ocular homeostasis and good vision. Current studies have demonstrated that ocular parenchymal cells at the inner surface of the blood-ocular barrier, i.e. corneal endothelial (CE) cells, iris pigment epithelial (PE) cells, ciliary body PE cells, and retinal PE cells, contribute to the regional immune system of the eye. Murine ocular resident cells directly suppress activation of bystander T cells and production of inflammatory cytokines. The ocular resident cells possess distinct properties of immunoregulation that are related to disparate anatomical location. CE cells and iris PE cells, which are located at the anterior segment of the eye and face the aqueous humor, suppress activation of T cells via cell-to-cell contact mechanisms, whereas retinal PE cells suppress the activation of T cells via soluble factors. In addition to direct immune suppression, the ocular resident cells have another unique immunosuppressive property, the induction of CD25(+)Foxp3(+) Treg cells that also suppress the activation of bystander T cells. Iris PE cells convert CD8(+) T cells into Treg cells, while retinal PE cells convert CD4(+) T cells greatly and CD8(+) T cells moderately into Treg cells. CE cells also convert both CD4(+) T cells and CD8(+) T cells into Treg cells. The immunomodulation by ocular resident cells is mediated by various soluble or membrane-bound molecules that include TGF-β TSP-1, B7-2 (CD86), CTLA-2α, PD-L1 (B7-H1), galectin 1, pigment epithelial-derived factor PEDF), GIRTL, and retinoic acid. Human retinal PE cells also possess similar immune properties to induce Treg cells. Although there are many issues to be answered, human Treg cells induced by ocular resident cells such as retinal PE cells and related immunosuppressive molecules can be applied as immune therapy for refractive autoimmune uveitis in humans in the future.
Collapse
Affiliation(s)
- Manabu Mochizuki
- Department of Ophthalmology & Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo 113-8519, Japan.
| | | | | |
Collapse
|
117
|
Giraudon P, Nicolle A, Cavagna S, Benetollo C, Marignier R, Varrin-Doyer M. Insight into the role of CRMP2 (collapsin response mediator protein 2) in T lymphocyte migration: the particular context of virus infection. Cell Adh Migr 2012; 7:38-43. [PMID: 23076208 DOI: 10.4161/cam.22385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lymphocyte migration into the central nervous system is a critical step in the physiopathology of a variety of neurological diseases, including multiple sclerosis and virus-induced neuroinflammation. To better understand the molecular mechanisms involved in cells migration, we focused our studies on collapsin response mediator proteins (CRMPs), a group of phosphoproteins that mediate neural cell motility. There is now evidence that collapsin response mediator protein 2 (CRMP2) plays critical roles in the polarization (uropod formation) of T lymphocytes and their subsequent migration. CRMP2 was known to respond to semaphorin, ephrin and neurotrophin signaling in neurons. The link between the chemokine CXCL12, CRMP2 activity and cell migration has been demonstrated in T lymphocytes. These observations and comparisons of the activity of CRMPs in immune and non-immmune cells are summarized here. The ability of a human retrovirus to enhance lymphocyte migration through the modulation of CRMP2 activity is also discussed. In conclusion, viruses have the ability to manipulate the lymphocyte motility machinery, intensifying neural tissue invasion in infected patients.
Collapse
Affiliation(s)
- Pascale Giraudon
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Neurooncology Neuroinflammation Team, Lyon, France.
| | | | | | | | | | | |
Collapse
|
118
|
Bonnet A, Randrianarison-Huetz V, Nzounza P, Nedelec M, Chazal M, Waast L, Pene S, Bazarbachi A, Mahieux R, Bénit L, Pique C. Low nuclear body formation and tax SUMOylation do not prevent NF-kappaB promoter activation. Retrovirology 2012; 9:77. [PMID: 23009398 PMCID: PMC3476979 DOI: 10.1186/1742-4690-9-77] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 09/01/2012] [Indexed: 11/19/2022] Open
Abstract
Background The Tax protein encoded by Human T-lymphotropic virus type 1 (HTLV-1) is a powerful activator of the NF-κB pathway, a property critical for HTLV-1-induced immortalization of CD4+ T lymphocytes. Tax permanently stimulates this pathway at a cytoplasmic level by activating the IκB kinase (IKK) complex and at a nuclear level by enhancing the binding of the NF-κB factor RelA to its cognate promoters and by forming nuclear bodies, believed to represent transcriptionally active structures. In previous studies, we reported that Tax ubiquitination and SUMOylation play a critical role in Tax localization and NF-κB activation. Indeed, analysis of lysine Tax mutants fused or not to ubiquitin or SUMO led us to propose a two-step model in which Tax ubiquitination first intervenes to activate IKK while Tax SUMOylation is subsequently required for promoter activation within Tax nuclear bodies. However, recent studies showing that ubiquitin or SUMO can modulate Tax activities in either the nucleus or the cytoplasm and that SUMOylated Tax can serve as substrate for ubiquitination suggested that Tax ubiquitination and SUMOylation may mediate redundant rather than successive functions. Results In this study, we analyzed the properties of a new Tax mutant that is properly ubiquitinated, but defective for both nuclear body formation and SUMOylation. We report that reducing Tax SUMOylation and nuclear body formation do not alter the ability of Tax to activate IKK, induce RelA nuclear translocation, and trigger gene expression from a NF-κB promoter. Importantly, potent NF-κB promoter activation by Tax despite low SUMOylation and nuclear body formation is also observed in T cells, including CD4+ primary T lymphocytes. Moreover, we show that Tax nuclear bodies are hardly observed in HTLV-1-infected T cells. Finally, we provide direct evidence that the degree of NF-κB activation by Tax correlates with the level of Tax ubiquitination, but not SUMOylation. Conclusions These data reveal that the formation of Tax nuclear bodies, previously associated to transcriptional activities in Tax-transfected cells, is dispensable for NF-κB promoter activation, notably in CD4+ T cells. They also provide the first evidence that Tax SUMOylation is not a key determinant for Tax-induced NF-κB activation.
Collapse
Affiliation(s)
- Amandine Bonnet
- INSERM, U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Yamagishi M, Watanabe T. Molecular hallmarks of adult T cell leukemia. Front Microbiol 2012; 3:334. [PMID: 23060864 PMCID: PMC3444139 DOI: 10.3389/fmicb.2012.00334] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022] Open
Abstract
The molecular hallmarks of adult T cell leukemia (ATL) comprise outstanding deregulations of signaling pathways that control the cell cycle, resistance to apoptosis, and proliferation of leukemic cells, all of which have been identified by early excellent studies. Nevertheless, we are now confronted the therapeutic difficulties of ATL that is a most aggressive T cell leukemia/lymphoma. Using next-generation strategies, emerging molecular characteristics such as specific surface markers and an additional catalog of signals affecting the fate of leukemic cells have been added to the molecular hallmarks that constitute an organizing principle for rationalizing the complexities of ATL. Although human T cell leukemia virus type 1 is undoubtedly involved in ATL leukemogenesis, most leukemic cells do not express the viral protein Tax. Instead, cellular gene expression changes dominate homeostasis disorders of infected cells and characteristics of ATL. In this review, we summarize the state of the art of ATL molecular pathology, which supports the biological properties of leukemic cells. In addition, we discuss the recent discovery of two molecular hallmarks of potential generality; an abnormal microRNA pattern and epigenetic reprogramming, which strongly involve the imbalance of the molecular network of lymphocytes. Global analyses of ATL have revealed the functional impact of crosstalk between multifunctional pathways. Clinical and biological studies on signaling inhibitory agents have also revealed novel oncogenic drivers that can be targeted in future. ATL cells, by deregulation of such pathways and their interconnections, may become masters of their own destinies. Recognizing and understanding of the widespread molecular applicability of these concepts will increasingly affect the development of novel strategies for treating ATL.
Collapse
Affiliation(s)
- Makoto Yamagishi
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo Minato-ku, Tokyo, Japan
| | | |
Collapse
|
120
|
Nakano K, Watanabe T. HTLV-1 Rex: the courier of viral messages making use of the host vehicle. Front Microbiol 2012; 3:330. [PMID: 22973269 PMCID: PMC3434621 DOI: 10.3389/fmicb.2012.00330] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/24/2012] [Indexed: 01/25/2023] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus causing an aggressive T-cell malignancy, adult T-cell leukemia (ATL). Although HTLV-1 has a compact RNA genome, it has evolved elaborate mechanisms to maximize its coding potential. The structural proteins Gag, Pro, and Pol are encoded in the unspliced form of viral mRNA, whereas the Env protein is encoded in singly spliced viral mRNA. Regulatory and accessory proteins, such as Tax, Rex, p30II, p12, and p13, are translated only from fully spliced mRNA. For effective viral replication, translation from all forms of HTLV-1 transcripts has to be achieved in concert, although unspliced mRNA are extremely unstable in mammalian cells. It has been well recognized that HTLV-1 Rex enhances the stability of unspliced and singly spliced HTLV-1 mRNA by promoting nuclear export and thereby removing them from the splicing site. Rex specifically binds to the highly structured Rex responsive element (RxRE) located at the 3' end of all HTLV-1 mRNA. Rex then binds to the cellular nuclear exporter, CRM1, via its nuclear export signal domain and the Rex-viral transcript complex is selectively exported from the nucleus to the cytoplasm for effective translation of the viral proteins. Yet, the mechanisms by which Rex inhibits the cellular splicing machinery and utilizes the cellular pathways beneficial to viral survival in the host cell have not been fully explored. Furthermore, physiological impacts of Rex against homeostasis of the host cell via interactions with numerous cellular proteins have been largely left uninvestigated. In this review, we focus on the biological importance of HTLV-1 Rex in the HTLV-1 life cycle by following the historical path in the literature concerning this viral post-transcriptional regulator from its discovery to this day. In addition, for future studies, we discuss recently discovered aspects of HTLV-1 Rex as a post-transcriptional regulator and its use in host cellular pathways.
Collapse
Affiliation(s)
- Kazumi Nakano
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo Tokyo, Japan
| | - Toshiki Watanabe
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
121
|
Kusano S, Eizuru Y. Human phospholipid scramblase 1 interacts with and regulates transactivation of HTLV-1 Tax. Virology 2012; 432:343-52. [PMID: 22789739 DOI: 10.1016/j.virol.2012.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 04/21/2012] [Accepted: 06/18/2012] [Indexed: 11/18/2022]
Abstract
Human phospholipid scramblase (PLSCR) 1 expression is strongly activated in response to interferon (IFN) treatment and viral infection, and PLSCR1 is necessary for the IFN-dependent induction of gene expression and antiviral activity. We show here that PLSCR1 directly interacts with human T-cell leukemia virus type-1 (HTLV-1) Tax in vitro and in vivo. This interaction reduced the cytoplasmic distribution of Tax. PLSCR1 efficiently repressed the Tax-mediated transactivation of the HTLV-1 long terminal repeat and the NF-κB binding site reporter constructs in an interaction-dependent manner in COS-1 and Tax-producing HTLV-1-infected T cell lines. Furthermore, we show that PLSCR1 repressed the homodimerization of Tax in vitro. These data reveal for the first time that PLSCR1 specifically interacts with HTLV-1 Tax and negatively regulates its transactivation activity by altering the subcellular distribution and the homodimerization of Tax. PLSCR1 may play an important role in the IFN-mediated repression of Tax-dependent transactivation during HTLV-1 infection.
Collapse
Affiliation(s)
- Shuichi Kusano
- Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | | |
Collapse
|
122
|
Arainga M, Murakami H, Aida Y. Visualizing spatiotemporal dynamics of apoptosis after G1 arrest by human T cell leukemia virus type 1 Tax and insights into gene expression changes using microarray-based gene expression analysis. BMC Genomics 2012; 13:275. [PMID: 22726420 PMCID: PMC3537563 DOI: 10.1186/1471-2164-13-275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/07/2012] [Indexed: 12/31/2022] Open
Abstract
Background Human T cell leukemia virus type 1 (HTLV-1) Tax is a potent activator of viral and cellular gene expression that interacts with a number of cellular proteins. Many reports show that Tax is capable of regulating cell cycle progression and apoptosis both positively and negatively. However, it still remains to understand why the Tax oncoprotein induces cell cycle arrest and apoptosis, or whether Tax-induced apoptosis is dependent upon its ability to induce G1 arrest. The present study used time-lapse imaging to explore the spatiotemporal patterns of cell cycle dynamics in Tax-expressing HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator, Fucci2. A large-scale host cell gene profiling approach was also used to identify the genes involved in Tax-mediated cell signaling events related to cellular proliferation and apoptosis. Results Tax-expressing apoptotic cells showed a rounded morphology and detached from the culture dish after cell cycle arrest at the G1 phase. Thus, it appears that Tax induces apoptosis through pathways identical to those involved in G1 arrest. To elucidate the mechanism(s) by which Tax induces cell cycle arrest and apoptosis, regulation of host cellular genes by Tax was analyzed using a microarray containing approximately 18,400 human mRNA transcripts. Seventeen genes related to cell cycle regulation were identified as being up or downregulated > 2.0-fold in Tax-expressing cells. Several genes, including SMAD3, JUN, GADD45B, DUSP1 and IL8, were involved in cellular proliferation, responses to cellular stress and DNA damage, or inflammation and immune responses. Additionally, 23 pro- and anti-apoptotic genes were deregulated by Tax, including TNFAIP3, TNFRS9, BIRC3 and IL6. Furthermore, the kinetics of IL8, SMAD3, CDKN1A, GADD45A, GADD45B and IL6 expression were altered following the induction of Tax, and correlated closely with the morphological changes observed by time-lapse imaging. Conclusions Taken together, the results of this study permit a greater understanding of the biological events affected by HTLV-1 Tax, particularly the regulation of cellular proliferation and apoptosis. Importantly, this study is the first to demonstrate the dynamics of morphological changes during Tax-induced apoptosis after cell cycle arrest at the G1 phase.
Collapse
Affiliation(s)
- Mariluz Arainga
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
123
|
Ras signaling contributes to survival of human T-cell leukemia/lymphoma virus type 1 (HTLV-1) Tax-positive T-cells. Apoptosis 2012; 17:219-28. [PMID: 22127644 PMCID: PMC3279637 DOI: 10.1007/s10495-011-0676-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ras signaling pathways play an important role in cellular proliferation and survival, and inappropriate activation of Ras frequently results in cell transformation and cancer. Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) is the etiological agent of the adult T-cell leukemia/lymphoma (ATLL), a severe malignancy that has a poor prognosis and exhibits resistance to conventional chemotherapy. Although the mechanisms involved in cell transformation by HTLV-1 have not been completely clarified, it is generally thought that Tax plays a pivotal role in the process. We have previously proposed that a functionally active Ras protein is needed for efficient anti-apoptotic activity of Tax. In this study we report data indicating that the apoptotic resistance of cells expressing Tax, constitutively or transiently, is linked to the intracellular levels of Ras-GTP. Indeed, we found that Tax-positive cells have a high content of active Ras, and that inhibition of Ras signaling, using the antagonist farnesyl thyosalicylic acid (FTS), increases their sensitivity to apoptosis. FTS treatment was also accompanied by a decrease in ERK, but not Akt, phosphorylation. Thus, all together our data suggest that the interaction between Tax and Ras could be important to ATLL pathogenesis, and indicate Ras as a possible target for therapeutic intervention in ATLL patients.
Collapse
|
124
|
Abstract
Although human T cell leukemia virus type I (HTLV-I) is undoubtedly involved in the immortalization and leukemogenesis of infected cells, mechanistic underpinnings of its molecular pathophysiology in long latent period of Adult T-cell leukemia (ATL) remain to be elucidated. One of the most significant recent advances in biomedical research has been the discovery of small noncoding RNAs designated microRNA (miRNA), which affect the field of virology including HTLV-1 research. Mounting evidence indicates that viruses use these miRNAs to manipulate both cellular and viral gene expression. Viral infection also can exert a profound impact on the cellular miRNA expression profile. Some studies have demonstrated that some deregulations of miRNA are involved in the pathogenesis of HTLV-1. Furthermore, global analyses of ATL patient samples have provided a conceptual progress that Polycomb family induces miR-31 silencing, resulting in overexpression of NF- kappaB inducing kinase (NIK) following NF-kappaB activation. Given that miRNAs act as pleiotropic molecules essential in all cellular events, deregulation of miRNA signature caused by HTLV-1 infection strongly involves the imbalance of molecular network of lymphocytes. Recognition and understanding of the widespread molecular applicability of miRNAs will increasingly have much effect on the development of novel strategies to treat the HTLV-1-associated diseases. Here we discuss our current knowledge of viral miRNAs and virally influenced cellular miRNAs and their relationship to ATL.
Collapse
Affiliation(s)
- Makoto Yamagishi
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | | |
Collapse
|
125
|
The human T-lymphotropic virus type 1 tax protein inhibits nonsense-mediated mRNA decay by interacting with INT6/EIF3E and UPF1. J Virol 2012; 86:7530-43. [PMID: 22553336 DOI: 10.1128/jvi.07021-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report, we analyzed whether the degradation of mRNAs by the nonsense-mediated mRNA decay (NMD) pathway was affected in human T-lymphotropic virus type 1 (HTLV-1)-infected cells. This pathway was indeed strongly inhibited in C91PL, HUT102, and MT2 cells, and such an effect was also observed by the sole expression of the Tax protein in Jurkat and HeLa cells. In line with this activity, Tax binds INT6/EIF3E (here called INT6), which is a subunit of the translation initiation factor eukaryotic initiation factor 3 (eIF3) required for efficient NMD, as well as the NMD core factor upstream frameshift protein 1 (UPF1). It was also observed that Tax expression alters the morphology of processing bodies (P-bodies), the cytoplasmic structures which concentrate RNA degradation factors. The presence of UPF1 in these subcellular compartments was increased by Tax, whereas that of INT6 was decreased. In line with these effects, the level of the phosphorylated form of UPF1 was increased in the presence of Tax. Analysis of several mutants of the viral protein showed that the interaction with INT6 is necessary for NMD inhibition. The alteration of mRNA stability was observed to affect viral transcripts, such as that coding for the HTLV-1 basic leucine zipper factor (HBZ), and also several cellular mRNAs sensitive to the NMD pathway. Our data indicate that the effect of Tax on viral and cellular gene expression is not restricted to transcriptional control but can also involve posttranscriptional regulation.
Collapse
|
126
|
Majone F, Jeang KT. Unstabilized DNA breaks in HTLV-1 Tax expressing cells correlate with functional targeting of Ku80, not PKcs, XRCC4, or H2AX. Cell Biosci 2012; 2:15. [PMID: 22541714 PMCID: PMC3448514 DOI: 10.1186/2045-3701-2-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/27/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Expression of the human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein rapidily induces a significant increase of micronuclei (MN) and unstabilized DNA breaks in cells. Unstabilized DNA breaks can have free 3'-OH ends accessible to in situ addition of digoxygenin (DIG)-labeled dUTP using terminal deoxynucleotidyl transferase. In the present work, we used a GFP-Tax (green fluorescent protein) plasmid, which produces a functionally active GFP-tagged Tax protein, to detect the cellular target(s) for Tax which might mechanistically explain the clastogenic phenomenon. We examined the induction of MN and unstabilized DNA breaks in wild type cells and cells individually knocked out for Ku80, PKcs, XRCC4, and H2AX proteins. We also assessed in the same cells, the signal strengths produced by DIG-dUTP incorporation at the unstable DNA breaks in the presence and absence of Tax. RESULTS Cells mutated for PKcs, XRCC4 and H2AX showed increased frequency of MN and unstabilized DNA breaks in response to the expression of Tax, while cells genetically mutated for Ku80 were refractory to Tax's induction of these cytogenetic effects. Moreover, by measuring the size of DIG-dUTP incorporation signal, which indicates the extent of unstable DNA ends, we found that Tax induces larger signals than those in control cells. However, in xrs-6 cells deficient for Ku80, this Tax effect was not seen. CONCLUSIONS The data here demonstrate that clastogenic DNA damage in Tax expressing cells is explained by Tax targeting of Ku80, but not PKcs, XRCC4 or H2AX, which are all proteins directly or indirectly related to the non-homologous end-joining (NHEJ) repair system. Of note, the Ku80 protein plays an important role at the initial stage of the NHEJ repair system, protecting and stabilizing DNA-breaks. Accordingly, HTLV-1 Tax is shown to interfere with a normal cellular protective mechanism for stabilizing DNA breaks. These DNA breaks, unprotected by Ku80, are unstable and are subject to erosion or end-to-end fusion, ultimately leading to additional chromosomal aberrations.
Collapse
Affiliation(s)
- Franca Majone
- Department of Biology, Via Bassi 58/b, 35131, Padua, Italy.
| | | |
Collapse
|
127
|
Abstract
Recently, we demonstrated that leaf wounding results in the synthesis of pectin methylesterase (PME), which causes the plant to release methanol into the air. Methanol emitted by a wounded plant increases the accumulation of methanol-inducible gene mRNA and enhances antibacterial resistance as well as cell-to-cell communication, which facilitates virus spreading in neighboring plants. We concluded that methanol is a signaling molecule involved in within-plant and plant-to-plant communication. Methanol is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of methanol into toxic formaldehyde. However, recent data showed that methanol is a natural compound in normal, healthy humans. These data call into question whether human methanol is a metabolic waste product or whether methanol has specific function in humans. Here, to reveal human methanol-responsive genes (MRGs), we used suppression subtractive hybridization cDNA libraries of HeLa cells lacking ADH and exposed to methanol. This design allowed us to exclude genes involved in formaldehyde and formic acid detoxification from our analysis. We identified MRGs and revealed a correlation between increases in methanol content in the plasma and changes in human leukocyte MRG mRNA levels after fresh salad consumption by volunteers. Subsequently, we showed that the methanol generated by the pectin/PME complex in the gastrointestinal tract of mice induces the up- and downregulation of brain MRG mRNA. We used an adapted Y-maze to measure the locomotor behavior of the mice while breathing wounded plant vapors in two-choice assays. We showed that mice prefer the odor of methanol to other plant volatiles and that methanol changed MRG mRNA accumulation in the mouse brain. We hypothesize that the methanol emitted by wounded plants may have a role in plant-animal signaling. The known positive effect of plant food intake on human health suggests a role for physiological methanol in human gene regulation.
Collapse
|
128
|
Simonis N, Rual JF, Lemmens I, Boxus M, Hirozane-Kishikawa T, Gatot JS, Dricot A, Hao T, Vertommen D, Legros S, Daakour S, Klitgord N, Martin M, Willaert JF, Dequiedt F, Navratil V, Cusick ME, Burny A, Van Lint C, Hill DE, Tavernier J, Kettmann R, Vidal M, Twizere JC. Host-pathogen interactome mapping for HTLV-1 and -2 retroviruses. Retrovirology 2012; 9:26. [PMID: 22458338 PMCID: PMC3351729 DOI: 10.1186/1742-4690-9-26] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/29/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Human T-cell leukemia virus type 1 (HTLV-1) and type 2 both target T lymphocytes, yet induce radically different phenotypic outcomes. HTLV-1 is a causative agent of Adult T-cell leukemia (ATL), whereas HTLV-2, highly similar to HTLV-1, causes no known overt disease. HTLV gene products are engaged in a dynamic struggle of activating and antagonistic interactions with host cells. Investigations focused on one or a few genes have identified several human factors interacting with HTLV viral proteins. Most of the available interaction data concern the highly investigated HTLV-1 Tax protein. Identifying shared and distinct host-pathogen protein interaction profiles for these two viruses would enlighten how they exploit distinctive or common strategies to subvert cellular pathways toward disease progression. RESULTS We employ a scalable methodology for the systematic mapping and comparison of pathogen-host protein interactions that includes stringent yeast two-hybrid screening and systematic retest, as well as two independent validations through an additional protein interaction detection method and a functional transactivation assay. The final data set contained 166 interactions between 10 viral proteins and 122 human proteins. Among the 166 interactions identified, 87 and 79 involved HTLV-1 and HTLV-2 -encoded proteins, respectively. Targets for HTLV-1 and HTLV-2 proteins implicate a diverse set of cellular processes including the ubiquitin-proteasome system, the apoptosis, different cancer pathways and the Notch signaling pathway. CONCLUSIONS This study constitutes a first pass, with homogeneous data, at comparative analysis of host targets for HTLV-1 and -2 retroviruses, complements currently existing data for formulation of systems biology models of retroviral induced diseases and presents new insights on biological pathways involved in retroviral infection.
Collapse
Affiliation(s)
- Nicolas Simonis
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Ave,, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Hirai H, Tani T, Katoku-Kikyo N, Kellner S, Karian P, Firpo M, Kikyo N. Radical acceleration of nuclear reprogramming by chromatin remodeling with the transactivation domain of MyoD. Stem Cells 2012; 29:1349-61. [PMID: 21732495 DOI: 10.1002/stem.684] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Induced pluripotent stem cells (iPSCs) can be created by reprogramming differentiated cells through introduction of defined genes, most commonly Oct4, Sox2, Klf4, and c-Myc (OSKM). However, this process is slow and extremely inefficient. Here, we demonstrate radical acceleration of iPSC creation with a fusion gene between Oct4 and the powerful transactivation domain (TAD) of MyoD (M(3)O). Transduction of M(3) O as well as Sox2, Klf4, and c-Myc into fibroblasts effectively remodeled patterns of DNA methylation, chromatin accessibility, histone modifications, and protein binding at pluripotency genes, raising the efficiency of making mouse and human iPSCs more than 50-fold in comparison to OSKM. These results identified that one of the most critical barriers to iPSC creation is poor chromatin accessibility and protein recruitment to pluripotency genes. The MyoD TAD has a capability of overcoming this problem. Our approach of fusing TADs to unrelated transcription factors has far-reaching implications as a powerful tool for transcriptional reprogramming beyond application to iPSC technology.
Collapse
Affiliation(s)
- Hiroyuki Hirai
- Stem Cell Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
130
|
Beilke MA. Retroviral coinfections: HIV and HTLV: taking stock of more than a quarter century of research. AIDS Res Hum Retroviruses 2012; 28:139-47. [PMID: 22171689 DOI: 10.1089/aid.2011.0342] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Retroviral coinfections with HIV-1 and HTLV-1 or with HIV-1 and HTLV-2 occur with variable frequencies throughout the world with the highest prevalence in large metropolitan areas in the Americas, Europe, and Africa. The recognition that retroviral coinfections exist dates back to the discovery of HIV-1 over 25 years ago. Despite the large body of published information regarding the biological and clinical significance of retroviral coinfections, controversy throughout several decades of research was fueled by several flawed epidemiologic studies and anecdotal reports that were not always supported with ample statistical and scientific evidence. However, the growing consensus obtained from recent systematic and well-devised research provides support for at least three conclusions: (1) HIV-1 and HTLV-1 coinfections are often seen in the context of patients with high CD4(+) T cell counts presenting with lymphoma or neurological complications; (2) HIV-1 and HTLV-2 coinfections have been linked in some cases to a "long term nonprogressor" phenotype; and (3) differential function and/or overexpression of the HTLV-1 and HTLV-2 Tax proteins likely play a pivotal role in the clinical and immunologic manifestations of HIV/HTLV-1 and -2 coinfections. This review will recount the chronology of work regarding retroviral coinfections from 1983 through the present.
Collapse
Affiliation(s)
- Mark A. Beilke
- Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
131
|
Systems biology approaches reveal a specific interferon-inducible signature in HTLV-1 associated myelopathy. PLoS Pathog 2012; 8:e1002480. [PMID: 22291590 PMCID: PMC3266939 DOI: 10.1371/journal.ppat.1002480] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/28/2011] [Indexed: 12/24/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that persists lifelong in the host. In ∼4% of infected people, HTLV-1 causes a chronic disabling neuroinflammatory disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The pathogenesis of HAM/TSP is unknown and treatment remains ineffective. We used gene expression microarrays followed by flow cytometric and functional assays to investigate global changes in blood transcriptional profiles of HTLV-1-infected and seronegative individuals. We found that perturbations of the p53 signaling pathway were a hallmark of HTLV-1 infection. In contrast, a subset of interferon (IFN)-stimulated genes was over-expressed in patients with HAM/TSP but not in asymptomatic HTLV-1 carriers or patients with the clinically similar disease multiple sclerosis. The IFN-inducible signature was present in all circulating leukocytes and its intensity correlated with the clinical severity of HAM/TSP. Leukocytes from patients with HAM/TSP were primed to respond strongly to stimulation with exogenous IFN. However, while type I IFN suppressed expression of the HTLV-1 structural protein Gag it failed to suppress the highly immunogenic viral transcriptional transactivator Tax. We conclude that over-expression of a subset of IFN-stimulated genes in chronic HTLV-1 infection does not constitute an efficient host response but instead contributes to the development of HAM/TSP. Infection with the Human T Lymphotropic virus is widespread in the tropics and subtropics, where it causes a chronic disabling disease of the nervous system abbreviated as HAM/TSP. There is no effective treatment available for HAM/TSP, because it is not understood how the virus causes the neuronal damage that results in the clinical symptoms of weakness and paralysis of the legs. Here, we compared the frequencies of cell populations and gene expression profiles from diseased and asymptomatic HTLV-1 carriers to identify abnormalities in biological pathways that cause HAM/TSP. We discovered a distinct group of genes that is over-expressed in white blood cells in patients with HAM/TSP, but not asymptomatic HTLV-1 carriers or patients with the clinically similar disease multiple sclerosis. The expression of these genes is induced by interferons, a group of anti-viral proteins that are usually beneficial to the host but can also cause inflammation. We also found that interferons did not efficiently suppress HTLV-1 protein expression in vitro. We conclude that interferons do not control chronic HTLV-1 infection but instead contribute to the development of HAM/TSP. Our study provides new insights into the development of HTLV-1-associated diseases and opens new areas of therapeutic intervention.
Collapse
|
132
|
Varrin-Doyer M, Nicolle A, Marignier R, Cavagna S, Benetollo C, Wattel E, Giraudon P. Human T lymphotropic virus type 1 increases T lymphocyte migration by recruiting the cytoskeleton organizer CRMP2. THE JOURNAL OF IMMUNOLOGY 2012; 188:1222-33. [PMID: 22227566 DOI: 10.4049/jimmunol.1101562] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recruitment of virus-infected T lymphocytes into the CNS is an essential step in the development of virus-associated neuroinflammatory diseases, notably myelopathy induced by retrovirus human T leukemia virus-1 (HTLV-1). We have recently shown the key role of collapsin response mediator protein 2 (CRMP2), a phosphoprotein involved in cytoskeleton rearrangement, in the control of human lymphocyte migration and in brain targeting in animal models of virus-induced neuroinflammation. Using lymphocytes cloned from infected patients and chronically infected T cells, we found that HTLV-1 affects CRMP2 activity, resulting in an increased migratory potential. Elevated CRMP2 expression accompanies a higher phosphorylation level of CRMP2 and its more pronounced adhesion to tubulin and actin. CRMP2 forms, a full length and a shorter, cleaved one, are also affected. Tax transfection and extinction strategies show the involvement of this viral protein in enhanced full-length and active CRMP2, resulting in prominent migratory rate. A role for other viral proteins in CRMP2 phosphorylation is suspected. Full-length CRMP2 confers a migratory advantage possibly by preempting the negative effect of short CRMP2 we observe on T lymphocyte migration. In addition, HTLV-1-induced migration seems, in part, supported by the ability of infected cell to increase the proteosomal degradation of short CRMP2. Finally, gene expression in CD69(+) cells selected from patients suggests that HTLV-1 has the capacity to influence the CRMP2/PI3K/Akt axis thus to positively control cytoskeleton organization and lymphocyte migration. Our data provide an additional clue to understanding the infiltration of HTLV-1-infected lymphocytes into various tissues and suggest that the regulation of CRMP2 activity by virus infection is a novel aspect of neuroinflammation.
Collapse
Affiliation(s)
- Michel Varrin-Doyer
- INSERM U1028, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5292, Equipe Neurooncologie-Neuroinflammation, F-69000 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
133
|
Boxus M, Willems L. How the DNA damage response determines the fate of HTLV-1 Tax-expressing cells. Retrovirology 2012; 9:2. [PMID: 22221708 PMCID: PMC3283471 DOI: 10.1186/1742-4690-9-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/05/2012] [Indexed: 11/10/2022] Open
Abstract
How the Human T lymphotropic virus type 1 (HTLV-1) Tax protein stimulates proliferation while triggering cell cycle arrest and senescence remains puzzling. There is also a debate about the ability of Tax to activate or inhibit the DNA damage response. Here, we comment on these different activities and propose a conceptual rationale for the apparently conflicting observations.
Collapse
Affiliation(s)
- Mathieu Boxus
- National Fund for Scientific Research, Gembloux Agro-Bio Tech and Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, Belgium
| | | |
Collapse
|
134
|
Comparison of the Genetic Organization, Expression Strategies and Oncogenic Potential of HTLV-1 and HTLV-2. LEUKEMIA RESEARCH AND TREATMENT 2011; 2012:876153. [PMID: 23213551 PMCID: PMC3504254 DOI: 10.1155/2012/876153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/24/2011] [Indexed: 11/30/2022]
Abstract
Human T cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are genetically related complex retroviruses that are capable of immortalizing human T-cells in vitro and establish life-long persistent infections in vivo. In spite of these apparent similarities, HTLV-1 and HTLV-2 exhibit a significantly different pathogenic potential. HTLV-1 is recognized as the causative agent of adult T-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). In contrast, HTLV-2 has not been causally linked to human malignancy, although it may increase the risk of developing inflammatory neuropathies and infectious diseases. The present paper is focused on the studies aimed at defining the viral genetic determinants of the pathobiology of HTLV-1 and HTLV-2 through a comparison of the expression strategies and functional properties of the different gene products of the two viruses.
Collapse
|
135
|
Du QS, Meng JZ, Wang CH, Long SY, Huang RB. Structural position correlation analysis (SPCA) for protein family. PLoS One 2011; 6:e28206. [PMID: 22163002 PMCID: PMC3230615 DOI: 10.1371/journal.pone.0028206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/03/2011] [Indexed: 11/18/2022] Open
Abstract
Background The proteins in a family, which perform the similar biological functions, may have very different amino acid composition, but they must share the similar 3D structures, and keep a stable central region. In the conservative structure region similar biological functions are performed by two or three catalytic residues with the collaboration of several functional residues at key positions. Communication signals are conducted in a position network, adjusting the biological functions in the protein family. Methodology A computational approach, namely structural position correlation analysis (SPCA), is developed to analyze the correlation relationship between structural segments (or positions). The basic hypothesis of SPCA is that in a protein family the structural conservation is more important than the sequence conservation, and the local structural changes may contain information of biology functional evolution. A standard protein P(0) is defined in a protein family, which consists of the most-frequent amino acids and takes the average structure of the protein family. The foundational variables of SPCA is the structural position displacements between the standard protein P(0) and individual proteins Pi of the family. The structural positions are organized as segments, which are the stable units in structural displacements of the protein family. The biological function differences of protein members are determined by the position structural displacements of individual protein Pi to the standard protein P(0). Correlation analysis is used to analyze the communication network among segments. Conclusions The structural position correlation analysis (SPCA) is able to find the correlation relationship among the structural segments (or positions) in a protein family, which cannot be detected by the amino acid sequence and frequency-based methods. The functional communication network among the structural segments (or positions) in protein family, revealed by SPCA approach, well illustrate the distantly allosteric interactions, and contains valuable information for protein engineering study.
Collapse
Affiliation(s)
- Qi-Shi Du
- State Key Laboratory of Non-food Biomass Energy and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| | | | | | | | | |
Collapse
|
136
|
Barrios CS, Abuerreish M, Lairmore MD, Castillo L, Giam CZ, Beilke MA. Recombinant human T-cell leukemia virus types 1 and 2 Tax proteins induce high levels of CC-chemokines and downregulate CCR5 in human peripheral blood mononuclear cells. Viral Immunol 2011; 24:429-39. [PMID: 22111594 DOI: 10.1089/vim.2011.0037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human T-cell leukemia viruses types 1 (HTLV-1) and 2 (HTLV-2) produce key transcriptional regulatory gene products, known as Tax1 and Tax2, respectively. Tax1 and Tax2 transactivate multiple host genes involved in cellular immune responses within the cellular microenvironment, including induction of genes encoding expression of CC-chemokines. It is speculated that HTLV Tax proteins may act as immune modulators. In this study, recombinant Tax1 and Tax2 proteins were tested for their effects on the viability of cultured peripheral blood mononuclear cells (PBMCs), and their ability to induce expression of CC-chemokines and to downregulate the level of CCR5 expression in PBMCs. PBMCs obtained from uninfected donors were cultured in a range of Tax1 and Tax2 concentrations (10-100 pM), and supernatant fluids were harvested at multiple time points for quantitative determinations of MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5. Treatment of PBMCs with Tax1 and Tax2 proteins (100 pM) resulted in a significant increase in viability over a 7-d period compared to controls (p<0.01). Both Tax1 and Tax2 induced high levels of all three CC-chemokines over the dosing range compared to mock-treated controls (p<0.05). The gated population of lymphocytes treated with Tax2, as well as lymphocytes from HTLV-2-infected donors, showed a significantly lower percentage of CCR5-positive cells compared to those of uninfected donors and from mock-treated lymphocytes, respectively (p<0.05). These results suggest that Tax1 and Tax2 could promote innate immunity in the extracellular environment during HTLV-1 and HTLV-2 infections via CC-chemokine ligands and receptors.
Collapse
Affiliation(s)
- Christy S Barrios
- Infectious Diseases Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
137
|
Interaction of HTLV-1 Tax with minichromosome maintenance proteins accelerates the replication timing program. Blood 2011; 119:151-60. [PMID: 22058115 DOI: 10.1182/blood-2011-05-356790] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Tax oncoprotein encoded by the human T-cell leukemia virus type 1 plays a pivotal role in viral persistence and pathogenesis. Human T-cell leukemia virus type 1-infected cells proliferate faster than normal lymphocytes, expand through mitotic division, and accumulate genomic lesions. Here, we show that Tax associates with the minichromosome maintenance MCM2-7 helicase complex and localizes to origins of replication. Tax modulates the spatiotemporal program of origin activation and fires supplementary origins at the onset of S phase. Thereby, Tax increases the DNA replication rate, accelerates S phase progression, but also generates a replicative stress characterized by the presence of genomic lesions. Mechanistically, Tax favors p300 recruitment and histone hyperacetylation at late replication domains, advancing their replication timing in early S phase.
Collapse
|
138
|
Hirai H, Tani T, Kikyo N. Structure and functions of powerful transactivators: VP16, MyoD and FoxA. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2011; 54:1589-96. [PMID: 21404180 DOI: 10.1387/ijdb.103194hh] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Induced pluripotent stem cell (iPSC) technology is a promising approach for converting one type of a differentiated cell into another type of differentiated cell through a pluripotent state as an intermediate step. Recent studies, however, indicate the possibility of directly converting one cell type to another without going through a pluripotent state. This direct reprogramming approach is dependent on a combination of highly potent transcription factors for cell-type conversion, presumably skipping more physiological and multi-step differentiation processes. A trial-and-error strategy is commonly used to screen many candidate transcription factors to identify the correct combination of factors. We speculate, however, that a better understanding of the functional mechanisms of exemplary transcriptional activators will facilitate the identification of novel factor combinations capable of direct reprogramming. The purpose of this review is to critically examine the literature on three highly potent transcriptional activators: the herpes virus protein, VP16; the master regulator of skeletal muscle differentiation, MyoD and the "pioneer" factor for hepatogenesis, FoxA. We discuss the roles of their functional protein domains, interacting partners and chromatin remodeling mechanisms during gene activation to understand how these factors open the chromatin of inactive genes and reset the transcriptional pattern during cell type conversion.
Collapse
|
139
|
Maldonado H, Ramírez E, Utreras E, Pando ME, Kettlun AM, Chiong M, Kulkarni AB, Collados L, Puente J, Cartier L, Valenzuela MA. Inhibition of cyclin-dependent kinase 5 but not of glycogen synthase kinase 3-β prevents neurite retraction and tau hyperphosphorylation caused by secretable products of human T-cell leukemia virus type I-infected lymphocytes. J Neurosci Res 2011; 89:1489-98. [PMID: 21671254 PMCID: PMC3381896 DOI: 10.1002/jnr.22678] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 03/30/2011] [Accepted: 03/31/2011] [Indexed: 12/16/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a neurodegenerative disease characterized by selective loss of axons and myelin in the corticospinal tracts. This central axonopathy may originate from the impairment of anterograde axoplasmic transport. Previous work showed tau hyperphosphorylation at T(181) in cerebrospinal fluid of HAM/TSP patients. Similar hyperphosphorylation occurs in SH-SY5Y cells incubated with supernatant from MT-2 cells (HTLV-I-infected lymphocytes secreting viral proteins, including Tax) that produce neurite shortening. Tau phosphorylation at T(181) is attributable to glycogen synthase kinase 3-β (GSK3-β) and cyclin-dependent kinase 5 (CDK5) activation. Here we investigate whether neurite retraction in the SH-SY5Y model associates with concurrent changes in other tau hyperphosphorylable residues. Threonine 181 turned out to be the only tau hyperphosphorylated residue. We also evaluate the role of GSK3-β and CDK5 in this process by using specific kinase inhibitors (LiCl, TDZD-8, and roscovitine). Changes in both GSK3-β active and inactive forms were followed by measuring the regulatory phosphorylable sites (S(9) and Y(216) , inactivating and activating phosphorylation, respectively) together with changes in β-catenin protein levels. Our results showed that LiCl and TDZD-8 were unable to prevent MT-2 supernatant-mediated neurite retraction and also that neither Y(216) nor S(9) phosphorylations were changed in GSK3-β. Thus, GSK3-β seems not to play a role in T(181) hyperphosphorylation. On the other hand, the CDK5 involvement in tau phosphorylation was confirmed by both the increase in its enzymatic activity and the absence of MT-2 neurite retraction in the presence of roscovitine or CDK5 siRNA transfection.
Collapse
Affiliation(s)
- Horacio Maldonado
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Eugenio Ramírez
- Programa de Virología, Departamento de Virología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Elias Utreras
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, NIDCR, NIH, Bethesda, Maryland
| | - María E. Pando
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ana M. Kettlun
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mario Chiong
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ashok B. Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, NIDCR, NIH, Bethesda, Maryland
| | - Lucía Collados
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Javier Puente
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Luis Cartier
- Departamento de Ciencias Neurológicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María A. Valenzuela
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
140
|
Polakowski N, Han H, Lemasson I. Direct inhibition of RNAse T2 expression by the HTLV-1 viral protein Tax. Viruses 2011; 3:1485-500. [PMID: 21994792 PMCID: PMC3185805 DOI: 10.3390/v3081485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 08/10/2011] [Indexed: 12/20/2022] Open
Abstract
Adult T-cell leukemia (ATL) is one of the primary diseases caused by Human T-cell Leukemia Virus type 1 (HTLV-1) infection. The virally-encoded Tax protein is believed to initiate early events in the development of this disease, as it is able to promote immortalization of T-cells and transformation of other cell types. These processes may be aided by the ability of the viral protein to directly deregulate expression of specific cellular genes through interactions with numerous transcriptional regulators. To identify gene promoters where Tax is localized, we isolated Tax-DNA complexes from an HTLV-1-infected T-cell line through a chromatin immunoprecipitation (ChIP) assay and used the DNA to probe a CpG island microarray. A site within the RNASET2 gene was found to be occupied by Tax. Real-time PCR analysis confirmed this result, and transient expression of Tax in uninfected cells led to the recruitment of the viral protein to the promoter. This event correlated with a decrease in the level of RNase T2 mRNA and protein, suggesting that Tax represses expression of this gene. Loss of RNase T2 expression occurs in certain hematological malignancies and other forms of cancer, and RNase T2 was recently reported to function as a tumor suppressor. Consequently, a reduction in the level of RNase T2 by Tax may play a role in ATL development.
Collapse
Affiliation(s)
- Nicholas Polakowski
- Authors to whom correspondence should be addressed; E-Mails: (N.P.); (I.L.); Tel.: +1-252-744-2711 or +1-252-744-2706; Fax: +1-252-744-3104
| | | | - Isabelle Lemasson
- Authors to whom correspondence should be addressed; E-Mails: (N.P.); (I.L.); Tel.: +1-252-744-2711 or +1-252-744-2706; Fax: +1-252-744-3104
| |
Collapse
|
141
|
Cell surface markers in HTLV-1 pathogenesis. Viruses 2011; 3:1439-59. [PMID: 21994790 PMCID: PMC3185802 DOI: 10.3390/v3081439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 07/25/2011] [Accepted: 08/08/2011] [Indexed: 12/19/2022] Open
Abstract
The phenotype of HTLV-1-transformed CD4+ T lymphocytes largely depends on defined viral effector molecules such as the viral oncoprotein Tax. In this review, we exemplify the expression pattern of characteristic lineage markers, costimulatory receptors and ligands of the tumor necrosis factor superfamily, cytokine receptors, and adhesion molecules on HTLV-1-transformed cells. These molecules may provide survival signals for the transformed cells. Expression of characteristic surface markers might therefore contribute to persistence of HTLV-1-transformed lymphocytes and to the development of HTLV-1-associated disease.
Collapse
|
142
|
Cavallari I, Rende F, D'Agostino DM, Ciminale V. Converging strategies in expression of human complex retroviruses. Viruses 2011; 3:1395-414. [PMID: 21994786 PMCID: PMC3185809 DOI: 10.3390/v3081395] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 12/27/2022] Open
Abstract
The discovery of human retroviruses in the early 1980s revealed the existence of viral-encoded non-structural genes that were not evident in previously described animal retroviruses. Based on the absence or presence of these additional genes retroviruses were classified as ‘simple’ and ‘complex’, respectively. Expression of most of these extra genes is achieved through the generation of alternatively spliced mRNAs. The present review summarizes the genetic organization and expression strategies of human complex retroviruses and highlights the converging mechanisms controlling their life cycles.
Collapse
Affiliation(s)
- Ilaria Cavallari
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
| | - Francesca Rende
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
- Istituto Oncologico Veneto-IRCCS, I-35128 Padova, Italy
| | - Donna M. D'Agostino
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
| | - Vincenzo Ciminale
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
- Istituto Oncologico Veneto-IRCCS, I-35128 Padova, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.:+39-049-821-5885; Fax: +39-049-807-2854
| |
Collapse
|
143
|
Major histocompatibility complex class II transactivator CIITA is a viral restriction factor that targets human T-cell lymphotropic virus type 1 Tax-1 function and inhibits viral replication. J Virol 2011; 85:10719-29. [PMID: 21813598 DOI: 10.1128/jvi.00813-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of an aggressive malignancy of CD4+ T lymphocytes. Since the viral transactivator Tax-1 is a major player in T-cell transformation, targeting Tax-1 protein is regarded as a possible strategy to arrest viral replication and to counteract neoplastic transformation. We demonstrate that CIITA, the master regulator of major histocompatibility complex class II gene transcription, inhibits HTLV-1 replication by blocking the transactivating function of Tax-1 both when exogenously transfected in 293T cells and when endogenously expressed by a subset of U937 promonocytic cells. Tax-1 and CIITA physically interact in vivo via the first 108 amino acids of Tax-1 and two CIITA adjacent regions (amino acids 1 to 252 and 253 to 410). Interestingly, only CIITA 1-252 mediated Tax-1 inhibition, in agreement with the fact that CIITA residues from positions 64 to 124 were required to block Tax-1 transactivation. CIITA inhibitory action on Tax-1 correlated with the nuclear localization of CIITA and was independent of the transcription factor NF-YB, previously involved in CIITA-mediated inhibition of Tax-2 of HTLV-2. Instead, CIITA severely impaired the physical and functional interaction of Tax-1 with the cellular coactivators p300/CBP-associated factor (PCAF), cyclic AMP-responsive element binding protein (CREB), and activating transcription factor 1 (ATF1), which are required for the optimal activation of HTLV-1 promoter. Accordingly, the overexpression of PCAF, CREB, and ATF1 restored Tax-1-dependent transactivation of the viral long-terminal-repeat promoter inhibited by CIITA. These findings strongly support our original observation that CIITA, beside increasing the antigen-presenting function for pathogen antigens, acts as an endogenous restriction factor against human retroviruses by blocking virus replication and spreading.
Collapse
|
144
|
Pays JF. [Combined infection with HTLV-1 and Strongyloides stercoralis]. BULLETIN DE LA SOCIETE DE PATHOLOGIE EXOTIQUE (1990) 2011; 104:188-99. [PMID: 21800110 DOI: 10.1007/s13149-011-0175-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/31/2011] [Indexed: 10/17/2022]
Abstract
Infection of carriers of strongyloides by the human oncogenic retrovirus HTLV-1 significantly augments the number of larval parasites in the stools and impairs the action of anti-helminthic agents, resulting in an increase in immediate and longer term failure of therapy. The proliferation of cytokine type 1 secreting lymphocytes, the preferred target for viral infection, shifts the Th1/Th2 balance in favour of a Th1 response with a consequent increase in the production of gamma interferon (INF-γ). In addition to other effects, this causes a decrease in the secretion of cytokines IL-4, IL-5 and IL-13, which results in substantial reduction in total and specific IgE; failure of activation of eosinophils or stagnation in or reduction of their numbers; and an increased risk of development of a severe form of strongyloidiasis. This risk is clearly correlated with the level of anti-HTLV-1 antibodies and the amplitude of the proviral load of peripheral lymphocytes. The polyclonal expansion of infected CD4 cells might be partly due to the activation of the IL-2/IL-2R system by parasite antigens together with the action of the virus type 1 Tax protein. The fact that adult T cell leukaemia arises significantly earlier and more often in individuals with combined infection is an argument in favour of the parasite's role as a leukaemogenic co-factor. In practice it is, therefore, appropriate to initiate all available measures to eliminate parasites from co-infected hosts although this does present difficulties, and one should not reject the possibility of a diagnosis of strongyloidiasis in the absence of hypereosinophilia. In all cases of chronic strongyloidiasis without hypereosinophilia, co-infection with HTLV-1 should be looked for routinely. The same applies to carriers of strongyloides with repeated treatment failures. Finally, corticosteroids and immunosuppressants should be used only with care in HTLV-1-positive patients who seem not to be co-infected, even if they have received precautionary therapy.
Collapse
Affiliation(s)
- J-F Pays
- Faculté de médecine Descartes-Necker, Université Paris-V-René-Descartes, Paris, France.
| |
Collapse
|
145
|
Olière S, Douville R, Sze A, Belgnaoui SM, Hiscott J. Modulation of innate immune responses during human T-cell leukemia virus (HTLV-1) pathogenesis. Cytokine Growth Factor Rev 2011; 22:197-210. [DOI: 10.1016/j.cytogfr.2011.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
146
|
Suppression of HTLV-1 replication by Tax-mediated rerouting of the p13 viral protein to nuclear speckles. Blood 2011; 118:1549-59. [PMID: 21677314 DOI: 10.1182/blood-2010-06-293340] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Disease development in human T-cell leukemia virus type 1 (HTLV-1)-infected individuals is positively correlated with the level of integrated viral DNA in T cells. HTLV-1 replication is positively regulated by Tax and Rex and negatively regulated by the p30 and HBZ proteins. In the present study, we demonstrate that HTLV-1 encodes another negative regulator of virus expression, the p13 protein. Expressed separately, p13 localizes to the mitochondria, whereas in the presence of Tax, part of it is ubiquitinated, stabilized, and rerouted to the nuclear speckles. The p13 protein directly binds Tax, decreases Tax binding to the CBP/p300 transcriptional coactivator, and, by reducing Tax transcriptional activity, suppresses viral expression. Because Tax stabilizes its own repressor, these findings suggest that HTLV-1 has evolved a complex mechanism to control its own replication. Further, these results highlight the importance of studying the function of the HTLV-1 viral proteins, not only in isolation, but also in the context of full viral replication.
Collapse
|
147
|
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive malignancy of mature activated T cells caused by human T-cell lymphotropic virus type I. ATL carries a bad prognosis because of intrinsic chemoresistance and severe immunosuppression. In acute ATL, Japanese trials demonstrated that although combinations of chemotherapy improved response rate, they failed to achieve a significant impact on survival. Patients with chronic and smoldering ATL have a better prognosis, but long-term survival is poor when these patients are managed with a watchful-waiting policy or with chemotherapy. Recently, a worldwide meta-analysis revealed that the combination of zidovudine and IFN-α is highly effective in the leukemic subtypes of ATL and should be considered as standard first-line therapy in that setting. This combination has changed the natural history of the disease through achievement of significantly improved long-term survival in patients with smoldering and chronic ATL as well as a subset of patients with acute ATL. ATL lymphoma patients still benefit from chemotherapy induction with concurrent or sequential antiretroviral therapy with zidovudine/IFN. To prevent relapse, clinical trials assessing consolidative targeted therapies such as arsenic/IFN combination or novel monoclonal antibodies are needed. Finally, allogeneic BM transplantation should be considered in suitable patients.
Collapse
|
148
|
Lodewick J, Lamsoul I, Bex F. Move or die: the fate of the Tax oncoprotein of HTLV-1. Viruses 2011; 3:829-57. [PMID: 21994756 PMCID: PMC3185767 DOI: 10.3390/v3060829] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 12/12/2022] Open
Abstract
The HTLV-1 Tax protein both activates viral replication and is involved in HTLV-1-mediated transformation of T lymphocytes. The transforming properties of Tax include altering the expression of select cellular genes via activation of cellular pathways and perturbation of both cell cycle control mechanisms and apoptotic signals. The recent discovery that Tax undergoes a hierarchical sequence of posttranslational modifications that control its intracellular localization provides provocative insights into the mechanisms regulating Tax transcriptional and transforming activities.
Collapse
Affiliation(s)
- Julie Lodewick
- Institut de Recherches Microbiologiques J-M Wiame, Université Libre de Bruxelles, B-1070 Bruxelles, Belgium.
| | | | | |
Collapse
|
149
|
Bertazzoni U, Turci M, Avesani F, Di Gennaro G, Bidoia C, Romanelli MG. Intracellular localization and cellular factors interaction of HTLV-1 and HTLV-2 Tax proteins: similarities and functional differences. Viruses 2011; 3:541-560. [PMID: 21994745 PMCID: PMC3185761 DOI: 10.3390/v3050541] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 04/26/2011] [Indexed: 12/24/2022] Open
Abstract
Human T-lymphotropic viruses type 1 (HTLV-1) and type 2 (HTLV-2) present very similar genomic structures but HTLV-1 is more pathogenic than HTLV-2. Is this difference due to their transactivating Tax proteins, Tax-1 and Tax-2, which are responsible for viral and cellular gene activation? Do Tax-1 and Tax-2 differ in their cellular localization and in their interaction pattern with cellular factors? In this review, we summarize Tax-1 and Tax-2 structural and phenotypic properties, their interaction with factors involved in signal transduction and their localization-related behavior within the cell. Special attention will be given to the distinctions between Tax-1 and Tax-2 that likely play an important role in their transactivation activity.
Collapse
Affiliation(s)
- Umberto Bertazzoni
- Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy; E-Mails: (M.T.); (F.A.); (G.D.G.)
- Authors to whom correspondence should be addressed; E-Mails: (U.B.); (M.G.R); Tel.: +39-0458027182; Fax: +390458027180
| | - Marco Turci
- Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy; E-Mails: (M.T.); (F.A.); (G.D.G.)
| | - Francesca Avesani
- Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy; E-Mails: (M.T.); (F.A.); (G.D.G.)
| | - Gianfranco Di Gennaro
- Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy; E-Mails: (M.T.); (F.A.); (G.D.G.)
| | - Carlo Bidoia
- Centre for Research in Infectious Diseases, University College Dublin, Belfield, Dublin 4, Ireland; E-Mail: (C.B.)
| | - Maria Grazia Romanelli
- Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy; E-Mails: (M.T.); (F.A.); (G.D.G.)
- Authors to whom correspondence should be addressed; E-Mails: (U.B.); (M.G.R); Tel.: +39-0458027182; Fax: +390458027180
| |
Collapse
|
150
|
Legros S, Boxus M, Gatot JS, Van Lint C, Kruys V, Kettmann R, Twizere JC, Dequiedt F. The HTLV-1 Tax protein inhibits formation of stress granules by interacting with histone deacetylase 6. Oncogene 2011; 30:4050-62. [PMID: 21532619 DOI: 10.1038/onc.2011.120] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human T cell leukemia virus type-1 (HTLV-1) is the causative agent of a fatal adult T-cell leukemia. Through deregulation of multiple cellular signaling pathways the viral Tax protein has a pivotal role in T-cell transformation. In response to stressful stimuli, cells mount a cellular stress response to limit the damage that environmental forces inflict on DNA or proteins. During stress response, cells postpone the translation of most cellular mRNAs, which are gathered into cytoplasmic mRNA-silencing foci called stress granules (SGs) and allocate their available resources towards the production of dedicated stress-management proteins. Here we demonstrate that Tax controls the formation of SGs and interferes with the cellular stress response pathway. In agreement with previous reports, we observed that Tax relocates from the nucleus to the cytoplasm in response to environmental stress. We found that the presence of Tax in the cytoplasm of stressed cells prevents the formation of SGs and counteracts the shutoff of specific host proteins. Unexpectedly, nuclear localization of Tax promotes spontaneous aggregation of SGs, even in the absence of stress. Mutant analysis revealed that the SG inhibitory capacity of Tax is independent of its transcriptional abilities but relies on its interaction with histone deacetylase 6, a critical component of SGs. Importantly, the stress-protective effect of Tax was also observed in the context of HTLV-1 infected cells, which were shown to be less prone to form SGs and undergo apoptosis under arsenite exposure. These observations identify Tax as the first virally encoded inhibitory component of SGs and unravel a new strategy developed by HTLV-1 to deregulate normal cell processes. We postulate that inhibition of the stress response pathway by Tax would favor cell survival under stressful conditions and may have an important role in HTLV-1-induced cellular transformation.
Collapse
Affiliation(s)
- S Legros
- Center for Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), Gembloux, Belgium
| | | | | | | | | | | | | | | |
Collapse
|