101
|
Zheng Z, Huang Q. New insight into the structure-dependent two-way immunomodulatory effects of water-soluble yeast β-glucan in macrophages. Carbohydr Polym 2022; 291:119569. [DOI: 10.1016/j.carbpol.2022.119569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 12/15/2022]
|
102
|
Feng Y, Ye Z, Song F, He Y, Liu J. The Role of TAMs in Tumor Microenvironment and New Research Progress. Stem Cells Int 2022; 2022:5775696. [PMID: 36004381 PMCID: PMC9395242 DOI: 10.1155/2022/5775696] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are an important part of tumor microenvironment (TME) and play a key role in TME, participating in the process of tumor occurrence, growth, invasion, and metastasis. Among them, metastasis to tumor tissue is the key step of malignant development of tumor. In this paper, the latest progress in the role of TAMs in the formation of tumor microenvironment is summarized. It is particularly noteworthy that cell and animal experiments show that TAMs can provide a favorable microenvironment for the occurrence and development of tumors. At the same time, clinical pathological experiments show that the accumulation of TAMs in tumor is related to poor clinical efficacy. Finally, this paper discusses the feasibility of TAMs-targeted therapy as a new indirect cancer therapy. This paper provides a theoretical basis for finding a potentially effective macrophage-targeted tumor therapy.
Collapse
Affiliation(s)
- Yawei Feng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhiqiang Ye
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Furong Song
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yufeng He
- Department of Intensive Care Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun Liu
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
103
|
Roszczyk A, Turło J, Zagożdżon R, Kaleta B. Immunomodulatory Properties of Polysaccharides from Lentinula edodes. Int J Mol Sci 2022; 23:ijms23168980. [PMID: 36012249 PMCID: PMC9409024 DOI: 10.3390/ijms23168980] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lentinula edodes (Berk.) Pegler, also known as shiitake mushroom, is a popular edible macrofungus and a source of numerous bioactive substances with multiple beneficial health effects. L. edodes-derived polysaccharides are the most valuable compounds, with anticancer, antioxidant, antimicrobial, and immunomodulatory properties. It has been demonstrated that their biological activity depends on the extraction method, which affects monosaccharide composition, molecular weight, branching degrees, and helical conformation. In this review, we discuss the immunomodulatory properties of various polysaccharides from L. edodes in animal models and in humans.
Collapse
Affiliation(s)
- Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
- Correspondence: ; Tel.: +48-600301690
| |
Collapse
|
104
|
Xiao R, Zeng J, Bressler EM, Lu W, Grinstaff MW. Synthesis of bioactive (1→6)-β-glucose branched poly-amido-saccharides that stimulate and induce M1 polarization in macrophages. Nat Commun 2022; 13:4661. [PMID: 35945224 PMCID: PMC9363418 DOI: 10.1038/s41467-022-32346-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
β-Glucans are of significant interest due to their potent antitumor and immunomodulatory activities. Nevertheless, the difficulty in purification, structural heterogenicity, and limited solubility impede the development of structure-property relationships and translation to therapeutic applications. Here, we report the synthesis of a new class of (1→6)-β-glucose-branched poly-amido-saccharides (PASs) as β-glucan mimetics by ring-opening polymerization of a gentiobiose-based disaccharide β-lactam and its copolymerization with a glucose-based β-lactam, followed by post-polymerization deprotection. The molecular weight (Mn) and frequency of branching (FB) of PASs is readily tuned by adjusting monomer-to-initiator ratio and mole fraction of gentiobiose-lactam in copolymerization. Branched PASs stimulate mouse macrophages, and enhance production of pro-inflammatory cytokines in a FB-, dose-, and Mn-dependent manner. The stimulation proceeds via the activation of NF-κB/AP-1 pathway in a Dectin-1-dependent manner, similar to natural β-glucans. The lead PAS significantly polarizes primary human macrophages towards M1 phenotype compared to other β-glucans such as lentinan, laminarin, and curdlan.
Collapse
Affiliation(s)
- Ruiqing Xiao
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Shenzhen Middle School, Shenzhen, GD, 518001, China
| | - Jialiu Zeng
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Eric M Bressler
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Wei Lu
- Tosoh Bioscience LLC, King of Prussia, PA, 19406, USA
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
105
|
Jing Z, Wang S, Xu K, Tang Q, Li W, Zheng W, Shi H, Su K, Liu Y, Hong Z. A Potent Micron Neoantigen Tumor Vaccine GP-Neoantigen Induces Robust Antitumor Activity in Multiple Tumor Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201496. [PMID: 35712770 PMCID: PMC9403634 DOI: 10.1002/advs.202201496] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/05/2022] [Indexed: 05/28/2023]
Abstract
Therapeutic tumor neoantigen vaccines have been widely studied given their good safety profile and ability to avoid central thymic tolerance. However, targeting antigen-presenting cells (APCs) and inducing robust neoantigen-specific cellular immunity remain challenges. Here, a safe and broad-spectrum neoantigen vaccine delivery system is proposed (GP-Neoantigen) based on β-1,3-glucan particles (GPs) derived from Saccharomyces cerevisiae and coupling peptide antigens with GPs through convenient click chemistry. The prepared system has a highly uniform particle size and high APC targeting specificity. In mice, the vaccine system induced a robust specific CD8+ T cell immune response and humoral immune response against various conjugated peptide antigens and showed strong tumor growth inhibitory activity in EG7·OVA lymphoma, B16F10 melanoma, 4T1 breast cancer, and CT26 colon cancer models. The combination of the toll-like receptors (TLRs) agonist PolyI:C and CpG 2395 further enhanced the antitumor response of the particle system, achieving complete tumor clearance in multiple mouse models and inducing long-term rejection of reinoculated tumors. These results provide the broad possibility for its further clinical promotion and personalized vaccine treatment.
Collapse
Affiliation(s)
- Zhe Jing
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Shuqing Wang
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Keyuan Xu
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Qian Tang
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Wenjing Li
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Wei Zheng
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Haobo Shi
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Kailing Su
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Yanting Liu
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
- Department of OncologyThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenan Province453100P. R. China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Protein SciencesCollege of Life SciencesNankai UniversityTianjin300071P. R. China
| |
Collapse
|
106
|
Hu N, Zhu L, Zhang L, Wang J, Wang Y, Luo J, He L, Hao Z, Zhang L. Immunomodulatory effect and safety of TNF-α RNAi mediated by oral yeast microcapsules in rheumatoid arthritis therapy. Mater Today Bio 2022; 16:100384. [PMID: 35991628 PMCID: PMC9386491 DOI: 10.1016/j.mtbio.2022.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/16/2022] [Accepted: 07/23/2022] [Indexed: 11/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that requires long-term treatment and monitoring. Inhibition of inflammatory gene expression by gene therapy is a significant breakthrough in RA treatment, but the lack of a safe and effective gene delivery system hinders its application. Since oral administration can significantly reduce wound infection caused by parenteral administration, it also has the advantages of high patient compliance and convenience. Therefore, oral administration may be the best option for the treatment of this chronic disease. In this study, we developed a novel oral drug system by delivering tumor necrosis factor-α (TNF-α) short hairpin RNA (shRNA) mediated by non-pathogenic yeast to evaluate its regulation of systemic immune inflammation and safety in RA. Non-pathogenic yeast can resist the destruction of the gastrointestinal acid-base environment and can be recognized by the intestinal macrophages and act on systemic inflammatory lesions. Oral administration of yeast-mediated TNF-α shRNA significantly reduced the expression of TNF-α predominant pro-inflammatory factors in intestinal macrophages and joint synovium, and up-regulated the expression of anti-inflammatory cytokine IL-10 and M2 macrophages, systematically regulating the inflammatory response. This yeast-mediated oral gene delivery system can not only significantly inhibit knee joint synovial inflammation, but also has no toxic effects on peripheral blood and major organs. Therefore, yeast-mediated oral delivery of TNF-α shRNA may be used as a novel gene therapy strategy to treat RA through immunomodulating the mononuclear phagocyte system from the intestine to the joint synovium, and ultimately regulating systemic and local immune inflammation, providing new ideas for the clinical treatment of RA.
Collapse
Affiliation(s)
- Nan Hu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Zhu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Zhang
- Xi'an Fifth Hospital, Shaanxi Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Xi'an, 710082, China
| | - Jing Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanhua Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Luo
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lan He
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhiming Hao
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Long Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Corresponding author.
| |
Collapse
|
107
|
Heissig B, Salama Y, Tateno M, Takahashi S, Hattori K. siRNA against CD40 delivered via a fungal recognition receptor ameliorates murine acute graft-versus-host disease. EJHAEM 2022; 3:849-861. [PMID: 36051085 PMCID: PMC9421973 DOI: 10.1002/jha2.439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
Acute graft-versus-host disease (aGvHD) remains a major threat to a successful outcome after allogeneic hematopoietic stem cell transplantation (HSCT). Although antibody-based targeting of the CD40/CD40 ligand costimulatory pathway can prevent aGvHD, side effects hampered their clinical application, prompting a need for other ways to interfere with this important dendritic T-cell costimulatory pathway. Here, we used small interfering RNA (siRNA) complexed with β-glucan allowing the binding and uptake of the siRNA/β-glucan complex (siCD40/schizophyllan [SPG]; chemical modifications called NJA-312, NJA-302, and NJA-515) into Dectin1+ cells, which recognize this pathogen-associated molecular pattern receptor. aGvHD was induced by the transplantation of splenocytes and bone marrow cells from C57BL/6J into CBF1 mice. Splenic dendritic cells retained Dectin1 expression after HSCT but showed lower expression after irradiation. The administration of siCD40/SPG, NJA-312, and NJA-302 ameliorated aGvHD-mediated lethality and tissue damage of spleen and liver, but not skin. Multiple NJA-312high injections prevented aGvHD but resulted in early weight loss in allogeneic HSCT mice. In addition, NJA-312 treatment caused delayed initial donor T and B-cell recovery but resulted in stable chimerism in surviving mice. Mechanistically, NJA-312 reduced organ damage by suppressing CCR2+, F4/80+, and IL17A-expressing cell accumulation in spleen, liver, and thymus but not the skin of mice with aGvHD. Our work demonstrates that siRNA targeting of CD40 delivered via the PAMP-recognizing lectin Dectin1 changes the immunological niche, suppresses organ-specific murine aGvHD, and induces immune tolerance after organ transplantation. Our work charts future directions for therapeutic interventions to modulate tissue-specific immune reactions using Pathogen-associated molecular pattern (PAMP) molecules like 1,3-β-glucan for cell delivery of siRNA.
Collapse
Affiliation(s)
- Beate Heissig
- Department of Research Support Utilizing Bioresource BankGraduate School of MedicineJuntendo University School of MedicineTokyoJapan
| | - Yousef Salama
- An‐Najah Center for Cancer and Stem Cell ResearchFaculty of Medicine and Health SciencesAn‐Najah National UniversityNablusPalestine
| | - Masatoshi Tateno
- Department of PathologyKushiro Red Cross HospitalKushiroHokkaidoJapan
| | - Satoshi Takahashi
- Division of Clinical Precision Research PlatformInstitute of Medical ScienceUniversity of TokyoTokyoJapan
| | - Koichi Hattori
- Center for Genomic & Regenerative MedicineJuntendo University School of MedicineTokyoJapan
| |
Collapse
|
108
|
Angelova G, Brazkova M, Mihaylova D, Slavov A, Petkova N, Blazheva D, Deseva I, Gotova I, Dimitrov Z, Krastanov A. Bioactivity of Biomass and Crude Exopolysaccharides Obtained by Controlled Submerged Cultivation of Medicinal Mushroom Trametes versicolor. J Fungi (Basel) 2022; 8:738. [PMID: 35887493 PMCID: PMC9319109 DOI: 10.3390/jof8070738] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this study is to characterize the bioactivity of mycelial biomass and crude exopolysaccharides (EPS) produced by Trametes versicolor NBIMCC 8939 and to reveal its nutraceutical potential. The EPS (1.58 g/L) were isolated from a culture broth. The macrofungal biomass was rich in protein, insoluble dietary fibers and glucans. The amino acid composition of the biomass was analyzed and 18 amino acids were detected. Three mycelial biomass extracts were prepared and the highest total polyphenol content (16.11 ± 0.14 mg GAE/g DW) and the total flavonoid content (5.15 ± 0.03 mg QE/g DW) were found in the water extract. The results indicated that the obtained EPS were heteropolysaccharides with glucose as the main building monosaccharide and minor amounts of mannose, xylose, galactose, fucose and glucuronic acid. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the complex structure of the crude EPS. Five probiotic lactic acid bacteria strains were used for the determination of the prebiotic effect of the crude EPS. The anti-inflammatory potential was tested in vitro using cell line HT-29. The significant decrease of IL-1 and IL-8 and increase of TGF-beta expression revealed anti-inflammatory potential of the crude exopolysaccharides from T. versicolor.
Collapse
Affiliation(s)
- Galena Angelova
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| | - Mariya Brazkova
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| | - Anton Slavov
- Department of Organic and Inorganic Chemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (A.S.); (N.P.)
| | - Nadejda Petkova
- Department of Organic and Inorganic Chemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (A.S.); (N.P.)
| | - Denica Blazheva
- Department of Microbiology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| | - Ivelina Deseva
- Department of Analytical Chemistry and Physicochemistry, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria;
| | - Irina Gotova
- LB-Bulgaricum PLC, R&D Center, 1000 Sofia, Bulgaria; (I.G.); (Z.D.)
| | - Zhechko Dimitrov
- LB-Bulgaricum PLC, R&D Center, 1000 Sofia, Bulgaria; (I.G.); (Z.D.)
| | - Albert Krastanov
- Department of Biotechnology, University of Food Technologies, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria; (G.A.); (D.M.); (A.K.)
| |
Collapse
|
109
|
Feng X, Xie Q, Xu H, Zhang T, Li X, Tian Y, Lan H, Kong L, Zhang Z. Yeast Microcapsule Mediated Natural Products Delivery for Treating Ulcerative Colitis through Anti-Inflammatory and Regulation of Macrophage Polarization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31085-31098. [PMID: 35770618 DOI: 10.1021/acsami.2c05642] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The common and frequent disease, ulcerative colitis (UC), causes serious physical and mental distress to patients. M2 macrophages have proven to play a role in anti-inflammation, which is a new potential target for UC therapy. In this study, we designed a safe and macrophages-targeting oral drug delivery system. Natural products, berberine (BBR), and Epigallocatechin Gallate (EGCG) with anti-inflammatory activity were assembled and encapsulated into yeast microcapsule (YM), generating therapeutic system BBR/MPN@YM. BBR and EGCG exhibited synergistic effects against UC through the effect of antioxidation. Through the interaction between β-1,3-d-glucan on the surface of YM and dectin-1 receptors on macrophages, BBR/MPN@YM could be effectively transported to inflammation parts and internalized into macrophages, avoiding gastric degradation. In the in vivo UC mouse model, BBR/MPN@YM could transform M1 macrophages into anti-inflammatory M2 macrophages, thus exerting specific anti-inflammatory effects. Therefore, this BBR/MPN@YM targeted oral drug delivery system provided a new macrophages-targeting strategy for the clinical treatment of UC.
Collapse
Affiliation(s)
- Xingxing Feng
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Xie
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongbo Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tiantian Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinmei Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongbing Lan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
110
|
Extracellular polysaccharides purified (Polycan) from Aureobasidium pullulans SM‑2001 improves pathophysiology of dystrophin-deficient mdx mice. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Background
Duchenne muscular dystrophy is a hereditary muscular disease involving degeneration (i.e. atrophy and loss of muscle fibres) of skeletal muscles, including the diaphragm, and progressively severe functional decline. A previous study shows Polycan, a type of β-glucan derived from the black yeast Aureobasidium pullulans (SM-2001), promotes osteogenicity and bone loss, and possesses anti-inflammatory activity to induce inflammatory cytokines in human immune and cancer cells.
Objective
In this study, we evaluated changes in exercise load behaviour measurements and changes in muscle-related physiological indicators following oral administration of Polycan in mdx mice, an experimental animal model of Duchenne muscular dystrophy.
Result
In mdx mice, Polycan prevented weight loss and thickness of skeletal muscle. In addition, by monitoring increases in running time of mice on treadmills and performing a grip strength test, we confirmed reduced muscle function was recovered to some extent after administering Polycan to mdx mice. In addition, we confirmed that Polycan significantly altered mRNA expression in a concentration-dependent manner, whereby myogenic transcription factors (MyoD, Myf5 and Myogenin) increased and FoxO3α, MuRF1 and Atrogin-1 decreased. We aimed to investigate the mechanism of action in Polycan on energy metabolism of p-AMPK, SIRT1 and PGC1α with apoptosis expression levels as factors related to signalling pathways. Expression ratios of cleaved-caspase-3/caspase-3 and Bax/Bcl-2 in the Polycan extract-administered group increased compared with the control group.
Conclusion
These results demonstrate that Polycan can improve and protect muscle atrophy by preventing apoptosis via pathway regulation related to myogenic transcription factors and energy metabolism in mdx mice.
Collapse
|
111
|
Gupta M, Chandan K, Sarwat M. Natural Products and their Derivatives as Immune Check Point Inhibitors: Targeting Cytokine/Chemokine Signalling in Cancer. Semin Cancer Biol 2022; 86:214-232. [PMID: 35772610 DOI: 10.1016/j.semcancer.2022.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
Abstract
Cancer immunotherapy is the new generation and widely accepted form of tumour treatment. It is, however, associated with exclusive challenges which include organ-specific inflammation, and single-target strategies. Therefore, approaches that can enhance the efficiency of existing immunotherapies and expand their indications are required for the further development of immunotherapy. Natural products and medicines are stated to have this desired effect on cancer immunotherapy (adoptive immune-cells therapy, cancer vaccines, and immune-check point inhibitors). They refurbish the immunosuppressed tumour microenvironment, which is the primary location of interaction of tumour cells with the host immune system. Various immune cell subsets, via interaction with cytokine/chemokine receptors, are recruited into this microenvironment, and these subsets have roles in tumour progression and treatment responsiveness. This review summarises cytokine/chemokine signalling, types of cancer immunotherapy and the herbal medicine-derived natural products targeting cytokine/chemokines and immune checkpoints. These natural compounds possess immunomodulatory activities and exert their anti-tumour effect by either blocking the interaction or modulating the expression of the proteins linked with immune checkpoint signaling pathways. Some compounds also show a synergistic effect in combination with existing monoclonal antibody drugs to reverse the tumour microenvironment. Additionally, we have also reported some studies about the derivatives and formulations used to overcome the limitations of natural forms. This review can provide important insights for directing future research.
Collapse
Affiliation(s)
- Meenakshi Gupta
- Amity Institute of Pharmacy, Amity University, Noida-201313, Uttar Pradesh, India
| | - Kumari Chandan
- Amity Institute of Pharmacy, Amity University, Noida-201313, Uttar Pradesh, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida-201313, Uttar Pradesh, India.
| |
Collapse
|
112
|
Chancharoenthana W, Kamolratanakul S, Ariyanon W, Thanachartwet V, Phumratanaprapin W, Wilairatana P, Leelahavanichkul A. Abnormal Blood Bacteriome, Gut Dysbiosis, and Progression to Severe Dengue Disease. Front Cell Infect Microbiol 2022; 12:890817. [PMID: 35782108 PMCID: PMC9248029 DOI: 10.3389/fcimb.2022.890817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022] Open
Abstract
Despite a well-known association between gut barrier defect (leaky gut) and several diseases, data on translocation of pathogen molecules, including bacterial DNA (blood bacteriome), lipopolysaccharide (LPS), and serum (1→3)-β-D-glucan (BG), from the gut to the blood circulation (gut translocation) in dengue are still less studied. Perhaps, dengue infection might induce gut translocation of several pathogenic molecules that affect the disease severity. At the enrollment, there were 31 dengue cases in febrile and critical phases at 4.1 ± 0.3 days and 6.4 ± 1.1 days of illness, respectively, with the leaky gut as indicated by positive lactulose-to-mannitol excretion ratio. With blood bacteriome, the patients with critical phase (more severe dengue; n = 23) demonstrated more predominant abundance in Bacteroidetes and Escherichia spp. with the lower Bifidobacteria when compared with the healthy control (n = 5). Meanwhile, most of the blood bacteriome results in dengue with febrile stage (n = 8) were comparable to the control, except for the lower Bifidobacteria in dengue cases. Additionally, endotoxemia at the enrollment was demonstrated in five (62.5%) and 19 (82.6%) patients with febrile and critical phases, respectively, while serum BG was detectable in two (25%) and 20 (87%) patients with febrile and critical phases, respectively. There were higher peripheral blood non-classical monocytes and natural killer cells (NK cells) at the enrollment in patients with febrile phage than in the cases with critical stage. Then, non-classical monocytes (CD14-CD16+) and NK cells (CD56+CD16-) increased at 4 and 7 days of illness in the cases with critical and febrile stages, respectively, the elevation of LPS and/or BG in serum on day 7 was also associated with the increase in monocytes, NK cells, and cytotoxic T cells. In summary, enhanced Proteobacteria (pathogenic bacteria from blood bacteriomes) along with increased endotoxemia and serum BG (leaky gut syndrome) might be collaborated with the impaired microbial control (lower non-classical monocytes and NK cells) in the critical cases and causing more severe disease of dengue infection.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- *Correspondence: Wiwat Chancharoenthana, ; Asada Leelahavanichkul,
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wassawon Ariyanon
- Cardiometabolic Centre, Department of Medicine, Bangkok Nursing Hospital, Bangkok, Thailand
- Department of Medicine, Banphaeo General Hospital, Samutsakhon, Thailand
| | - Vipa Thanachartwet
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Weerapong Phumratanaprapin
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Wiwat Chancharoenthana, ; Asada Leelahavanichkul,
| |
Collapse
|
113
|
Su Y, Yang F, Chen L, Cheung PCK. Mushroom Carboxymethylated β-d-Glucan Functions as a Macrophage-Targeting Carrier for Iron Oxide Nanoparticles and an Inducer of Proinflammatory Macrophage Polarization for Immunotherapy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7110-7121. [PMID: 35652418 DOI: 10.1021/acs.jafc.2c01710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
β-d-glucans have the potential of serving as both macrophage-targeted carriers and immune stimulators via inducing trained immunity in macrophages. In this study, a carboxymethylated β-glucan from mushroom sclerotium of Pleurotus tuber-regium (CMPTR) was combined with iron oxide nanoparticles (IONPs) to form nanocomplexes (CMPTR/IONPs) with particle size around 193 ± 7 nm, which could exert a concerted effect on inducing proinflammatory M1 phenotype macrophages for immunotherapy. This nanocomplex exhibited good stability and low cytotoxicity (over 80% cellular viability of RAW 264.7 and THP-1) and higher cellular uptake by murine macrophages compared with B16F10 cells (p < 0.05). CMPTR/IONPs could convert M2-like bone marrow-derived macrophages into M1 phenotypes with upregulated expression of pro-inflammatory cytokines (IL12 and TNF-α, p < 0.05) and reduced immune-suppressive cytokines (IL10 and TGF-β, p < 0.05). Such polarization was mediated by the combined signaling regulatory factors, including IONP-stimulated IRF5 and CMPTR-triggered TLRs-NF-κB pathways (p < 0.05). Accordingly, CMPTR could have a dual function as a macrophage-targeting carrier for IONPs and an immunostimulant to induce inflammatory M1 macrophage polarization for immunotherapy.
Collapse
Affiliation(s)
- Yuting Su
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Fan Yang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| |
Collapse
|
114
|
Zheng Z, Tang W, Lu W, Mu X, Liu Y, Pan X, Wang K, Zhang Y. Metabolism and Biodegradation of β-Glucan in vivo. Front Vet Sci 2022; 9:889586. [PMID: 35720856 PMCID: PMC9205209 DOI: 10.3389/fvets.2022.889586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The β-Glucans widely exist in plants and edible fungi, and their diverse bioactivities and good physicochemical properties have been widely reported. In addition, β-glucan intravenous injections (such as lentinan and schizophyllan) have been clinically used as immunomodulators and antitumor polysaccharides. However, the pharmacokinetic studies of β-glucans only stay on the level of plasma concentration and biodistribution in vivo, and little is known about their metabolism and degradation in vivo, which severely limits the further application of β-glucans in the field of medicine and biomaterials. The aim of this paper is to explore the metabolism and degradation process of lentinan (as a representative of β-glucans) in vivo by labeling it with water-soluble fluorescein 5-([4, 6-Dichlorotriazin-2-yl]amino)fluorescein (DTAF). Fluorescently labeled lentinan (FLNT) was intravenously administered to rats at a single dose of 8 mg/kg. The degradation of LNT in blood, liver, kidney, and urine was evaluated by the gel permeation chromatography. Our results showed that although LNT could be degraded in blood, liver, kidney, and urine, there were still some prototypes until excreted in urine due to the incomplete degradation of LNT in each step. To the best of our knowledge, this is the first report to comprehensively study LNT metabolic degradation in rats. These results provide an important reference for further exploration and application of LNT and other β-glucans.
Collapse
Affiliation(s)
- Ziming Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Wenqi Tang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weipeng Lu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Mu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxuan Liu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Pan
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Kaiping Wang
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
- Yu Zhang
| |
Collapse
|
115
|
Choi M, Lee SM, Lee JW, Kim I, Pack CG, Ha CH. Yeast beta-glucan mediates histone deacetylase 5-induced angiogenesis in vascular endothelial cells. Int J Biol Macromol 2022; 211:556-567. [PMID: 35569678 DOI: 10.1016/j.ijbiomac.2022.05.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 12/13/2022]
Abstract
The role of yeast-derived β-glucan in angiogenesis has not been elucidated because there have been few specific studies on its clinical and physiological significance. Therefore, this study investigated the correlation between β-glucan and histone deacetylase 5 (HDAC5) in human umbilical vein endothelial cells (HUVECs), revealing the role of β-glucan in angiogenesis. We confirmed that HDAC5 was phosphorylated by β-glucan stimulation and released from the nucleus to the cytoplasm. Furthermore, we found that β-glucan-stimulated HDAC5 translocation mediates the transcriptional activation of MEF2. As a result, the expression of KLF2, EGR2, and NR4A2, whose expression is MEF2-dependent and involved in angiogenesis, increased. Thus, we showed the activity of β-glucan in angiogenesis through in vitro and ex vivo assays including cell migration, tube formation, and aortic ring analyses. Specifically, application of an HDAC5 inhibitor repressed MEF2 transcriptional activation in both in vitro and ex vivo angiogenesis. HDAC5 inhibitor LMK235 inhibited the proangiogenic activity of beta-glucan, suggesting that β-glucan induces angiogenesis through HDAC5. These findings suggest that HDAC5 is essential for angiogenesis, and that β-glucan induces angiogenesis. In conclusion, this study demonstrates that β-glucan induces angiogenesis through HDAC5. It also suggests that β-glucan has potential value as a novel therapeutic agent for modulating angiogenesis.
Collapse
Affiliation(s)
- Min Choi
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Min Lee
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Lee
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Inki Kim
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chan-Gi Pack
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang Hoon Ha
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
116
|
Yehia N, AbdelSabour MA, Erfan AM, Mohammed Ali Z, Soliman RA, Samy A, Mohamed Soliman M, Abd El-Hack ME, El-Saadony MT, Ahmed KA. Selenium nanoparticles enhance the efficacy of homologous vaccine against the highly pathogenic avian influenza H5N1 virus in chickens. Saudi J Biol Sci 2022; 29:2095-2111. [PMID: 35531142 PMCID: PMC9072940 DOI: 10.1016/j.sjbs.2021.11.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/13/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
A proper vaccination against avian influenza viruses in chicken can significantly reduce the risk of human infection. Egypt has the highest number of recorded humans highly pathogenic avian influenza (HPAI)-H5N1 infections worldwide despite the widespread use of homologous vaccines in poultry. Enhancing H5N1 vaccine efficacy is ultimately required to better control HPAI-H5N1. The aim of this study is to boost chicken immunity by combined with inactivated HPAI-H5N1 with selenium nanoparticles (SeNPs). The chickens groups 1-3 were fed diets supplemented with SeNPs concentrations (0.25, 0.5, and 1 mg/kg) for 3 weeks and then vaccinated (inactivated HPAI-H5N1). while groups 4,5 and 6 were fed with SeNPs free diets and administered with 0.5 ml of the vaccine combined with 0.02, 0.06, and 0.1 mg/dose of SeNPs and then all groups were challenged with homologous virus 3 weeks post-vaccination (WPV). Group 7, 8 were used as control positive and negative respectively. At 4, 5, and 6 WPV, antibody titer was considerably higher in the group fed a meal supplemented with 1 mg SeNPs/kg. In contrast, both methods of SeNPs supplementation significantly increased the Interleukin 2 (IL2), Interleukin 6 (IL6), and Interferon γ (IFNγ) expressions in the blood cells in a dose-dependent manner, with a higher expression observed in the group that was vaccinated with 0.1 mg/dose. After the challenge, all groups that received SeNPs via diet or vaccines dose showed significant reduction in viral shedding and milder inflammation in lung, trachea, spleen, and liver in addition to higher expression of IL2, IL6, and IFNγ, with the highest expression observed in the group that was vaccinated with 0.1 mg/dose compared the plain vaccinated group. The groups of 1 mg SeNPs/kg and combined vaccinated with 0.1 mg/dose showed the best vaccine efficacy. However, the group vaccinated with 0.1 mg/dose showed the earliest reduction in viral shedding. Overall, SeNPs supplementation in the diet and the administration of the vaccine formula with SeNPs could enhance vaccine efficacy and provide better protection against HPAI-H5N1 in chickens by enhancing cellular immunity and reducing inflammation. We recommend using SeNPs as a vaccine combination or feeding with diet to increase the immunity and vaccine efficacy against H5N1.
Collapse
Affiliation(s)
- Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Mohammed A AbdelSabour
- Poultry Viral Vaccines Production and Research Department, Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Center (ARC), Egypt
| | - Ahmed M Erfan
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Zeinab Mohammed Ali
- Poultry Viral Vaccines Production and Research Department, Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Center (ARC), Egypt
| | - Reem A Soliman
- Researcher in Department of Evaluation of Inactivated Viral Poultry Vaccines, Central Laboratory for Evaluation of Veterinary Biologics, Agriculture Research Center (ARC), Egypt
| | - Ahmed Samy
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza 12618, Egypt
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944 Saudi Arabia
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
117
|
Zhong Z, Vong CT, Chen F, Tan H, Zhang C, Wang N, Cui L, Wang Y, Feng Y. Immunomodulatory potential of natural products from herbal medicines as immune checkpoints inhibitors: Helping to fight against cancer via multiple targets. Med Res Rev 2022; 42:1246-1279. [PMID: 35028953 PMCID: PMC9306614 DOI: 10.1002/med.21876] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
Immunotherapy sheds new light to cancer treatment and is satisfied by cancer patients. However, immunotoxicity, single-source antibodies, and single-targeting stratege are potential challenges to the success of cancer immunotherapy. A huge number of promising lead compounds for cancer treatment are of natural origin from herbal medicines. The application of natural products from herbal medicines that have immunomodulatory properties could alter the landscape of immunotherapy drastically. The present study summarizes current medication for cancer immunotherapy and discusses the potential chemicals from herbal medicines as immune checkpoint inhibitors that have a broad range of immunomodulatory effects. Therefore, this review provides valuable insights into the efficacy and mechanism of actions of cancer immunotherapies, including natural products and combined treatment with immune checkpoint inhibitors, which could confer an improved clinical outcome for cancer treatment.
Collapse
Affiliation(s)
- Zhangfeng Zhong
- School of Chinese MedicineThe University of Hong KongPokfulamHong KongChina
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauTaipaMacao SARChina
| | - Chi Teng Vong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauTaipaMacao SARChina
| | - Feiyu Chen
- School of Chinese MedicineThe University of Hong KongPokfulamHong KongChina
| | - Horyue Tan
- School of Chinese MedicineThe University of Hong KongPokfulamHong KongChina
| | - Cheng Zhang
- School of Chinese MedicineThe University of Hong KongPokfulamHong KongChina
| | - Ning Wang
- School of Chinese MedicineThe University of Hong KongPokfulamHong KongChina
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural DrugsGuangdong Medical UniversityZhanjiangGuangdongChina
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauTaipaMacao SARChina
| | - Yibin Feng
- School of Chinese MedicineThe University of Hong KongPokfulamHong KongChina
| |
Collapse
|
118
|
Chemical characterization and in vitro biological evaluation of aqueous extract of Althaea officinalis L. flower grown in Lebanon. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
119
|
Hamidi M, Okoro OV, Milan PB, Khalili MR, Samadian H, Nie L, Shavandi A. Fungal exopolysaccharides: Properties, sources, modifications, and biomedical applications. Carbohydr Polym 2022; 284:119152. [DOI: 10.1016/j.carbpol.2022.119152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/04/2022] [Accepted: 01/15/2022] [Indexed: 12/20/2022]
|
120
|
Structural characterization of a polysaccharide from Trametes sanguinea Lloyd with immune-enhancing activity via activation of TLR4. Int J Biol Macromol 2022; 206:1026-1038. [PMID: 35306017 DOI: 10.1016/j.ijbiomac.2022.03.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/30/2022] [Accepted: 03/12/2022] [Indexed: 12/11/2022]
Abstract
A bioactive polysaccharide (TS2-2A) with a molecular weight of 15 kDa was isolated from Trametes sanguinea Lloyd, a medicinal food homologous fungus, by water extraction-alcohol precipitation and chromatographic separation. NMR analysis of polysaccharide and MS/MS analysis of its oligosaccharide indicated that TS2-2A featured a novel straight chain with a backbone of 1,3-α-d-glucopyranose and 1,4-β-d-glucopyranose at a molar ratio of 1:4. Moreover, TS2-2A, recognized by Toll-like receptor 4 (TLR4), stimulated RAW 264.7 macrophages to release related cytokines and contributed to immune-enhancing effects. Briefly, with remarkable immune-enhancing activity and noncytotoxicity, TS2-2A was proposed to be a potential immune enhancer for supplementing drugs or functional foods.
Collapse
|
121
|
Tan Y, Chen L, Li K, Lou B, Liu Y, Liu Z. Yeast as carrier for drug delivery and vaccine construction. J Control Release 2022; 346:358-379. [PMID: 35483637 DOI: 10.1016/j.jconrel.2022.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022]
Abstract
Yeast has been employed as an effective derived drug carrier as a unicellular microorganism. Many research works have been devoted to the encapsulation of nucleic acid compounds, insoluble small molecule drugs, small molecules, liposomes, polymers, and various nanoparticles in yeast for the treatment of disease. Recombinant yeast-based vaccine carriers (WYV) have played a major role in the development of vaccines. Herein, the latest reports on the application of yeast carriers and the development of related research are summarized, a conceptual description of gastrointestinal absorption of yeast carriers, as well as the various package forms of different drug molecules and nanoparticles in yeast carriers are introduced. In addition, the advantages and development of recombinant yeast vaccine carriers for the disease, veterinary and aquaculture applications are discussed. Moreover, the current challenges and future directions of yeast carriers are proposed.
Collapse
Affiliation(s)
- Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
122
|
Siswanto FM, Tamura A, Sakuma R, Imaoka S. Yeast β-glucan Increases Etoposide Sensitivity in Lung Cancer Cell Line A549 by Suppressing Nuclear Factor Erythroid 2-Related Factor 2 via the Noncanonical Nuclear Factor Kappa B Pathway. Mol Pharmacol 2022; 101:257-273. [PMID: 35193967 DOI: 10.1124/molpharm.121.000475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022] Open
Abstract
Etoposide is regarded as one of the main standard cytotoxic drugs for lung cancer. However, mutations in Kelch-like ECH-associated protein 1 (Keap1), the main regulator of nuclear factor erythroid 2-related factor 2 (Nrf2), are often detected in lung cancer and lead to chemoresistance. Since the aberrant activation of Nrf2 enhances drug resistance, the suppression of the Nrf2 pathway is a promising therapeutic strategy for lung cancer. We herein used the human lung adenocarcinoma cell line A549 because it harbors a Keap1 loss-of-function mutation. A treatment with β-glucan, a major component of the fungal cell wall, reduced Nrf2 protein levels; downregulated the expression of cytochrome P450 3A5, UDP glucuronosyltransferase 1A1, and multidrug resistance protein 1; and increased etoposide sensitivity in A549 cells. Furthermore, the ephrin type-A receptor 2 (EphA2) receptor was important for the recognition and biologic activity of β-glucan in A549 cells. EphA2 signaling includes nuclear factor kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), and p38 mitogen-activated protein kinase (MAPK). However, treatment of cells with stattic (STAT3 inhibitor) or SB203580 (p38 MAPK inhibitor) did not diminish the effects of β-glucan. In contrast, knockdown of v-rel reticuloendotheliosis viral oncogene homolog B (RelB) abolished the effects of β-glucan, suggesting the involvement of the noncanonical NF-κB pathway. The β-glucan effects were also attenuated by the knockdown of WD40 Repeat protein 23 (WDR23). The β-glucan treatment and RelB overexpression induced the expression of Cullin-4A (CUL4A), which increased WDR23 ligase activity and promoted the subsequent depletion of Nrf2. These results revealed a novel property of β-glucan as a resistance-modifying agent in addition to its widely reported immunomodulatory effects for lung cancer therapy via the EphA2-RelB-CUL4A-Nrf2 axis. SIGNIFICANCE STATEMENT: Chemotherapeutic resistance remains a major obstacle in cancer therapy despite extensive efforts to elucidate the underlying molecular mechanisms and overcome multidrug resistance. The present study revealed a novel resistance-modifying property of β-glucan, thereby expanding our knowledge on the beneficial roles of β-glucan and providing an alternative strategy to prevent drug resistance by cancer. The present results provide evidence for the involvement of a novel mode of NF-κB and Nrf2 crosstalk in the drug resistance phenotype.
Collapse
Affiliation(s)
- Ferbian Milas Siswanto
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Akiyoshi Tamura
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Rika Sakuma
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
123
|
Capolupo I, De Rose DU, Pascone R, Danhaive O, Orzalesi M. Defective Leukocyte β2 Integrin Expression and Reactive Oxygen Species Production in Neonates. CHILDREN 2022; 9:children9040494. [PMID: 35455538 PMCID: PMC9029815 DOI: 10.3390/children9040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022]
Abstract
Neonates are highly susceptible to bacterial infections, which represent a major source of mortality and morbidity in this age category. It is recognized that β2 integrins play a critical role in innate immunity by mediating leukocyte vascular adhesion, transmigration and bacterial phagocytosis. Therefore, we aimed to assess if the impaired immune functions seen in newborns may derive, in part, from a transient insufficient β2 integrin expression. In the present study we measured baseline lymphocyte function-associated antigen-1 (LFA-1 or CD11a/CD18), macrophage-1 antigen (MAC-1 or CD11b/CD18) and leukocyte integrin p150-95 (CD11c/CD18) expression on cord blood, and on the third day of life in a cohort of 35 healthy neonates, compared with a control group of 12 healthy adults. For any of the three β2 integrins, the expression on polymorphonuclear cells was significantly lower on cord blood than in adults and increased from birth to day 3. We also compared superoxide radical (SR) production in these neonates with 28 non-smoking adults. SR production in response to integrin stimulation by Zymosan was significantly lower at birth than in adults, and it decreased further in the third day of life. These findings suggest that innate immune impairment in newborns may be, in part, accounted for by a lower β2 integrin expression on phagocytes in the neonatal period, but also by a functional impairment of free radical production.
Collapse
Affiliation(s)
- Irma Capolupo
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant, IRCCS “Bambino Gesù” Children’s Hospital, 00165 Rome, Italy; (D.U.D.R.); (M.O.)
- Correspondence: ; Tel.: +39-06-68592427; Fax: +39-06-68593916
| | - Domenico Umberto De Rose
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant, IRCCS “Bambino Gesù” Children’s Hospital, 00165 Rome, Italy; (D.U.D.R.); (M.O.)
| | - Roberto Pascone
- Department of Pediatrics, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Olivier Danhaive
- Department of Neonatology, Cliniques Universitaires Saint Luc, 1200 Bruxelles, Belgium;
| | - Marcello Orzalesi
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus, Newborn and Infant, IRCCS “Bambino Gesù” Children’s Hospital, 00165 Rome, Italy; (D.U.D.R.); (M.O.)
| |
Collapse
|
124
|
Lee SY, Ra CH. Comparison of Liquid and Solid-State Fermentation Processes for the Production of Enzymes and Beta-Glucan from Hulled Barley. J Microbiol Biotechnol 2022; 32:317-323. [PMID: 34949745 PMCID: PMC9628851 DOI: 10.4014/jmb.2111.11002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Solid-state fermentation using hulled barley was carried out to produce enzymes and β-glucan. The one-factor-at-a-time experiments were carried out to determine the optimal composition of the basal medium. The modified synthetic medium composition in liquid-state fermentation was determined to be 70 g/l hulled barley, 0 g/l rice bran, 5 g/l soytone, and 6 g/l ascorbic acid. Optimal pretreatment conditions of hulled barley by solid-state fermentation were evaluated in terms of maximum production of fungal biomass, amylase, protease, and β-glucan, which were 1.26 mg/g, 31310.34 U/g, 2614.95 U/g, and 14.6% (w/w), respectively, at 60 min of pretreatment condition. Thus, the solid-state fermentation process was found to enhance the overall fermentation yields of hulled barley to produce high amounts of enzymes and β-glucan.
Collapse
Affiliation(s)
- Se Yeon Lee
- Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong-Si 17579, Republic of Korea
| | - Chae Hun Ra
- Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong-Si 17579, Republic of Korea,Corresponding author Phone: +82-31-670-5157 Fax: +82-504-437-0217 E-mail:
| |
Collapse
|
125
|
Kim S, Lee CH, Yeo JY, Hwang KW, Park SY. Immunostimulatory activity of stem bark of Kalopanax pictus in RAW 264.7 macrophage. J Herb Med 2022. [DOI: 10.1016/j.hermed.2021.100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
126
|
Dong S, Guo X, Han F, He Z, Wang Y. Emerging role of natural products in cancer immunotherapy. Acta Pharm Sin B 2022; 12:1163-1185. [PMID: 35530162 PMCID: PMC9069318 DOI: 10.1016/j.apsb.2021.08.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/05/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.
Collapse
Key Words
- AKT, alpha-serine/threonine-specific protein kinase
- Adoptive immune-cells transfer immunotherapy
- B2M, beta-2-microglobulin
- BMDCs, bone marrow dendritic cells
- BPS, basil polysaccharide
- BTLA, B- and T-lymphocyte attenuator
- CAFs, cancer-associated fibroblasts
- CCL22, C–C motif chemokine 22
- CIKs, cytokine-induced killer cells
- COX-2, cyclooxygenase-2
- CRC, colorectal cancer
- CTL, cytotoxic T cell
- CTLA-4, cytotoxic T lymphocyte antigen-4
- Cancer immunotherapy
- Cancer vaccines
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- FDA, US Food and Drug Administration
- HCC, hepatocellular carcinoma
- HER-2, human epidermal growth factor receptor-2
- HIF-1α, hypoxia-inducible factor-1α
- HMGB1, high-mobility group box 1
- HSPs, heat shock proteins
- ICD, Immunogenic cell death
- ICTs, immunological checkpoints
- IFN-γ, interferon γ
- IL-10, interleukin-10
- Immuno-check points
- Immunosuppressive microenvironment
- LLC, Lewis lung cancer
- MDSCs, myeloid-derived suppressor cells
- MHC, major histocompatibility complex class
- MITF, melanogenesis associated transcription factor
- MMP-9, matrix metalloprotein-9
- Mcl-1, myeloid leukemia cell differentiation protein 1
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NKTs, natural killer T cells
- NSCLC, non-small cell lung cancer
- Natural products
- OVA, ovalbumin
- PD-1, programmed death-1
- PD-L1, programmed death receptor ligand 1
- PGE-2, prostaglandin E2
- PI3K, phosphoinositide 3-kinase
- ROS, reactive oxygen species
- STAT3, signal transducer and activator of transcription 3
- TAMs, tumor-associated macrophages
- TAP, transporters related with antigen processing
- TGF-β, transforming growth factor-β
- TILs, tumor infiltration lymphocytes
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor α
- TSA, tumor specific antigens
- Teffs, effective T cells
- Th1, T helper type 1
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
- bFGF, basic fibroblast growth factor
- mTOR, mechanistic target of rapamycin
Collapse
Affiliation(s)
- Songtao Dong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangnan Guo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongjun Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
127
|
Dissection and enhancement of prebiotic properties of yeast cell wall oligosaccharides through metabolic engineering. Biomaterials 2022; 282:121379. [DOI: 10.1016/j.biomaterials.2022.121379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/09/2021] [Accepted: 01/16/2022] [Indexed: 02/06/2023]
|
128
|
Anti-GD2 Directed Immunotherapy for High-Risk and Metastatic Neuroblastoma. Biomolecules 2022; 12:biom12030358. [PMID: 35327550 PMCID: PMC8945428 DOI: 10.3390/biom12030358] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroblastoma is one of the few childhood cancers that carries a tumor-specific antigen in the form of a glycolipid antigen known as GD2. It has restricted expression in normal tissue, such as peripheral afferent nerves. Monoclonal antibodies targeting GD2 have been applied clinically to high-risk neuroblastoma with significant success. However, there are different anti-GD2 products and administration regimens. For example, anti-GD2 has been used in combination with chemotherapy during the induction phase or with retinoic acid during the maintenance stage. Regimens also vary in the choice of whether to add cytokines (i.e., IL-2, GMCSF, or both). Furthermore, the addition of an immune enhancer, such as β-glucan, or allogeneic natural killer cells also becomes a confounder in the interpretation. The question concerning which product or method of administration is superior remains to be determined. So far, most studies agree that adding anti-GD2 to the conventional treatment protocol can achieve better short- to intermediate-term event-free and overall survival, but the long-term efficacy remains to be verified. How to improve its efficacy is another challenge. Late relapse and central nervous system metastasis have emerged as new problems. The methods to overcome the mechanisms related to immune evasion or resistance to immunotherapy represent new challenges to be resolved. The newer anti-GD2 strategies, such as bispecific antibody linking of anti-GD2 with activated T cells or chimeric antigen receptor T cells, are currently under clinical trials, and they may become promising alternatives. The use of anti-GD2/GD3 tumor vaccine is a novel and potential approach to minimizing late relapse. How to induce GD2 expression from tumor cells using the epigenetic approach is a hot topic nowadays. We expect that anti-GD2 treatment can serve as a model for the use of monoclonal antibody immunotherapy against cancers in the future.
Collapse
|
129
|
Zhang Y, Liu X, Zhao J, Wang J, Song Q, Zhao C. The phagocytic receptors of β-glucan. Int J Biol Macromol 2022; 205:430-441. [PMID: 35202631 DOI: 10.1016/j.ijbiomac.2022.02.111] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
Phagocytosis is a cellular process maintaining tissue balance and plays an essential role in initiating the innate immune response. The process of phagocytosis was triggered by the binding of pathogen-associated molecular patterns (PAMP) with their cell surface receptors on the phagocytes. These receptors not only perform phagocytic functions, but also bridge the gap between extracellular and intracellular communication, leading to signal transduction and the production of inflammatory mediators, which are crucial for clearing the invading pathogens and maintaining cell homeostasis. For the past few years, the application of β-glucan comes down to immunoregulation and anti-tumor territory. As a well-known PAMP, β-glucan is one of the most abundant polysaccharides in nature. By binding to specific receptors on immune cells and activating intracellular signal transduction pathways, it causes phagocytosis and promotes the release of cytokines. Further retrieval and straightening out literature related to β-glucan phagocytic receptors will help better elucidate their immunomodulatory functions. This review attempts to summarize physicochemical properties and specific processes involved in β-glucan induced phagocytosis, its phagocytic receptors, and cascade events triggered by β-glucan at the cellular and molecular levels.
Collapse
Affiliation(s)
- Yazhuo Zhang
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China
| | - Xinning Liu
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China
| | - Jun Zhao
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China
| | - Jie Wang
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China
| | - Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, 23 East Hong Kong Road, Qingdao, Shandong 266071, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China.
| |
Collapse
|
130
|
Wang X, Ji Y, Jin D, Qi J, Hou X, Zhao W, Zhou S, Zhang C, Luo Y, An P, Luo J. Natural Polysaccharide β-Glucan Protects against Doxorubicin-Induced Cardiotoxicity by Suppressing Oxidative Stress. Nutrients 2022; 14:906. [PMID: 35215555 PMCID: PMC8878312 DOI: 10.3390/nu14040906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Doxorubicin (DOXO) can be used to treat a variety of human tumors, but its clinical application is limited due to severe cardiotoxic side effect. Here, we explore the role of β-glucan in DOXO-induced cardiotoxicity in mice and study its underlying mechanism. When co-administered with DOXO, β-glucan was observed to prevent left ventricular dilation and fibrosis. In fact, DOXO reduces the activity of mitochondrial respiratory chain complex and enhances oxidative stress, which in turn impairs heart function. DOXO decreases the ATP production capacity of the heart and increases the ROS content, while β-glucan can restore the heart capacity and reduce oxidative stress. β-glucan also increases the activity of antioxidant enzymes GSH-PX and SOD, and reduces the level of MDA in the serum. In addition, the mRNAs of cardiac dysfunction marker genes ANP, BNP and Myh7 were significantly increased after DOXO induction, however, they did not increase when combined with β-glucan administration. In conclusion, our results indicate that β-glucan can improve the antioxidant capacity of the heart, thereby serving as a potential therapeutic strategy to prevent DOXO-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Yuting Ji
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Dekui Jin
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China;
| | - Jingyi Qi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Xuening Hou
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Wenting Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Shuaishuai Zhou
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Chengying Zhang
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China;
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| |
Collapse
|
131
|
Verwoolde MB, Arts J, Jansen CA, Parmentier HK, Lammers A. Transgenerational Effects of Maternal Immune Activation on Specific Antibody Responses in Layer Chickens. Front Vet Sci 2022; 9:832130. [PMID: 35252424 PMCID: PMC8891521 DOI: 10.3389/fvets.2022.832130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Activation of the maternal immune system may affect innate and adaptive immune responses in the next generation and may therefore have implications for vaccine efficacy and dietary immune modulation by feed additives. However, transgenerational effects on immune responses in chickens have been investigated to a limited extend. The present study investigated effects of intratracheal (i.t) specific and aspecific immune activation of laying hens on specific antibody production in the next generation. In two experiments laying hens received intratracheally an immune stimulus with human serum albumin (HuSA) or lipopolysaccharide (LPS). In experiment 1, hatchlings of the immune activated hens were at 4 weeks i.t. immunized with HuSA or HuSA+LPS. Maternal immune activation with LPS increased HuSA specific IgY and IgM responses in offspring. These results suggest a transgenerational effect of the maternal immune system on the specific antibody response in the next generation. In experiment 2 hatchlings received either β-glucan-enriched feed or control feed and were i.t. immunized with HuSA. Maternal immune activation with LPS decreased IgY anti-HuSA responses after HuSA immunization within hatchlings that received β-glucan enriched feed. The results of Experiment 2 suggest a transgenerational link between the innate immune system of mother and specific antibody responses in offspring. Despite variabilities in the outcomes of the two experiments, the observations of both suggest a link between the maternal innate immune system and the immune system of the offspring. Furthermore, our results may imply that maternal activation of the innate immune system can influence immune modulating dietary interventions and vaccine strategies in the next generation.
Collapse
Affiliation(s)
- Michel B. Verwoolde
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Joop Arts
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Christine A. Jansen
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Henk K. Parmentier
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Aart Lammers
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
- *Correspondence: Aart Lammers
| |
Collapse
|
132
|
Rutckeviski R, Corso CR, Román-Ochoa Y, Cipriani TR, Centa A, Smiderle FR. Agaricus bisporus β-(1 → 6)-d-glucan induces M1 phenotype on macrophages and increases sensitivity to doxorubicin of triple negative breast cancer cells. Carbohydr Polym 2022; 278:118917. [PMID: 34973736 DOI: 10.1016/j.carbpol.2021.118917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/30/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022]
Abstract
Mushroom β-d-glucans have demonstrated immunomodulatory activity, which is initiated by their recognition by specific receptors on immune system cells surfaces. Studies indicated that β-d-glucans may present a synergistic effect with chemotherapy drugs. In this study, a linear β-(1 → 6)-d-glucan (B16), isolated from A. bisporus and previously characterized (Mw: 8.26 × 104 g/mol), was evaluated about its capacity to modulate THP-1 macrophages towards an M1 phenotype and induce an antitumoral activity. This was evidenced by the production of pro-inflammatory markers upon B16 treatment (30; 100 μg/mL). The breast tumor cells (MDA-MB-231) viability was not affected by treatment with B16, however, their viability markedly decreased upon treatment with the drug doxorubicin. The results showed a synergic effect of B16 and doxorubicin, which reduced the viability of MDA-MB-231 cells by 31%. Furthermore, B16 treatment provided a sustainable M1 state environment and contributed to increase the sensitivity of breast cancer cells to the doxorubicin treatment.
Collapse
Affiliation(s)
- Renata Rutckeviski
- Faculdades Pequeno Príncipe, 80230-020 Curitiba, PR, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, 80240-020 Curitiba, PR, Brazil
| | - Claudia Rita Corso
- Faculdades Pequeno Príncipe, 80230-020 Curitiba, PR, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, 80240-020 Curitiba, PR, Brazil
| | - Yony Román-Ochoa
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR 81531-980, Brazil
| | - Thales Ricardo Cipriani
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR 81531-980, Brazil
| | - Ariana Centa
- Faculdades Pequeno Príncipe, 80230-020 Curitiba, PR, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, 80240-020 Curitiba, PR, Brazil
| | - Fhernanda Ribeiro Smiderle
- Faculdades Pequeno Príncipe, 80230-020 Curitiba, PR, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, 80240-020 Curitiba, PR, Brazil.
| |
Collapse
|
133
|
Rezaei M, Danilova ND, Soltani M, Savvateeva LV, V Tarasov V, Ganjalikhani-Hakemi M, V Bazhinf A, A Zamyatnin A. Cancer Vaccine in Cold Tumors: Clinical Landscape, Challenges, and Opportunities. Curr Cancer Drug Targets 2022; 22:437-453. [PMID: 35156572 DOI: 10.2174/1568009622666220214103533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
The idea of cancer immunotherapy is to stimulate the immune system to fight tumors without destroying normal cells. One of the anticancer therapy methods, among many, is based on the use of cancer vaccines that contain tumor antigens in order to induce immune responses against tumors. However, clinical trials have shown that the use of such vaccines as a monotherapy is ineffective in many cases, since they do not cause a strong immune response. Particular tumors are resistant to immunotherapy due to the absence or insufficient infiltration of tumors with CD8+ T cells, and hence, they are called cold or non-inflamed tumors. Cold tumors are characterized by a lack of CD8+ T cell infiltration, the presence of anti-inflammatory myeloid cells, tumor-associated M2 macrophages, and regulatory T cells. It is very important to understand which stage of the antitumor response does not work properly in order to use the right strategy for the treatment of patients. Applying other therapeutic methods alongside cancer vaccines can be more rational for cold tumors which do not provoke the immune system strongly. Herein, we indicate some combinational therapies that have been used or are in progress for cold tumor treatment alongside vaccines.
Collapse
Affiliation(s)
- Mahnaz Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mozhdeh Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mazdak Ganjalikhani-Hakemi
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alexandr V Bazhinf
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
134
|
Masuda A, Lee JM, Miyata T, Mon H, Sato K, Oyama K, Sakurai Y, Yasuda J, Takahashi D, Ueda T, Kato Y, Nishida M, Karasaki N, Kakino K, Ebihara T, Nagasato T, Hino M, Nakashima A, Suzuki K, Tonooka Y, Tanaka M, Moriyama T, Nakatake H, Fujita R, Kusakabe T. Optimization of SARS-CoV-2 Spike Protein Expression in the Silkworm and Induction of Efficient Protective Immunity by Inoculation With Alum Adjuvants. Front Immunol 2022; 12:803647. [PMID: 35095889 PMCID: PMC8789674 DOI: 10.3389/fimmu.2021.803647] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a spread of coronavirus disease 2019 (COVID-19) globally. In order to end the COVID-19 pandemic, an effective vaccine against SARS-CoV-2 must be produced at low cost and disseminated worldwide. The spike (S) protein of coronaviruses plays a pivotal role in the infection to host cells. Therefore, targeting the S protein is one of the most rational approaches in developing vaccines and therapeutic agents. In this study, we optimized the expression of secreted trimerized S protein of SARS-CoV-2 using a silkworm-baculovirus expression vector system and evaluated its immunogenicity in mice. The results showed that the S protein forming the trimeric structure was the most stable when the chicken cartilage matrix protein was used as the trimeric motif and could be purified in large amounts from the serum of silkworm larvae. The purified S protein efficiently induced antigen-specific antibodies in mouse serum without adjuvant, but its ability to induce neutralizing antibodies was low. After examining several adjuvants, the use of Alum adjuvant was the most effective in inducing strong neutralizing antibody induction. We also examined the adjuvant effect of paramylon from Euglena gracilis when administered with the S protein. Our results highlight the effectiveness and suitable construct design of the S protein produced in silkworms for the subunit vaccine development against SARS-CoV-2.
Collapse
Affiliation(s)
- Akitsu Masuda
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Miyata
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Keita Sato
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Kosuke Oyama
- Laboratory of Protein Structure, Function and Design, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuteru Sakurai
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Daisuke Takahashi
- Laboratory of Protein Structure, Function and Design, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tadashi Ueda
- Laboratory of Protein Structure, Function and Design, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Motohiro Nishida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Karasaki
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Kakino
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takeru Ebihara
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takumi Nagasato
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Masato Hino
- Laboratory of Sanitary Entomology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Ayaka Nakashima
- The Research and Development Department, Euglena Co., Ltd, Tokyo, Japan
| | - Kengo Suzuki
- The Research and Development Department, Euglena Co., Ltd, Tokyo, Japan
| | - Yoshino Tonooka
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Miyu Tanaka
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takato Moriyama
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | | | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
135
|
Feng X, Li F, Ding M, Zhang R, Shi T, Lu Y, Jiang W. Molecular dynamic simulation: Study on the recognition mechanism of linear β-(1 → 3)-D-glucan by Dectin-1. Carbohydr Polym 2022; 286:119276. [DOI: 10.1016/j.carbpol.2022.119276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/26/2022]
|
136
|
Panda SK, Luyten W. Medicinal mushrooms: Clinical perspective and challenges. Drug Discov Today 2022; 27:636-651. [PMID: 34823005 DOI: 10.1016/j.drudis.2021.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/11/2021] [Accepted: 11/17/2021] [Indexed: 01/08/2023]
Abstract
Mushrooms are valued by humans worldwide as food, but also for their medicinal properties. Over 130 medicinal effects of mushrooms have been reported, including anti-diabetic, antioxidant, antimicrobial, anticancer, prebiotic, immunomodulating, anti-inflammatory and cardiovascular benefits. Several mushrooms have been tested in phase I, II, or III clinical trials for various diseases, including cancers, as well as to modulate immunity. Here, we review clinical studies on medicinal mushrooms or preparations (but not pure compounds) derived thereof. Overall, few phase III trials have been performed, and in many cases, these trials included a relatively small number of patients. Therefore, despite the promising published clinical data, especially on immune modulation, more work is required to clarify the therapeutic value of mushrooms.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Department of Biology, KU Leuven, 3000 Leuven, Belgium; Center of Environment Climate Change and Public Health, RUSA 2.0, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India.
| | - Walter Luyten
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
137
|
Panda SK, Sahoo G, Swain SS, Luyten W. Anticancer Activities of Mushrooms: A Neglected Source for Drug Discovery. Pharmaceuticals (Basel) 2022; 15:176. [PMID: 35215289 PMCID: PMC8876642 DOI: 10.3390/ph15020176] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/08/2023] Open
Abstract
Approximately 270 species of mushrooms have been reported as potentially useful for human health. However, few mushrooms have been studied for bioactive compounds that can be helpful in treating various diseases. Like other natural regimens, the mushroom treatment appears safe, as could be expected from their long culinary and medicinal use. This review aims to provide a critical discussion on clinical trial evidence for mushrooms to treat patients with diverse types of cancer. In addition, the review also highlights the identified bioactive compounds and corresponding mechanisms of action among the explored mushrooms. Furthermore, it also discusses mushrooms with anticancer properties, demonstrated either in vitro and/or in vivo models, which have never been tested in clinical studies. Several mushrooms have been tested in phase I or II clinical trials, mostly for treating breast cancer (18.6%), followed by colorectal (14%) and prostate cancer (11.6%). The majority of clinical studies were carried out with just 3 species: Lentinula edodes (22.2%), Coriolus versicolor, and Ganoderma lucidum (both 13.9%); followed by two other species: Agaricus bisporus and Grifola frondosa (both 11.1%). Most in vitro cell studies use breast cancer cell lines (43.9%), followed by lung (14%) and colorectal cancer cell lines (13.1%), while most in vivo animal studies are performed in mice tumor models (58.7%). Although 32 species of mushrooms at least show some promise for the treatment of cancer, only 11 species have been tested clinically thus far. Moreover, most clinical studies have investigated fewer numbers of patients, and have been limited to phase III or IV. Therefore, despite the promising preclinical and clinical data publication, more solid scientific efforts are required to clarify the therapeutic value of mushrooms in oncology.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Center of Environment, Climate Change and Public Health, RUSA 2.0, Utkal University, Bhubaneswar 751004, India
- Department of Zoology, Utkal University, Bhubaneswar 751004, India;
- Department of Biology, KU Leuven, 3000 Leuven, Belgium;
| | - Gunanidhi Sahoo
- Department of Zoology, Utkal University, Bhubaneswar 751004, India;
| | - Shasank S. Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar 751023, India;
| | - Walter Luyten
- Department of Biology, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
138
|
Kim M, Huda MN, Bennett BJ. Sequence meets function-microbiota and cardiovascular disease. Cardiovasc Res 2022; 118:399-412. [PMID: 33537709 PMCID: PMC8803075 DOI: 10.1093/cvr/cvab030] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/20/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The discovery that gut-microbiota plays a profound role in human health has opened a new avenue of basic and clinical research. Application of ecological approaches where the bacterial 16S rRNA gene is queried has provided a number of candidate bacteria associated with coronary artery disease and hypertension. We examine the associations between gut microbiota and a variety of cardiovascular disease (CVD) including atherosclerosis, coronary artery disease, and blood pressure. These approaches are associative in nature and there is now increasing interest in identifying the mechanisms underlying these associations. We discuss three potential mechanisms including: gut permeability and endotoxemia, increased immune system activation, and microbial derived metabolites. In addition to discussing these potential mechanisms we highlight current studies manipulating the gut microbiota or microbial metabolites to move beyond sequence-based association studies. The goal of these mechanistic studies is to determine the mode of action by which the gut microbiota may affect disease susceptibility and severity. Importantly, the gut microbiota appears to have a significant effect on host metabolism and CVD by producing metabolites entering the host circulatory system such as short-chain fatty acids and trimethylamine N-Oxide. Therefore, the intersection of metabolomics and microbiota research may yield novel targets to reduce disease susceptibility. Finally, we discuss approaches to demonstrate causality such as specific diet changes, inhibition of microbial pathways, and fecal microbiota transplant.
Collapse
Affiliation(s)
- Myungsuk Kim
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, CA, USA
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Md Nazmul Huda
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, CA, USA
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Brian J Bennett
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, CA, USA
- Department of Nutrition, University of California Davis, Davis, CA, USA
| |
Collapse
|
139
|
Kim JH, Kim DH, Jo S, Cho MJ, Cho YR, Lee YJ, Byun S. Immunomodulatory functional foods and their molecular mechanisms. Exp Mol Med 2022; 54:1-11. [PMID: 35079119 PMCID: PMC8787967 DOI: 10.1038/s12276-022-00724-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
The immune system comprises a complex group of processes that provide defense against diverse pathogens. These defenses can be divided into innate and adaptive immunity, in which specific immune components converge to limit infections. In addition to genetic factors, aging, lifestyle, and environmental factors can influence immune function, potentially affecting the susceptibility of the host to disease-causing agents. Chemical compounds in certain foods have been shown to regulate signal transduction and cell phenotypes, ultimately impacting pathophysiology. Research has shown that the consumption of specific functional foods can stimulate the activity of immune cells, providing protection against cancer, viruses, and bacteria. Here, we review a number of functional foods reported to strengthen immunity, including ginseng, mushrooms, chlorella, and probiotics (Lactobacillus plantarum). We also discuss the molecular mechanisms involved in regulating the activity of various types of immune cells. Identifying immune-enhancing functional foods and understanding their mechanisms of action will support new approaches to maintain proper health and combat immunological diseases. Evidence is building to support the idea that specific ‘functional foods’ can stimulate the activity of cells and signaling systems of the immune system to provide protection against cancer, viruses and bacteria. Sanguine Byun and colleagues at Yonsei University in Seoul, South Korea, review research into a range of functional foods, foods thought to have health benefits beyond their nutritional value. These include ginseng, mushrooms, the green algae called Chlorella and the probiotic bacteria Lactobacillus plantarum. They also consider individual components of foods such as poly-gamma-glutamate, a natural polymer made by bacteria. A wide body of research is revealing diverse molecular mechanisms through which biochemicals in functional foods can modulate different aspects of the immune system. These include effects on both non-specific innate immunity and adaptive immunity, which targets specific invading pathogens and diseased cells.
Collapse
|
140
|
Xu J, Ma Q, Zhang Y, Fei Z, Sun Y, Fan Q, Liu B, Bai J, Yu Y, Chu J, Chen J, Wang C. Yeast-derived nanoparticles remodel the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor growth. Nat Commun 2022; 13:110. [PMID: 35013252 PMCID: PMC8748771 DOI: 10.1038/s41467-021-27750-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Microbe-based cancer immunotherapy has recently emerged as a hot topic for cancer treatment. However, serious limitations remain including infection associated side-effect and unsatisfactory outcomes in clinic trials. Here, we fabricate different sizes of nano-formulations derived from yeast cell wall (YCW NPs) by differential centrifugation. The induction of anticancer immunity of our formulations appears to inversely correlate with their size due to the ability to accumulate in tumor-draining lymph node (TDLN). Moreover, we use a percolation model to explain their distribution behavior toward TDLN. The abundance and functional orientation of each effector component are significantly improved not only in the microenvironment in tumor but also in the TDLN following small size YCW NPs treatment. In combination with programmed death-ligand 1 (PD-L1) blockade, we demonstrate anticancer efficiency in melanoma-challenged mice. We delineate potential strategy to target immunosuppressive microenvironment by microbe-based nanoparticles and highlight the role of size effect in microbe-based immune therapeutics. Components of the yeast cell wall, including but not limited to β-glucan, have been reported to act as danger signals and promote immune responses. Here the authors report the design and anti-tumor immune responses elicited by yeast cell wall-based nanoparticles in preclinical cancer models.
Collapse
Affiliation(s)
- Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Qingle Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yue Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ziying Fei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yifei Sun
- School of Mathematical Sciences, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Qin Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Bo Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jinyu Bai
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Yue Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jianhong Chu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Jingrun Chen
- School of Mathematical Sciences, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
141
|
|
142
|
Rennerova Z, Picó Sirvent L, Carvajal Roca E, Paśnik J, Logar M, Milošević K, Majtan J, Jesenak M. Beta-(1,3/1,6)-D-glucan from Pleurotus ostreatus in the prevention of recurrent respiratory tract infections: An international, multicentre, open-label, prospective study. Front Pediatr 2022; 10:999701. [PMID: 36324817 PMCID: PMC9619242 DOI: 10.3389/fped.2022.999701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Preschool children are particularly susceptible to recurrent upper and lower respiratory tract infections due to their immune immaturity and other contributing factors. Preventing and/or treating children suffering from recurrent respiratory tract infections (RRTIs) is challenging, and it is important to provide more clinical evidence about the safety and efficacy of natural immunomodulating preparations, including β-glucans. The aim of the present study was to assess the incidence of respiratory tract infections (RTIs) in children with a history of RRTIs for a period of 6 months (3 months of pleuran supplementation and 3 months of follow-up) compared with the same period from October to March of the previous year prior to enrolment in the study. A total of 1,030 children with a mean age of 3.49 ± 1.91 years from seven countries were included in this study. The total number of RTIs observed during the study period was significantly lower compared to the same period of the previous year (7.07 ± 2.89 vs. 3.87 ± 3.19; p < 0.001). Analysis of each type of RTI revealed significant reductions in the mean number and duration of infections for all RTI subtypes compared to the previous year. This study also confirmed the beneficial safety profile of pleuran supplementation. In conclusion, pleuran supplementation represents an interesting and prospective supplement in preventing respiratory infections and reveals new strategies for supporting immune functions in the paediatric population.
Collapse
Affiliation(s)
- Zuzana Rennerova
- Department of Paediatric Pulmonology and Phthisiology, Faculty of Medicine, Slovak Medical University, National Children Institute of Health, Bratislava, Slovakia
| | - Leandro Picó Sirvent
- Paediatrics Department, Hospital de la Salud, Valencia, Spain.,Faculty of Medicine and Health Sciences, Valencia Catholic University Saint Vincent Martyr, Valencia, Spain
| | - Eva Carvajal Roca
- Paediatrics Department, Hospital de la Salud, Valencia, Spain.,Faculty of Medicine and Health Sciences, Valencia Catholic University Saint Vincent Martyr, Valencia, Spain
| | | | - Mateja Logar
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.,Department of Infectious Diseases and Epidemiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Milošević
- Department of Pulmonology and Allergology, University Children's Hospital, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Juraj Majtan
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Microbiology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Milos Jesenak
- Department of Paediatrics, Jessenius Faculty of Medicine, University Teaching Hospital in Martin, Comenius University in Bratislava, Martin, Slovakia.,Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovakia
| |
Collapse
|
143
|
Fischer S, Stegmann F, Gnanapragassam VS, Lepenies B. From structure to function – Ligand recognition by myeloid C-type lectin receptors. Comput Struct Biotechnol J 2022; 20:5790-5812. [DOI: 10.1016/j.csbj.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
|
144
|
Iliev DB, Strandskog G, Sobhkhez M, Bruun JA, Jørgensen JB. Secretome Profiling of Atlantic Salmon Head Kidney Leukocytes Highlights the Role of Phagocytes in the Immune Response to Soluble β-Glucan. Front Immunol 2021; 12:736964. [PMID: 34917074 PMCID: PMC8671040 DOI: 10.3389/fimmu.2021.736964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/12/2021] [Indexed: 12/01/2022] Open
Abstract
β‐Glucans (BG) are glucose polymers which are produced in bacteria and fungi but not in vertebrate organisms. Being recognized by phagocytic leukocytes including macrophages and neutrophils through receptors such as dectin-1 and Complement receptor 3 (CR3), the BG are perceived by the innate immune system of vertebrates as foreign substances known as Pathogen Associated Molecular Patterns (PAMPs). The yeast-derived BG has been recognized for its potent biological activity and it is used as an immunomodulator in human and veterinary medicine. The goal of the current study was to characterize the immunostimulatory activity of soluble yeast BG in primary cultures of Atlantic salmon (Salmo salar) head kidney leukocytes (HKLs) in which phagocytic cell types including neutrophils and mononuclear phagocytes predominate. The effect of BG on the secretome of HKL cultures, including secretion of extracellular vesicles (EVs) and soluble protein55s was characterized through western blotting and mass spectrometry. The results demonstrate that, along with upregulation of proinflammatory genes, BG induces secretion of ubiquitinated proteins (UbP), MHCII-containing EVs from professional antigen presenting cells as well as proteins derived from granules of polymorphonuclear granulocytes (PMN). Among the most abundant proteins identified in BG-induced EVs were beta-2 integrin subunits, including CD18 and CD11 homologs, which highlights the role of salmon granulocytes and mononuclear phagocytes in the response to soluble BG. Overall, the current work advances the knowledge about the immunostimulatory activity of yeast BG on the salmon immune system by shedding light on the effect of this PAMP on the secretome of salmon leukocytes.
Collapse
Affiliation(s)
- Dimitar B Iliev
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Gene Regulation, Institute of Molecular Biology 'Roumen Tsanev', Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Guro Strandskog
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mehrdad Sobhkhez
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jack A Bruun
- Department of Medical Biology, Proteomics Platform, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
145
|
Chen HM, Sun L, Pan PY, Wang LH, Chen SH. Nutrient supplements from selected botanicals mediated immune modulation of the tumor microenvironment and antitumor mechanism. Cancer Immunol Immunother 2021; 70:3435-3449. [PMID: 33877384 DOI: 10.1007/s00262-021-02927-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/23/2021] [Indexed: 11/29/2022]
Abstract
Specific extracts of selected vegetables (SV) have been shown to benefit the survival of stage IIIb/IV non-small cell lung cancer patients in phase I/II studies and is currently in a phase III trial. However, the underlying mechanism of SV-mediated antitumor immune responses has not been elucidated. Our results indicate that SV modulated the NK and adoptive T cell immune responses in antitumor efficacy. Furthermore, antitumor effects of SV were also mediated by innate myeloid cell function, which requires both TLR and β-glucan signaling in a MyD88/TRIF and Dectin-1-dependent manner, respectively. Additionally, SV treatment reduced granulocytic myeloid-derived suppressor cell (MDSC) infiltration into the tumor and limited monocytic MDSC toward the M2-like functional phenotype. Importantly, SV treatment enhanced antigen-specific immune responses by augmenting the activation of antigen-specific TH1/TH17 cells in secondary lymphoid organs and proliferative response, as well as by reducing the Treg population in the tumor microenvironment, which was driven by SV-primed activated M-MDSC. Our results support the idea that SV can subvert immune-tolerance state in the tumor microenvironment and inhibit tumor growth. The present study suggests that features, such as easy accessibility, favorable clinical efficacy, no detectable side effects and satisfactory safety make SV a feasible, appealing and convincing adjuvant therapy for the treatment of cancer patients and prevent tumor recurrence and/or metastases.
Collapse
Affiliation(s)
- Hui-Ming Chen
- Department of Oncological Sciences, Icahn School of Medicine At Mount Sinai, New York, 10029, USA
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Cancer Center, Houston Methodist Research Institute, Houston, 77030, USA
| | - Linus Sun
- Department of Ophthalmology, Columbia University, New York, 10027, USA
| | - Ping-Ying Pan
- Department of Oncological Sciences, Icahn School of Medicine At Mount Sinai, New York, 10029, USA
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Cancer Center, Houston Methodist Research Institute, Houston, 77030, USA
| | - Lu-Hai Wang
- Institute of Integrated Medicine and Chinese Medical Research Center, China Medical University, Taichung, 40402, Taiwan, ROC.
| | - Shu-Hsia Chen
- Department of Oncological Sciences, Icahn School of Medicine At Mount Sinai, New York, 10029, USA.
- Immunotherapy Research Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Cancer Center, Houston Methodist Research Institute, Houston, 77030, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, USA.
| |
Collapse
|
146
|
He Y, Liu S, Newburg DS. Musarin, a novel protein with tyrosine kinase inhibitory activity from Trametes versicolor, inhibits colorectal cancer stem cell growth. Biomed Pharmacother 2021; 144:112339. [PMID: 34656057 DOI: 10.1016/j.biopha.2021.112339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer is the second deadly cancer in the world. Trametes versicolor is a traditional Chinese medicinal mushroom with a long history of being used to regulate immunity and prevent cancer. Trametes versicolor mushroom extract demonstrates strongly cell growth inhibitory activity on human colorectal tumor cells. In this study, we characterized a novel 12-kDa protein that named musarin, which was purified from Trametes versicolor mushroom extract and showed significant growth inhibition on multiple human colorectal cancer cell lines in vitro. The protein sequence of musarin was determined through enzyme digestion and MS/MS analysis. Furthermore, Musarin, in particular, strongly inhibits aggressive human colorectal cancer stem cell-like CD24+CD44+ HT29 proliferation in vitro and in a NOD/SCID murine xenograft model. Through whole transcription profile and gene enrichment analysis of musarin-treated CSCs-like cells, major signaling pathways and network modulated by musarin have been enriched, including the bioprocess of the Epithelial-Mesenchymal Transition, the EGFR-Ras signaling pathway and enzyme inhibitor activity. Musarin demonstrated tyrosine kinase inhibitory activity in vitro. Musarin strongly attenuated EGFR expression and down-regulated phosphorylation level, thereby slowing cancer cells proliferation. In addition, oral ingestion of musarin significantly inhibited CD24+CD44+ HT29 generated tumor development in SCID/NOD mice with less side effects in microgram doses. Targeting self-renewal aggressive stem-cell like cancer cell proliferation, with higher water solubility and lower cytotoxicity, musarin has shown strong potence to be developed as a promising novel therapeutic drug candidate against colorectal cancers, especially those that acquire chemo-resistance.
Collapse
Affiliation(s)
- YingYing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; School of Chemical Science & Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Shubai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - David S Newburg
- University of Cincinnati College of Medicine, 130 Panzeca Way, Cincinnati, OH 45267, USA.
| |
Collapse
|
147
|
Shen M, Du Y, Ye Y. Tumor-associated macrophages, dendritic cells, and neutrophils: biological roles, crosstalk, and therapeutic relevance. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:222-243. [PMID: 37724296 PMCID: PMC10388790 DOI: 10.1515/mr-2021-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/03/2021] [Indexed: 09/20/2023]
Abstract
Tumor-associated myeloid cells constitute a series of plastic and heterogeneous cell populations within the tumor microenvironment (TME), and exhibit different phenotypes and functions in response to various microenvironmental signals. In light of promising preclinical data indicating that myeloid-based therapy can effectively suppress tumor growth, a series of novel immune-based therapies and approaches are currently undergoing clinical evaluation. A better understanding of the diversity and functional roles of different myeloid cell subtypes and of how they are associated with TME remodeling may help to improve cancer therapy. Herein, we focus on myeloid cells and discuss how tumor cells can simultaneously reprogram these cells through tumor-derived factors and metabolites. In addition, we discuss the interactions between myeloid cells and other cells in the TME that have the potential to directly or indirectly regulate tumor initiation, invasion, or angiogenesis. We further discuss the current and future potential applications of myeloid cells in the development of focused therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Mingyi Shen
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhua Du
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youqiong Ye
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
148
|
Córdova-Martínez A, Caballero-García A, Roche E, Noriega DC. β-Glucans Could Be Adjuvants for SARS-CoV-2 Virus Vaccines (COVID-19). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312636. [PMID: 34886361 PMCID: PMC8656611 DOI: 10.3390/ijerph182312636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/23/2022]
Abstract
Waiting for an effective treatment against the SARS-CoV-2 virus (the cause of COVID-19), the current alternatives include prevention and the use of vaccines. At the moment, vaccination is the most effective strategy in the fight against pandemic. Vaccines can be administered with different natural biological products (adjuvants) with immunomodulating properties. Adjuvants can be taken orally, complementing vaccine action. Adjuvant compounds could play a key role in alleviating the symptoms of the disease, as well as in enhancing vaccine action. Adjuvants also contribute to an effective immune response and can enhance the protective effect of vaccines in immunocompromised individuals such as the elderly. Adjuvants must not produce adverse effects, toxicity, or any other symptoms that could alter immune system function. Vaccine adjuvants are substances of wide varying chemical structure that are used to boost the immune response against a simultaneously administered antigen. Glucans could work as adjuvants due to their immunomodulatory biological activity. In this respect, β-(1,3)-(1,6) glucans are considered the most effective and safe according to the list issued by the European Commission. Only glucans with a β-(1,3) bond linked to a β-(1,6) are considered modulators of certain biological responses. The aim of this review is to present the possible effects of β-glucans as adjuvants in the efficacy of vaccines against SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Alfredo Córdova-Martínez
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR: “Physical Exercise and Ageing”, University Campus “Los Pajaritos”, Valladolid University, 42004 Soria, Spain
- Correspondence:
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR: “Physical Exercise and Ageing”, University Campus “Los Pajaritos”, Valladolid University, 42004 Soria, Spain;
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, Miguel Hernández University, 03202 Elche, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - David C. Noriega
- Spine Unit, Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain;
| |
Collapse
|
149
|
Zhou J, Zhang S, Guo C. Crosstalk between macrophages and natural killer cells in the tumor microenvironment. Int Immunopharmacol 2021; 101:108374. [PMID: 34824036 DOI: 10.1016/j.intimp.2021.108374] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment (TME) is jointly constructed by a variety of cell types, including tumor cells, immune cells, fibroblasts, and epithelial cells, among others. The cells within the TME interact with each other and with tumor cells to influence tumor development and progression. As the most abundant immune cells in the TME, macrophages regulate the immune network by not only secreting a large amount of versatile cytokines but also expressing a series of ligands or receptors on the surface to interact with other cells directly. Due to their strong plasticity, they exert both immunostimulatory and immunosuppressive effects in the complex TME. The major effector cells of the immune system that directly target cancer cells include but are not limited to natural killer cells (NKs), dendritic cells (DCs), macrophages, polymorphonuclear leukocytes, mast cells, and cytotoxic T lymphocytes (CTLs). Among them, NK cells are the predominant innate lymphocyte subsets that mediate antitumor and antiviral responses. The activation and inhibition of NK cells are regulated by cytokines and the balance between activating and inhibitory receptors. There is an inextricable regulatory relationship between macrophages and NK cells. Herein, we systematically elaborate on the regulatory network between macrophages and NK cells through soluble mediator crosstalk and cell-to-cell interactions. We believe that a better understanding of the crosstalk between macrophages and NKs in the TME will benefit the development of novel macrophage- or NK cell-focused therapeutic strategies with superior efficacies in cancer therapy.
Collapse
Affiliation(s)
- Jingping Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Shaolong Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
150
|
Golisch B, Lei Z, Tamura K, Brumer H. Configured for the Human Gut Microbiota: Molecular Mechanisms of Dietary β-Glucan Utilization. ACS Chem Biol 2021; 16:2087-2102. [PMID: 34709792 DOI: 10.1021/acschembio.1c00563] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The β-glucans are a disparate group of structurally diverse polysaccharides, whose members are widespread in human diets as components of the cell walls of plants, algae, and fungi (including yeasts), and as bacterial exopolysaccharides. Individual β-glucans from these sources have long been associated with positive effects on human health through metabolic and immunological effects. Remarkably, the β-configured glucosidic linkages that define these polysaccharides render them inaccessible to the limited repertoire of digestive enzymes encoded by the human genome. As a result, the various β-glucans become fodder for the human gut microbiota (HGM) in the lower gastrointestinal tract, where they influence community composition and metabolic output, including fermentation to short chain fatty acids (SCFAs). Only recently, however, have the specific molecular systems that enable the utilization of β-glucans by select members of the HGM been fully elucidated by combined genetic, biochemical, and structural biological approaches. In the context of β-glucan structures and their effects on human nutrition and health, we summarize here the functional characterization of individual polysaccharide utilization loci (PULs) responsible for the saccharification of mixed-linkage β(1→3)/β(1→4)-glucans, β(1→6)-glucans, β(1→3)-glucans, β(1→2)-glucans, and xyloglucans in symbiotic human gut bacteria. These exemplar PULs serve as well-defined biomarkers for the prediction of β-glucan metabolic capability in individual bacterial taxa and across the global human population.
Collapse
|