101
|
Porcine Epidemic Diarrhea Virus and the Host Innate Immune Response. Pathogens 2020; 9:pathogens9050367. [PMID: 32403318 PMCID: PMC7281546 DOI: 10.3390/pathogens9050367] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus (CoV), is the causative agent of porcine epidemic diarrhea (PED). PED causes lethal watery diarrhea in piglets, which has led to substantial economic losses in many countries and is a great threat to the global swine industry. Interferons (IFNs) are major cytokines involved in host innate immune defense, which induce the expression of a broad range of antiviral effectors that help host to control and antagonize viral infections. PEDV infection does not elicit a robust IFN response, and some of the mechanisms used by the virus to counteract the host innate immune response have been unraveled. PEDV evades the host innate immune response by two main strategies including: (1) encoding IFN antagonists to disrupt innate immune pathway, and (2) hiding its viral RNA to avoid the exposure of viral RNA to immune sensors. This review highlights the immune evasion mechanisms employed by PEDV, which provides insights for the better understanding of PEDV-host interactions and developing effective vaccines and antivirals against CoVs.
Collapse
|
102
|
Shen C, Liu W, Zhang S, Pu L, Deng B, Zeng Q, Chen Z, Wang X. Downregulation of miR-541 induced by heat stress contributes to malignant transformation of human bronchial epithelial cells via HSP27. ENVIRONMENTAL RESEARCH 2020; 184:108954. [PMID: 32145546 DOI: 10.1016/j.envres.2019.108954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Environmental factors are one of the important factors affecting the occurrence of lung cancer. However, few studies have been done on the relationship between hot environment and lung cancer. In the present study, we demonstrated that heat stress leads to anchorage-independent proliferation, mitochondrial apoptosis, and autophagy of Beas-2B cells, which are normal lung bronchial epithelial cells. Heat shock protein 27 (HSP27) promoted heat stress-induced anchorage-independent proliferation and autophagy, but suppressed mitochondrial apoptosis, indicating that HSP27 might act as an oncogene in the malignant transformation of lung epithelial cells. We also showed that HSP27 promoted autophagy of these cells under heat stress via autophagy related 7 (ATG7) and ETS Transcription Factor ELK1 (ELK1), a transcription factor of ATG7, under heat stress. In addition, we showed that HSP27 translation could be repressed by microRNA miR-541, and the biological effects of miR-541 were the opposite to HSP27, suggesting that HSP27 is a downstream target of miR-541. In this study, we characterized a new mechanism whereby HSP27 promotes cell transformation during the onset of lung cancer. Our studies provide new insights into the molecular mechanisms underlying the lung carcinogenic effect of heat exposure. Specifically, heat stress promotes translation of HSP27 by inhibiting miR-541 accumulation, ultimately resulting in activation of autophagy, inhibition of mitochondrial apoptotic pathway and malignant transformation of Human Bronchial Epithelial Cells. This study identifies miR-541 as a potential prognostic biomarker or therapeutic target to improve theory of environmental carcinogenesis.
Collapse
Affiliation(s)
- Chengfeng Shen
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China.
| | - Weili Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Shuang Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China.
| | - Lingling Pu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Bingnan Deng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Qiang Zeng
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
103
|
Prognostic Factors Associating with Pro-oxidant-antioxidant Balance; Neutrophils to Lymphocytes Ratio, Vitamin D, Heat Shock Protein 27, and Red Cell Distribution Width. Arch Med Res 2020; 51:261-267. [DOI: 10.1016/j.arcmed.2020.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/19/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
|
104
|
|
105
|
Yin CF, Kao SC, Hsu CL, Chang YW, Cheung CHY, Huang HC, Juan HF. Phosphoproteome Analysis Reveals Dynamic Heat Shock Protein 27 Phosphorylation in Tanshinone IIA-Induced Cell Death. J Proteome Res 2020; 19:1620-1634. [DOI: 10.1021/acs.jproteome.9b00836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chieh-Fan Yin
- Department of Life Science and Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shih-Chieh Kao
- Department of Life Science and Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chia-Lang Hsu
- Department of Life Science and Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Yi-Wen Chang
- Department of Life Science and Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chantal Hoi Yin Cheung
- Department of Life Science and Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei 11221, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science and Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
106
|
Ding X, Wilson NA, Redfield RR, Panzer SE, Verhoven B, Reese SR, Zhong W, Shi L, Burlingham WJ, Denlinger LC, Djamali A. Oxidized-ATP Attenuates Kidney Allograft Rejection By Inhibiting T-Cell, B-Cell, and Macrophage Activity. ACTA ACUST UNITED AC 2020; 1:106-114. [DOI: 10.34067/kid.0000692019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/15/2020] [Indexed: 11/27/2022]
Abstract
BackgroundExtracellular ATP binds to purinergic receptors and promotes inflammatory responses. We tested whether oxidized ATP (oATP), P2X7 receptor antagonist can attenuate acute kidney allograft rejection.MethodsBrown Norway kidney allografts were transplanted into Lewis recipients. Three groups were defined: oATP (n=8), cyclosporine A (n=6), and no treatment (n=8). On day 7, we assessed kidney allograft survival, function, and rejection characteristics. We further determined T-cell, B-cell, and macrophage response to oATP in vivo and in vitro and examined intragraft inflammatory gene transcripts.ResultsKaplan–Meier survival analyses demonstrated significantly better graft survival rates in oATP and CsA groups compared with no treatment (P<0.05). Similarly, serum creatinine (Scr) and BUN levels were significantly lower in oATP and CsA groups (P<0.05). oATP reduced both T cell–mediated rejection and antibody-mediated rejection, inhibited B-cell and T-cell activation, and downregulated intragraft IL-6 mRNA levels (P<0.0001). In vitro, oATP prevented proliferation in mixed lymphocyte reaction assays, and inhibited macrophage P2X7R activity in a dose-dependent manner.ConclusionsOur findings suggest that oATP mitigates kidney allograft rejection by inhibiting T-cell, B-cell, and macrophage activity and indicate a potential role for the purinergic system and oATP in solid organ transplantation.
Collapse
|
107
|
Bande Rodríguez MF, Fernandez Marta B, Lago Baameiro N, Santiago-Varela M, Silva-Rodríguez P, Blanco-Teijeiro MJ, Pardo Perez M, Piñeiro Ces A. Blood Biomarkers of Uveal Melanoma: Current Perspectives. Clin Ophthalmol 2020; 14:157-169. [PMID: 32021081 PMCID: PMC6980862 DOI: 10.2147/opth.s199064] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
The detection of metastases in patients with a diagnosis of uveal melanoma (UM) is a controversial issue. While only 1% of the patients have detectable metastases at the time of diagnosis, up to 30% of them will develop liver metastases within 5 years of treatment. UM spreads hematogenously, therefore, blood biomarkers may be helpful for prognosis and monitoring the disease progression. Despite the great progress achieved thanks to the genetic analysis of UM biopsies, this is an invasive technique and is limited by the heterogeneity of the tumor. The present review considers the current understanding in the field regarding biomarkers for the diagnosis and prognosis of UM and its metastasis, primarily to the liver. General covered topics include non-conventional markers such as proteins previously identified in cutaneous melanoma and UM cell lines, circulating tumor cells, microRNAs (miRNA), and circulating DNA, and how each may be critical in the development of novel blood biomarkers for UM.
Collapse
Affiliation(s)
- Manuel F Bande Rodríguez
- Unidad de Retina Quirúrgica y Tumores Intraoculares del Adulto (URQTIA), Servicio de Oftalmología Xerencia de Xestión Integrada de Santiago de Compostela, SERGAS, Santiago de Compostela, Spain.,Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Beatriz Fernandez Marta
- Unidad de Retina Quirúrgica y Tumores Intraoculares del Adulto (URQTIA), Servicio de Oftalmología Xerencia de Xestión Integrada de Santiago de Compostela, SERGAS, Santiago de Compostela, Spain
| | - Nerea Lago Baameiro
- Grupo Obesidómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Maria Santiago-Varela
- Unidad de Retina Quirúrgica y Tumores Intraoculares del Adulto (URQTIA), Servicio de Oftalmología Xerencia de Xestión Integrada de Santiago de Compostela, SERGAS, Santiago de Compostela, Spain.,Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Paula Silva-Rodríguez
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica, Clinical University Hospital, SERGAS, Santiago de Compostela 15705, Spain
| | - María Jose Blanco-Teijeiro
- Unidad de Retina Quirúrgica y Tumores Intraoculares del Adulto (URQTIA), Servicio de Oftalmología Xerencia de Xestión Integrada de Santiago de Compostela, SERGAS, Santiago de Compostela, Spain.,Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Maria Pardo Perez
- Grupo Obesidómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Antonio Piñeiro Ces
- Unidad de Retina Quirúrgica y Tumores Intraoculares del Adulto (URQTIA), Servicio de Oftalmología Xerencia de Xestión Integrada de Santiago de Compostela, SERGAS, Santiago de Compostela, Spain.,Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
108
|
Pioche T, Skiba F, Bernadet MD, Seiliez I, Massimino W, Houssier M, Tavernier A, Ricaud K, Davail S, Skiba-Cassy S, Gontier K. Kinetic study of the expression of genes related to hepatic steatosis, glucose and lipid metabolism, and cellular stress during overfeeding in mule ducks. Am J Physiol Regul Integr Comp Physiol 2020; 318:R453-R467. [PMID: 31913683 DOI: 10.1152/ajpregu.00198.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Induced by overfeeding, hepatic steatosis is a process exploited for the "foie gras" production in mule ducks. To better understand the mechanisms underlying its development, the physiological responses of mule ducks overfed with corn for a duration of 11 days were analyzed. A kinetic analysis of glucose and lipid metabolism and cell protection mechanisms was performed on 96 male mule ducks during overfeeding with three sampling times (after the 4th, the 12th, and the 22nd meal). Gene expression and protein analysis realized on the liver, muscle, and abdominal fat showed an activation of a cholesterol biosynthetic pathway during the complete overfeeding period mainly in livers with significant correlations between its weight and its cholesterolemia (r = 0.88; P < 0.0001) and between the liver weight and the hmgcr and soat1 expression (r = 0.4, P < 0.0001 and r = 0.67; P < 0.0001, respectively). Results also revealed an activation of insulin and amino acid cells signaling a pathway suggesting that ducks boost insulin sensitivity to raise glucose uptake and use via glycolysis and lipogenesis. Cellular stress analysis revealed an upregulation of key autophagy-related gene expression atg8 and sqstm1(P < 0.0001) during the complete overfeeding period, mainly in the liver, in contrast to an induction of cyp2e1(P < 0.0001), suggesting that autophagy could be suppressed during steatosis development. This study has highlighted different mechanisms enabling mule ducks to efficiently handle the starch overload by keeping its liver in a nonpathological state. Moreover, it has revealed potential biomarker candidates of hepatic steatosis as plasma cholesterol for the liver weight.
Collapse
Affiliation(s)
- Tracy Pioche
- Institut National de la Recherche Agronomique, Univ Pau & Pays Adour, Energy and Environment Solutions initiative, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Fabien Skiba
- Nutricia, Route de Saint-Sever, Haut-Mauco, France
| | - Marie-Dominique Bernadet
- Unité Expérimentale Palmipèdes à Foie Gras, Institut National de la Recherche Agronomique Bordeaux-Aquitaine, Domaine d'Artiguères, Benquet, France
| | - Iban Seiliez
- Institut National de la Recherche Agronomique, Univ Pau & Pays Adour, Energy and Environment Solutions initiative, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - William Massimino
- Institut National de la Recherche Agronomique, Univ Pau & Pays Adour, Energy and Environment Solutions initiative, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Marianne Houssier
- Institut National de la Recherche Agronomique, Univ Pau & Pays Adour, Energy and Environment Solutions initiative, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Annabelle Tavernier
- Institut National de la Recherche Agronomique, Univ Pau & Pays Adour, Energy and Environment Solutions initiative, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Karine Ricaud
- Institut National de la Recherche Agronomique, Univ Pau & Pays Adour, Energy and Environment Solutions initiative, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Stéphane Davail
- Institut National de la Recherche Agronomique, Univ Pau & Pays Adour, Energy and Environment Solutions initiative, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Sandrine Skiba-Cassy
- Institut National de la Recherche Agronomique, Univ Pau & Pays Adour, Energy and Environment Solutions initiative, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Karine Gontier
- Institut National de la Recherche Agronomique, Univ Pau & Pays Adour, Energy and Environment Solutions initiative, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
109
|
Li Y, Duan J, Chai X, Yang M, Wang J, Chen R, Sun Z. Microarray-assisted size-effect study of amorphous silica nanoparticles on human bronchial epithelial cells. NANOSCALE 2019; 11:22907-22923. [PMID: 31763651 DOI: 10.1039/c9nr07350g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amorphous silica nanoparticles (SiNPs) are not only abundant in nature, but also the second largest engineering nanomaterials in terms of annual output. Respiratory exposure is the main route for SiNPs to enter the human body. A large number of studies have focused on the respiratory toxicity of SiNPs and demonstrated that SiNPs could induce pulmonary tissue damage, inflammation, fibrosis, and even the malignant transformation of bronchial epithelial cells, while the size-dependent toxicity of SiNPs and their underlying biological mechanisms remain unclear. In this regard, a transcriptomics study would be conductive to gaining a better understanding of the toxic mechanism. In the present study, microarray analysis was performed to investigate the genome-wide transcriptional alteration induced by different sizes of SiNPs in human primary bronchial epithelial cells (BEAS-2B). To determine the effect of the particle size on the toxicity, nanoparticles of two sizes (41 nm and 61 nm) and submicron particles of one size (206 nm) were introduced. The bioinformatics analysis results indicated that: (1) the number of differentially expressed genes in the three SiNP-treated groups increased with the particle size decreasing; (2) the genes involved in the immune and inflammatory response, gene expression, signal transduction, endoplasmic reticulum stress, oxidative stress, cell metabolism, and cell proliferation were gradually upregulated with the particle size decreasing, while the genes related to the morphological development of the respiratory system were gradually downregulated with the particle size decreasing; (3) the modes of action of the two nanoparticles overlapped with each other to some degree, and there existed many different modes compared to those from the submicron particles; (4) both the silica nanoparticles affected the pathways associated with the cell entry of silica nanoparticles, autophagy and lysosomal dysfunction, endoplasmic reticulum stress, inflammatory response, DNA damage, and gene expression, as well as apoptotic resistance and cancer. To the best of our knowledge, this is the first study that has reported the alteration trend of gene expression profiles with the change in silica particle size. Our study provides a great deal of information on the toxic mechanisms underlying the respiratory toxicity induced by SiNPs, and can also serve as an experimental basis for the toxicity and safety evaluation of silica nanoparticles.
Collapse
Affiliation(s)
- Yang Li
- School of Public Health, Beijing, 100069, China and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Junchao Duan
- School of Public Health, Beijing, 100069, China and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Xiangyuan Chai
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Man Yang
- School of Public Health, Beijing, 100069, China and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Ji Wang
- School of Public Health, Beijing, 100069, China and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Rui Chen
- School of Public Health, Beijing, 100069, China and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Zhiwei Sun
- School of Public Health, Beijing, 100069, China and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
110
|
De Andrade WP, Da Conceição Braga L, Gonçales NG, Silva LM, Da Silva Filho AL. HSPA1A, HSPA1L and TRAP1 heat shock genes may be associated with prognosis in ovarian epithelial cancer. Oncol Lett 2019; 19:359-367. [PMID: 31897148 PMCID: PMC6923843 DOI: 10.3892/ol.2019.11095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, with the presence of chemoresistance contributing to the poor prognosis. Heat Shock Proteins (HSPs) genes are activated in response to pathophysiological stress and serve a role in a variety of stages in carcinogenesis, acting primarily as anti-apoptotic agents and in chemotherapy resistance in a variety of tumor types. The current study evaluated the HSP gene expression profile in women with ovarian cancer (OC) and their correlation with clinical and pathological aspects of patients with OC. A total of 51 patients included in the current study were divided into four groups: Primary Epithelial Ovarian Cancer (EOC; n=14), metastatic EOC (n=11), ovarian serous cystadenoma (n=7) and no evidence of ovarian malignancy or control groups (n=19). RNA extraction and reverse transcription-quantitative (RT-q) PCR was then performed on the samples obtained. RT-qPCR was performed to compare TNF receptor associated protein 1 (TRAP1), heat shock protein family (HSP) HSPB1, HSPD1, HSPA1A and HSPA1L expression in primary and metastatic EOCs. TRAP1, HSPB1, HSPD1, HSPA1A and HSPA1L gene expression did not differ among groups. HSPA1A, HSPA1L and TRAP1 were revealed to be underexpressed in the primary and metastatic EOC groups, with HSPA1L exhibiting the lowest expression. TRAP1 expression was higher in tumors at stages I/II compared with those at stages III/IV. No correlation was exhibited between HSP expression and age, menarche, menopause, parity, period after menopause initiation, cytoreduction, CA-125 or overall and disease-free survival. HSPA1A was negatively correlated with the risk of mortality from OC. The results indicated that the downregulation of HSPA1A, HSPA1L and TRAP1 could be associated with the clinical prognostic features of women with EOC.
Collapse
Affiliation(s)
- Warne Pedro De Andrade
- Oncology Service, Vera Cruz Hospital, Belo Horizonte, Minas Gerais 30180-090, Brazil.,Department of Obstetrics and Gynecology, School of Medicine, São Paulo State University, Botucatu, Sao Paulo 18618-687, Brazil
| | - Letícia Da Conceição Braga
- Department of Obstetrics and Gynecology, School of Medicine, São Paulo State University, Botucatu, Sao Paulo 18618-687, Brazil.,Cellular Biology Service, Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais 30510-010, Brazil
| | - Nikole Gontijo Gonçales
- Cellular Biology Service, Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais 30510-010, Brazil
| | - Luciana Maria Silva
- Cellular Biology Service, Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais 30510-010, Brazil
| | - Agnaldo Lopes Da Silva Filho
- Department of Obstetrics and Gynecology, School of Medicine, São Paulo State University, Botucatu, Sao Paulo 18618-687, Brazil.,Department of Obstetrics and Gynecology, School of Medicine, Minas Gerais Federal University, Belo Horizonte, Minas Gerais 30130-100, Brazil
| |
Collapse
|
111
|
Venugopal A, Sundaramoorthy K, Vellingiri B. Therapeutic potential of Hsp27 in neurological diseases. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0023-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AbstractBackgroundHeat shock proteins (Hsps) are widely reported in normal cellular dynamics under stress and non-stress conditions, and parallelly, the studies regarding its role in disease condition are also progressing steadily. The function of Hsps in neurodegenerative disorders is puzzling and not fully understood. This review aims to focus on the role of Hsp27 in normal and diseased conditions and emphasize its therapeutic potential.Hsp27Hsp27, in particular, has shown to be involved in cell viability and actin cytoskeleton remodeling and also shown to improve many disease conditions. Phosphorylated Hsp27 modulates the p53 pathway by downregulating cellular senescence and also lowers reactive oxygen species to protect TNFα-mediated apoptosis. Hsp27 is also known to interfere with mitochondria-dependent and mitochondria-independent cell apoptotic stimulation.ConclusionThis article will highlight the various functions of Hsp27 especially as an anti-apoptotic factor and stress response factor and its therapeutic potential in preventing neuronal apoptosis in neurological diseases. This review also includes a comparison of the therapeutic potential of Hsp27 with regard to other small Hsps.
Collapse
|
112
|
Rajan MR, Sotak M, Barrenäs F, Shen T, Borkowski K, Ashton NJ, Biörserud C, Lindahl TL, Ramström S, Schöll M, Lindahl P, Fiehn O, Newman JW, Perkins R, Wallenius V, Lange S, Börgeson E. Comparative analysis of obesity-related cardiometabolic and renal biomarkers in human plasma and serum. Sci Rep 2019; 9:15385. [PMID: 31659186 PMCID: PMC6817872 DOI: 10.1038/s41598-019-51673-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022] Open
Abstract
The search for biomarkers associated with obesity-related diseases is ongoing, but it is not clear whether plasma and serum can be used interchangeably in this process. Here we used high-throughput screening to analyze 358 proteins and 76 lipids, selected because of their relevance to obesity-associated diseases, in plasma and serum from age- and sex-matched lean and obese humans. Most of the proteins/lipids had similar concentrations in plasma and serum, but a subset showed significant differences. Notably, a key marker of cardiovascular disease PAI-1 showed a difference in concentration between the obese and lean groups only in plasma. Furthermore, some biomarkers showed poor correlations between plasma and serum, including PCSK9, an important regulator of cholesterol homeostasis. Collectively, our results show that the choice of biofluid may impact study outcome when screening for obesity-related biomarkers and we identify several markers where this will be the case.
Collapse
Affiliation(s)
- Meenu Rohini Rajan
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Matus Sotak
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Barrenäs
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Cell & Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Tong Shen
- NIH West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, USA
| | - Kamil Borkowski
- NIH West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, USA
| | - Nicholas J Ashton
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Christina Biörserud
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Tomas L Lindahl
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Sofia Ramström
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Per Lindahl
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, USA
| | - John W Newman
- NIH West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, USA
- Department of Nutrition, University of California Davis, Davis, USA
- USDA, ARS, Western Human Nutrition Research Center, Davis, USA
| | - Rosie Perkins
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ville Wallenius
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Stephan Lange
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Division of Cardiology, School of Medicine, University of California San Diego, San Diego, USA
| | - Emma Börgeson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
113
|
Millimeter-wave pulsed heating in vitro: cell mortality and heat shock response. Sci Rep 2019; 9:15249. [PMID: 31649300 PMCID: PMC6813304 DOI: 10.1038/s41598-019-51731-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
Millimeter wave (MMW)-induced heating represents a promising alternative for non-invasive hyperthermia of superficial skin cancer, such as melanoma. Pulsed MMW-induced heating of tumors allows for reaching high peak temperatures without overheating surrounding tissues. Herein, for the first time, we evaluate apoptotic and heat shock responses of melanoma cells exposed in vitro to continuous (CW) or pulsed-wave (PW) amplitude-modulated MMW at 58.4 GHz with the same average temperature rise. Using an ad hoc exposure system, we generated 90 min pulse train with 1.5 s pulse duration, period of 20 s, amplitude of 10 °C, and steady-state temperature at the level of cells of 49.2 °C. The activation of Caspase-3 and phosphorylation of HSP27 were investigated using fluorescence microscopy to monitor the spatial variation of cellular response. Our results demonstrate that, under the considered exposure conditions, Caspase-3 activation was almost 5 times greater following PW exposure compared to CW. The relationship between the PW-induced cellular response and SAR-dependent temperature rise was non-linear. Phosphorylation of HSP27 was 58% stronger for PW compared to CW. It exhibits a plateau for the peak temperature ranging from 47.7 to 49.2 °C. Our results provide an insight into understanding of the cellular response to MMW-induced pulsed heating.
Collapse
|
114
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019; 6:91. [PMID: 31750312 PMCID: PMC6843074 DOI: 10.3389/fmolb.2019.00091] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K. Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
115
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019. [PMID: 31750312 DOI: 10.3389/fmolb.2019.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
116
|
Quantitative Immunomorphological Analysis of Heat Shock Proteins in Thyroid Follicular Adenoma and Carcinoma Tissues Reveals Their Potential for Differential Diagnosis and Points to a Role in Carcinogenesis. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hsp27, Hsp60, Hsp70, and Hsp90 are chaperones that play a crucial role in cellular homeostasis and differentiation, but they may be implicated in carcinogenesis. Follicular neoplasms of the thyroid include follicular adenoma and follicular carcinoma. The former is a very frequent benign encapsulated nodule, whereas the other is a nodule that infiltrates the capsule, blood vessels and the adjacent parenchyma, with a tendency to metastasize. The main objective was to assess the potential of the Hsps in differential diagnosis and carcinogenesis. We quantified by immunohistochemistry Hsp27, Hsp60, Hsp70, and Hsp90 on thin sections of human thyroid tissue with follicular adenoma or follicular carcinoma, comparing the tumor with the adjacent peritumoral tissue. Hsp60, Hsp70, and Hsp90 were increased in follicular carcinoma compared to follicular adenoma, while Hsp27 showed no difference. Histochemical quantification of Hsp60, Hsp70, and Hsp90 allows diagnostic distinction between follicular adenoma and carcinoma, and between tumor and adjacent non-tumoral tissue. The quantitative variations of these chaperones in follicular carcinoma suggest their involvement in tumorigenesis, for instance in processes such as invasion of thyroid parenchyma and metastasization.
Collapse
|
117
|
Behdarvandy M, Karimian M, Atlasi MA, Azami Tameh A. Heat shock protein 27 as a neuroprotective biomarker and a suitable target for stem cell therapy and pharmacotherapy in ischemic stroke. Cell Biol Int 2019; 44:356-367. [PMID: 31502740 DOI: 10.1002/cbin.11237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
Abstract
Ischemic stroke is a major common cause of death and long-term disability worldwide. Several pathophysiological events including excitotoxicity, oxidative/nitrative stress, inflammation, and apoptosis are involved in ischemic injuries. Recently, the molecular mechanisms involved in cerebral ischemia through a focus on a member of small heat shock proteins family, Hsp27, has been developed. Notably, following exposure to ischemia, Hsp27 expression in the brain could be increased rather than the normal condition and it may play an important role in neuroprotection after ischemic stroke. The neuroprotection effects of Hsp27 may arise from its anti-oxidant, anti-inflammatory, anti-apoptotic, and chaperonic properties. Moreover, some therapeutic strategies such as stem cell therapy and pharmacotherapy have been developed with Hsp27 targeting. In this review, we describe the function and structure of Hsp27 and its possible role in neuroprotection after ischemic stroke. Finally, we present current studies in stroke therapy, which focused on Hsp27 targeting.
Collapse
Affiliation(s)
- Marjan Behdarvandy
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| |
Collapse
|
118
|
Novel Heat Shock Protein 90 Inhibitors Suppress P-Glycoprotein Activity and Overcome Multidrug Resistance in Cancer Cells. Int J Mol Sci 2019; 20:ijms20184575. [PMID: 31527404 PMCID: PMC6770006 DOI: 10.3390/ijms20184575] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 12/25/2022] Open
Abstract
Heat Shock Protein 90 (Hsp90) chaperone interacts with a broad range of client proteins involved in cancerogenesis and cancer progression. However, Hsp90 inhibitors were unsuccessful as anticancer agents due to their high toxicity, lack of selectivity against cancer cells and extrusion by membrane transporters responsible for multidrug resistance (MDR) such as P-glycoprotein (P-gp). Recognizing the potential of new compounds to inhibit P-gp function and/or expression is essential in the search for effective anticancer drugs. Eleven Hsp90 inhibitors containing an isoxazolonaphtoquinone core were synthesized and evaluated in two MDR models comprised of sensitive and corresponding resistant cancer cells with P-gp overexpression (human non-small cell lung carcinoma and colorectal adenocarcinoma). We investigated the effect of Hsp90 inhibitors on cell growth inhibition, P-gp activity and P-gp expression. Structure-activity relationship analysis was performed in respect to cell growth and P-gp inhibition. Compounds 5, 7, and 9 directly interacted with P-gp and inhibited its ATPase activity. Their potential P-gp binding site was identified by molecular docking studies. In addition, these compounds downregulated P-gp expression in MDR colorectal carcinoma cells, showed good relative selectivity towards cancer cells, while compound 5 reversed resistance to doxorubicin and paclitaxel in concentration-dependent manner. Therefore, compounds 5, 7 and 9 could be promising candidates for treating cancers with P-gp overexpression.
Collapse
|
119
|
Moghbeli M. Genetic and molecular biology of breast cancer among Iranian patients. J Transl Med 2019; 17:218. [PMID: 31286981 PMCID: PMC6615213 DOI: 10.1186/s12967-019-1968-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Abstract Background, Breast cancer (BC) is one of the leading causes of cancer related deaths in Iran. This high ratio of mortality had a rising trend during the recent years which is probably associated with late diagnosis. Main body Therefore it is critical to define a unique panel of genetic markers for the early detection among our population. In present review we summarized all of the reported significant genetic markers among Iranian BC patients for the first time, which are categorized based on their cellular functions. Conclusions This review paves the way of introducing a unique ethnic specific panel of diagnostic markers among Iranian BC patients. Indeed, this review can also clarify the genetic and molecular bases of BC progression among Iranians.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
120
|
Alizadeh S, Irani S, Bolhassani A, Sadat SM. Simultaneous use of natural adjuvants and cell penetrating peptides improves HCV NS3 antigen-specific immune responses. Immunol Lett 2019; 212:70-80. [PMID: 31254535 DOI: 10.1016/j.imlet.2019.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 06/11/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
To improve an effective hepatitis C virus (HCV) therapeutic vaccine, induction of a strong and long term HCV antigen-specific immune response is an important parameter. HCV non-structural protein 3 (NS3) has antigenic properties and plays a major role in viral clearance. In this study, DNA constructs encoding HCV NS3 and heat shock protein 27 (Hsp27)-NS3 genes, and the recombinant (r) NS3 and rHsp27-NS3 proteins complexed with HR9 and Cady-2 cell penetrating peptides (CPPs) were utilized to evaluate antibody, cytokine and Granzyme B secretion in mice. Herein, the formation of NS3 and Hsp27-NS3 DNA/ HR9 CPP complexes were revealed by gel retardation assay and protection against DNase and protease. Cady-2 peptide was used to form the nanoparticles with rNS3 and rHsp27-NS3 proteins. The size and charge of the nanoparticles were confirmed by SEM and Zetasizer instruments. Next, in vitro transfection of the nanoparticles was assessed by flow cytometry and western blotting. Finally, humoral and cellular immune responses were evaluated using different modalities in mice. Our data showed that HR9 and Cady-2 could form stable nanoparticles with DNA and proteins, respectively and enhance their delivery into HEK-293 T cells in a non-covalent approach. Furthermore, the heterologous Hsp27-NS3 DNA + HR9 prime/rHsp27-NS3+Cady-2 protein boost elicited a higher Th1 cellular immune response with a predominant IgG2a, IgG2b, IFN-γ profile and strong Granzyme B secretion than those induced by other groups. Briefly, the combination of a natural adjuvant (Hsp27) and CPPs (HR9 and Cady-2) could significantly stimulate effective immune responses as a promising approach for development of HCV therapeutic vaccines.
Collapse
Affiliation(s)
- Sina Alizadeh
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
121
|
Charcot-Marie-Tooth 2F (Hsp27 mutations): A review. Neurobiol Dis 2019; 130:104505. [PMID: 31212070 DOI: 10.1016/j.nbd.2019.104505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease is a commonly inherited form of neuropathy. Although named over 100 years ago, identification of subtypes of Charcot-Marie-Tooth has rapidly expanded in the preceding decades with the advancement of genetic sequencing, including type 2F (CMT2F), due to mutations in heat shock protein 27 (Hsp27). However, despite CMT being one of the most common inherited neurological diseases, definitive mechanistic models of pathology and effective treatments for CMT2F are lacking. This review extensively profiles the published literature on CMT2F and distal hereditary motor neuropathy II (dHMN II), a similar neuropathy with exclusively motor symptoms that is also due to mutations in Hsp27. This includes a review of case reports and sequencing studies detailing disease course. Included are tables listing of all known published mutations of Hsp27 that cause symptoms of CMT2F and dHMN II. Furthermore, pathological mechanisms are assessed. While many groups have established pathologies relating to defective chaperone function, cellular neurofilament and microtubule structure and function, and mitochondrial and metabolic dysfunction, there are still discrepancies in results between different model systems. Moreover, initial mouse models have also produced promising results with similar phenotypes to humans, however discrepancies still exist. Both patient-focused and scientific studies have demonstrated variability in phenotypes even considering specific mutations. Given the clinical heterogeneity in presentation, CMT2F and dHMN II likely result from similar pathological mechanisms of the same general disease process that may present distinctly due to other genetic and environment influences. Determining how these influences exert their effects to produce pathology contributing to the disease phenotype will be a major future challenge ahead in the field.
Collapse
|
122
|
Kim JY, Jeon S, Yoo YJ, Jin H, Won HY, Yoon K, Hwang ES, Lee YJ, Na Y, Cho J, Lee YS. The Hsp27-Mediated IkBα-NFκB Signaling Axis Promotes Radiation-Induced Lung Fibrosis. Clin Cancer Res 2019; 25:5364-5375. [DOI: 10.1158/1078-0432.ccr-18-3900] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/12/2019] [Accepted: 05/21/2019] [Indexed: 11/16/2022]
|
123
|
Analysis of the Antiproliferative Effect of Ankaferd Hemostat on Caco-2 Colon Cancer Cells via LC/MS Shotgun Proteomics Approach. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5268031. [PMID: 31240215 PMCID: PMC6556321 DOI: 10.1155/2019/5268031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022]
Abstract
Ankaferd hemostat (ABS), a traditional herbal extract, is a hemostatic agent used for wound healing and bleeding treatment. A standardized form of plants contains many biomolecules. In recent years, previous studies have demonstrated the antineoplastic effect of ABS. In the present work, we focused on the mechanism of its antineoplastic effect over Caco-2 colon cancer cells. The LC/MS-based proteomics method was used to understand the effect of ABS at the protein level. The results were evaluated with gene ontology, protein interaction, and pathway analysis. As shown by our results, ABS altered glucose, fatty acids, and protein metabolism. Moreover, ABS affects the cell cycle machinery. Moreover, we found that ABS induced critical cancer target and suppressor proteins such as carboxyl-terminal hydrolase 1, 60S ribosomal protein L5, Tumor protein D52-like2, karyopherin alpha 2, and protein deglycase DJ-1. In conclusion, the proteomics results indicated that ABS affects various cancer targets and suppressor proteins. Moreover ABS has systematical effect on cell metabolism and cell cycle in Caco-2 cells, suggesting that it could be used as an antineoplastic agent.
Collapse
|
124
|
Seok J, Woo SH, Kwon TR, Kim JH, Jeong GJ, Li K, Kim WS, Kim BJ. Role of mechanical and thermal damage in pericapsular inflammatory response to injectable silicone in a rabbit model. PLoS One 2019; 14:e0216926. [PMID: 31086403 PMCID: PMC6516732 DOI: 10.1371/journal.pone.0216926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/01/2019] [Indexed: 11/19/2022] Open
Abstract
Silicone is used widely for tissue augmentation in humans. However, late complications, such as delayed inflammation and capsular contracture, remain uncharacterized, despite their importance. In the present study, we aimed to determine whether mechanical and thermal damage induce capsular inflammation around a foreign body, and elucidate the biological mechanism underlying this phenomenon. We injected silicone into the subcutaneous layer of the skin of New Zealand white rabbits. The rabbits were divided into two groups: the control group received no treatment; in the experimental group, external force was applied near the injection silicone using high-intensity focused ultrasound (HIFU). Tissues near the injected silicone were harvested from both groups on Days 4, 7, and 30 after HIFU treatment for comparative analysis. Visual and histological examinations showed clearly increased inflammation in the experimental group compared with that in the control group. Furthermore, capsular tissue from the experimental group displayed markedly increased collagen production. Immunofluorescence revealed marked activation of macrophages in the early stages of inflammation (Days 4 and 7 after HIFU treatment), which decreased on Day 30. Assessment of cytokine activation showed significantly increased expression of heat shock protein (HSP)27, HSP60, HSP70, toll-like receptor (TLR)2, TLR4, and interleukin-8 in the experimental group. The expression of transforming growth factor-β1 did not increase significantly in the experimental group. In conclusion, damage to tissues around the injected silicone induced capsular inflammation. Macrophages and damage-associated molecular pattern molecules were involved in the early stages of inflammation. HSP release activated TLRs, which subsequently activated innate immunity and induced the inflammatory response.
Collapse
Affiliation(s)
- Joon Seok
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science & Engineering, KAIST, Daejeon, Republic of Korea
| | - Soo Hyun Woo
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Graduate School of Medicine, Seoul, Republic of Korea
| | - Tae Rin Kwon
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jong Hwan Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Guk Jin Jeong
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Kapsok Li
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Woo Seob Kim
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Graduate School of Medicine, Seoul, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
125
|
Sugai H, Tomita S, Ishihara S, Kurita R. One-Component Array Based on a Dansyl-Modified Polylysine: Generation of Differential Fluorescent Signatures for the Discrimination of Human Cells. ACS Sens 2019; 4:827-831. [PMID: 30945530 DOI: 10.1021/acssensors.9b00247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A one-component array-based sensor consisting of a dansyl-modified polylysine (PLL-Dnc) is capable of discriminating the types and compositional ratios of human cells using varying buffer conditions. The PLL-Dnc sensor array, which affords turn-on fluorescence responses against analyte cells that depend on the pH value and the ionic strength, generates differential fluorescence signatures of cells and successfully discriminates eight types of human cell lines (2.0 × 104 cells/mL) with 100% accuracy using multivariate analysis. The array also allows differentiation of the composition of the cell mixtures that contain cells with the same tissue origin but of different subtypes. The good discrimination ability and simple platform of our "one-component"-based array allows an easy and rapid sensing of cells without requiring any information on specific biomarkers.
Collapse
Affiliation(s)
- Hiroka Sugai
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shunsuke Tomita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Sayaka Ishihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Ryoji Kurita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
126
|
Shokrollahi E, Nourazarian A, Rahbarghazi R, Salimi L, Karbasforush S, Khaksar M, Salarinasab S, Abhari A, Heidarzadeh M. Treatment of human neuroblastoma cell line SH-SY5Y with HSP27 siRNA tagged-exosomes decreased differentiation rate into mature neurons. J Cell Physiol 2019; 234:21005-21013. [PMID: 31012118 DOI: 10.1002/jcp.28704] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022]
Abstract
Heat shock proteins (HSPs) participate in the regulation of different cell activities in response to stimuli. By applying different strategies, the modulation of heat shock proteins is at the center of attention. Conventional delivery approaches are not fully encouraged due to cytotoxicity and immunogenicity issues. Exosomes are touted as bio-shuttles for delivery of distinct biomolecules inside the cells. Here, we aimed to HSP27 small interfering RNA (siRNA)-tagged exosomes for the inhibition of Hsp27 in human neuroblastoma cell line SH-SY5Y and explored differentiation into neuron-like cells. Exosomes were isolated, characterized by scanning electron microscope (SEM) and CD63 then enriched with siRNA against Hsp27. Neuroblastoma cells were incubated with exosomes carrying siRNA for 48 hr. Exosome uptake was monitored by immunofluorescence assay. The cell viability and proliferation were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine/5-bromo-2'-deoxyuridine incorporation assays. The ability of cells to form colonies was evaluated by clonogenic assay. The cell potential to express NeuN, a mature neuron factor, was studied by flow cytometry analysis. SEM showed the nano-sized particles and a high level of CD63 after enrichment. Immunofluorescence imaging revealed an appropriate transfection rate in cell exposed to Hsp27 siRNA tagged exosomes. The cell viability and proliferation were reduced compared to cells received nude exosomes ( p < 0.05). Clonogenic activity of cells was diminished by the inhibition of Hsp27. Flow cytometry analysis revealed that the inhibition of Hsp27 prohibited NeuN content, showing the maturation of SH-SY5Y cells to mature cells compared to control. These data confirmed that exosomes could be used as appropriate bio-shuttles for the inhibition of Hsp27-aborted cell differentiation toward mature neuron.
Collapse
Affiliation(s)
- Elhameh Shokrollahi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Salimi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeede Karbasforush
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Khaksar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadegh Salarinasab
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Heidarzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
127
|
The Role of Tyrosine Phosphorylation of Protein Kinase C Delta in Infection and Inflammation. Int J Mol Sci 2019; 20:ijms20061498. [PMID: 30917487 PMCID: PMC6471617 DOI: 10.3390/ijms20061498] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/30/2022] Open
Abstract
Protein Kinase C (PKC) is a family composed of phospholipid-dependent serine/threonine kinases that are master regulators of inflammatory signaling. The activity of different PKCs is context-sensitive and these kinases can be positive or negative regulators of signaling pathways. The delta isoform (PKCδ) is a critical regulator of the inflammatory response in cancer, diabetes, ischemic heart disease, and neurodegenerative diseases. Recent studies implicate PKCδ as an important regulator of the inflammatory response in sepsis. PKCδ, unlike other members of the PKC family, is unique in its regulation by tyrosine phosphorylation, activation mechanisms, and multiple subcellular targets. Inhibition of PKCδ may offer a unique therapeutic approach in sepsis by targeting neutrophil-endothelial cell interactions. In this review, we will describe the overall structure and function of PKCs, with a focus on the specific phosphorylation sites of PKCδ that determine its critical role in cell signaling in inflammatory diseases such as sepsis. Current genetic and pharmacological tools, as well as in vivo models, that are used to examine the role of PKCδ in inflammation and sepsis are presented and the current state of emerging tools such as microfluidic assays in these studies is described.
Collapse
|
128
|
Song J, Merbs SL, Sokoll LJ, Chan DW, Zhang Z. A multiplex immunoassay of serum biomarkers for the detection of uveal melanoma. Clin Proteomics 2019; 16:10. [PMID: 30867659 PMCID: PMC6399902 DOI: 10.1186/s12014-019-9230-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/28/2019] [Indexed: 01/07/2023] Open
Abstract
Background Approximately 50% of uveal melanoma (UM) patients develop metastases preferentially in the liver leading to death within 15 months. Currently, there is no effective treatment for metastatic UM, in part because the tumor burden is typically high when liver metastases are detected through abnormal liver function tests (LFTs) or imaging studies. The use of LFTs results followed by diagnostic tests has high specificity and predictive values but low sensitivity, and better tests are needed for early diagnosis of the primary tumor as well as its metastatic spread. To evaluate serum biomarkers for the early detection of UM, multiplex immunoassays were developed. Methods Magnetic bead-based multiplex immunoassays were developed for the selected serum biomarkers using a Bio-Plex 200 system. The dynamic ranges, lower limits of detection and quantification, cross-reactivity, and intra- and inter-assay precision were assessed. All proteins were analyzed in sera of 48 patients diagnosed with UM (14 metastatic, 9 disease–free (DF) ≥ 5 years, 25 unknown) and 36 healthy controls. The performance of the biomarkers was evaluated individually and in combination for their ability to detect UM. Results A 7-plex immunoassay of OPN, MIA, CEACAM-1, MIC-1, SPON1, POSTN and HSP27 was developed with negligible cross-reactivity, recovery of 84–105%, and intra-assay and inter-assay precision of 2.3–7.5% or 2.8–20.8%, respectively. Logistic regression identified a two-marker panel of HSP27 and OPN that significantly improved the individual biomarker performance in discriminating UM from healthy controls. The improved discrimination of a two-marker panel of MIA and MIC-1 was also observed between metastatic UM and DF, however not statistically significant due to the small sample size. Conclusions The multiplex immunoassay provides sufficient analytical performance to evaluate serum biomarkers that complement each other in detection of UM, and warrants further validation with a larger number of patient samples. Electronic supplementary material The online version of this article (10.1186/s12014-019-9230-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Song
- 1Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA.,3Department of Pathology, Johns Hopkins University School of Medicine, 419 North Caroline Street, Baltimore, MD 21231 USA
| | - Shannath L Merbs
- 2Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA
| | - Lori J Sokoll
- 1Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Daniel W Chan
- 1Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Zhen Zhang
- 1Center for Biomarker Discovery and Translation, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| |
Collapse
|
129
|
Cazzaniga A, Locatelli L, Castiglioni S, Maier JAM. The dynamic adaptation of primary human endothelial cells to simulated microgravity. FASEB J 2019; 33:5957-5966. [DOI: 10.1096/fj.201801586rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alessandra Cazzaniga
- Dipartimento di Scienze Biomediche e Cliniche L. SaccoUniversità di Milano Milano Italy
| | - Laura Locatelli
- Dipartimento di Scienze Biomediche e Cliniche L. SaccoUniversità di Milano Milano Italy
| | - Sara Castiglioni
- Dipartimento di Scienze Biomediche e Cliniche L. SaccoUniversità di Milano Milano Italy
| | - Jeanette A. M. Maier
- Dipartimento di Scienze Biomediche e Cliniche L. SaccoUniversità di Milano Milano Italy
| |
Collapse
|
130
|
Ramezani A, Aghakhani A, Soleymani S, Bavand A, Bolhassani A. Significance of serum antibodies against HPV E7, Hsp27, Hsp20 and Hp91 in Iranian HPV-exposed women. BMC Infect Dis 2019; 19:142. [PMID: 30755156 PMCID: PMC6373072 DOI: 10.1186/s12879-019-3780-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/05/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Among different types of human papillomavirus (HPV), types 16 and 18 were known to be high-risk agents causing mainly cervical cancer. Up to now, the potential of HPV E7 protein has been proved as a diagnostic marker of cervical cancer. Moreover, the levels of anti-heat shock protein (Hsp) and anti-high mobility group box-1 (HMGB1) antibodies in cancer patients have been useful in tumor diagnosis. The goal of the present study was to determine the efficiency of the potential serologic markers including HPV E7, Hsp20, Hsp27 proteins and Hp91 peptide in Iranian HPV-exposed women, for the first time. METHODS At first, the recombinant HPV E7, Hsp20 and Hsp27 proteins were expressed in E. coli system, and purified by affinity chromatography under native conditions. Then, antibody responses were detected against the recombinant proteins as well as Hp91 peptide as potential markers in 49 Iranian women who were seropositive for HPV-16 and 18 L1 capsids (i.e., HPV-exposed women) and 49 controls using indirect ELISA. RESULTS Our data indicated that the seroreactivities of women exposed to HPV16, HPV18 and both of them against the recombinant E7, Hsp20, Hsp27 proteins and Hp91 peptide were significantly higher than those in control group (p < 0.05 for HPV16 or HPV18; p < 0.01 for both of them versus all markers). HPV-exposed women with high antibody responses to HPV-16 and 18 L1 capsids as a commercial biomarker had significant seroreactivity to HPV-16 and 18 E7 and Hsp27 (p < 0.05). The recombinant E7 and Hsp27 proteins showed higher efficiency than Hsp20 and Hp91 for detection of individuals exposed to HPV infections (p < 0.05). CONCLUSION Generally, the levels of serum E7 and Hsp27 were increased in HPV-16 and 18 L1- seropositive women suggesting their potential value as a diagnostic marker for HPV infections.
Collapse
Affiliation(s)
- Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Arezoo Aghakhani
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Sepehr Soleymani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Anahita Bavand
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
131
|
Cold Physical Plasma Modulates p53 and Mitogen-Activated Protein Kinase Signaling in Keratinocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7017363. [PMID: 30733851 PMCID: PMC6348845 DOI: 10.1155/2019/7017363] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/10/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Abstract
Small reactive oxygen and nitrogen species (ROS/RNS) driven signaling plays a significant role in wound healing processes by controlling cell functionality and wound phase transitions. The application of cold atmospheric pressure plasma (CAP), a partially ionized gas expelling a variety of ROS and RNS, was shown to be effective in chronic wound management and contrastingly also in malignant diseases. The underlying molecular mechanisms are not well understood but redox signaling events are involved. As a central player, the cellular tumor antigen p53 governs regulatory networks controlling proliferation, death, or metabolism, all of which are grossly modulated by anti- and prooxidant signals. Using a human skin cell model, a transient phosphorylation and nuclear translocation of p53, preceded by the phosphorylation of upstream serine- (ATM) and serine/threonine-protein kinase (ATR), was detected after CAP treatment. Results indicate that ATM acts as a direct redox sensor without relevant contribution of phosphorylation of the histone A2X, a marker of DNA damage. Downstream events are the activation of checkpoint kinases Chk1/2 and several mitogen-activated (MAP) kinases. Subsequently, the expression of MAP kinase signaling effectors (e.g., heat shock protein Hsp27), epithelium derived growth factors, and cytokines (Interleukins 6 + 8) was increased. A number of p53 downstream effectors pointed at a decrease of cell growth due to DNA repair processes. In summary, CAP treatment led to an activation of cell repair and defense mechanisms including a modulation of paracrine inflammatory signals emphasizing the role of prooxidant species in CAP-related cell signaling.
Collapse
|
132
|
Olsen I, Yilmaz Ö. Possible role of Porphyromonas gingivalis in orodigestive cancers. J Oral Microbiol 2019; 11:1563410. [PMID: 30671195 PMCID: PMC6327928 DOI: 10.1080/20002297.2018.1563410] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 02/07/2023] Open
Abstract
There is increasing evidence for an association between periodontitis/tooth loss and oral, gastrointestinal, and pancreatic cancers. Periodontal disease, which is characterized by chronic inflammation and microbial dysbiosis, is a significant risk factor for orodigestive carcinogenesis. Porphyromonas gingivalis is proposed as a keystone pathogen in chronic periodontitis causing both dysbiosis and discordant immune response. The present review focuses on the growing recognition of a relationship between P. gingivalis and orodigestive cancers. Porphyromonas gingivalis has been recovered in abundance from oral squamous cell carcinoma (OSCC). Recently established tumorigenesis models have indicated a direct relationship between P. gingivalis and carcinogenesis. The bacterium upregulates specific receptors on OSCC cells and keratinocytes, induces epithelial-to-mesenchymal (EMT) transition of normal oral epithelial cells and activates metalloproteinase-9 and interleukin-8 in cultures of the carcinoma cells. In addition, P. gingivalis accelerates cell cycling and suppresses apoptosis in cultures of primary oral epithelial cells. In oral cancer cells, the cell cycle is arrested and there is no effect on apoptosis, but macro autophagy is increased. Porphyromonas gingivalis promotes distant metastasis and chemoresistance to anti-cancer agents and accelerates proliferation of oral tumor cells by affecting gene expression of defensins, by peptidyl-arginine deiminase and noncanonical activation of β-catenin. The pathogen also converts ethanol to the carcinogenic intermediate acetaldehyde. In addition, P. gingivalis can be implicated in precancerous gastric and colon lesions, esophageal squamous cell carcinoma, head and neck (larynx, throat, lip, mouth and salivary glands) carcinoma, and pancreatic cancer. The fact that distant organs can be involved clearly emphasizes that P. gingivalis has systemic tumorigenic effects in addition to the local effects in its native territory, the oral cavity. Although coinfection with other bacteria, viruses, and fungi occurs in periodontitis, P. gingivalis relates to cancer even in absence of periodontitis. Thus, there may be a direct relationship between P. gingivalis and orodigestive cancers.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Özlem Yilmaz
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
133
|
New progress in the approaches for blood–brain barrier protection in acute ischemic stroke. Brain Res Bull 2019; 144:46-57. [DOI: 10.1016/j.brainresbull.2018.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
|
134
|
Jaroszyński A, Jaroszyńska A, Zaborowski T, Drelich-Zbroja A, Zapolski T, Dąbrowski W. Serum heat shock protein 27 levels predict cardiac mortality in hemodialysis patients. BMC Nephrol 2018; 19:359. [PMID: 30558560 PMCID: PMC6296132 DOI: 10.1186/s12882-018-1157-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Background Decreased heat shock protein 27 (HSP27) participates in many processes that are involved in cardiovascular (CV) disease. The objective of the study was to evaluate if HSP27 level was predictive of mortality as well as to evaluate factors associated with HSP27 level in a group of patients treated with HD. Methods Enrolled to the study were 202 HD patients. Clinical data, biochemical, echocardiographic, and carotid atherosclerosis parameters were evaluated. Patients were splited into groups on the basis of the cut-off lower and higher 50th percentile of serum HSP27 levels, and were followed-up for 28.68 ± 6.12 months. Results No significant difference was observed between serum HSP27 levels in patients and controls. Low HSP27 patients were older, had higher left ventricular mass index, lower ejection fraction, higher prevalence of diabetes, myocardial infarction and carotid atherosclerosis, higher C-reactive protein level, and worse oxidant/antioxidant status. The multiple regression analysis identified that HSP27 levels were independently, negatively associated with serum oxidized LDL and the number of carotid plaques. Using the Kaplan–Meier analysis it was shown that the cumulative incidences of both CV and sudden cardiac death (SCD) mortality were higher in low HSP27 group in comparison with high serum HSP27 group. A multivariate Cox analysis showed that HSP27 level is an independent and strong predictor of CV as well as SCD mortality. Conclusions Low serum HSP27 level is independently associated with both CV and SCD mortality but not with all-cause mortality. Low serum HSP27 level is associated with carotid atherosclerosis and oxidative stress.
Collapse
Affiliation(s)
- Andrzej Jaroszyński
- Institute of Medical Sciences, Jan Kochanowski University in Kielce, Al. IX Wieków Kielc 19A, 25-317, Kielce, Poland.
| | - Anna Jaroszyńska
- Institute of Medical Sciences, Jan Kochanowski University in Kielce, Al. IX Wieków Kielc 19A, 25-317, Kielce, Poland
| | - Tomasz Zaborowski
- Department of Family Medicine, Medical University of Lublin, Lublin, Poland
| | - Anna Drelich-Zbroja
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, Lublin, Poland
| | - Tomasz Zapolski
- Department of Cardiology, Medical University of Lublin, Lublin, Poland
| | - Wojciech Dąbrowski
- Department of Anesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
135
|
Zhang HL, Jia KY, Sun D, Yang M. Protective effect of HSP27 in atherosclerosis and coronary heart disease by inhibiting reactive oxygen species. J Cell Biochem 2018; 120:2859-2868. [PMID: 29232010 DOI: 10.1002/jcb.26575] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/01/2017] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To clarify the mechanism of heat shock protein 27 (HSP27) as a diagnostic biomarker in coronary heart disease (CHD) and atherosclerosis (AS). METHOD Expressions of HSP27 in patients with CHD and healthy controls were determined by enzyme-linked immunosorbent assay and the expressions of HSP27 in aortas of patients with CHD and healthy controls were measured by immunohistochemistry. Receiver operating characteristic curve was applied to assess the diagnostic performance of HSP27 in CHD. ApoE-/- mice were included and accordingly grouped. The expressions of HSP27 in AS plaque were measured by quantitative real-time polymerase chain reaction, immunohistochemistry, and Western blot analysis. AS plaque was observed using hematoxylin and eosin staining. DHE was used to detect reactive oxygen species (ROS) levels in aortas. The expressions of mitochondrial apoptosis-related proteins were measured by Western blot analysis. Cell apoptosis was determined by TUNEL staining. RESULTS HSP27 was highly expressed in patients with CHD than in healthy controls ( P < 0.01). In comparison to the normal group, the model group had increased the relative positive area of HSP27 and higher expressions of HSP27, Bax, caspase-3, and apoptosis index (AI) but decreased Bcl-2 expression in AS plaque, as well as larger plaque areas and elevated ROS levels in the aorta (all P < 0.05). The HSP27-small interfering RNA group had increased expressions of Bax, caspase-3, and AI but decreased Bcl-2 and HSP27 expressions in AS plaque, as well as larger plaque areas, the relative positive area of HSP27 and higher ROS levels in aorta when compared with those in the model group (all P < 0.05). CONCLUSION HSP27 exerts its protective role by suppressing ROS and AS progression by inhibiting mitochondria apoptosis pathway in CHD.
Collapse
Affiliation(s)
- Hong-Li Zhang
- Department of Geriatric Cardiology, Beijing Shijitan Hospital (affiliated to Capital Medical University), Beijing, China
| | - Kai-Ying Jia
- Department of Geriatric Cardiology, Beijing Shijitan Hospital (affiliated to Capital Medical University), Beijing, China
| | - Da Sun
- Department of Geriatric Cardiology, Beijing Shijitan Hospital (affiliated to Capital Medical University), Beijing, China
| | - Min Yang
- Department of Geriatric Cardiology, Beijing Shijitan Hospital (affiliated to Capital Medical University), Beijing, China
| |
Collapse
|
136
|
Hwang HV, Lin Y, Rebuffatti MN, Tran DT, Lee L, Gomes AV, Li CS, Knowlton AA. Impaired proteostasis in senescent vascular endothelial cells: a perspective on estrogen and oxidative stress in the aging vasculature. Am J Physiol Heart Circ Physiol 2018; 316:H421-H429. [PMID: 30499713 DOI: 10.1152/ajpheart.00318.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The heat shock response is an important cytoprotective mechanism for protein homeostasis and is an essential protective response to cellular stress and injury. Studies on changes in the heat shock response with aging have been mixed with regard to whether it is inhibited, and this, at least in part, reflects different tissues and different models. Cellular senescence is a key feature in aging, but work on the heat shock response in cultured senescent (SEN) cells has largely been limited to fibroblasts. Given the prevalence of oxidative injury in the aging cardiovascular system, we investigated whether SEN primary human coronary artery endothelial cells have a diminished heat shock response and impaired proteostasis. In addition, we tested whether this downregulation of heat shock response can be mitigated by 17β-estradiol (E2), which has a critical cardioprotective role in women, as we have previously reported that E2 improves the heat shock response in endothelial cells (Hamilton KL, Mbai FN, Gupta S, Knowlton AA. Arterioscler Thromb Vasc Biol 24: 1628-1633, 2004). We found that SEN endothelial cells, despite their unexpectedly increased proteasome activity, had a diminished heat shock response and had more protein aggregation than early passage cells. SEN cells had increased oxidative stress, which promoted protein aggregation. E2 treatment did not decrease protein aggregation or improve the heat shock response in either early passage or SEN cells. In summary, cellular senescence in adult human endothelial cells is accompanied by increased oxidative stress and a blunting of proteostasis, and E2 did not mitigate these changes. NEW & NOTEWORTHY Senescent human endothelial cells have a diminished heat shock response and increased protein aggregates. Senescent human endothelial cells have increased basal oxidative stress, which increases protein aggregates. Physiological level of 17β-estradiol did not improve proteostasis in endothelial cells.
Collapse
Affiliation(s)
- HyunTae V Hwang
- Molecular and Cellular Cardiology, Cardiovascular Division, Department of Internal Medicine, University of California, Davis, California
| | - Yun Lin
- Molecular and Cellular Cardiology, Cardiovascular Division, Department of Internal Medicine, University of California, Davis, California
| | - Michelle N Rebuffatti
- Molecular and Cellular Cardiology, Cardiovascular Division, Department of Internal Medicine, University of California, Davis, California
| | - Darlene T Tran
- Molecular and Cellular Cardiology, Cardiovascular Division, Department of Internal Medicine, University of California, Davis, California
| | - Lily Lee
- Molecular and Cellular Cardiology, Cardiovascular Division, Department of Internal Medicine, University of California, Davis, California
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California.,Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Chin-Shang Li
- School of Nursing, The State University of New York, University at Buffalo, Buffalo, New York
| | - Anne A Knowlton
- Veterans Affairs Medical Center, Sacramento, California.,Molecular and Cellular Cardiology, Cardiovascular Division, Department of Internal Medicine, University of California, Davis, California.,Department of Pharmacology, University of California, Davis, California
| |
Collapse
|
137
|
Asif M, Yehya AHS, Dahham SS, Mohamed SK, Shafaei A, Ezzat MO, Abdul Majid AS, Oon CE, Abdul Majid AMS. Establishment of in vitro and in vivo anti-colon cancer efficacy of essential oils containing oleo-gum resin extract of Mesua ferrea. Biomed Pharmacother 2018; 109:1620-1629. [PMID: 30551416 DOI: 10.1016/j.biopha.2018.10.127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022] Open
Abstract
Proven the great potential of essential oils as anticancer agents, the current study intended to explore molecular mechanisms responsible for in vitro and in vivo anti-colon cancer efficacy of essential oil containing oleo-gum resin extract (RH) of Mesua ferrea. MTT cell viability studies showed that RH had broad spectrum cytotoxic activities. However, it induced more profound growth inhibitory effects towards two human colon cancer cell lines i.e., HCT 116 and LIM1215 with an IC50 values of 17.38 ± 0.92 and 18.86 ± 0.80 μg/mL respectively. RH induced relatively less toxicity in normal human colon fibroblasts i.e., CCD-18co. Cell death studies conducted, revealed that RH induced characteristic morphological and biochemical changes in HCT 116. At protein level it down-regulated expression of multiple pro-survival proteins i.e., survivin, xIAP, HSP27, HSP60 and HSP70 and up-regulated expression of ROS, caspase-3/7 and TRAIL-R2 in HCT 116. Furthermore, significant reduction in invasion, migration and colony formation potential was observed in HCT 116 treated with RH. Chemical characterization by GC-MS and HPLC methods revealed isoledene and elemene as one the major compounds. RH showed potent antitumor activity in xenograft model. Overall, these findings suggest that RH holds a promise to be further studied for cheap anti-colon cancer naturaceutical development.
Collapse
Affiliation(s)
- Muhammad Asif
- Faculty of Pharmaceutical Sciences, Government College University, 38000, Faisalabad, Pakistan; EMAN Testing and Research Laboratory, Department of Pharmacology, School of Pharmaceutical Sciences, Universti Sains Malaysia, Penang, 11800, Malaysia.
| | - Ashwaq H S Yehya
- Institute for Research in Molecular Medicine (INFORMM), Universti Sains Malaysia, Penang, 11800, Malaysia
| | - Saad Sabbar Dahham
- Department of Science, Rustaq College of Education, Ministry of Higher Education, 329-Rustaq, Sultanate of Oman, Oman
| | - Shazmin Kithur Mohamed
- EMAN Testing and Research Laboratory, Department of Pharmacology, School of Pharmaceutical Sciences, Universti Sains Malaysia, Penang, 11800, Malaysia
| | - Armaghan Shafaei
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universti Sains Malaysia, Penang, 11800, Malaysia
| | - Mohammed Oday Ezzat
- Department of Chemistry, College of Education for Women, University of Anbar, 31001, Ramadi, Anbar, Iraq
| | - Aman Shah Abdul Majid
- Department of Pharmacology, School of Medical Sciences, Quest International University, Perak, Malaysia
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universti Sains Malaysia, Penang, 11800, Malaysia
| | - Amin Malik Shah Abdul Majid
- EMAN Testing and Research Laboratory, Department of Pharmacology, School of Pharmaceutical Sciences, Universti Sains Malaysia, Penang, 11800, Malaysia; ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Australia.
| |
Collapse
|
138
|
Wu CW, Tessier SN, Storey KB. Stress-induced antioxidant defense and protein chaperone response in the freeze-tolerant wood frog Rana sylvatica. Cell Stress Chaperones 2018; 23:1205-1217. [PMID: 29951989 PMCID: PMC6237678 DOI: 10.1007/s12192-018-0926-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022] Open
Abstract
Freeze tolerance is an adaptive response utilized by the wood frog Rana sylvatica to endure the sub-zero temperatures of winter. Survival of whole body freezing requires wood frogs to trigger cryoprotective mechanisms to deal with potential injuries associated with conversion of 65-70% of total body water into ice, including multiple consequences of ice formation such as cessation of blood flow and cell dehydration caused by water loss into ice masses. To understand how wood frogs defend against these stressors, we measured the expression of proteins known to be involved in the antioxidant defense and protein chaperone stress responses in brain and heart of wood frogs comparing freezing, anoxia, and dehydration stress. Our results showed that most stress proteins were regulated in a tissue- and stress-specific manner. Notably, protein levels of the cytosolic superoxide dismutase (SOD1) were upregulated by 1.37 ± 0.11-fold in frozen brain, whereas the mitochondrial SOD2 isoform rose by 1.38 ± 0.37-fold in the heart during freezing. Catalase protein levels were upregulated by 3.01 ± 0.47-fold in the brain under anoxia stress, but remained unchanged in the heart. Similar context-specific regulatory patterns were also observed for the heat shock protein (Hsp) molecular chaperones. Hsp27 protein was down-regulated in the brain across the three stress conditions, whereas the mitochondrial Hsp60 was upregulated in anoxic brain by 1.73 ± 0.38-fold and by 2.13 ± 0.57-fold in the frozen heart. Overall, our study provides a snapshot of the regulatory expression of stress proteins in wood frogs under harsh environment conditions and shows that they are controlled in a tissue- and stress-specific manner.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr., Saskatoon, SK, S7N 5B4, Canada
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Shannon N Tessier
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- BioMEMS Resource Center and Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
139
|
Mitra T, Mahanty A, Ganguly S, Purohit GK, Mohanty S, Parida PK, Behera PR, Raman RK, Mohanty BP. Expression patterns of heat shock protein genes in Rita rita from natural riverine habitat as biomarker response against environmental pollution. CHEMOSPHERE 2018; 211:535-546. [PMID: 30092534 DOI: 10.1016/j.chemosphere.2018.07.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
River pollution is one of the principal environmental concerns and biomonitoring tools can play an important role in pollution assessment in the riverine environment. Heat shock proteins (Hsps) have been found to be suitable tools for monitoring stress response. In the present study, expression analyses of hsp genes (hsp27, hsp47, hsp60, hsp70, hsc70, and hsp90) and selected hsp-regulatory genes (hsf1, hyou1, ask1, jnk) were carried out by RT-qPCR in catfish Rita rita collected from selected stretches of river Ganga to investigate changes in their expression patterns as biomarker response. Water quality characteristics were measured in terms of physico-chemical characteristics (DO, BOD, COD, pH, conductivity), element profile (arsenic, mercury, cadmium, lead, chromium, zinc, copper) and persistent organic pollutants (POPs; HCH, DDT, aldrin, endosulphan, heptachlor). Water quality index was calculated and sampling sites were categorized as good/medium/bad. Multivariate analysis was carried out taking the water quality parameters and the fold changes in hsp gene expression as variables, which showed that hsp47 and hsp70b correlated well with BOD, an indicator of organic pollution. To identify the organic pollutant(s) which could be influencing the expression of hsps, again multivariate analysis was employed taking concentration of POPs and fold changes of hsps, which showed up-regulation of hsp47 and hsp70b (HSP72i) correlated well with concentrations of aldrin and HCH. Synergistic effects of these POPs could be responsible for the up-regulation of said hsps, although individually present in low concentration; thus, indicating synergistic effect of the POPs on hsp47 and hsp70b up-regulation as biomarker response.
Collapse
Affiliation(s)
- Tandrima Mitra
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Biochemistry Laboratory, Barrackpore, Kolkata 700 120, India
| | - Arabinda Mahanty
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Biochemistry Laboratory, Barrackpore, Kolkata 700 120, India
| | - Satabdi Ganguly
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Biochemistry Laboratory, Barrackpore, Kolkata 700 120, India
| | | | - Sasmita Mohanty
- School of Biotechnology, KIIT- Deemed University, Bhubaneswar 751024, Odisha, India
| | - Pranaya Kumar Parida
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Biochemistry Laboratory, Barrackpore, Kolkata 700 120, India
| | - Prajna Ritambhara Behera
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Biochemistry Laboratory, Barrackpore, Kolkata 700 120, India
| | - Rohan Kumar Raman
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Biochemistry Laboratory, Barrackpore, Kolkata 700 120, India
| | - Bimal Prasanna Mohanty
- ICAR- Central Inland Fisheries Research Institute, Fishery Resource and Environmental Management Division, Biochemistry Laboratory, Barrackpore, Kolkata 700 120, India.
| |
Collapse
|
140
|
Dependence of HSP27 cellular level on protein kinase CK2 discloses novel therapeutic strategies. Biochim Biophys Acta Gen Subj 2018; 1862:2902-2910. [PMID: 30279146 DOI: 10.1016/j.bbagen.2018.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/21/2018] [Accepted: 09/18/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND HSP27 plays a role in various diseases, including neurodegenerative diseases, ischemia, and atherosclerosis. It is particularly important in the regulation of the development, progression and metastasis of cancer as well as cell apoptosis and drug resistance. However, the absence of an ATP binding domain, that is, instead, present in other HSPs such as HSP90 and HSP70, hampers the development of small molecules as inhibitors of HSP27. METHODS Knockout cell lines generated by Crispr/Cas9 gene editing tool, specific kinase inhibitors and siRNA transfections were exploited to demonstrate that the expression of HSP27 is dependent on the integrity/activity of protein kinase CK2 holoenzyme. The interaction between these proteins has been confirmed by co-immunoprecipitation, confocal immunofluorescence microscopy, and by density gradient separation of protein complexes. Finally, using a proliferation assay this study demonstrates the potential efficacy of a combinatory therapy of heath shock and CK2 inhibitors in cancer treatment. RESULTS Our data demonstrate that CK2 is able to regulate HSP27 turnover by affecting the expression of its ubiquitin ligase SMURF2 (Smad ubiquitination regulatory factor 2). Moreover, for the first time we show an increased sensitivity of CK2-inhibited tumour cells to hyperthermia treatment. CONCLUSION Being HSP27 involved in several pathological conditions, including protein conformational diseases (i.e Cystic Fibrosis) and cancer, the need of drugs to modulate its activity is growing and CK2-targeting could represent a new strategy to reduce cellular HSP27 level. GENERAL SIGNIFICANCE This study identifies CK2 as a molecular target to control HSP27 cellular expression.
Collapse
|
141
|
Bolhassani A, Shahbazi S, Milani A, Nadji SA. Small Heat Shock Proteins B1 and B6: Which One is the Most Effective Adjuvant in Therapeutic HPV Vaccine? IUBMB Life 2018; 70:1002-1011. [DOI: 10.1002/iub.1892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Azam Bolhassani
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran Iran
| | - Sepideh Shahbazi
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran Iran
| | - Alireza Milani
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran Iran
| | - Seyed Alireza Nadji
- Virology Research Center (VRC); National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
142
|
In Vitro and In Vivo Characterization of NOSO-502, a Novel Inhibitor of Bacterial Translation. Antimicrob Agents Chemother 2018; 62:AAC.01016-18. [PMID: 29987155 PMCID: PMC6125496 DOI: 10.1128/aac.01016-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022] Open
Abstract
Antibacterial activity screening of a collection of Xenorhabdus strains led to the discovery of the odilorhabdins, a new antibiotic class with broad-spectrum activity against Gram-positive and Gram-negative pathogens. Odilorhabdins inhibit bacterial translation by a new mechanism of action on ribosomes. Antibacterial activity screening of a collection of Xenorhabdus strains led to the discovery of the odilorhabdins, a new antibiotic class with broad-spectrum activity against Gram-positive and Gram-negative pathogens. Odilorhabdins inhibit bacterial translation by a new mechanism of action on ribosomes. A lead optimization program identified NOSO-502 as a promising candidate. NOSO-502 has MIC values ranging from 0.5 to 4 μg/ml against standard Enterobacteriaceae strains and carbapenem-resistant Enterobacteriaceae (CRE) isolates that produce KPC, AmpC, or OXA enzymes and metallo-β-lactamases. In addition, this compound overcomes multiple chromosome-encoded or plasmid-mediated resistance mechanisms of acquired resistance to colistin. It is effective in mouse systemic infection models against Escherichia coli EN122 (extended-spectrum β-lactamase [ESBL]) or E. coli ATCC BAA-2469 (NDM-1), achieving a 50% effective dose (ED50) of 3.5 mg/kg of body weight and 1-, 2-, and 3-log reductions in blood burden at 2.6, 3.8, and 5.9 mg/kg, respectively, in the first model and 100% survival in the second, starting with a dose as low as 4 mg/kg. In a urinary tract infection (UTI) model with E. coli UTI89, urine, bladder, and kidney burdens were reduced by 2.39, 1.96, and 1.36 log10 CFU/ml, respectively, after injection of 24 mg/kg. There was no cytotoxicity against HepG2, HK-2, or human renal proximal tubular epithelial cells (HRPTEpiC), no inhibition of hERG-CHO or Nav 1.5-HEK current, and no increase of micronuclei at 512 μM. NOSO-502, a compound with a new mechanism of action, is active against Enterobacteriaceae, including all classes of CRE, has a low potential for resistance development, shows efficacy in several mouse models, and has a favorable in vitro safety profile.
Collapse
|
143
|
Hafen PS, Preece CN, Sorensen JR, Hancock CR, Hyldahl RD. Repeated exposure to heat stress induces mitochondrial adaptation in human skeletal muscle. J Appl Physiol (1985) 2018; 125:1447-1455. [PMID: 30024339 DOI: 10.1152/japplphysiol.00383.2018] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The heat stress response is associated with several beneficial adaptations that promote cell health and survival. Specifically, in vitro and animal investigations suggest that repeated exposures to a mild heat stress (~40°C) elicit positive mitochondrial adaptations in skeletal muscle comparable to those observed with exercise. To assess whether such adaptations translate to human skeletal muscle, we produced local, deep tissue heating of the vastus lateralis via pulsed shortwave diathermy in 20 men and women ( n = 10 men; n = 10 women). Diathermy increased muscle temperature by 3.9°C within 30 min of application. Immediately following a single 2-h heating session, we observed increased phosphorylation of AMP-activated protein kinase and ERK1/2 but not of p38 MAPK or JNK. Following repeated heat exposures (2 h daily for 6 consecutive days), we observed a significant cellular heat stress response, as heat shock protein 70 and 90 increased 45% and 38%, respectively. In addition, peroxisome proliferator-activated receptor gamma, coactivator-1 alpha and mitochondrial electron transport protein complexes I and V expression were increased after heating. These increases were accompanied by augmentation of maximal coupled and uncoupled respiratory capacity, measured via high-resolution respirometry. Our data provide the first evidence that mitochondrial adaptation can be elicited in human skeletal muscle in response to repeated exposures to mild heat stress. NEW & NOTEWORTHY Heat stress has been shown to elicit mitochondrial adaptations in cell culture and animal research. We used pulsed shortwave diathermy to produce deep tissue heating and explore whether beneficial mitochondrial adaptations would translate to human skeletal muscle in vivo. We report, for the first time, positive mitochondrial adaptations in human skeletal muscle following recurrent heat stress. The results of this study have clinical implications for many conditions characterized by diminished skeletal muscle mitochondrial function.
Collapse
Affiliation(s)
- Paul S Hafen
- Department of Exercise Sciences, Brigham Young University , Provo, Utah
| | - Coray N Preece
- Department of Exercise Sciences, Brigham Young University , Provo, Utah
| | - Jacob R Sorensen
- Department of Exercise Sciences, Brigham Young University , Provo, Utah
| | - Chad R Hancock
- Department of Nutrition, Dietetics & Food Science, Brigham Young University , Provo, Utah
| | - Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University , Provo, Utah
| |
Collapse
|
144
|
Phosphorylated recombinant HSP27 protects the brain and attenuates blood-brain barrier disruption following stroke in mice receiving intravenous tissue-plasminogen activator. PLoS One 2018; 13:e0198039. [PMID: 29795667 PMCID: PMC5993064 DOI: 10.1371/journal.pone.0198039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/11/2018] [Indexed: 01/21/2023] Open
Abstract
Loss of integrity of the blood-brain barrier (BBB) in ischemic stroke victims initiates a devastating cascade of events causing brain damage. Maintaining the BBB is important to preserve brain function in ischemic stroke. Unfortunately, recombinant tissue plasminogen activator (tPA), the only effective fibrinolytic treatment at the acute stage of ischemic stroke, also injures the BBB and increases the risk of brain edema and secondary hemorrhagic transformation. Thus, it is important to identify compounds that maintain BBB integrity in the face of ischemic injury in patients with stroke. We previously demonstrated that intravenously injected phosphorylated recombinant heat shock protein 27 (prHSP27) protects the brains of mice with transient middle cerebral artery occlusion (tMCAO), an animal stroke-model. Here, we determined whether prHSP27, in addition to attenuating brain injury, also decreases BBB damage in hyperglycemic tMCAO mice that had received tPA. After induction of hyperglycemia and tMCAO, we examined 4 treatment groups: 1) bovine serum albumin (BSA), 2) prHSP27, 3) tPA, 4) tPA plus prHSP27. We examined the effects of prHSP27 by comparing the BSA and prHSP27 groups and the tPA and tPA plus prHSP27 groups. Twenty-four hours after injection, prHSP27 reduced infarct volume, brain swelling, neurological deficits, the loss of microvessel proteins and endothelial cell walls, and mortality. It also reduced the rates of hemorrhagic transformation, extravasation of endogenous IgG, and MMP-9 activity, signs of BBB damage. Therefore, prHSP27 injection attenuated brain damage and preserved the BBB in tPA-injected, hyperglycemic tMCAO experimental stroke-model mice, in which the BBB is even more severely damaged than in simple tMCAO mice. The attenuation of brain damage and BBB disruption in the presence of tPA suggests the effectiveness of prHSP27 and tPA as a combination therapy. prHSP27 may be a novel therapeutic agent for ischemic stroke patients whose BBBs are injured following tPA injections.
Collapse
|
145
|
Lee J, Roberts JS, Atanasova KR, Chowdhury N, Yilmaz Ö. A novel kinase function of a nucleoside-diphosphate-kinase homologue in Porphyromonas gingivalis is critical in subversion of host cell apoptosis by targeting heat-shock protein 27. Cell Microbiol 2018; 20:e12825. [PMID: 29359393 PMCID: PMC5893355 DOI: 10.1111/cmi.12825] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/13/2022]
Abstract
We have previously shown that a homologue of a conserved nucleoside-diphosphate-kinase (Ndk) family of multifunctional enzymes and secreted molecule in Porphyromonas gingivalis can modulate select host molecular pathways including downregulation of reactive-oxygen-species generation to promote bacterial survival in human gingival epithelial cells (GECs). In this study, we describe a novel kinase function for bacterial effector, P. gingivalis-Ndk, in abrogating epithelial cell death by phosphorylating heat-shock protein 27 (HSP27) in GECs. Infection by P. gingivalis was recently suggested to increase phosphorylation of HSP27 in cancer-epithelial cells; however, the mechanism and biological significance of antiapoptotic phospho-HSP27 during infection has never been characterised. Interestingly, using glutathione S-transferase-rNdk pull-down analysed by mass spectrometry, we identified HSP27 in GECs as a strong binder of P. gingivalis-Ndk and further verified using confocal microscopy and ELISA. Therefore, we hypothesised P. gingivalis-Ndk can phosphorylate HSP27 for inhibition of apoptosis in GECs. We further employed P. gingivalis-Ndk protein constructs and an isogenic P. gingivalis-ndk-deficient-mutant strain for functional examination. P. gingivalis-infected GECs displayed significantly increased phospho-HSP27 compared with ndk-deficient-strain during 24 hr infection. Phospho-HSP27 was significantly increased by transfection of GFP-tagged-Ndk into uninfected-GECs, and in vitro phosphorylation assays revealed direct phosphorylation of HSP27 at serines 78 and 82 by P. gingivalis-Ndk. Depletion of HSP27 via siRNA significantly reversed resistance against staurosporine-mediated-apoptosis during infection. Transfection of recombinant P. gingivalis-Ndk protein into GECs substantially decreased staurosporine-induced-apoptosis. Finally, ndk-deficient-mutant strain was unable to inhibit staurosporine-induced Cytochrome C release/Caspase-9 activation. Thus, we show for the first time the phosphorylation of HSP27 by a bacterial effector-P. gingivalis-Ndk-and a novel function of Ndks that is directly involved in inhibition of host cell apoptosis and the subsequent bacterial survival.
Collapse
Affiliation(s)
- Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Florida, USA
| | - JoAnn S Roberts
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Nityananda Chowdhury
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Özlem Yilmaz
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
146
|
Davis JB, Calvert V, Roberts S, Bracero S, Petricoin E, Couch R. Induction of nerve growth factor by phorbol 12-myristate 13-acetate is dependent upon the mitogen activated protein kinase pathway. Heliyon 2018; 4:e00617. [PMID: 29872754 PMCID: PMC5986306 DOI: 10.1016/j.heliyon.2018.e00617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/23/2018] [Accepted: 04/27/2018] [Indexed: 01/20/2023] Open
Abstract
Several small molecules have been identified that induce glial cells to synthesize and secrete nerve growth factor (NGF), a critical neurotrophin that supports neuronal growth and survival, and as such show promise in the development of drugs for the chemoprevention of Alzheimer's disease. To map the signal transduction cascade leading to NGF synthesis and secretion, cultured human glial cells were stimulated by phorbol 12-myristate 13-acetate (PMA), an agonist of Protein Kinase C. Changes in intracellular protein phosphorylation states were evaluated by reverse phase protein microarrays (RPPA), selectively screening over 130 protein endpoints. Of these, 55 proteins showed statistically significant changes in phosphorylation state due to cellular exposure to PMA. A critical signal transduction pathway was identified, and subsequent validation by ELISA and qPCR revealed that the signaling proteins Raf, MEK, ERK, and the signal transduction factor CREB are all essential to the upregulation of NGF gene expression by PMA. Additionally, members of the RSK family of kinases appear to be involved in glial secretion (exocytosis) of the NGF protein. Furthermore, through RPPA, the effects of PMA on apoptosis signaling events and cell proliferation were differentiated from the pathway to NGF upregulation. Overall, this study reveals potential protein targets for the rational design of Alzheimer's therapeutics.
Collapse
|
147
|
HSP27 is a partner of JAK2-STAT5 and a potential therapeutic target in myelofibrosis. Nat Commun 2018; 9:1431. [PMID: 29650953 PMCID: PMC5897330 DOI: 10.1038/s41467-018-03627-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/27/2018] [Indexed: 12/11/2022] Open
Abstract
Heat shock protein 27 (HSP27/HSPB1) is a stress-inducible chaperone that facilitates cancer development by its proliferative and anti-apoptotic functions. The OGX-427 antisense oligonucleotide against HSP27 has been reported to be beneficial against idiopathic pulmonary fibrosis. Here we show that OGX-427 is effective in two murine models of thrombopoietin- and JAKV617F-induced myelofibrosis. OGX-427 limits disease progression and is associated with a reduction in spleen weight, in megakaryocyte expansion and, for the JAKV617F model, in fibrosis. HSP27 regulates the proliferation of JAK2V617F-positive cells and interacts directly with JAK2/STAT5. We also show that its expression is increased in both CD34+ circulating progenitors and in the serum of patients with JAK2-dependent myeloproliferative neoplasms with fibrosis. Our data suggest that HSP27 plays a key role in the pathophysiology of myelofibrosis and represents a new potential therapeutic target for patients with myeloproliferative neoplasms. Myelofibrosis is a chronic degenerative disorder characterized by progressive bone marrow fibrosis. Here, the authors show that the chaperone HSP27 contributes to myelofibrosis via regulation of the JAK2/STAT5 pathway, and that antisense oligonucleotides targeting HSP27 are effective in two mouse models of the disease
Collapse
|
148
|
Sato SB, Sugiura M, Kurihara T. Dimer-monomer equilibrium of human HSP27 is influenced by the in-cell macromolecular crowding environment and is controlled by fatty acids and heat. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:692-701. [PMID: 29635040 DOI: 10.1016/j.bbapap.2018.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/23/2022]
Abstract
Small heat shock protein 27 (HSP27) is an essential element of the proteostasis network in human cells. The HSP27 monomer coexists with the dimer, which can bind unfolded client proteins. Here, we evaluated the in-cell dimer-monomer equilibrium and its relevance to the binding of client proteins in a normal human vascular endothelial cell line. When cells were treated with a membrane-permeable crosslinker, the protein existed primarily as a free monomer (27 kDa) with a markedly smaller percentage of dimer (54 kDa), hetero-conjugates, and minor smear-like bands. When the protein was crosslinked in a cell-free lysate, two of the hetero-conjugates that were crosslinked in live cells were also detected, but the dimer and other complexes were absent. However, when cells were pretreated with fatty acid (FA) and/or heat (42.5 °C), dissociation of the dimer was selectively prevented and two types of covalently linked dimers were increased. These changes occurred most prominently in cells treated with docosahexaenoic acid (DHA) and heat, which appeared to intensify the heat resistance of the cell. Both the formation of covalently linked dimers and heat resistance were prevented by N-acetylcysteine. By contrast, nearly all of the free monomers in the lysate converted to disulfide bond-linked dimers by a simple, long incubation at 4 °C. These results strongly suggest that the monomer-dimer equilibrium of HSP27 was inversed between the in-cell and cell-free systems. Temperature- and amphiphile-regulated dimerization was restricted probably due to the low hydration of the in-cell crowding environment.
Collapse
Affiliation(s)
- Satoshi B Sato
- Department of Biophysics, Division of Biological Science, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Miwa Sugiura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
149
|
Deng H, Gao X, Peng H, Wang J, Hou X, Xu H, Yang F. Effect of liposome‑mediated HSP27 transfection on collagen synthesis in alveolar type II epithelial cells. Mol Med Rep 2018; 17:7319-7324. [PMID: 29568951 DOI: 10.3892/mmr.2018.8744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 01/15/2018] [Indexed: 11/05/2022] Open
Abstract
To investigate the effect of liposome Lipofectamine® 2000‑mediated HSP27 plasmid transfection in A549 human alveolar type II epithelial cell line on collagen synthesis during transforming growth factor‑β1 (TGF‑β1)‑induced type II epithelial cell transition to myofibroblasts. Cells were transfected with varying ratios of the Lipofectamine® 2000‑mediated heat shock protein 27 (HSP27) plasmid and the transfection efficiency was determined using flow cytometry. The maximum transfection efficacy was confirmed by laser confocal microscopy. HSP gene expression and the most efficient HSP27 plasmid were determined using reverse transcription‑quantitative polymerase chain reaction. Western blot analysis was used to examine HSP27 and collagen expression levels. With a transfection efficiency of 83%, the 8 µg:20 µl ratio of liposome: Plasmid had the highest transfection levels. Among the four different interference sequences in the HSP27 plasmid, the D sequence had the highest interference effect with 70% silencing of the HSP27 gene. The expression of type I and III collagen in TGF‑β1‑induced transition of A549 human alveolar type II epithelial cell line to myofibroblasts was significantly downregulated by the successful transfection with HSP27‑interfering plasmid. The expression of type I and III collagen in the TGF‑β1‑induced transition of A549 cells to myofibroblasts was significantly downregulated by transfection of A549 cells with HSP27 plasmid D‑interfering sequence and optimal ratio of Lipofectamine® 2000 and HSP27 plasmid.
Collapse
Affiliation(s)
- Haijing Deng
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Xuemin Gao
- International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Haibing Peng
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Jin Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Xiaoli Hou
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Hong Xu
- International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Fang Yang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| |
Collapse
|
150
|
Bizarro A, Sousa D, Lima RT, Musso L, Cincinelli R, Zuco V, De Cesare M, Dallavalle S, Vasconcelos MH. Synthesis and Evaluation of the Tumor Cell Growth Inhibitory Potential of New Putative HSP90 Inhibitors. Molecules 2018; 23:molecules23020407. [PMID: 29438315 PMCID: PMC6017909 DOI: 10.3390/molecules23020407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/03/2018] [Accepted: 02/11/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Heat shock protein 90 (HSP90) is a well-known target for cancer therapy. In a previous work, some of us have reported a series of 3-aryl-naphtho[2,3-d]isoxazole-4,9-diones as inhibitors of HSP90. Methods: In the present work, various compounds with new chromenopyridinone and thiochromenopyridinone scaffolds were synthesized as potential HSP90 inhibitors. Their binding affinity to HSP90 was studied in vitro. Selected compounds (5 and 8) were further studied in various tumor cell lines regarding their potential to cause cell growth inhibition, alter the cell cycle profile, inhibit proliferation, and induce apoptosis. Their effect on HSP90 client protein levels was also confirmed in two cell lines. Finally, the antitumor activity of compound 8 was studied in A431 squamous cell carcinoma xenografts in nude mice. Results: Our results indicated that treatment with compounds 5 and 8 decreased the proliferation of tumor cell lines and compound 8 induced apoptosis. In addition, these two compounds were able to downregulate selected proteins known as “clients” of HSP90. Finally, treatment of xenografted mice with compound 5 resulted in a considerable dose-dependent inhibition of tumor growth. Conclusions: Our results show that two new compounds with a chromenopyridinone and thiochromenopyridinone scaffold are promising putative HSP90 inhibitors causing tumor cell growth inhibition.
Collapse
Affiliation(s)
- Ana Bizarro
- Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Department of Biology, School of Sciences, University of Minho, 4710-057 Braga, Portugal.
| | - Diana Sousa
- Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
- Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal.
| | - Raquel T Lima
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
- Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal.
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences Division of Chemistry and Molecular Biology, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| | - Raffaella Cincinelli
- Department of Food, Environmental and Nutritional Sciences Division of Chemistry and Molecular Biology, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| | - Vantina Zuco
- Department of Experimental Oncology and Molecular Medicine, Fondazione, IRCCS-Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy.
| | - Michelandrea De Cesare
- Department of Experimental Oncology and Molecular Medicine, Fondazione, IRCCS-Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy.
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences Division of Chemistry and Molecular Biology, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| | - M Helena Vasconcelos
- Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
- Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal.
| |
Collapse
|